JP2011174426A - Air-fuel ratio control device - Google Patents

Air-fuel ratio control device Download PDF

Info

Publication number
JP2011174426A
JP2011174426A JP2010039569A JP2010039569A JP2011174426A JP 2011174426 A JP2011174426 A JP 2011174426A JP 2010039569 A JP2010039569 A JP 2010039569A JP 2010039569 A JP2010039569 A JP 2010039569A JP 2011174426 A JP2011174426 A JP 2011174426A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
catalyst
oxygen
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010039569A
Other languages
Japanese (ja)
Other versions
JP5545631B2 (en
Inventor
Yasumasa Onishi
康正 大西
Shinji Niwa
伸二 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010039569A priority Critical patent/JP5545631B2/en
Publication of JP2011174426A publication Critical patent/JP2011174426A/en
Application granted granted Critical
Publication of JP5545631B2 publication Critical patent/JP5545631B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To further reduce the amount of HC, CO and NOx exhaust by keeping the exhaust gas purifying efficiency of a catalyst high while improving the estimating accuracy of the amount of oxygen release from the catalyst. <P>SOLUTION: This air-fuel ratio control device 1 includes: a first air-fuel ratio sensor 11 provided upstream of the catalyst mounted in an exhaust passage of an internal combustion engine; a second air-fuel ratio sensor 12 provided downstream of the catalyst; an air-fuel ratio control part 13 for estimating the amount of oxygen release from the catalyst with reference to the output of at least the first air-fuel ratio sensor 11 and feedback-controlling the amount of oxygen release to be a target value; and a learning part 14 for learning a learning parameter to be used for reducing an error of the estimated amount of oxygen release, during the occurrence of fuel cut in the internal combustion engine. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、触媒による排気ガス浄化能率を高める目的で実施される空燃比の制御に関する。   The present invention relates to air-fuel ratio control performed for the purpose of increasing exhaust gas purification efficiency by a catalyst.

一般に、自動車等の排気通路には、内燃機関から排出される排気ガス中に含まれるHC、CO及びNOxを酸化/還元して無害化する三元触媒が装着されている。HC、CO及びNOxの全てを効率よく浄化するには、空燃比をウィンドウと称する理論空燃比近傍の一定範囲に収束させる必要がある。 Generally, the exhaust passage such as an automobile, HC contained in the exhaust gas discharged, the three-way catalyst to harmless by oxidation / reduction of CO and NO x are mounted from the internal combustion engine. In order to efficiently purify all of HC, CO, and NO x , it is necessary to make the air-fuel ratio converge to a certain range near the theoretical air-fuel ratio called a window.

そのために、触媒の上流及び下流にそれぞれ空燃比センサを配し、空燃比センサの出力を目標値に制御するフィードバック制御を行うことが通例となっている(例えば、下記特許文献1ないし4を参照)。従来からある空燃比制御方法では、触媒下流の空燃比センサの出力がリッチであるかリーンであるかを判定し、その判定結果に応じて補正量を算定する。この補正量は、触媒上流の空燃比センサの出力を参照した空燃比フィードバック制御における制御中心をリーン側あるいはリッチ側に変位させ、触媒内でのガスの空燃比をウィンドウ内に維持する役割を果たす。   For this purpose, it is customary to arrange an air-fuel ratio sensor upstream and downstream of the catalyst and perform feedback control to control the output of the air-fuel ratio sensor to a target value (see, for example, Patent Documents 1 to 4 below) ). In the conventional air-fuel ratio control method, it is determined whether the output of the air-fuel ratio sensor downstream of the catalyst is rich or lean, and the correction amount is calculated according to the determination result. This correction amount serves to maintain the air-fuel ratio of the gas in the catalyst within the window by displacing the control center in the air-fuel ratio feedback control with reference to the output of the air-fuel ratio sensor upstream of the catalyst to the lean side or the rich side. .

近時では、強化された排気ガス規制に対応して、触媒の酸素吸蔵能(OSC)が大きくなる傾向にある。酸素吸蔵能が大きいと、触媒の上流で空燃比が変動したとしても、触媒下流の空燃比センサの出力信号にはすぐには変化が現れない。それ故、触媒下流の空燃比センサの出力がリーンからリッチへの遷移を示したときには、既に触媒内の酸素が不足してしまっており、HC及びCOの排出量が増加することがあり得た。逆に、触媒下流の空燃比センサの出力がリッチからリーンへの遷移を示したときには、既に触媒内が酸素過多であり、今度はNOxの排出量の増加を招いていた。 Recently, the oxygen storage capacity (OSC) of catalysts tends to increase in response to stricter exhaust gas regulations. If the oxygen storage capacity is large, even if the air-fuel ratio fluctuates upstream of the catalyst, the output signal of the air-fuel ratio sensor downstream of the catalyst does not change immediately. Therefore, when the output of the air-fuel ratio sensor downstream of the catalyst showed a transition from lean to rich, the oxygen in the catalyst was already insufficient, and the HC and CO emissions could increase. . On the contrary, when the output of the air-fuel ratio sensor downstream of the catalyst shows a transition from rich to lean, the inside of the catalyst is already excessive in oxygen, which in turn causes an increase in NO x emission.

そこで、本発明の発明者は、触媒内に吸蔵した酸素量と当該触媒の酸素吸蔵能との比である酸素割合のモデルを構築し、モデル数式に則り、触媒から放出された酸素の量を推算して、その酸素放出量を目標値にフィードバック制御する空燃比制御装置を考案した(下記特許文献5を参照)。この空燃比制御装置によれば、触媒下流の空燃比センサの出力信号の変動が触媒内の空燃比の変動に対して遅延するという従前の問題を、有効に回避することができる。   Therefore, the inventor of the present invention constructed a model of the oxygen ratio, which is the ratio of the amount of oxygen stored in the catalyst and the oxygen storage capacity of the catalyst, and determined the amount of oxygen released from the catalyst according to the model formula. An air-fuel ratio control device was devised that feedback-controls the oxygen release amount to a target value (see Patent Document 5 below). According to this air-fuel ratio control apparatus, it is possible to effectively avoid the conventional problem that the fluctuation of the output signal of the air-fuel ratio sensor downstream of the catalyst is delayed with respect to the fluctuation of the air-fuel ratio in the catalyst.

上掲の空燃比制御装置は優れて有用なものである。しかしながら、空燃比センサの個体差や経年変化による出力のばらつき、触媒自体の劣化等によるモデル化誤差に起因して、酸素放出量の推算値に誤差が混入することがあり得る。この推算値の誤差は、触媒による排気ガス浄化能率を低下させエミッションの悪化を招くことにつながる。   The above-mentioned air-fuel ratio control apparatus is excellent and useful. However, an error may be mixed in the estimated value of the oxygen release amount due to modeling errors caused by individual differences of the air-fuel ratio sensors, output variations due to secular changes, deterioration of the catalyst itself, and the like. This error in the estimated value leads to a reduction in exhaust gas purification efficiency by the catalyst and a deterioration in emissions.

