JP2011174515A - Coil spring - Google Patents

Coil spring Download PDF

Info

Publication number
JP2011174515A
JP2011174515A JP2010038180A JP2010038180A JP2011174515A JP 2011174515 A JP2011174515 A JP 2011174515A JP 2010038180 A JP2010038180 A JP 2010038180A JP 2010038180 A JP2010038180 A JP 2010038180A JP 2011174515 A JP2011174515 A JP 2011174515A
Authority
JP
Japan
Prior art keywords
coil
coil spring
shape memory
alloy
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010038180A
Other languages
Japanese (ja)
Inventor
Takuji Nakahata
拓治 中畑
Eiji Seki
栄治 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Thermostat Co Ltd
Nippon Steel Corp
Original Assignee
Nippon Thermostat Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Thermostat Co Ltd, Sumitomo Metal Industries Ltd filed Critical Nippon Thermostat Co Ltd
Priority to JP2010038180A priority Critical patent/JP2011174515A/en
Publication of JP2011174515A publication Critical patent/JP2011174515A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coil spring which is low in cost and good in responsiveness to a temperature change, and its manufacturing method. <P>SOLUTION: The closed-end coil spring constituted of an alloy wire composed of a Ti-Ni based shape-memory alloy is characterized in that a ratio (d<SB>E</SB>/d) of the thickness d<SB>E</SB>(mm) of the tip of the alloy wire in the spring axial direction and the line diameter d(mm) of the alloy wire is 0.50 to 0.75 at one or both coil ends, and a ratio (D/d) of the average diameter D(mm) of a coil and the line diameter d(mm) of the alloy wire is not larger than 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、コイルばねに関し、特に、湯水混合水栓などにおいて、流体温度の制御を目的として使用されるコイルばねに関する。   The present invention relates to a coil spring, and more particularly, to a coil spring used for the purpose of controlling fluid temperature in a hot and cold water mixing faucet or the like.

形状記憶合金は、所定の形状に成形した後、所定の熱処理を実施することによって形状を記憶させることができる合金であり、力を加えて変形しても、一定温度(動作温度)以上に加熱すると元の形状に戻る性質を有している。これは、形状記憶合金の弾性率が温度によって大きく変化することによる。   A shape memory alloy is an alloy that can be memorized by performing a predetermined heat treatment after it has been formed into a predetermined shape, and even when deformed by applying force, it is heated above a certain temperature (operating temperature). Then, it has the property of returning to the original shape. This is because the elastic modulus of the shape memory alloy varies greatly with temperature.

特に、Ti−Ni系形状記憶合金は、様々な技術分野で適用されている合金である。Ti−Ni系形状記憶合金の弾性率が高温で高く、低温で低くなる性質を利用したものとして、湯水混合水栓などの流体温度の制御がある。   In particular, a Ti—Ni-based shape memory alloy is an alloy applied in various technical fields. As an example of utilizing the property that the modulus of elasticity of the Ti—Ni-based shape memory alloy is high at high temperatures and low at low temperatures, there is control of fluid temperature such as a hot and cold water mixing tap.

図1は、湯水混合水栓の混合原理を示す図である。図1に示すように、湯水混合水栓100は、高温水用孔102と、室温水用孔101と、高温水用孔102および室温水用孔101と接続された混合室108と、混合室108に接続された吐出孔105とを有し、混合室108内には、形状記憶合金コイルばね103、ステンレス製等のバイアスばね104およびスプール弁106が配置されている。   FIG. 1 is a diagram showing the mixing principle of a hot and cold water mixing faucet. As shown in FIG. 1, a hot and cold water mixing tap 100 includes a high temperature water hole 102, a room temperature water hole 101, a mixing chamber 108 connected to the high temperature water hole 102 and the room temperature water hole 101, and a mixing chamber. The shape memory alloy coil spring 103, a bias spring 104 made of stainless steel, and a spool valve 106 are disposed in the mixing chamber 108.

温度設定つまみ107を回して、所定の温度に設定すると、スプール弁が移動し、室温水用孔101および高温水用孔102のそれぞれが所定量開口し、予め決められた配分で混合室108内に導入される。このとき、混合室108内の混合水の温度が高くなりすぎると、形状記憶合金コイルばね103がバイアスばね104を押し込むため、スプール弁の位置が移動し、室温水用孔101の流路を広げるため、混合水の温度を下げる。一方、混合室108内の混合水の温度が低くなりすぎると、形状記憶合金コイルばね103がバイアスばね104に押し込まれるため、スプール弁の位置が移動し、高温水用孔102の流路を広げるため、混合水の温度を上げる。このようにして、混合水の温度制御が行われる。   When the temperature setting knob 107 is turned to set a predetermined temperature, the spool valve moves, each of the room temperature water hole 101 and the high temperature water hole 102 is opened by a predetermined amount, and the inside of the mixing chamber 108 is distributed in a predetermined distribution. To be introduced. At this time, if the temperature of the mixed water in the mixing chamber 108 becomes too high, the shape memory alloy coil spring 103 pushes the bias spring 104, so that the position of the spool valve moves and the flow path of the room temperature water hole 101 is widened. Therefore, lower the temperature of the mixed water. On the other hand, if the temperature of the mixed water in the mixing chamber 108 becomes too low, the shape memory alloy coil spring 103 is pushed into the bias spring 104, so that the position of the spool valve moves and the flow path of the high-temperature water hole 102 is widened. Therefore, raise the temperature of the mixed water. In this way, the temperature of the mixed water is controlled.

例えば、特許文献1には、Ti−Ni系またはCu−Zn−Al系の形状記憶合金からなるコイルばねを用いた「自動温度調節式温水混合栓」に関する発明が開示されている。   For example, Patent Document 1 discloses an invention relating to an “automatic temperature control type hot water mixing tap” using a coil spring made of a shape memory alloy of Ti—Ni or Cu—Zn—Al.