特許第2790896号公報Japanese Patent No. 2790896 特許第2912478号公報Japanese Patent No. 2912478 特開2007−187119号公報JP 2007-187119 A 特開2008−248862号公報JP 2008-248862 A 特願2009−205204号明細書Japanese Patent Application No. 2009-205204 Specification

本発明は、触媒からの酸素放出量の推算精度を向上させ、以て触媒による排気ガス浄化能率を高く保ち、HC、CO及びNOxの排出量の一層の低減を図ることを所期の目的とする。 The present invention aims to improve the estimation accuracy of the amount of oxygen released from the catalyst, thereby maintaining a high exhaust gas purification efficiency by the catalyst, and further reducing the emission of HC, CO and NO x. And

本発明では、内燃機関の排気通路に装着された排気ガス浄化用の触媒の上流に設けられる第一の空燃比センサと、前記触媒の下流に設けられる第二の空燃比センサと、少なくとも前記第一の空燃比センサの出力を参照し、前記触媒内に吸蔵した酸素量と当該触媒の酸素吸蔵能との比である酸素割合のモデル数式に則り、触媒内に酸素吸蔵能まで酸素を吸蔵した状態から酸素を放出した量を推算してその放出量を目標値にフィードバック制御する空燃比制御部と、前記モデル数式に則って推算される放出量の誤差を縮小するための学習パラメータを算定し記憶する学習部とを具備してなり、前記学習部が、内燃機関における燃料カット発生時に前記学習パラメータの算定を実行し、燃料カット開始から前記第二の空燃比センサの出力がリーンになったことを示す所定値に到達するまでの経過時間と、燃料カット開始から前記モデル数式に則って推算される放出量が0となるまでの経過時間との時間差に応じて、当該時間差を減少させる方向に学習パラメータを増減させ、前記空燃比制御部が、前記学習部で記憶した学習パラメータを加味した上でフィードバック制御を実施する空燃比制御装置を構成した。   In the present invention, a first air-fuel ratio sensor provided upstream of an exhaust gas purifying catalyst mounted in an exhaust passage of an internal combustion engine, a second air-fuel ratio sensor provided downstream of the catalyst, and at least the first Referring to the output of one air-fuel ratio sensor, oxygen was occluded in the catalyst up to the oxygen occlusion capacity according to a model formula of the oxygen ratio, which is the ratio of the oxygen amount occluded in the catalyst and the oxygen occlusion capacity of the catalyst An air-fuel ratio control unit that estimates the amount of released oxygen from the state and feedback-controls the released amount to a target value, and a learning parameter for reducing an error in the released amount estimated according to the model formula A learning unit for storing, the learning unit calculates the learning parameter when a fuel cut occurs in the internal combustion engine, and the output of the second air-fuel ratio sensor becomes lean from the start of the fuel cut. The time difference is reduced according to the time difference between the elapsed time until reaching a predetermined value indicating that the fuel has been cut and the elapsed time from the start of fuel cut until the release amount estimated in accordance with the model formula becomes zero. The learning parameter is increased or decreased in the direction in which the air-fuel ratio is controlled, and the air-fuel ratio control unit performs feedback control after taking into account the learning parameter stored in the learning unit.

前記モデル数式は、例えば、下式(数1)の形で表される。   The model formula is expressed, for example, in the form of the following formula (Equation 1).

Figure 2011174426
Figure 2011174426

本発明によれば、触媒からの酸素放出量の推算精度を向上させることができ、触媒による排気ガス浄化能率を高く保ち、HC、CO及びNOxの排出量の一層の低減を図り得る。 According to the present invention, it is possible to improve the estimation accuracy of the amount of oxygen released from the catalyst, to keep the exhaust gas purification efficiency by the catalyst high, and to further reduce the exhaust amount of HC, CO and NO x .

本発明の実施の形態の空燃比制御装置の構成要素を説明する図。The figure explaining the component of the air fuel ratio control apparatus of embodiment of this invention. 同空燃比制御装置のハードウェア資源構成を示す図。The figure which shows the hardware resource structure of the same air fuel ratio control apparatus. フロント空燃比信号出力とリア空燃比信号出力との関係を示す図。The figure which shows the relationship between a front air fuel ratio signal output and a rear air fuel ratio signal output. 酸素吸蔵時間と酸素放出時間との関係を示す図。The figure which shows the relationship between oxygen storage time and oxygen release time. 流入空気量と反応速度比との関係を示す図。The figure which shows the relationship between inflow air amount and reaction rate ratio. 流入空気量と反応速度比との関係を示す図。The figure which shows the relationship between inflow air amount and reaction rate ratio. 燃料カット終了後の酸素放出量の制御の態様を示す図。The figure which shows the aspect of control of the oxygen release amount after completion | finish of a fuel cut. 燃料カット開始からの経過時間TA、TD、TC及びTDの例を示す図。Shows an example of the elapsed time T A, T D, T C and T D from the fuel cut start. 同空燃比制御装置が実行する処理の手順例を示すフロー図。The flowchart which shows the example of the procedure of the process which the same air fuel ratio control apparatus performs.

本発明の一実施形態を、図面を参照して説明する。本空燃比制御装置1は、内燃機関2で燃料を燃焼させることにより発生する有害物質HC、CO、NOxを無害化する触媒3における空燃比を制御するものであって、図1に示すように、触媒3の上流側における空燃比または酸素濃度に応じた出力信号を出力する第一の空燃比センサ11と、触媒3の下流側における空燃比または酸素濃度に応じた出力信号を出力する第二の空燃比センサ12と、両センサ11、12の出力信号を参照して空燃比制御を実施する空燃比制御部13と、この空燃比制御部13が参照する学習パラメータβ(後述する)の学習を行う学習部14とを具備する。 An embodiment of the present invention will be described with reference to the drawings. The present air-fuel ratio control system 1 is for controlling the air-fuel ratio in the catalyst 3 to detoxifying harmful substances HC, CO, NO x generated by burning fuel in an internal combustion engine 2, as shown in FIG. 1 In addition, a first air-fuel ratio sensor 11 that outputs an output signal corresponding to the air-fuel ratio or oxygen concentration on the upstream side of the catalyst 3 and a first output signal that corresponds to the air-fuel ratio or oxygen concentration on the downstream side of the catalyst 3 are output. Two air-fuel ratio sensors 12, an air-fuel ratio control section 13 that performs air-fuel ratio control with reference to the output signals of both sensors 11, 12, and a learning parameter β (to be described later) referred to by the air-fuel ratio control section 13 And a learning unit 14 for performing learning.

図2に、ハードウェア構成の概要を示す。内燃機関2は、例えば自動車用の多気筒の燃料噴射式エンジンである。内燃機関2で生成された燃焼ガスは、排気ポートから排気マニホルド41、排気管42及び触媒3を通じて大気中に排出される。空燃比センサ11、12は、排気ガスに接触して反応することにより、排気ガス中の酸素濃度に応じた電圧信号を出力する。触媒3上流にある第一の空燃比センサ11は、排気ガスの空燃比に比例した信号を出力するリニアA/Fセンサとすることが好ましい。触媒3下流にある第二の空燃比センサ12は、リニアA/Fセンサであってもよく、排気ガスの空燃比に対して非線形な出力特性を有するO2センサであってもよい。 FIG. 2 shows an outline of the hardware configuration. The internal combustion engine 2 is, for example, a multi-cylinder fuel injection engine for automobiles. Combustion gas generated in the internal combustion engine 2 is discharged into the atmosphere from the exhaust port through the exhaust manifold 41, the exhaust pipe 42, and the catalyst 3. The air-fuel ratio sensors 11 and 12 output a voltage signal corresponding to the oxygen concentration in the exhaust gas by reacting in contact with the exhaust gas. The first air-fuel ratio sensor 11 upstream of the catalyst 3 is preferably a linear A / F sensor that outputs a signal proportional to the air-fuel ratio of the exhaust gas. The second air-fuel ratio sensor 12 downstream of the catalyst 3 may be a linear A / F sensor or an O 2 sensor having non-linear output characteristics with respect to the air-fuel ratio of the exhaust gas.

第一の空燃比センサ11、第二の空燃比センサ12は、吸気負圧センサ、エンジン回転数センサ、車速センサ、冷却水温センサ、カムポジションセンサ、スロットルセンサ等の各種センサ(図示せず)とともに、電子制御装置(ECU)5に電気的に接続している。電子制御装置5は、プロセッサ51、RAM52、ROM(または、フラッシュメモリ)53、I/Oインタフェース54等を包有するマイクロコンピュータシステムである。I/Oインタフェース54は、各種センサの出力信号の受信や制御信号の送信を担うもので、A/D変換回路及び/またはD/A変換回路を含む。プロセッサ51が実行するべきプログラムはROM53に格納されており、その実行の際にROM53からRAM52へ読み込まれ、プロセッサ51によって解読される。しかして、電子制御装置5は、プログラムに従い、空燃比制御部13及び学習部14としての機能を発揮する。   The first air-fuel ratio sensor 11 and the second air-fuel ratio sensor 12 together with various sensors (not shown) such as an intake negative pressure sensor, an engine speed sensor, a vehicle speed sensor, a coolant temperature sensor, a cam position sensor, and a throttle sensor. The electronic control unit (ECU) 5 is electrically connected. The electronic control unit 5 is a microcomputer system including a processor 51, a RAM 52, a ROM (or flash memory) 53, an I / O interface 54, and the like. The I / O interface 54 is responsible for receiving output signals of various sensors and transmitting control signals, and includes an A / D conversion circuit and / or a D / A conversion circuit. A program to be executed by the processor 51 is stored in the ROM 53, and is read from the ROM 53 into the RAM 52 and decoded by the processor 51 at the time of execution. Therefore, the electronic control unit 5 exhibits functions as the air-fuel ratio control unit 13 and the learning unit 14 according to the program.

空燃比制御部13たる電子制御装置5は、第一の空燃比センサ11、第二の空燃比センサ12やその他のセンサから出力される信号を、I/Oインタフェース54を介して受信する。そして、要求される燃料噴射量を算出し、この要求燃料噴射量に対応した制御信号をI/Oインタフェース54を介して燃料噴射弁21に入力、内燃機関2の燃料噴射を制御する。要求燃料噴射量は、吸気管内負圧及びエンジン回転数等を参照して基本噴射量を求め、その基本噴射量に、エンジン冷却水温等の環境条件に応じた環境補正、並びに下記フィードバック制御による補正を加えて、最終的に決定する。   The electronic control unit 5 as the air-fuel ratio control unit 13 receives signals output from the first air-fuel ratio sensor 11, the second air-fuel ratio sensor 12 and other sensors via the I / O interface 54. Then, the required fuel injection amount is calculated, and a control signal corresponding to the required fuel injection amount is input to the fuel injection valve 21 via the I / O interface 54 to control the fuel injection of the internal combustion engine 2. The required fuel injection amount is obtained by referring to the intake pipe negative pressure and the engine speed, etc., and the basic injection amount is corrected according to environmental conditions such as engine cooling water temperature and the following feedback control. And finally decide.

本実施形態では、空燃比の制御にあたり、第二の空燃比センサ12の出力信号を制御量(制御出力)とはしない。本実施形態では、触媒3内に酸素吸蔵能まで酸素を吸蔵した状態を基準とし、その状態から酸素を放出した量をモデル数式によって推算する。そして、推算した酸素放出量を制御量として、これを所要の目標値に到達させるフィードバック制御を実施する。   In the present embodiment, in controlling the air-fuel ratio, the output signal of the second air-fuel ratio sensor 12 is not used as a control amount (control output). In this embodiment, the state in which oxygen is stored in the catalyst 3 up to the oxygen storage capacity is used as a reference, and the amount of released oxygen from that state is estimated by a model formula. Then, the estimated oxygen release amount is used as a control amount, and feedback control is performed to reach the required target value.

まず、触媒3に吸蔵した酸素量は、触媒3に流入する酸素の流量の時間積分に、反応速度係数を乗じたものと考えることができる。反応速度係数は、触媒3が酸素を吸蔵する速度を示す。反応速度係数と酸素吸蔵能との比(反応速度係数/酸素吸蔵能)をモデルパラメータθ1とおけば、酸素濃度Oのモデル数式を下式(数2)の如く規定することができる。 First, the amount of oxygen stored in the catalyst 3 can be considered to be obtained by multiplying the time integral of the flow rate of oxygen flowing into the catalyst 3 by the reaction rate coefficient. The reaction rate coefficient indicates the rate at which the catalyst 3 occludes oxygen. If the ratio between the reaction rate coefficient and the oxygen storage capacity (reaction rate coefficient / oxygen storage capacity) is the model parameter θ 1 , the model formula for the oxygen concentration O can be defined as the following formula (Equation 2).