形状記憶合金からなるコイルばねは、通常、冷間加工によって所望のコイル形状に成型した後に,400〜500℃程度の温度域での熱処理(以下、「形状記憶熱処理」と呼ぶ。)によって、その形状を記憶させる。このとき、ばねの座りを安定させることを目的として、コイルエンドの一方または両方が研削されるが、合金線の先端部のばね軸方向の厚みd(mm)は、合金線の線径d(mm)の1/4以下、即ち、比(d/d)が0.25以下となる厚みにされるのが一般的である。 A coil spring made of a shape memory alloy is usually formed into a desired coil shape by cold working and then subjected to a heat treatment in a temperature range of about 400 to 500 ° C. (hereinafter referred to as “shape memory heat treatment”). Remember the shape. At this time, one or both of the coil ends are ground for the purpose of stabilizing the sitting of the spring, and the thickness d E (mm) of the tip end portion of the alloy wire in the spring axial direction is the wire diameter d of the alloy wire. Generally, the thickness is set to ¼ or less of (mm), that is, the ratio (d E / d) is 0.25 or less.

ただし、研削処理時にはコイルエンドに摩擦熱が発生するため、これを形状記憶熱処理後に行うと形状記憶合金特性に悪影響を与え、また、形状記憶熱処理前に行ったとしても、ばね径の増大、座巻部の開きなどの形状不良を生じさせるため、仮熱処理後に、研削処理を行い、その後に形状記憶熱処理を行うことが必要とされている。また、研削処理後には、研削時に生じたバリを除去する作業を要する。   However, since frictional heat is generated at the coil end during the grinding process, if this is performed after the shape memory heat treatment, the shape memory alloy characteristics are adversely affected. In order to cause a shape defect such as opening of the winding part, it is necessary to perform a grinding process after the temporary heat treatment and then perform a shape memory heat treatment. In addition, after the grinding process, it is necessary to remove burrs generated during grinding.

一方、研削処理を行わず、ばねの座りを安定させる方法として、特許文献2には、ばねの中心線に直行する最終座巻き部をコイルの2分の1巻以上有するコイルばねが開示されている。   On the other hand, as a method of stabilizing the spring sitting without performing the grinding process, Patent Document 2 discloses a coil spring having a final end winding portion that is perpendicular to the center line of the spring and having a half or more turns of the coil. Yes.

実開昭57−35567号公報Japanese Utility Model Publication No. 57-35567 特開2002−364691号公報Japanese Patent Laid-Open No. 2002-364691

特許文献1には、形状記憶合金からなるコイルばねを使用することが記載されているものの、その具体的な形状については触れられていない。また、特許文献2に記載の発明は、コイルの平均径D(mm)に対して、合金線の線径d(mm)が十分に細い場合には有効であるものの、混合水栓用ばねとして一般的に用いられる、比(D/d)が10以下のコイルばねではほとんど意味をなさない。   Patent Document 1 describes the use of a coil spring made of a shape memory alloy, but does not mention its specific shape. The invention described in Patent Document 2 is effective when the wire diameter d (mm) of the alloy wire is sufficiently thin with respect to the average diameter D (mm) of the coil, but as a spring for a mixed faucet. A generally used coil spring having a ratio (D / d) of 10 or less makes little sense.

一方、形状記憶合金からなるコイルばねは、周辺温度の変化に対する反応が早いため、オーバーシュート(水温が設定水温をオーバーしてから設定水温になる現象)の少ない温度制御が可能となりつつあるが、依然として、オーバーシュートの発生は完全に無くなっておらず、より温度変化への応答性の良いコイルばねが求められている。   On the other hand, the coil spring made of a shape memory alloy has a quick response to changes in the ambient temperature, so temperature control with less overshoot (a phenomenon in which the water temperature exceeds the set water temperature and then the set water temperature) is becoming possible. Still, the occurrence of overshoot is not completely eliminated, and there is a demand for a coil spring that is more responsive to temperature changes.

従って、本発明は、コイルエンドの研削処理を前提とし、低コストで製造可能であり、しかも、温度変化への応答性の良いコイルばねおよびその製造方法を提供することを目的とする。   Accordingly, it is an object of the present invention to provide a coil spring that can be manufactured at low cost and that has good response to temperature changes, and a method for manufacturing the same, on the premise of grinding processing of the coil end.

本発明者らは、形状記憶合金からなるコイルばねのコイルエンドの研削時に発生する加工熱と形状崩れの関係に着目し、従来、合金線の先端部のばね軸方向の厚みd(mm)を、合金線の線径d(mm)の1/4以下、即ち、比(d/d)が0.25以下となるまで行われてきたコイルエンドの研削の検討を行った。その結果、コイルエンドの研削処理後の合金線の先端部形状を従来のものよりある程度厚くしても、安定したばねの座りを確保でき、しかも、そうすることにより研削処理前の加熱処理工程の省略、更には研削処理後のバリ取り工程をも省略することが可能であり、製造工程を大幅に簡略化することができることを知見した。 The present inventors paid attention to the relationship between the processing heat generated when grinding the coil end of a coil spring made of a shape memory alloy and the shape collapse, and conventionally, the thickness d E (mm) of the tip end portion of the alloy wire in the spring axial direction. Was examined until the end of the alloy wire was reduced to 1/4 or less of the wire diameter d (mm), that is, the ratio (d E / d) was 0.25 or less. As a result, even if the tip shape of the alloy wire after the grinding process of the coil end is made somewhat thicker than the conventional one, it is possible to secure a stable spring sitting, and in doing so, the heat treatment process before the grinding process can be ensured. It has been found that it is possible to omit the deburring process after the grinding process, and to greatly simplify the manufacturing process.

本発明者らは、更に、上記のような先端部形状を有するコイルばねであれば、上記の従来の形状よりも流体との接触面積を大きくすることができ、しかも、熱容量の大きいハウジング(混合水栓の場合、混合室のハウジング)との接触面積を小さくすることができるため、温度変化への応答性を向上させることができることを知見した。   Furthermore, the present inventors can increase the contact area with the fluid as compared with the conventional shape as long as the coil spring has the tip shape as described above, and also has a housing (mixing) with a large heat capacity. In the case of a faucet, it was found that the contact area with the housing of the mixing chamber) can be reduced, so that the responsiveness to temperature changes can be improved.