Figure 2011174426
Figure 2011174426

上式(数2)の酸素割合Oの値は、0≦O≦1の範囲をとる。αは空気中に含まれる酸素の割合であり、Gaは触媒3に流入する空気の流量である。αの値は、例えば0.21とする。αは、モデルパラメータθ1に組み入れてしまっても構わない。その場合、θ1=α×(反応速度係数/酸素吸蔵能)となる。流入空気量Gaは、第一の空燃比センサ11を介して検出した流入ガスの空燃比に、電子制御装置5にて算出した要求燃料噴射量を乗じて算定する。このようにすれば、Gaを計測するために高価なエアフローセンサを使用せずに済む上、Gaの値の精度も向上する。尤も、吸気管内負圧及びエンジン回転数からGaを推測することを妨げるものではない。 The value of the oxygen ratio O in the above formula (Equation 2) takes a range of 0 ≦ O ≦ 1. α is the ratio of oxygen contained in the air, and G a is the flow rate of air flowing into the catalyst 3. The value of α is, for example, 0.21. α may be incorporated into the model parameter θ 1 . In that case, θ 1 = α × (reaction rate coefficient / oxygen storage capacity). Inflow air quantity G a is the air-fuel ratio of the inflowing gas detected through the first air-fuel ratio sensor 11, it is calculated by multiplying the demand fuel injection amount calculated in the electronic control unit 5. Thus, on the unnecessary to use an expensive air flow sensor for measuring the G a, also improves the accuracy of the values of G a. However, it does not prevent the estimation of G a from the intake pipe negative pressure and the engine speed.

λは、排気ガスの空燃比の目標空燃比からの乖離を示す空気過剰率である。空気過剰率λは、原理的には、第一の空燃比センサ11を介して検出したガスの空燃比と、最終的に実現するべき目標空燃比との比(上流側実測空燃比/目標空燃比)である。目標空燃比は、通常は理論空燃比、ガソリンエンジンにあっては約14.7であるが、リーンバーン運転している最中等、理論空燃比よりも増減することがあり得る。   λ is an excess air ratio indicating a deviation of the air-fuel ratio of the exhaust gas from the target air-fuel ratio. In principle, the excess air ratio λ is a ratio of the air / fuel ratio of the gas detected via the first air / fuel ratio sensor 11 to the target air / fuel ratio to be finally realized (upstream measured air / fuel ratio / target air / air ratio). (Fuel ratio). The target air-fuel ratio is usually the stoichiometric air-fuel ratio, which is about 14.7 for a gasoline engine, but may increase or decrease from the stoichiometric air-fuel ratio during lean burn operation.

触媒3の酸素吸蔵能、酸素吸蔵速度、酸素放出速度は、おしなべて触媒3の経時劣化の影響を受ける。であるから、モデルパラメータθ1もまた、触媒3の経時劣化の影響を受ける。だが、酸素放出速度に対する酸素吸蔵速度の比である反応速度比は、触媒3の経時劣化によらず一定であると見なすことが可能である。 The oxygen storage capacity, oxygen storage rate, and oxygen release rate of the catalyst 3 are influenced by the deterioration of the catalyst 3 with time. Therefore, the model parameter θ 1 is also affected by the deterioration of the catalyst 3 over time. However, the reaction rate ratio, which is the ratio of the oxygen storage rate to the oxygen release rate, can be regarded as constant regardless of the deterioration of the catalyst 3 over time.

以降、反応速度比に関して補記する。図3は、触媒3に流入するガスの空燃比を意図的に上下させる実験を行い、第一の空燃比センサ11の出力信号及び第二の空燃比センサ12の出力信号を観測したものである。第一の空燃比センサ11の出力は、触媒3に流入するガスの空燃比をそのまま表示していると言える。一方で、第二の空燃比センサ12の出力は、第一の空燃比センサ11の出力、ひいては触媒3に流入するガスの空燃比の変動に対して遅れている。   Hereinafter, the reaction rate ratio is additionally described. FIG. 3 shows an experiment in which the air-fuel ratio of the gas flowing into the catalyst 3 is intentionally increased or decreased, and the output signal of the first air-fuel ratio sensor 11 and the output signal of the second air-fuel ratio sensor 12 are observed. . It can be said that the output of the first air-fuel ratio sensor 11 displays the air-fuel ratio of the gas flowing into the catalyst 3 as it is. On the other hand, the output of the second air-fuel ratio sensor 12 is delayed with respect to the output of the first air-fuel ratio sensor 11 and consequently the fluctuation of the air-fuel ratio of the gas flowing into the catalyst 3.

触媒3に流入するガスの空燃比がリーンな期間では、触媒3に酸素が吸蔵される。触媒3に流入するガスの空燃比がリッチな期間では、触媒3に吸蔵されていた酸素が放出される。図3中、空燃比リッチだった流入ガスが空燃比リーンとなった後、再び空燃比リッチとなるまでの期間T1が、触媒3に酸素が吸蔵される期間である。そして、空燃比リーンだった流入ガスが空燃比リッチとなった後、第二の空燃比センサ12の出力信号がリーンからリッチへと反転するまでの期間T2が、触媒3から酸素が放出される期間である。第二の空燃比センサ12の出力がリーンからリッチへと反転したことは、触媒3からの酸素の放出が衰えたことを暗示している。 During the period when the air-fuel ratio of the gas flowing into the catalyst 3 is lean, oxygen is occluded in the catalyst 3. In a period in which the air-fuel ratio of the gas flowing into the catalyst 3 is rich, oxygen stored in the catalyst 3 is released. In FIG. 3, a period T 1 from when the inflow gas rich in the air-fuel ratio becomes lean to the air-fuel ratio until it becomes rich again again is a period during which oxygen is stored in the catalyst 3. Then, after the inflowing gas that has been lean in the air-fuel ratio becomes rich in the air-fuel ratio, oxygen is released from the catalyst 3 during a period T 2 until the output signal of the second air-fuel ratio sensor 12 reverses from lean to rich. It is a period. The inversion of the output of the second air-fuel ratio sensor 12 from lean to rich implies that the release of oxygen from the catalyst 3 has declined.

図4は、流入空気量Gaを一定として上記実験を行い、酸素吸蔵期間T1と酸素放出期間T2とをそれぞれ計測してプロットしたものである。図4では、触媒3に流入するガスの空燃比のリーン時の値とリッチ時の値との組合せを、三通りに変えて実験した結果を示している。流入ガスの空燃比の値によらず、酸素吸蔵期間T1と酸素放出期間T2との間には一定の比例関係が存在している。ここではその比例係数、即ち図4中に引いた直線の傾きを、反応速度比ということとする。反応速度比は、酸素放出速度に対する酸素吸蔵速度の比(T1/T2)を示す。 FIG. 4 is a graph in which the above experiment is performed with the inflow air amount G a constant, and the oxygen storage period T 1 and the oxygen release period T 2 are respectively measured and plotted. FIG. 4 shows the results of experiments in which the combinations of the lean value and rich value of the air-fuel ratio of the gas flowing into the catalyst 3 are changed in three ways. Regardless of the value of the air-fuel ratio of the inflowing gas, there is a certain proportional relationship between the oxygen storage period T 1 and the oxygen release period T 2 . Here, the proportional coefficient, that is, the slope of the straight line drawn in FIG. 4, is referred to as the reaction rate ratio. The reaction rate ratio indicates the ratio of the oxygen storage rate to the oxygen release rate (T 1 / T 2 ).

図5は、流入空気量Gaを変えて上記実験を行い、反応速度比を計測したものである。並びに、図6は、同様の実験を、新しい触媒3と古い劣化した触媒3とを用いてそれぞれ行った結果である。図6から明らかなように、反応速度比は触媒3の経時劣化によらず一定であると見なすことができる。 Figure 5 performs the experiment by changing the inlet air amount G a, in which the reaction rate ratio were measured. FIG. 6 shows the result of the same experiment performed using the new catalyst 3 and the old deteriorated catalyst 3, respectively. As apparent from FIG. 6, the reaction rate ratio can be regarded as being constant regardless of the deterioration of the catalyst 3 over time.

内燃機関2の気筒への燃料供給を一時中断する燃料カットを実行すると、触媒3に燃料成分を含まない空気が流入し、触媒3内に酸素が充満する。よって、燃料カットを終了して燃料供給を再開する直前の時点t1では、触媒3内に酸素吸蔵能一杯まで酸素を吸蔵している。酸素吸蔵能は触媒3の経時劣化とともに低下するため、時点t1において触媒3に吸蔵している酸素の絶対量は不明である。だが、図7に示すように、燃料供給再開後に触媒3から放出した酸素の量Oを考えれば、燃料供給再開時点t1における酸素放出量Oを常に0とすることができる。 When the fuel cut for temporarily interrupting the fuel supply to the cylinders of the internal combustion engine 2 is executed, the air containing no fuel component flows into the catalyst 3 and the catalyst 3 is filled with oxygen. Therefore, at the time t 1 immediately before the fuel cut is finished and the fuel supply is resumed, oxygen is stored in the catalyst 3 to the maximum oxygen storage capacity. Since the oxygen storage capacity decreases as the catalyst 3 deteriorates with time, the absolute amount of oxygen stored in the catalyst 3 at time t 1 is unknown. However, as shown in FIG. 7, considering the amount of oxygen O released from the catalyst 3 after resumption of fuel supply, the oxygen release amount O at the fuel supply resumption time t 1 can always be zero.

モデル数式(数2)を援用し、モデルパラメータθ1を酸素吸蔵速度または酸素放出速度を示すモデルパラメータθ2に置き換えると、酸素放出量Oのモデル数式として下式(数3)を得られる。 By substituting the model parameter θ 1 with the model parameter θ 2 indicating the oxygen storage rate or the oxygen release rate with the aid of the model formula (Equation 2), the following equation (Equation 3) can be obtained as a model formula for the oxygen release amount O.

Figure 2011174426
Figure 2011174426

酸素放出量Oは、触媒3内に酸素が充満した状態を基準(O=0)とし、燃料カットを実行する都度その値が0にリセットされる。   The oxygen release amount O is reset to 0 each time a fuel cut is performed, with the state in which the catalyst 3 is filled with oxygen as a reference (O = 0).

モデルパラメータθ2は、触媒3が酸素を放出する(λ≦1となる)期間と、触媒3が酸素を吸蔵する(λ>1となる)期間とで相異する。しかしながら、反応速度比kは、触媒3の経時劣化によらず一定であることが分かっている。図5に示している反応速度比k(Ga)を用いれば、モデルパラメータθ2を下式(数4)のように設定することができる。 The model parameter θ 2 is different between a period in which the catalyst 3 releases oxygen (λ ≦ 1) and a period in which the catalyst 3 occludes oxygen (λ> 1). However, it has been found that the reaction rate ratio k is constant regardless of the deterioration of the catalyst 3 over time. If the reaction rate ratio k (G a ) shown in FIG. 5 is used, the model parameter θ 2 can be set as in the following equation (Equation 4).

Figure 2011174426
Figure 2011174426

上式(数4)のモデルパラメータθ2は、マップデータとしてRAM52またはROM53に記憶保持させておけばよい。 The model parameter θ 2 in the above equation (Equation 4) may be stored in the RAM 52 or ROM 53 as map data.

電子制御装置5は、酸素放出量Oに適宜に目標値を設定し、モデル数式に則って推算した酸素放出量Oをその目標値に収束させるフィードバック制御を実施する。即ち、推算した現在の酸素放出量Oとその目標値との偏差に基づいて燃料噴射量のフィードバック補正量を算出し、要求燃料噴射量に加味する。これにより、空燃比の振動を抑圧してウィンドウ内に維持する。   The electronic control unit 5 appropriately sets a target value for the oxygen release amount O, and performs feedback control for converging the oxygen release amount O estimated according to the model formula to the target value. That is, the feedback correction amount of the fuel injection amount is calculated based on the deviation between the estimated current oxygen release amount O and the target value, and is added to the required fuel injection amount. Thereby, the vibration of the air-fuel ratio is suppressed and maintained in the window.

その上で、本実施形態では、触媒3からの酸素放出量Oの推算精度を向上させるべく、酸素放出量Oの推算式(数3)及び(数4)に、推算誤差を補正、縮小するための学習パラメータβを導入することとしている。   In addition, in this embodiment, in order to improve the estimation accuracy of the oxygen release amount O from the catalyst 3, the estimation error is corrected and reduced to the estimation formulas (Equation 3) and (Equation 4) of the oxygen release amount O. Learning parameter β is introduced.

学習部14たる電子制御装置5は、所定の燃料カット条件が成立し、内燃機関2の気筒への燃料供給(燃料噴射)を一時中断する燃料カットが発生した時に、学習パラメータβを算定、その学習を実行する。燃料カット条件は、既存の自動車用内燃機関2に準ずる。例えば、エンジン回転数が一定以上あり、かつアイドルスイッチがONになった(または、アクセルペダルの踏込量が閾値以下となった)ことを条件とする。燃料カットは、エンジン回転数が所定の復帰回転数以下まで下がったり、アイドルスイッチがOFFになったりすると終了(燃料供給を再開)する。   The electronic control unit 5 as the learning unit 14 calculates a learning parameter β when a predetermined fuel cut condition is satisfied and a fuel cut that temporarily stops fuel supply (fuel injection) to the cylinder of the internal combustion engine 2 occurs. Perform learning. The fuel cut condition is in accordance with the existing automobile internal combustion engine 2. For example, the condition is that the engine speed is equal to or greater than a certain value and the idle switch is turned on (or the accelerator pedal depression amount is equal to or less than a threshold value). The fuel cut ends (resumption of fuel supply) when the engine speed falls below a predetermined return speed or the idle switch is turned off.

学習パラメータβを導入した酸素放出量Oの推算式は、下式(数5)となる。   The equation for calculating the oxygen release amount O with the learning parameter β introduced is as follows:

Figure 2011174426
Figure 2011174426

A/Fは第一の空燃比センサ11を介して検出したガスの空燃比、A/Ftargは目標空燃比である。このように、本実施形態では、空気過剰率λの分母に学習パラメータβを加味する。 A / F is the air-fuel ratio of the gas detected via the first air-fuel ratio sensor 11, and A / F targ is the target air-fuel ratio. Thus, in the present embodiment, the learning parameter β is added to the denominator of the excess air ratio λ.