本発明は、上記の知見に基づいてなされたものであり、下記の(1)に示すコイルばねおよび下記の(2)に示すコイルばねの製造方法を要旨とする。   The present invention has been made on the basis of the above findings, and the gist thereof is a coil spring shown in the following (1) and a manufacturing method of the coil spring shown in the following (2).

(1)Ti−Ni系形状記憶合金からなる合金線で構成されたクローズドエンドのコイルばねであって、コイルエンドの一方または両方において、合金線の先端部のばね軸方向の厚みd(mm)と合金線の線径d(mm)との比(d/d)が0.50〜0.75であり、コイルの平均径D(mm)と合金線の線径d(mm)の比(D/d)が10以下であることを特徴とするコイルばね。 (1) A closed-end coil spring composed of an alloy wire made of a Ti—Ni-based shape memory alloy, wherein one or both of the coil ends has a thickness d E (mm) at the tip end of the alloy wire. ) And the wire diameter d (mm) of the alloy wire (d E / d) is 0.50 to 0.75, and the average diameter D (mm) of the coil and the wire diameter d (mm) of the alloy wire A coil spring having a ratio (D / d) of 10 or less.

(2)下記の工程1〜3を含むことを特徴とするコイルばねの製造方法。
工程1:Ti−Ni系形状記憶合金からなる合金線に冷間加工を実施して、コイルの平均径D(mm)と合金線の線径d(mm)の比(D/d)が10以下であるクローズドエンドのコイルばね形状のコイル成形体を得る工程、
工程2:工程1に連続して、得られたコイル成形体を研削して、コイルエンドの一方または両方において、合金線の先端部のばね軸方向の厚みd(mm)と合金線の線径d(mm)との比(d/d)が0.50〜0.75であるコイル研削体を得る工程、および、
工程3:コイル研削体に形状記憶熱処理を施してコイルばねを得る工程。
(2) A method for manufacturing a coil spring comprising the following steps 1 to 3.
Step 1: Cold working is performed on an alloy wire made of a Ti—Ni-based shape memory alloy, and the ratio (D / d) of the coil average diameter D (mm) to the wire diameter d (mm) of the alloy wire is 10 A step of obtaining a closed-end coil spring-shaped coil formed body,
Step 2: Continuously with Step 1, the obtained coil molded body is ground, and at one or both of the coil ends, the thickness d E (mm) of the tip of the alloy wire in the spring axial direction and the wire of the alloy wire Obtaining a coil grinding body having a ratio (d E / d) to a diameter d (mm) of 0.50 to 0.75, and
Step 3: A step of applying a shape memory heat treatment to the coil grinding body to obtain a coil spring.

なお、上記のTi−Ni系形状記憶合金は、原子百分率で、50.0〜51.2%のNiを含み、残部がTiおよび不純物からなる組成を有することが好ましい。上記のTi−Ni系形状記憶合金は、原子百分率で、更に、Cr、FeおよびCoから選択される一種以上の元素を合計3%以下含有することがより好ましい。   In addition, it is preferable that said Ti-Ni type | mold shape memory alloy has a composition which contains Ni of 50.0-51.2% by atomic percentage, and the remainder consists of Ti and an impurity. The Ti—Ni-based shape memory alloy is more preferably 3% or less in total with one or more elements selected from Cr, Fe and Co in atomic percentage.

本発明のコイルばねは、その製造工程において、仮熱処理を施すことなく、研削することができる上、研削後のバリ取り作業も行う必要がないため、低コストで製造可能なものであり、しかも、温度変化への応答性が良いため、特に、湯水混合水栓その他、流体温度の制御装置に用いるのに適している。本発明のコイルばねは、従来のコイルばねと比較して、ばね成型コストを約25%削減することができる。   The coil spring of the present invention can be manufactured at a low cost because it can be ground without performing a temporary heat treatment in the manufacturing process, and it is not necessary to perform a deburring operation after grinding. Since the responsiveness to temperature changes is good, it is particularly suitable for use in a hot water / water mixing faucet and other fluid temperature control devices. The coil spring of the present invention can reduce the spring molding cost by about 25% compared to the conventional coil spring.

湯水混合水栓の混合原理を示す図Diagram showing the mixing principle of the hot and cold water faucet クローズドエンドのコイルばねの構成を示す図 (a)研削ありのもの (b)研削なしのものDiagram showing the configuration of a closed-end coil spring (a) With grinding (b) Without grinding

本発明のコイルばねは、Ti−Ni系形状記憶合金からなる合金線で構成されたクローズドエンドのコイルばねである。   The coil spring of the present invention is a closed-end coil spring made of an alloy wire made of a Ti—Ni-based shape memory alloy.

図2は、クローズドエンドのコイルばねの構成を示す図であり、(a)は研削ありのもの、(b)は研削なしのものを示す。図2(a)および(b)の符号3に示すように、クローズドエンドのコイルばねとは、端末がコイル軸方向に隣のコイルと接している形状のコイルばねを意味する(JIS B 0103)。   FIG. 2 is a diagram showing the configuration of a closed-end coil spring, in which (a) shows a configuration with grinding and (b) shows a configuration without grinding. As shown by reference numeral 3 in FIGS. 2A and 2B, the closed-end coil spring means a coil spring having a shape in which a terminal is in contact with an adjacent coil in the coil axis direction (JIS B 0103). .

本発明では、図2(b)に示すように、先端部4を研削して、その厚みを合金線2の線径より小さくしたクローズドエンドのコイルばねを対象とする。なお、図2(b)に示す「d」、「d」および「D」は、以下に説明される、合金線の先端部のばね軸方向の厚みd(mm)、合金線の線径d(mm)およびコイルの平均径D(mm)をそれぞれ意味する。 In the present invention, as shown in FIG. 2 (b), a closed-end coil spring in which the tip end portion 4 is ground and the thickness thereof is smaller than the wire diameter of the alloy wire 2 is an object. Note that “d E ”, “d”, and “D” shown in FIG. 2B are the thickness d E (mm) of the tip end portion of the alloy wire in the spring axis direction and the wire of the alloy wire, which will be described below. It means the diameter d (mm) and the average diameter D (mm) of the coil.

<比(d/d):0.50〜0.75>
合金線の先端部のばね軸方向の厚みd(mm)と合金線の線径d(mm)との比(d/d)が0.50未満の場合、仮熱処理を行わず研削すれば、型崩れおよびバリ発生が生じる。また、比(d/d)が0.75を超える場合、ばねの座りが不安定になる。ばねの座りが不安定になると、製品として使いづらく、また、形状記憶処理時に傾いた場合には、設計の自由長より長い製品が発生してしまう。従って、比(d/d)は0.50〜0.75の範囲とした。比(d/d)が0.50〜0.75の範囲にあるコイルばねであれば、仮熱処理をすることなく、コイルエンドの研削処理を実施しても、研削時に生じる型崩れおよびバリの発生を抑えることができる上、ばねとしての座りも安定している。従って、仮熱処理工程も、バリ取り工程も省略できるため、製造コストを大幅に削減できる。また、比(d/d)が0.50以上であれば、従来のものより研削量が少ないため、流体との接触面積が大きくなり、しかも、熱容量が大きいばね受け治具との接触面積が小さくなるため、流体の温度変化の応答性が改善される。
<Ratio (d E / d): 0.50 to 0.75>
When the ratio (d E / d) of the thickness d E (mm) of the tip of the alloy wire in the spring axis direction to the wire diameter d (mm) of the alloy wire is less than 0.50, the alloy wire is ground without being subjected to temporary heat treatment. In this case, loss of shape and generation of burr occur. On the other hand, when the ratio (d E / d) exceeds 0.75, the sitting of the spring becomes unstable. If the sitting of the spring becomes unstable, it will be difficult to use as a product, and if it is tilted during shape memory processing, a product longer than the design free length will be generated. Therefore, the ratio (d E / d) was set in the range of 0.50 to 0.75. If the coil spring has a ratio (d E / d) in the range of 0.50 to 0.75, even if grinding of the coil end is performed without performing a temporary heat treatment, the loss of shape and burrs that occur during grinding are performed. Can be suppressed, and the sitting as a spring is also stable. Therefore, the provisional heat treatment step and the deburring step can be omitted, and the manufacturing cost can be greatly reduced. Further, if the ratio (d E / d) is 0.50 or more, the amount of grinding is less than that of the conventional one, so that the contact area with the fluid becomes large and the contact area with the spring receiving jig having a large heat capacity. Therefore, the response of the temperature change of the fluid is improved.

<比(D/d):10以下>
10を超える場合は、端面にばね軸に直行する座巻を設けることで座りが安定するため、コイルエンドの研削処理そのものが不要である。従って、本発明では、ばねの座りを安定にするためのコイルエンドの研削処理が必須である、コイルの平均径D(mm)と合金線の線径d(mm)の比(D/d)が10以下のコイルばねを対象とした。比(D/d)の下限には特に制約はないが、比(D/d)が小さすぎると、比(d/d)が0.75付近で座りが若干不安定になる恐れがあるので、比(D/d)は4以上とするのが好ましい。
<Ratio (D / d): 10 or less>
In the case of exceeding 10, since the sitting is stabilized by providing the end face with the end winding that goes straight to the spring shaft, the grinding process itself of the coil end is unnecessary. Therefore, in the present invention, the coil end grinding process for stabilizing the sitting of the spring is indispensable, and the ratio (D / d) of the average coil diameter D (mm) to the wire diameter d (mm) of the alloy wire. The target was a coil spring of 10 or less. There is no particular restriction on the lower limit of the ratio (D / d), but if the ratio (D / d) is too small, there is a possibility that the sitting may be slightly unstable when the ratio (d E / d) is around 0.75. Therefore, the ratio (D / d) is preferably 4 or more.

<Ti−Ni系形状記憶合金の化学組成>
本発明のコイルばねに用いられる形状記憶合金は、Ti−Ni系合金であれば、特に制約はないが、特に、原子百分率(以下、形状記憶合金の各元素の含有量についての「%」は、「原子百分率」を意味する。)で、50.0〜51.2%のNiを含み、残部がTiおよび不純物からなる組成を有することが好ましい。Ni含有量が、原子百分率で、50%未満の場合も51.2%を超える場合も、加工性が悪化して、コイリング中に折れが生じてしまうおそれがあるからである。なお、不純物とは、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
<Chemical composition of Ti-Ni shape memory alloy>
The shape memory alloy used in the coil spring of the present invention is not particularly limited as long as it is a Ti—Ni alloy, but in particular, the atomic percentage (hereinafter, “%” for the content of each element of the shape memory alloy is “ , "Atomic percentage"), preferably contains 50.0 to 51.2% Ni with the balance being Ti and impurities. This is because, when the Ni content is less than 50% or more than 51.2% in terms of atomic percentage, the workability is deteriorated, and there is a possibility that folding may occur during coiling. In addition, an impurity means the component mixed by various factors of raw materials such as ores and scraps and manufacturing processes, and is allowed within a range that does not adversely affect the present invention.

上記のTi−Ni系形状記憶合金は、更に、Cr、FeおよびCoから選択される一種以上の元素を合計3%以下含有することができる。これらの元素を適量含有させることで、形状記憶合金の作動温度および温度に対する弾性率の変化率を調整することができるからである。これらの元素は、その合計含有量が3%を超えると、加工性に悪影響を与える場合がある。従って、これらの元素から選択される一種以上を含有させる場合には、その合計含有量を3%以下とする。
<製造方法>
The Ti—Ni-based shape memory alloy may further contain a total of 3% or less of one or more elements selected from Cr, Fe, and Co. It is because the change rate of the elastic modulus with respect to the operating temperature and temperature of a shape memory alloy can be adjusted by containing appropriate amounts of these elements. If the total content of these elements exceeds 3%, workability may be adversely affected. Accordingly, when one or more selected from these elements is contained, the total content is made 3% or less.
<Manufacturing method>

コイルばねの製造方法については、特に制約はないが、少なくとも、下記の工程1〜3を含むことが好ましい。   Although there is no restriction | limiting in particular about the manufacturing method of a coil spring, It is preferable that the following processes 1-3 are included at least.