電子制御装置5は、パラメータβの学習に際し、燃料カット開始から第二の空燃比センサ12の出力がリーンになったことを示す所定値(第二の空燃比センサ12がO2センサである場合、例えば出力電圧=0.5V)に到達するまでの経過時間と、燃料カット開始からモデル数式(数5)に則って推算される放出量Oが0となるまでの経過時間とを計数し、両者の時間差に応じて、当該時間差を減少させる方向にパラメータβを増減させる。但し、後者の経過時間を計数するにあたり、モデル数式(数5)に適用する空気過剰率λとして、下記の式(数6)、式(数7)及び式(数8)の三つをそれぞれ用いる。 When learning the parameter β, the electronic control unit 5 determines a predetermined value indicating that the output of the second air-fuel ratio sensor 12 has become lean since the start of fuel cut (when the second air-fuel ratio sensor 12 is an O 2 sensor). For example, the elapsed time until the output voltage reaches 0.5 V) and the elapsed time until the discharge amount O estimated from the fuel cut start according to the model formula (Equation 5) becomes 0 are counted, In accordance with the time difference between the two, the parameter β is increased or decreased in a direction to decrease the time difference. However, in counting the elapsed time of the latter, as the excess air ratio λ applied to the model formula (formula 5), the following formula (formula 6), formula (formula 7), and formula (formula 8) are each Use.

Figure 2011174426
Figure 2011174426

Figure 2011174426
Figure 2011174426

Figure 2011174426
Figure 2011174426

β0は定数、ここでは0とする。eもまた定数であるが、第一の空燃比センサ11の計測する空燃比の公差に相当する値とする。第一の空燃比センサ11の公差が±0.05であるならば、その公差の絶対値をとってe=0.05とする。 β 0 is a constant, here 0. Although e is also a constant, it is a value corresponding to the tolerance of the air-fuel ratio measured by the first air-fuel ratio sensor 11. If the tolerance of the first air-fuel ratio sensor 11 is ± 0.05, the absolute value of the tolerance is taken as e = 0.05.

図9に、パラメータβの学習処理の手順を示す。電子制御装置5は、内燃機関2における燃料カットが発生したとき(ステップS1)、第二の空燃比センサ12の出力が非リーンを示しており(例えば、出力電圧>0.5V)、なおかつ、式(数6)、式(数7)、式(数8)に示す各空気過剰率λを適用して演算した酸素放出量O(数5)が何れも、前回の燃料カット終了から今回の燃料カット開始までの期間に一度も0になっていないことを条件として(ステップS2、S3)、パラメータβの学習を実施する。   FIG. 9 shows the procedure of the parameter β learning process. When a fuel cut occurs in the internal combustion engine 2 (step S1), the electronic control unit 5 indicates that the output of the second air-fuel ratio sensor 12 is non-lean (for example, output voltage> 0.5V), and The oxygen release amount O (Equation 5) calculated by applying the excess air ratio λ shown in the equation (Equation 6), the equation (Equation 7), and the equation (Equation 8) is the same as that of the current fuel cut. The parameter β is learned on the condition that it has never become 0 during the period until the fuel cut starts (steps S2 and S3).

パラメータβの学習では、燃料カットの開始から、式(数6)の空気過剰率λを適用した酸素放出量O(数5)が0になるまでの時間TA、式(数7)の空気過剰率λを適用した酸素放出量Oが0になるまでの時間TB、並びに、式(数8)の空気過剰率λを適用した酸素放出量Oが0になるまでの時間TCをそれぞれ算出する(ステップS4ないしS6)。さらに、燃料カットの開始から、第二の空燃比センサ12の出力がリーンに切り替わる(例えば、出力電圧≦0.5V)までの時間TDを計測する(ステップS7)。図8に、燃料カット開始時点t2から計数される経過時間TA、TB、TC及びTDの例を示す。 In the learning of the parameter β, the time T A from the start of the fuel cut until the oxygen release amount O (Expression 5) to which the excess air ratio λ of Expression (Expression 6) is applied becomes 0, and the air of Expression (Expression 7). The time T B until the oxygen release amount O to which the excess rate λ is applied becomes 0, and the time T C until the oxygen release amount O to which the air excess rate λ of the formula (Equation 8) is applied become 0, respectively. Calculate (steps S4 to S6). Furthermore, from the start of fuel cut, the output of the second air-fuel ratio sensor 12 measures the time T D to switch to a lean (e.g., output voltage ≦ 0.5V) (step S7). FIG. 8 shows examples of elapsed times T A , T B , T C and T D counted from the fuel cut start time t 2 .

そして、経過時間TDと経過時間TAとの時間差を減少させるように、学習パラメータβを決定する。本実施形態では、TDとTAとの時間差を基に、補間法(内挿法)にて新たなパラメータβを算定する。即ち、TD>TAであるならば(ステップS8)βを下式(数9)とし(ステップS9)、TD<TAであるならばβを下式(数10)とする(ステップS10)。 Then, the learning parameter β is determined so as to reduce the time difference between the elapsed time T D and the elapsed time T A. In the present embodiment, based on the time difference between T D and T A, it calculates a new parameter β by interpolation (interpolation). That is, if a T D> T A and (step S8) beta the formula (9) (step S9), T D <T A at which if it the beta following formula and (number 10) (step S10).

Figure 2011174426
Figure 2011174426

Figure 2011174426
Figure 2011174426

決定した学習パラメータβは、RAM52またはROM53に記憶保持する(ステップS11)。このβは、今回の燃料カットの終了後の空燃比制御において、次回の燃料カットが発生するまでの間、空燃比制御部13で反復演算する酸素放出量Oの推算式(数5)に適用される。   The determined learning parameter β is stored and held in the RAM 52 or ROM 53 (step S11). This β is applied to the estimation formula (Equation 5) of the oxygen release amount O repeatedly calculated by the air-fuel ratio control unit 13 until the next fuel cut occurs in the air-fuel ratio control after the end of the current fuel cut. Is done.