工程1:Ti−Ni系形状記憶合金からなる合金線に冷間加工を実施して、コイルの平均径D(mm)と合金線の線径d(mm)の比(D/d)が10以下であるクローズドエンドのコイルばね形状のコイル成形体を得る工程、
工程2:工程1に連続して、得られたコイル成形体を研削して、コイルエンドの一方または両方において、合金線の先端部のばね軸方向の厚みd(mm)と合金線の線径d(mm)との比(d/d)が0.50〜0.75であるコイル研削体を得る工程、および、
工程3:コイル研削体に形状記憶熱処理を施してコイルばねを得る工程。
Step 1: Cold working is performed on an alloy wire made of a Ti—Ni-based shape memory alloy, and the ratio (D / d) of the coil average diameter D (mm) to the wire diameter d (mm) of the alloy wire is 10 A step of obtaining a closed-end coil spring-shaped coil formed body,
Step 2: Continuously with Step 1, the obtained coil molded body is ground, and at one or both of the coil ends, the thickness d E (mm) of the tip of the alloy wire in the spring axial direction and the wire of the alloy wire Obtaining a coil grinding body having a ratio (d E / d) to a diameter d (mm) of 0.50 to 0.75, and
Step 3: A step of applying a shape memory heat treatment to the coil grinding body to obtain a coil spring.

上記の工程1、即ち、コイリング工程において、コイルの平均径D(mm)と合金線の線径d(mm)の比(D/d)を10以下とすること、および、クローズドエンドのコイルばね形状にすることの理由は、前述の通りである。上記の形状を有するコイル成形体を得るための冷間加工方法については、特に制約はない。例えば、自動コイリングマシンを用いることもできるし、旋盤の主軸に芯金(金属棒)を取付けて回転させて,そこにワイヤーを巻きつけてコイリングする旋盤式コイリングマシンを用いることもできる。   In the above step 1, that is, the coiling step, the ratio (D / d) of the average coil diameter D (mm) to the alloy wire diameter d (mm) is 10 or less, and a closed-end coil spring The reason for making the shape is as described above. There is no restriction | limiting in particular about the cold working method for obtaining the coil molded object which has said shape. For example, an automatic coiling machine can be used, or a lathe-type coiling machine in which a core metal (metal bar) is attached to a lathe spindle and rotated, and a wire is wound around the core to be coiled.

上記の工程2、即ち、コイル研削体を得る工程において、得られたコイル成形体を研削して、コイルエンドの一方または両方において、合金線の先端部のばね軸方向の厚みd(mm)と合金線の線径d(mm)との比(d/d)が0.50〜0.75であるコイル研削体を得る理由は、前述の通りである。研削の方法には限定はない。例えば、自動端面研削機を使用することもできるし、研削盤を用いて手作業にて研削することもできる。このとき、ばねの軸方向と砥石が直交するように治具を用いて行うことが望ましい。 In the above step 2, that is, in the step of obtaining the coil grinding body, the obtained coil molded body is ground, and the thickness d E (mm) of the tip end portion of the alloy wire in the spring axis direction at one or both of the coil ends. The reason for obtaining a coil grinding body in which the ratio (d E / d) of the wire diameter d (mm) of the alloy wire is 0.50 to 0.75 is as described above. There is no limitation on the grinding method. For example, an automatic end surface grinder can be used, or grinding can be performed manually using a grinder. At this time, it is desirable to use a jig so that the axial direction of the spring and the grindstone are orthogonal to each other.

ここで、このコイル研削体を得る工程は、工程1に連続して行う、即ち、仮熱処理を行うことなく、そのまま研削することによって行う。比(d/d)が0.50〜0.75の範囲に収まるような研削処理であれば、仮熱処理をすることなく、コイルエンドの研削処理を実施しても、研削時に型崩れおよびバリの発生がない上、ばねとしての座りも安定している。 Here, the process of obtaining this coil grinding body is performed continuously to the process 1, that is, by performing grinding as it is without performing a temporary heat treatment. If the grinding process is such that the ratio (d E / d) falls within the range of 0.50 to 0.75, the coil end is not deformed during grinding even if the coil end grinding process is performed without performing a temporary heat treatment. There is no burrs and the sitting as a spring is stable.

上記の工程3、即ち、形状記憶熱処理工程において、所定の形状を記憶したコイルばねを得ることができる。形状記憶熱処理は、所定の形状に拘束して行う。形状記憶熱処理条件は要求される相変態温度に合わせて設定すればよい。例えば、形状記憶熱処理の温度は、400℃〜500℃で行うことが好ましい。400℃未満では、成型性が悪くなる恐れがある(スプリングバックによってばね平均径や拘束長が目標値より大きくなる)。一方、500℃を超えると、形状記憶効果の繰返し特性が悪化する可能性がある。ただし、温度の高低は、目標とする相変態温度によって調整する。形状記憶熱処理の時間は、数分〜2時間で行うのがよい。時間の長短は、主に使用する拘束治具の熱容量に依存する。この場合も時間が短過ぎると成型性が悪く、長すぎると繰返し特性が悪化する恐れがある。   In the step 3, that is, the shape memory heat treatment step, a coil spring storing a predetermined shape can be obtained. The shape memory heat treatment is performed while being constrained to a predetermined shape. The shape memory heat treatment condition may be set according to the required phase transformation temperature. For example, the shape memory heat treatment is preferably performed at 400 ° C. to 500 ° C. If it is less than 400 ° C., moldability may be deteriorated (spring average diameter or restraint length becomes larger than the target value due to springback). On the other hand, when it exceeds 500 ° C., the repetition characteristics of the shape memory effect may be deteriorated. However, the temperature level is adjusted according to the target phase transformation temperature. The shape memory heat treatment time is preferably several minutes to 2 hours. The length of time depends mainly on the heat capacity of the restraining jig used. Also in this case, if the time is too short, the moldability is poor, and if it is too long, the repetitive characteristics may be deteriorated.

上記の工程1〜3以外の製造条件については、限定はないが、例えば、下記の製造方法を採用することができる。   Although there is no limitation about manufacturing conditions other than said process 1-3, the following manufacturing method is employable, for example.

伸線
本発明のコイルばねの出発材料である合金線は、通常の製造方法で製造することができる。例えば、所定の化学組成を有する合金材を熱間加工した後に、ダイス引きその他の冷間加工により、減径、伸線し、必要に応じて焼鈍することによって合金線を得ることができる。ここで、冷間加工率(ワイヤーの断面積減少)が30%を超えると、加工歪によって変形抵抗が著しく大きくなるため、このようなダイス引きを行う場合には、焼鈍によって加工歪を除去する必要がある。その他の冷間加工方法として、冷間圧延またはスウェージング(鍛造)を用いることもできる。
Drawing The alloy wire which is a starting material of the coil spring of the present invention can be manufactured by a normal manufacturing method. For example, after hot working an alloy material having a predetermined chemical composition, the alloy wire can be obtained by die reduction or other cold working, diameter reduction and wire drawing, and annealing as necessary. Here, when the cold working rate (reduction in the cross-sectional area of the wire) exceeds 30%, the deformation resistance is remarkably increased due to the working strain. Therefore, when performing such die drawing, the working strain is removed by annealing. There is a need. As other cold working methods, cold rolling or swaging (forging) can also be used.

バリ取り
本発明の製造方法によれば、特にバリ取りを行う必要はないが、特に、研削面により高い性状が求められる場合には、バリ取りを行っても良い。バリ取り方法としては、グラインダーを用いて研磨する方法、ショットピーニングで処理する方法、酸によって除去する方法などがある。
Deburring According to the production method of the present invention, it is not necessary to perform deburring. However, deburring may be performed particularly when high properties are required for the ground surface. Examples of the deburring method include a method of polishing using a grinder, a method of processing by shot peening, and a method of removing with an acid.

スポンジTiおよび電解Ni板(一部の例では、更にCr)を所定量秤量し、高周波誘導加熱炉を用いてアルゴン雰囲気中にて溶解・鋳造して、表1に示す化学組成を有するインゴットを作製した。それぞれのインゴットの表面をグラインダーで平滑化した後、950℃に加熱し熱間鍛造を加え、さらに950℃に再加熱して熱間圧延加工を施して線径4mmの熱延ワイヤーを作製した。   Sponge Ti and electrolytic Ni plate (in some cases, further Cr) are weighed in predetermined amounts, melted and cast in an argon atmosphere using a high frequency induction heating furnace, and an ingot having the chemical composition shown in Table 1 is obtained. Produced. After smoothing the surface of each ingot with a grinder, it was heated to 950 ° C., subjected to hot forging, further reheated to 950 ° C., and subjected to hot rolling to produce a hot rolled wire having a wire diameter of 4 mm.

次に、それぞれの熱延ワイヤーをダイス引きと焼鈍の繰返しによって、線径2mmの冷間伸線ワイヤーを得た。それぞれの冷間伸線ワイヤーを自動コイリングマシンによってコイル形状に加工し、コイル平均径10mmまたは16mm、有効巻数5巻のクローズドエンド(両端各1巻が密着した形状)のコイルばね成形体を作製した。   Next, each hot-rolled wire was subjected to die drawing and annealing repeatedly to obtain a cold-drawn wire having a wire diameter of 2 mm. Each cold wire was processed into a coil shape by an automatic coiling machine, and a coil spring molded body having a coil average diameter of 10 mm or 16 mm and an effective winding number of 5 closed ends (a shape in which 1 winding on each end was in close contact) was produced. .

続いて、それぞれのコイルばね成形体について、仮熱処理は行わず、コイルエンドに研削処理を行い、表1に示す「d/d」を有するコイルばね研削体を作製した。研削処理は、自動端面研削機によっておこなった。なお、自動端面研削機は、コイルばねを納める円盤と、その上下に設けられたエンドグラインダーとによって構成されており、一度にコイルばね両端を研削する装置である。 Subsequently, each of the coil springs molded product, tentatively heat treatment is not performed, it performs a grinding process to the coil end, to prepare a coil spring grinding bodies having a "d E / d" shown in Table 1. The grinding process was performed by an automatic end face grinding machine. The automatic end surface grinding machine is composed of a disk for storing a coil spring and end grinders provided above and below the disk spring, and is an apparatus for grinding both ends of the coil spring at once.

さらに、それぞれのコイルばね研削体を、拘束治具により全長24mmに拘束して450℃×1時間の形状記憶熱処理を実施して、コイルばねを得た。得られたコイルばねについて、型崩れの有無、バリ発生の有無および座り安定性について評価した。それぞれの評価結果を表1に併記する。座り安定性については、計測治具を用いてばね外側の傾き角度が3°未満である場合を良好と評価した。ばねの外側の傾き角度が3°以上になると、例えば長さ25mmのばねでは傾きが1mm以上となり、ばねを装置に組み込む際に支障が生じる可能性が高い。































Furthermore, each coil spring grinding body was constrained to a total length of 24 mm by a restraining jig and subjected to shape memory heat treatment at 450 ° C. × 1 hour to obtain a coil spring. About the obtained coil spring, the presence or absence of shape loss, the presence or absence of burr | flash generation | occurrence | production, and sitting stability were evaluated. The respective evaluation results are also shown in Table 1. Regarding the sitting stability, the case where the inclination angle of the outside of the spring was less than 3 ° using a measuring jig was evaluated as good. When the inclination angle of the outer side of the spring is 3 ° or more, for example, a spring having a length of 25 mm has an inclination of 1 mm or more, and there is a high possibility that trouble will occur when the spring is incorporated into the apparatus.