本実施形態によれば、内燃機関2の排気通路に装着された排気ガス浄化用の触媒3の上流に設けられる第一の空燃比センサ11と、前記触媒3の下流に設けられる第二の空燃比センサ12と、少なくとも前記第一の空燃比センサの出力11を参照し、前記触媒3内に吸蔵した酸素量と当該触媒3の酸素吸蔵能との比である酸素割合のモデル数式に則り、触媒3内に酸素吸蔵能まで酸素を吸蔵した状態から酸素を放出した量Oを推算してその放出量Oを目標値にフィードバック制御する空燃比制御部13と、前記モデル数式に則って推算される放出量Oの誤差を縮小するための学習パラメータβを算定し記憶する学習部14とを具備する空燃比制御装置1において、前記学習部14が、内燃機関2における燃料カット発生時に前記学習パラメータβの算定を実行し、燃料カット開始から前記第二の空燃比センサ12の出力がリーンになったことを示す所定値(0.5V)に到達するまでの経過時間TDと、燃料カット開始から前記モデル数式に則って推算される放出量Oが0となるまでの経過時間TAとの時間差に応じて、当該時間差を減少させる方向に学習パラメータβを増減させるものとし、前記空燃比制御部13が、前記学習部14で記憶した学習パラメータβを加味した上でフィードバック制御を実施するものとしたため、酸素放出量Oの推算精度が向上し、触媒3下流にある第二の空燃比センサ12の出力信号の変動が触媒3内の空燃比の変動に対して遅延する問題を有効に回避できる。従って、触媒3の排気ガス浄化能率を高く保つことが可能となり、HC、CO及びNOxの排出量の一層の低減を図り得る上、触媒3に使用する貴金属量の削減にも資する。 According to the present embodiment, the first air-fuel ratio sensor 11 provided upstream of the exhaust gas purifying catalyst 3 mounted in the exhaust passage of the internal combustion engine 2 and the second air-fuel ratio provided downstream of the catalyst 3. Referring to the fuel ratio sensor 12 and at least the output 11 of the first air-fuel ratio sensor, in accordance with a model formula of the oxygen ratio, which is the ratio of the amount of oxygen stored in the catalyst 3 and the oxygen storage capacity of the catalyst 3, The air-fuel ratio control unit 13 that estimates the amount O of released oxygen from the state in which oxygen is stored in the catalyst 3 to the oxygen storage capacity and feedback-controls the released amount O to the target value, and is estimated according to the model equation. The learning unit 14 includes a learning unit 14 that calculates and stores a learning parameter β for reducing an error in the released amount O. When the fuel cut occurs in the internal combustion engine 2, the learning unit 14 Run the calculation of beta, and the elapsed time T D from the fuel cut start until the output of the second air-fuel ratio sensor 12 reaches a predetermined value (0.5V) indicating that becomes lean, the fuel cut start The learning parameter β is increased / decreased in the direction of decreasing the time difference according to the time difference from the elapsed time T A until the release amount O estimated according to the model formula becomes 0, and the air-fuel ratio control Since the unit 13 performs the feedback control in consideration of the learning parameter β stored in the learning unit 14, the estimation accuracy of the oxygen release amount O is improved, and the second air-fuel ratio sensor downstream of the catalyst 3 is improved. Thus, it is possible to effectively avoid the problem that the variation of the 12 output signals is delayed with respect to the variation of the air-fuel ratio in the catalyst 3. Therefore, the exhaust gas purification efficiency of the catalyst 3 can be kept high, and the emission amount of HC, CO, and NO x can be further reduced, and the amount of noble metal used for the catalyst 3 can be reduced.

酸素放出量Oは、触媒3内に酸素が充満した状態を基準(O=0)とする値であり、これを制御量としていることで、触媒3の酸素吸蔵能の劣化の度合いに応じた目標値の設定変更が不要となっている。また、燃料カットを実行する度、酸素放出量Oの値が0にリセットされ、推算誤差もリセットされることから、高精度のフィードバック制御が実現される。しかも、燃料カットの機会は自動車の運転中しばしば訪れるので、自然にパラメータβの更新回数を増やすことができる。   The oxygen release amount O is a value based on the state in which the catalyst 3 is filled with oxygen (O = 0). By using this as a control amount, the oxygen release amount O corresponds to the degree of deterioration of the oxygen storage capacity of the catalyst 3. It is not necessary to change the target value setting. Further, each time a fuel cut is performed, the value of the oxygen release amount O is reset to 0 and the estimation error is also reset, so that highly accurate feedback control is realized. In addition, since the fuel cut opportunity often occurs during the driving of the automobile, the number of updates of the parameter β can be increased naturally.

なお、本発明は以上に詳述した実施形態に限られるものではない。特に、学習パラメータβの算定式は、式(数9)及び式(数10)には限定されない。例えば、TD>TAならばβを所定量γ(例えば、γ=0.001)だけ増加させ、TD<TAならばβを所定量γだけ減少させる、というように、TDとTAとの大小関係に応じてβを増減させるようにしても構わない。 The present invention is not limited to the embodiment described in detail above. In particular, the equation for calculating the learning parameter β is not limited to the equation (Equation 9) and the equation (Equation 10). For example, T D> T a A if β predetermined amount gamma (e.g., gamma = 0.001) only increases, decreases the β if T D <T A predetermined amount gamma, and so, and T D Β may be increased or decreased according to the magnitude relationship with T A.

その他各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   Other specific configurations of each part can be variously modified without departing from the spirit of the present invention.

本発明は、自動車等に搭載される内燃機関の制御に利用することができる。   The present invention can be used for control of an internal combustion engine mounted on an automobile or the like.

1…空燃比制御装置
11…第一の空燃比センサ
12…第二の空燃比センサ
13、5…空燃比制御部(電子制御装置)
14、5…学習部(電子制御装置)
2…内燃機関
3…触媒
DESCRIPTION OF SYMBOLS 1 ... Air fuel ratio control apparatus 11 ... 1st air fuel ratio sensor 12 ... 2nd air fuel ratio sensor 13, 5 ... Air fuel ratio control part (electronic controller)
14, 5 ... Learning unit (electronic control unit)
2 ... Internal combustion engine 3 ... Catalyst

Claims (2)