Figure 2011174515
Figure 2011174515










表1に示すように、本発明例1〜5は、コイルの平均径D(mm)と合金線の線径d(mm)の比(D/d)が10以下であるコイルばねであって、合金線の先端部のばね軸方向の厚みd(mm)と合金線の線径d(mm)との比(d/d)が0.50〜0.75の範囲にある。型崩れおよびバリの発生がなく、また、座り安定性も良好であった。これに対し、比(d/d)が本発明で規定される範囲を下回る比較例1および2では、バリまたは更に型崩れが発生した。比(d/d)が本発明で規定される範囲を上回る比較例3では、型崩れおよびバリは発生しなかったが、コイルの座りが不安定になった。 As shown in Table 1, Examples 1 to 5 of the present invention are coil springs in which the ratio (D / d) of the average coil diameter D (mm) to the alloy wire diameter d (mm) is 10 or less. The ratio (d E / d) of the thickness d E (mm) of the tip of the alloy wire in the spring axis direction to the wire diameter d (mm) of the alloy wire is in the range of 0.50 to 0.75. There was no loss of shape and burrs, and the sitting stability was good. On the other hand, in Comparative Examples 1 and 2 in which the ratio (d E / d) is lower than the range defined by the present invention, burrs or further loss of shape occurred. In Comparative Example 3 in which the ratio (d E / d) exceeded the range defined in the present invention, the shape loss and burrs did not occur, but the coil sitting became unstable.

本発明のコイルばねは、その製造工程において、仮熱処理を施すことなく、研削することができる上、研削後のバリ取り作業も行う必要がないため、低コストで製造可能なものであり、しかも、温度変化への応答性が良いため、特に、湯水混合水栓その他、流体温度の制御装置に用いるのに適している。本発明のコイルばねは、従来のコイルばねと比較して、ばね成型コストを約25%削減することができる。   The coil spring of the present invention can be manufactured at a low cost because it can be ground without performing a temporary heat treatment in the manufacturing process, and it is not necessary to perform a deburring operation after grinding. Since the responsiveness to temperature changes is good, it is particularly suitable for use in a hot water / water mixing faucet and other fluid temperature control devices. The coil spring of the present invention can reduce the spring molding cost by about 25% compared to the conventional coil spring.

1 クローズドエンドのコイルばね
2 合金線
3 端末
4 先端部
100 湯水混合水栓
101 室温水用孔
102 高温水用孔
103 形状記憶合金コイルばね
104 バイアスばね
105 吐出孔
106 スプール弁
108 混合室
DESCRIPTION OF SYMBOLS 1 Closed end coil spring 2 Alloy wire 3 Terminal 4 Tip part 100 Hot water mixing faucet 101 Room temperature water hole 102 Hot water hole 103 Shape memory alloy coil spring 104 Bias spring 105 Discharge hole 106 Spool valve 108 Mixing chamber

Claims (6)

Ti−Ni系形状記憶合金からなる合金線で構成されたクローズドエンドのコイルばねであって、
コイルエンドの一方または両方において、合金線の先端部のばね軸方向の厚みd(mm)と合金線の線径d(mm)との比(d/d)が0.50〜0.75であり、
コイルの平均径D(mm)と合金線の線径d(mm)の比(D/d)が10以下であることを特徴とするコイルばね。
A closed-end coil spring composed of an alloy wire made of a Ti-Ni-based shape memory alloy,
In one or both of the coil ends, the ratio (d E / d) of the thickness d E (mm) of the tip of the alloy wire in the spring axis direction to the wire diameter d (mm) of the alloy wire is 0.50 to 0.00. 75,
A coil spring, wherein a ratio (D / d) of an average coil diameter D (mm) to an alloy wire diameter d (mm) is 10 or less.
上記Ti−Ni系形状記憶合金が、原子百分率で、50.0〜51.2%のNiを含み、残部がTiおよび不純物からなる組成を有することを特徴とする請求項1に記載のコイルばね。   2. The coil spring according to claim 1, wherein the Ti—Ni-based shape memory alloy contains 50.0 to 51.2% Ni in atomic percentage and the balance is composed of Ti and impurities. . 上記Ti−Ni系形状記憶合金が、原子百分率で、更に、Cr、FeおよびCoから選択される一種以上の元素を合計で3%以下含有することを特徴とする請求項2に記載のコイルばね。   3. The coil spring according to claim 2, wherein the Ti—Ni-based shape memory alloy further contains at least 3% of one or more elements selected from Cr, Fe and Co in atomic percentage. . 下記の工程1〜3を含むことを特徴とするコイルばねの製造方法。
工程1:Ti−Ni系形状記憶合金からなる合金線に冷間加工を実施して、コイルの平均径D(mm)と合金線の線径d(mm)の比(D/d)が10以下であるクローズドエンドのコイルばね形状のコイル成形体を得る工程、
工程2:工程1に連続して、得られたコイル成形体を研削して、コイルエンドの一方または両方において、合金線の先端部のばね軸方向の厚みd(mm)と合金線の線径d(mm)との比(d/d)が0.50〜0.75であるコイル研削体を得る工程、および、
工程3:コイル研削体に形状記憶熱処理を施してコイルばねを得る工程。
The manufacturing method of the coil spring characterized by including the following processes 1-3.
Step 1: Cold working is performed on an alloy wire made of a Ti—Ni-based shape memory alloy, and the ratio (D / d) of the coil average diameter D (mm) to the wire diameter d (mm) of the alloy wire is 10 A step of obtaining a closed-end coil spring-shaped coil formed body,
Step 2: Continuously with Step 1, the obtained coil molded body is ground, and at one or both of the coil ends, the thickness d E (mm) of the tip of the alloy wire in the spring axial direction and the wire of the alloy wire Obtaining a coil grinding body having a ratio (d E / d) to a diameter d (mm) of 0.50 to 0.75, and
Step 3: A step of applying a shape memory heat treatment to the coil grinding body to obtain a coil spring.
上記Ti−Ni系形状記憶合金が、原子百分率で、50.0〜51.2%のNiを含み、残部がTiおよび不純物からなる組成を有することを特徴とする請求項4に記載のコイルばねの製造方法。   5. The coil spring according to claim 4, wherein the Ti—Ni-based shape memory alloy contains 50.0 to 51.2% of Ni in atomic percentage, and the balance is composed of Ti and impurities. Manufacturing method. 上記Ti−Ni系形状記憶合金が、原子百分率で、更に、Cr、FeおよびCoから選択される一種以上の元素を合計で3%以下含有することを特徴とする請求項5に記載のコイルばねの製造方法。   6. The coil spring according to claim 5, wherein the Ti—Ni-based shape memory alloy further contains at least 3% of one or more elements selected from Cr, Fe and Co in atomic percentage. Manufacturing method.
JP2010038180A 2010-02-24 2010-02-24 Coil spring Pending JP2011174515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010038180A JP2011174515A (en) 2010-02-24 2010-02-24 Coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010038180A JP2011174515A (en) 2010-02-24 2010-02-24 Coil spring

Publications (1)

Publication Number Publication Date
JP2011174515A true JP2011174515A (en) 2011-09-08

Family

ID=44687562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010038180A Pending JP2011174515A (en) 2010-02-24 2010-02-24 Coil spring

Country Status (1)

Country Link
JP (1) JP2011174515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150845A1 (en) * 2017-02-20 2018-08-23 パナソニックIpマネジメント株式会社 Electric motor and electric motor manufacturing method
CN117847298A (en) * 2024-03-05 2024-04-09 轴域(洛阳)新材料科技有限公司 Two-way connection double-valve-core shutoff memory alloy spring temperature control valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162262A (en) * 1983-03-08 1984-09-13 Tohoku Metal Ind Ltd Production of spring having two-way shape memory effect
JPS60164079A (en) * 1984-02-01 1985-08-27 Daikin Ind Ltd Valve device
JPH0874907A (en) * 1994-09-07 1996-03-19 High Frequency Heattreat Co Ltd Compression coil spring
JP2004014660A (en) * 2002-06-05 2004-01-15 Honda Motor Co Ltd Actuator
JP2006161073A (en) * 2004-12-03 2006-06-22 Piolax Inc Shape memory alloy spring for mixed water plug and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162262A (en) * 1983-03-08 1984-09-13 Tohoku Metal Ind Ltd Production of spring having two-way shape memory effect
JPS60164079A (en) * 1984-02-01 1985-08-27 Daikin Ind Ltd Valve device
JPH0874907A (en) * 1994-09-07 1996-03-19 High Frequency Heattreat Co Ltd Compression coil spring
JP2004014660A (en) * 2002-06-05 2004-01-15 Honda Motor Co Ltd Actuator
JP2006161073A (en) * 2004-12-03 2006-06-22 Piolax Inc Shape memory alloy spring for mixed water plug and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012067194; ばね技術研究会: ばね , 19700115, 第170頁3.2.1d.(i), 丸善株式会社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150845A1 (en) * 2017-02-20 2018-08-23 パナソニックIpマネジメント株式会社 Electric motor and electric motor manufacturing method
CN117847298A (en) * 2024-03-05 2024-04-09 轴域(洛阳)新材料科技有限公司 Two-way connection double-valve-core shutoff memory alloy spring temperature control valve
CN117847298B (en) * 2024-03-05 2024-05-14 轴域(洛阳)新材料科技有限公司 Two-way connection double-valve-core shutoff memory alloy spring temperature control valve

Similar Documents

Publication Publication Date Title
JP5732468B2 (en) Nitinol appliance with improved fatigue resistance
TWI413703B (en) Tantalum sputtering target
JP2019210552A (en) Recrystallization, refinement, and strengthening mechanisms for production of advanced high strength metal alloys
TWI419987B (en) Tantalum sputtering target
KR102488776B1 (en) Metastable β titanium alloys, watch springs based on these alloys and methods for their production
JP2010216011A (en) SEMISTABLE beta TYPE TITANIUM ALLOY HAVING LOW YOUNG&#39;S MODULUS AND METHOD FOR PRODUCING THE SAME
JPWO2018047787A1 (en) Fe-based shape memory alloy material and method of manufacturing the same
JP6269836B2 (en) Titanium alloy member having shape change characteristic in the same direction as the machining direction
JP4870324B2 (en) Shape memory alloy cast member and method of manufacturing the same
JP2007314834A (en) ALPHA PLUS BETA TITANIUM ALLOY MEMBER HAVING &gt;=1,000 MPa GRADE TENSILE STRENGTH, AND ITS MANUFACTURING METHOD
JP6842125B2 (en) Manufacturing method of superelastic seamless tube
JP2009046760A (en) Co-BASED ALLOY STOCK FOR LIVING BODY FOR HOT DIE FORGING, AND METHOD FOR PRODUCING THE SAME
JP2011174515A (en) Coil spring
JP2011074431A (en) Spring steel and spring having superior corrosion fatigue strength
CN113046659A (en) Method for preparing nickel-titanium shape memory alloy with gradient nanocrystalline grain structure
JP5278987B2 (en) Manufacturing method for eyeglass frames
JP7180488B2 (en) Copper alloy round bar
JP2001262298A (en) METHOD FOR WORKING Ni-Ti SHAPE MEMORY ALLOY, AND Ni-Ti SHAPE MEMORY ALLOY STOCK MANUFACTURED THEREBY
WO2020039658A1 (en) Superelastic seamless tube manufacturing method
JP2005036280A (en) Forging alloy for golf club head
JP3915543B2 (en) Partly superelastic parts and method of manufacturing the same
JP2573499B2 (en) TiNiCuV quaternary shape memory alloy
JP4552302B2 (en) ELECTRICAL RESISTOR ELEMENT, ITS MATERIAL AND MANUFACTURING METHOD THEREOF
CN109252088A (en) Ferritic stainless steel and heat-resistant part
JPS6314834A (en) Tiniv shape memory alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903