内燃機関の排気通路に装着された排気ガス浄化用の触媒の上流に設けられる第一の空燃比センサと、
前記触媒の下流に設けられる第二の空燃比センサと、
少なくとも前記第一の空燃比センサの出力を参照し、前記触媒内に吸蔵した酸素量と当該触媒の酸素吸蔵能との比である酸素割合のモデル数式に則り、触媒内に酸素吸蔵能まで酸素を吸蔵した状態から酸素を放出した量を推算してその放出量を目標値にフィードバック制御する空燃比制御部と、
前記モデル数式に則って推算される放出量の誤差を縮小するための学習パラメータを算定し記憶する学習部と
を具備しており、
前記学習部は、内燃機関における燃料カット発生時に前記学習パラメータの算定を実行し、燃料カット開始から前記第二の空燃比センサの出力がリーンになったことを示す所定値に到達するまでの経過時間と、燃料カット開始から前記モデル数式に則って推算される放出量が0となるまでの経過時間との時間差に応じて、当該時間差を減少させる方向に学習パラメータを増減させるものであり、
前記空燃比制御部は、前記学習部で記憶した学習パラメータを加味した上でフィードバック制御を実施するものである
ことを特徴とする空燃比制御装置。
A first air-fuel ratio sensor provided upstream of an exhaust gas purifying catalyst mounted in an exhaust passage of the internal combustion engine;
A second air-fuel ratio sensor provided downstream of the catalyst;
At least referring to the output of the first air-fuel ratio sensor, oxygen is stored in the catalyst up to the oxygen storage capacity in accordance with a model formula of the oxygen ratio, which is the ratio of the amount of oxygen stored in the catalyst and the oxygen storage capacity of the catalyst. An air-fuel ratio control unit that estimates the amount of released oxygen from the state of occlusion and feedback-controls the released amount to a target value;
A learning unit that calculates and stores a learning parameter for reducing an error in the amount of emission estimated according to the model formula;
The learning unit performs the calculation of the learning parameter when a fuel cut occurs in the internal combustion engine, and a lapse of time from the start of the fuel cut until reaching a predetermined value indicating that the output of the second air-fuel ratio sensor has become lean. According to the time difference between the time and the elapsed time from the start of fuel cut until the release amount estimated according to the model formula becomes zero, the learning parameter is increased or decreased in a direction to decrease the time difference,
The air-fuel ratio control unit is configured to perform feedback control in consideration of the learning parameter stored in the learning unit.
前記モデル数式が、式(数11)の形で表される請求項1記載の空燃比制御装置。
Figure 2011174426
The air-fuel ratio control apparatus according to claim 1, wherein the model formula is expressed in the form of an expression (Equation 11).
Figure 2011174426
JP2010039569A 2010-02-25 2010-02-25 Air-fuel ratio control device Expired - Fee Related JP5545631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039569A JP5545631B2 (en) 2010-02-25 2010-02-25 Air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039569A JP5545631B2 (en) 2010-02-25 2010-02-25 Air-fuel ratio control device

Publications (2)

Publication Number Publication Date
JP2011174426A true JP2011174426A (en) 2011-09-08
JP5545631B2 JP5545631B2 (en) 2014-07-09

Family

ID=44687497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039569A Expired - Fee Related JP5545631B2 (en) 2010-02-25 2010-02-25 Air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JP5545631B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203194A (en) * 2012-03-28 2013-10-07 Daimler Ag Learning apparatus for air-fuel ratio sensor in hybrid vehicle
WO2020189080A1 (en) * 2019-03-20 2020-09-24 日立オートモティブシステムズ株式会社 Internal combustion engine control device
US11746719B2 (en) 2020-05-14 2023-09-05 Hitachi Astemo, Ltd. Internal combustion engine control device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10184424A (en) * 1996-12-24 1998-07-14 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JPH10184426A (en) * 1996-12-25 1998-07-14 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JPH10220267A (en) * 1997-02-07 1998-08-18 Toyota Motor Corp Air-fuel ratio controller of internal combustion engine
JP2003041990A (en) * 2001-07-27 2003-02-13 Nissan Motor Co Ltd Air-fuel ratio control system for internal combustion engine
JP2004036396A (en) * 2002-06-28 2004-02-05 Hitachi Unisia Automotive Ltd Air fuel ratio control device of internal combustion engine
JP2005098205A (en) * 2003-09-25 2005-04-14 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JP2009167841A (en) * 2008-01-11 2009-07-30 Hitachi Ltd Air-fuel ratio control device of internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10184424A (en) * 1996-12-24 1998-07-14 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JPH10184426A (en) * 1996-12-25 1998-07-14 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
JPH10220267A (en) * 1997-02-07 1998-08-18 Toyota Motor Corp Air-fuel ratio controller of internal combustion engine
JP2003041990A (en) * 2001-07-27 2003-02-13 Nissan Motor Co Ltd Air-fuel ratio control system for internal combustion engine
JP2004036396A (en) * 2002-06-28 2004-02-05 Hitachi Unisia Automotive Ltd Air fuel ratio control device of internal combustion engine
JP2005098205A (en) * 2003-09-25 2005-04-14 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
JP2009167841A (en) * 2008-01-11 2009-07-30 Hitachi Ltd Air-fuel ratio control device of internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203194A (en) * 2012-03-28 2013-10-07 Daimler Ag Learning apparatus for air-fuel ratio sensor in hybrid vehicle
WO2020189080A1 (en) * 2019-03-20 2020-09-24 日立オートモティブシステムズ株式会社 Internal combustion engine control device
CN113167151A (en) * 2019-03-20 2021-07-23 日立安斯泰莫株式会社 Control device for internal combustion engine
JPWO2020189080A1 (en) * 2019-03-20 2021-10-21 日立Astemo株式会社 Internal combustion engine controller
US20220099043A1 (en) * 2019-03-20 2022-03-31 Hitachi Astemo, Ltd. Internal Combustion Engine Control Device
JP7191199B2 (en) 2019-03-20 2022-12-16 日立Astemo株式会社 internal combustion engine controller
US11795889B2 (en) 2019-03-20 2023-10-24 Hitachi Astemo, Ltd. Internal combustion engine control device
US11746719B2 (en) 2020-05-14 2023-09-05 Hitachi Astemo, Ltd. Internal combustion engine control device

Also Published As

Publication number Publication date
JP5545631B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP4835497B2 (en) Air-fuel ratio control device for internal combustion engine
JP3968075B2 (en) Air-fuel ratio control device for internal combustion engine
JP3941828B2 (en) Air-fuel ratio control device for internal combustion engine
US20070017212A1 (en) Catalyst diagnosis apparatus for internal combustion engine
JP2009203910A (en) Air-fuel ratio control device for internal combustion engine
JP5007845B2 (en) Exhaust gas purification device for internal combustion engine
US20120060475A1 (en) Method for adapting an exothermic reaction in the exhaust system of a motor vehicle
KR20040084689A (en) METHOD FOR ESTIMATING NOx OCCLUSION AMOUNT
US9127585B2 (en) Catalyst temperature estimating device and catalyst temperature estimating method
JP4645543B2 (en) Exhaust gas purification device for internal combustion engine
JP5545631B2 (en) Air-fuel ratio control device
JP2841823B2 (en) Catalyst purification rate detector
JP7044022B2 (en) Exhaust gas purification system control device
JP5404262B2 (en) Air-fuel ratio control device
JP2012026306A (en) Diagnosis control method of internal combustion engine
JP2010084670A (en) Air-fuel ratio control device of internal combustion engine
JP5679839B2 (en) Air-fuel ratio control device
JP4422716B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07158425A (en) Exhaust emission control device for internal combustion engine
JP2007032438A (en) Air-fuel ratio control device for internal combustion engine
JP4422398B2 (en) Exhaust gas purification device for internal combustion engine
JP2010084671A (en) Air-fuel ratio control device of internal combustion engine
JP2007224750A (en) Sulfur poisoning recovery control device
JP3601210B2 (en) Engine air-fuel ratio control device
JP4613896B2 (en) Exhaust purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140507

R150 Certificate of patent or registration of utility model

Ref document number: 5545631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees