JP2011174383A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2011174383A
JP2011174383A JP2010037459A JP2010037459A JP2011174383A JP 2011174383 A JP2011174383 A JP 2011174383A JP 2010037459 A JP2010037459 A JP 2010037459A JP 2010037459 A JP2010037459 A JP 2010037459A JP 2011174383 A JP2011174383 A JP 2011174383A
Authority
JP
Japan
Prior art keywords
filter
sub
fuel
exhaust gas
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010037459A
Other languages
Japanese (ja)
Other versions
JP5734573B2 (en
Inventor
Hiroshi Hirabayashi
浩 平林
Tatsuoki Igarashi
龍起 五十嵐
Keiichi Hayashizaki
圭一 林崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2010037459A priority Critical patent/JP5734573B2/en
Publication of JP2011174383A publication Critical patent/JP2011174383A/en
Application granted granted Critical
Publication of JP5734573B2 publication Critical patent/JP5734573B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of largely improving a fuel efficiency by reducing the frequency of forced regenerations more than before. <P>SOLUTION: This exhaust emission control device includes a main filter 13 which is installed halfway in an exhaust pipe 11 and collects the soot contained in exhaust gas 9, a sub filter 17 which is disposed on the former stage of the main filter 13 and reduced more in collecting efficiency than the main filter 13 so that a part of the soot contained in the exhaust gas 9 can be pre-collected, and a forced regeneration means (fuel injection device 16, a fuel oxidation catalyst 14) for burning and removing the soot collected in the main filter 13 by increasing the exhaust gas temperature to a predetermined one or higher on the inlet side of the sub filter 17. The soot oxidation catalyst is carried by the sub filter 17 so that the collected soot can be oxidized in a temperature range lower than the exhaust gas temperature increased by the forced regeneration means. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

ディーゼルエンジンから排出される排気ガス中には、炭素質から成る煤分が多く含まれているため、排気ガスが流通する排気管の途中にパティキュレートフィルタを装備することが従来より行われている。この種のパティキュレートフィルタは、コージェライト等のセラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガスのみが下流側へ排出されるようにしてある。   Since exhaust gas exhausted from diesel engines contains a large amount of carbonaceous soot, it has been conventionally practiced to install a particulate filter in the middle of the exhaust pipe through which exhaust gas flows. . This type of particulate filter has a porous honeycomb structure made of a ceramic such as cordierite, and the inlets of the flow paths partitioned in a lattice pattern are alternately sealed, and the inlets are not sealed. About the flow path, the exit is sealed, and only the exhaust gas which permeate | transmitted the porous thin wall which divides each flow path is discharged | emitted downstream.

そして、排気ガス中の煤分は、前記多孔質薄壁の内側表面に捕集されて堆積するので、目詰まりにより排気抵抗が増加しないうちに煤分を適宜に燃焼除去してパティキュレートフィルタの再生を図る必要があるが、通常のディーゼルエンジンの運転状態においては、煤分が自己燃焼するほどの高い排気温度が得られる機会が少ない為、Pt/Al23等の酸化触媒が担持されるようになっている。即ち、このような触媒再生型のパティキュレートフィルタを採用すれば、捕集済み煤分の酸化反応が促進されて着火温度が低下し、従来より低い排気温度でも煤分を燃焼除去することが可能となる。 And since the apportioned gas in the exhaust gas is collected and deposited on the inner surface of the porous thin wall, the apportioned material is appropriately burned and removed before the exhaust resistance increases due to clogging. Although it is necessary to regenerate, in normal diesel engine operating conditions, there are few opportunities to obtain exhaust temperatures that are high enough to cause self-combustion, so an oxidation catalyst such as Pt / Al 2 O 3 is supported. It has become so. That is, if such a catalyst regeneration type particulate filter is adopted, the oxidation reaction of the collected soot is promoted, the ignition temperature is lowered, and soot can be burned and removed even at a lower exhaust temperature than before. It becomes.

ただし、斯かる触媒再生型のパティキュレートフィルタを採用した場合であっても、排気温度の低い運転領域では、煤分の処理量よりも捕集量が上まわってしまうので、このような低い排気温度での運転状態が続くと、パティキュレートフィルタの再生が良好に進まずに該パティキュレートフィルタが過捕集状態に陥る虞れがある。   However, even when such a catalyst regeneration type particulate filter is used, the trapped amount exceeds the apportioned amount in the operation region where the exhaust gas temperature is low. If the operation state at the temperature continues, there is a possibility that the particulate filter will fall into an over trapped state without the regeneration of the particulate filter proceeding well.

そこで、パティキュレートフィルタの前段に、フロースルー型の燃料酸化触媒を別途配置し、煤分の堆積量が増加してきた段階で前記燃料酸化触媒より上流側の排気ガス中に燃料を添加してパティキュレートフィルタの強制再生を行うことが考えられている。   In view of this, a flow-through type fuel oxidation catalyst is separately arranged in the front stage of the particulate filter, and when the accumulated amount of soot has increased, fuel is added to the exhaust gas upstream of the fuel oxidation catalyst and the particulate filter is added. It is considered to perform forced regeneration of the curate filter.

つまり、パティキュレートフィルタより上流側で添加された燃料(HC)が前段の燃料酸化触媒を通過する間に酸化反応し、その反応熱で昇温した排気ガスの流入により直後のパティキュレートフィルタの触媒床温度が上げられて煤分が燃やし尽くされ、パティキュレートフィルタの再生化が図られることになる。   That is, the fuel (HC) added upstream from the particulate filter undergoes an oxidation reaction while passing through the preceding fuel oxidation catalyst, and the particulate filter catalyst immediately after the inflow of exhaust gas heated by the reaction heat. The bed temperature is raised and the apportionment is burned out, and the particulate filter is regenerated.

この種の燃料添加を実行するための具体的手段としては、圧縮上死点付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を追加することで排気ガス中に燃料を添加すれば良い。   As a specific means for executing this kind of fuel addition, post-injection is added at the timing of non-ignition later than the compression top dead center following the main injection of fuel performed near the compression top dead center. What is necessary is just to add a fuel in gas.

尚、斯かるパティキュレートフィルタの強制再生に関連する先行技術文献情報としては本発明と同じ出願人による下記の特許文献1等がある。   As prior art document information related to the forced regeneration of such a particulate filter, there is the following Patent Document 1 by the same applicant as the present invention.

特開2003−193824号公報JP 2003-193824 A

しかしながら、斯かる従来の排気浄化装置においては、煤分の堆積量が増加したパティキュレートフィルタに対し強制再生を実施する度に、排気温度を高めるためのポスト噴射等で多くの燃料が消費されることになるため、ディーゼルエンジンの燃費が悪化するという問題があった。   However, in such a conventional exhaust purification device, a large amount of fuel is consumed by post-injection or the like for increasing the exhaust temperature every time forced regeneration is performed on the particulate filter with a large amount of accumulated deposits. Therefore, there was a problem that the fuel consumption of the diesel engine deteriorated.

本発明は上述の実情に鑑みてなしたもので、従来よりも強制再生の実施頻度が少なくて済むようにして燃費の大幅な改善を図り得る排気浄化装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide an exhaust emission control device capable of significantly improving fuel efficiency by reducing the frequency of forced regeneration as compared with the prior art.

本発明は、排気管途中に装備されて排気ガス中の煤分を捕集するメインフィルタと、該メインフィルタの前段に配置されて排気ガス中の煤分の一部を先行捕集し得るよう前記メインフィルタよりも捕集効率を相対的に落としたサブフィルタと、該サブフィルタの入側で排気温度を所定温度以上に高めて前記メインフィルタ内に捕集された煤分を燃焼除去せしめる強制再生手段とを備え、該強制再生手段により高められる排気温度よりも低い温度域で捕集済み煤分を酸化処理し得るよう前記サブフィルタに煤分酸化触媒を担持させたことを特徴とする排気浄化装置、に係るものである。   The present invention is equipped with a main filter that is provided in the middle of an exhaust pipe and collects soot in exhaust gas, and is arranged in front of the main filter so that a part of soot in exhaust gas can be collected in advance. A sub-filter having a lower collection efficiency than that of the main filter, and a forced exhaust of the soot collected in the main filter by raising the exhaust temperature to a predetermined temperature or more on the inlet side of the sub-filter An exhaust gas comprising a regeneration means, and a soot oxidation catalyst supported on the sub-filter so as to oxidize the soot collected in a temperature range lower than an exhaust temperature raised by the forced regeneration means This relates to a purification device.

而して、このようにすれば、排気ガス中の煤分の一部が前段のサブフィルタにて先行捕集されるので、後段のメインフィルタで捕集しなければならない煤分の量が少なくて済み、前記メインフィルタに溜まる煤分のペースが、従来のパティキュレートフィルタを単独使用する場合と比較して大幅に遅くなる。この結果、強制再生手段による強制再生の完了直後から次の強制再生が必要となるまでの再生間隔が長くなり、強制再生の実施頻度が従来より少なくなる。   Thus, since a part of the spillage in the exhaust gas is collected in advance by the sub-filter in the front stage, the amount of spillage that must be collected by the main filter in the rear stage is small. As a result, the pace of apportioning in the main filter is significantly slower than when a conventional particulate filter is used alone. As a result, the regeneration interval from immediately after the completion of forced regeneration by the forced regeneration means until the next forced regeneration becomes necessary becomes longer, and the frequency of forced regeneration is less than before.

尚、前段のサブフィルタは、後段のメインフィルタよりも捕集効率を相対的に落とした気孔径の粗いものとなっている上、排気ガス中の煤分の一部だけが先行捕集されるようになっているにすぎず、しかも、その捕集された煤分も煤分酸化触媒の触媒作用により強制再生時の排気温度より低い温度域で酸化処理されてしまうので、後段のメインフィルタの強制再生が必要となる前に前段のサブフィルタが目詰まりを起こす虞れはない。   In addition, the sub-filter of the front stage has a coarse pore diameter with a relatively lower collection efficiency than the main filter of the rear stage, and only a part of the fraction in the exhaust gas is collected in advance. In addition, the collected soot is also oxidized in the temperature range lower than the exhaust temperature during forced regeneration due to the catalytic action of the soot oxidation catalyst. There is no risk of the sub-filter in the previous stage becoming clogged before the forced regeneration is required.

更に、本発明においては、CeO2、ZrO2、Pr611の何れか一種類以上を活性種とする煤分酸化触媒をサブフィルタに担持させ、メインフィルタには捕集済み煤分だけでなくCO及びHCを酸化処理することが可能なPtを活性種とするCO・HC酸化触媒を担持させることが好ましく、更には、メインフィルタの平均気孔径が5〜25μmで且つ捕集効率が60〜100%であり、サブフィルタの平均気孔径が25〜100μmで且つ捕集効率が30〜70%であることが好ましい。 Furthermore, in the present invention, a sub-filter is supported on the sub-filter by using one or more of CeO 2 , ZrO 2 , and Pr 6 O 11 as active species. It is preferable to support a CO / HC oxidation catalyst having Pt as an active species, which can oxidize CO and HC without any loss. Further, the average pore diameter of the main filter is 5 to 25 μm, and the collection efficiency is 60 It is preferable that the average pore diameter of the sub-filter is 25 to 100 μm and the collection efficiency is 30 to 70%.

また、本発明においては、サブフィルタの前段に配置されて排気ガス中の未燃燃料分を酸化処理して反応熱により排気ガスを加熱する燃料酸化触媒と、該燃料酸化触媒より上流で排気ガス中に燃料を添加する燃料添加手段とにより強制再生手段を構成したり、或いは、サブフィルタの前段に配置されたバーナにより強制再生手段を構成したりすることが可能である。   Further, in the present invention, a fuel oxidation catalyst that is disposed upstream of the sub-filter and that oxidizes the unburned fuel in the exhaust gas and heats the exhaust gas by reaction heat, and an exhaust gas upstream from the fuel oxidation catalyst. The forced regeneration means can be constituted by the fuel addition means for adding the fuel therein, or the forced regeneration means can be constituted by a burner arranged in front of the sub-filter.

上記した本発明の排気浄化装置によれば、排気ガス中の煤分の一部を前段のサブフィルタにて先行捕集することによって、後段のメインフィルタに溜まる煤分のペースを大幅に遅くして前記メインフィルタの強制再生の実施頻度を従来より少なくすることができるので、強制再生時に排気温度を高めるために消費される燃料を著しく抑制することができ、従来よりも燃費の大幅な改善を図ることができるという優れた効果を奏し得る。   According to the above-described exhaust gas purification apparatus of the present invention, a part of the spillage in the exhaust gas is preliminarily collected by the front sub-filter, thereby significantly reducing the pace of the spillage accumulated in the rear-stage main filter. Therefore, the frequency of forced regeneration of the main filter can be reduced as compared with the prior art, so that the fuel consumed to increase the exhaust temperature during forced regeneration can be remarkably suppressed, and the fuel efficiency can be greatly improved compared to the conventional case. An excellent effect that it can be achieved can be achieved.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 煤分酸化触媒の燃焼特性試験の結果を示すグラフである。It is a graph which shows the result of the combustion characteristic test of a prominent oxidation catalyst. 深層濾過の状態を示す模式図である。It is a schematic diagram which shows the state of depth filtration. 本発明の別の形態例を示す概略図である。It is the schematic which shows another form example of this invention.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、図1中における1はターボチャージャ2を装備したディーゼルエンジンを示しており、エアクリーナ3を介して導かれた吸気4が吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された吸気4がインタークーラ6へと送られて冷却され、該インタークーラ6から更に吸気マニホールド7へと吸気4が導かれてディーゼルエンジン1の各気筒8(図1では概略的に4気筒のみを図示)に分配されるようになっている。更に、このディーゼルエンジン1の各気筒8から排出された排気ガス9は、排気マニホールド10を介しターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排気ガス9が排気管11を介し車外へ排出されるようにしてある。   FIG. 1 shows an example of an embodiment of the present invention. In FIG. 1, 1 denotes a diesel engine equipped with a turbocharger 2, and intake air 4 guided through an air cleaner 3 is connected to an intake pipe 5. Through, the intake air 4 sent to the compressor 2 a of the turbocharger 2 and pressurized by the compressor 2 a is sent to the intercooler 6 to be cooled, and the intake air 4 is further guided from the intercooler 6 to the intake manifold 7. Accordingly, each cylinder 8 of the diesel engine 1 (only four cylinders are schematically shown in FIG. 1) is distributed. Further, the exhaust gas 9 discharged from each cylinder 8 of the diesel engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 10, and the exhaust gas 9 that has driven the turbine 2b passes through the exhaust pipe 11. It is designed to be discharged outside the vehicle.

この排気管11の途中には、フィルタケース12が介装されており、該フィルタケース12内における後段に、これまでのパティキュレートフィルタと同様のメインフィルタ13が収容されており、前記フィルタケース12内における前段には、排気ガス9中の未燃燃料分を酸化処理して反応熱により排気ガス9を加熱するフロースルー型の燃料酸化触媒14が収容されている。   A filter case 12 is interposed in the middle of the exhaust pipe 11, and a main filter 13 similar to the conventional particulate filter is accommodated in a subsequent stage in the filter case 12. In the former stage, a flow-through type fuel oxidation catalyst 14 that oxidizes unburned fuel in the exhaust gas 9 and heats the exhaust gas 9 by reaction heat is accommodated.

そして、ディーゼルエンジン1の各気筒8に対し燃料を噴射するインジェクタ15から成る燃料噴射装置16が燃料添加手段としての機能を併せ持つようになっており、より具体的には、圧縮上死点(クランク角0゜)付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を追加することで排気ガス9中に燃料を添加し得るようにしてある。   A fuel injection device 16 composed of an injector 15 for injecting fuel into each cylinder 8 of the diesel engine 1 also has a function as a fuel addition means. More specifically, the compression top dead center (crank) The fuel can be added to the exhaust gas 9 by adding post-injection at a non-ignition timing later than the compression top dead center following the main injection of the fuel near the angle 0 °.

即ち、メインフィルタ13内における煤分の堆積量が増えて強制再生を行う必要が生じた際に、燃料噴射装置16によりポスト噴射を追加すると、該ポスト噴射で排気ガス9中に添加された未燃燃料分が前記燃料酸化触媒14を通過する間に酸化反応し、その反応熱で昇温した排気ガス9の流入によりメインフィルタ13の触媒床温度が上げられて煤分が燃やし尽くされ、メインフィルタ13の再生化が図られるようになっており、ここに図示している例の場合は、燃料添加手段である燃料噴射装置16と燃料酸化触媒14とにより強制再生手段が構成されたものとなっている。   In other words, when post-injection is added by the fuel injection device 16 when the accumulation amount of soot in the main filter 13 increases and forced regeneration needs to be performed, the uninjected exhaust gas 9 added to the exhaust gas 9 by the post-injection is added. While the fuel fuel passes through the fuel oxidation catalyst 14, it undergoes an oxidation reaction. The flow of exhaust gas 9 heated by the reaction heat raises the catalyst bed temperature of the main filter 13 and burns out the soot. The filter 13 can be regenerated, and in the case of the example shown here, the forced regeneration means is constituted by the fuel injection device 16 as the fuel addition means and the fuel oxidation catalyst 14. It has become.

ここまでに述べた構成は、実質的に既存の排気浄化装置における構成と変わらないものであるが、本形態例においては、燃料酸化触媒14とメインフィルタ13との間に、該メインフィルタ13よりも捕集効率を相対的に落としたサブフィルタ17を新たに設けており、該サブフィルタ17により排気ガス9中の煤分の一部を先行捕集し得るようにしてある。   The configuration described so far is substantially the same as the configuration in the existing exhaust purification device, but in the present embodiment, the main filter 13 is provided between the fuel oxidation catalyst 14 and the main filter 13. In addition, a sub-filter 17 having a relatively reduced collection efficiency is newly provided so that a part of the spillage in the exhaust gas 9 can be pre-collected by the sub-filter 17.

ここで、前記サブフィルタ17には、CeO2、ZrO2、Pr611の何れか一種類以上を活性種とする煤分酸化触媒が担持されており、前記メインフィルタ13の強制再生時に燃料酸化触媒14における添加燃料の酸化反応により高められる排気温度よりも低い温度域で捕集済み煤分を酸化処理し得るようにしてある。 Here, the sub-filter 17 carries a prominent oxidation catalyst having one or more of CeO 2 , ZrO 2 , and Pr 6 O 11 as active species, and the fuel at the time of forced regeneration of the main filter 13 is supported. The collected soot can be oxidized in a temperature range lower than the exhaust temperature raised by the oxidation reaction of the added fuel in the oxidation catalyst 14.

例えば、燃料噴射装置16のポスト噴射で排気ガス9中に添加した未燃燃料分の酸化反応により排気温度は約600℃以上に高められるが、図2に本発明者らによる燃焼特性試験の結果をグラフで示す通り、CeO2とカーボンブラック(煤分に相当)とを混合して加熱すると、300〜600℃の温度域でも良好にカーボンブラックを燃焼できることが確認されている(CO2濃度の上昇により燃焼を判断)。 For example, although the exhaust temperature is raised to about 600 ° C. or more by the oxidation reaction of the unburned fuel added to the exhaust gas 9 by the post injection of the fuel injection device 16, FIG. 2 shows the result of the combustion characteristic test by the present inventors. As shown in the graph, it has been confirmed that mixing CeO 2 and carbon black (corresponding to apportionment) and heating the carbon black well in the temperature range of 300 to 600 ° C. (CO 2 concentration) Combustion is judged by the rise).

ここで、CeO2には、Ptを担持させてもカーボンブラックの燃焼開始温度に影響がないことが確認されているため、特にPtを担持させてはいないが、Agを多く担持させることでカーボンブラックの燃焼開始温度が低下することは確認されているため、必要に応じてCeO2にAgを担持させても良い。 Here, since it has been confirmed that CeO 2 does not affect the combustion start temperature of carbon black even if Pt is supported, Pt is not particularly supported, but carbon is supported by supporting a large amount of Ag. Since it has been confirmed that the combustion start temperature of black decreases, Ag may be supported on CeO 2 as necessary.

一方、メインフィルタ13には、これまでのパティキュレートフィルタに担持されていたものと同様のPt/Al23が担持されているが、先の図2のグラフに付記してある通り、Pt/Al23の場合は、強制再生時に高められる約600℃以上の温度域で良好にカーボンブラックを燃焼させることが可能である。 On the other hand, the main filter 13 carries Pt / Al 2 O 3 similar to that carried on the particulate filter so far, but as indicated in the graph of FIG. In the case of / Al 2 O 3 , it is possible to burn carbon black satisfactorily in a temperature range of about 600 ° C. or higher which is increased during forced regeneration.

尚、前段のサブフィルタ17に担持されるCeO2、ZrO2、Pr611を活性種とする煤分酸化触媒は、排気ガス9中のCO及びHCを酸化処理する能力が殆どないため、メインフィルタ13に、捕集済み煤分だけでなくCO及びHCを酸化処理することが可能なPt/Al23(Ptを活性種とするCO・HC酸化触媒:Pt/Pd等であっても良い)を担持させておけば、CO及びHCを酸化処理するための酸化触媒を後段に別途設けなくて済むというメリットも得られる。 Note that the catalyzed oxidation catalyst that uses CeO 2 , ZrO 2 , and Pr 6 O 11 supported on the sub-filter 17 in the previous stage as an active species has little ability to oxidize CO and HC in the exhaust gas 9. Pt / Al 2 O 3 (CO / HC oxidation catalyst using Pt as an active species: Pt / Pd, etc.) capable of oxidizing CO and HC as well as the collected soot. In other words, it is possible to obtain a merit that it is not necessary to separately provide an oxidation catalyst for oxidizing CO and HC in the subsequent stage.

更に、メインフィルタ13よりもサブフィルタ17の捕集効率が相対的に低いという両者の関係を前提とした上で、メインフィルタ13の平均気孔径は5〜25μm、その捕集効率は60〜100%の範囲で任意に設定することができ、サブフィルタ17の平均気孔径は25〜100μm、その捕集効率は30〜70%の範囲で任意に設定することができるが、ここではメインフィルタ13の平均気孔径を20μmとして捕集効率を95%とし、サブフィルタ17の平均気孔径を50μmとして捕集効率を60%としている。   Further, on the premise of the relationship between the subfilter 17 and the main filter 13 having a relatively low collection efficiency, the average pore diameter of the main filter 13 is 5 to 25 μm, and the collection efficiency is 60 to 100. %, The subpores 17 can have an average pore diameter of 25 to 100 μm and a collection efficiency of 30 to 70%. The average pore diameter is 20 μm, the collection efficiency is 95%, the average pore diameter of the sub-filter 17 is 50 μm, and the collection efficiency is 60%.

而して、このように排気浄化装置を構成すれば、排気ガス9中の煤分の一部が前段のサブフィルタ17にて先行捕集されるので、後段のメインフィルタ13で捕集しなければならない煤分の量が少なくて済み、前記メインフィルタ13に溜まる煤分のペースが、従来のパティキュレートフィルタを単独使用する場合と比較して大幅に遅くなる。この結果、強制再生の完了直後から次の強制再生が必要となるまでの再生間隔が長くなり(本発明者らによる検証実験では再生間隔を約3倍にできることを確認)、強制再生の実施頻度が従来より少なくなるので、強制再生時に排気温度を高めるために消費される燃料が著しく抑制されることになり、従来よりも燃費の大幅な改善を図ることが可能となる。   Thus, if the exhaust gas purification device is configured in this way, a portion of the spillage in the exhaust gas 9 is collected in advance by the sub filter 17 at the front stage, and must be collected by the main filter 13 at the rear stage. The amount of spillage that needs to be reduced is small, and the pace of spillage that accumulates in the main filter 13 is significantly slower than when a conventional particulate filter is used alone. As a result, the regeneration interval from the completion of the forced regeneration until the next forced regeneration becomes necessary becomes longer (in the verification experiment by the present inventors, it was confirmed that the regeneration interval can be tripled). Therefore, the amount of fuel consumed to increase the exhaust temperature during forced regeneration is remarkably suppressed, and the fuel efficiency can be greatly improved as compared with the conventional case.

尚、前段のサブフィルタ17は、後段のメインフィルタ13よりも捕集効率を相対的に落とした気孔径の粗いものとなっている上、排気ガス9中の煤分の一部だけが先行捕集されるようになっているにすぎず、しかも、その捕集された煤分も煤分酸化触媒の触媒作用により強制再生時の排気温度より低い温度域で酸化処理されてしまうので、後段のメインフィルタ13の強制再生が必要となる前に前段のサブフィルタ17が目詰まりを起こす虞れはない。   In addition, the sub-filter 17 in the front stage has a coarse pore diameter with a relatively lower collection efficiency than the main filter 13 in the rear stage, and only a part of the spillage in the exhaust gas 9 is pre-captured. In addition, the collected soot is also oxidized at a temperature lower than the exhaust temperature during forced regeneration due to the catalytic action of the soot oxidation catalyst. There is no possibility that the sub-filter 17 in the previous stage will be clogged before the forced regeneration of the main filter 13 is required.

特にサブフィルタ17の平均気孔径を25〜100μmの範囲で大きくとり且つ捕集効率を30〜70%の範囲で小さくした場合には、図3に模式的に示す如く、サブフィルタ17における気孔が粗くなって、煤分が基材内部に入り込んで捕集される深層濾過(一般的な低気孔径のフィルタは基材表面に堆積する表層濾過)の状態となり、基材にコーティングされている煤分酸化触媒との接触性が良くなって、煤分を酸化処理する性能が大幅に向上されることになるため、後段のメインフィルタ13の強制再生が必要となる前に前段のサブフィルタ17が目詰まりを起こすような事態をより確実に回避させることが可能となる。   In particular, when the average pore diameter of the sub-filter 17 is increased in the range of 25 to 100 μm and the collection efficiency is decreased in the range of 30 to 70%, as shown schematically in FIG. It becomes rough and becomes a state of deep layer filtration where the soot content is trapped inside the base material (a general low pore size filter is a surface layer filter deposited on the surface of the base material) and is coated on the base material. Since the contact property with the partial oxidation catalyst is improved and the performance of oxidizing the soot is greatly improved, the sub-filter 17 in the front stage is required to be forcibly regenerated after the main filter 13 in the rear stage is required. It is possible to more reliably avoid a situation that causes clogging.

従って、上記形態例によれば、排気ガス9中の煤分の一部を前段のサブフィルタ17にて先行捕集することによって、後段のメインフィルタ13に溜まる煤分のペースを大幅に遅くして前記メインフィルタ13の強制再生の実施頻度を従来より少なくすることができるので、燃料噴射装置16で排気温度を高めるためのポスト噴射として消費される燃料を著しく抑制することができ、従来よりもディーゼルエンジン1の燃費を大幅に改善することができる。   Therefore, according to the above-described embodiment, a part of the spillage in the exhaust gas 9 is preliminarily collected by the sub-filter 17 at the front stage, so that the pace of the spillage accumulated in the main filter 13 at the rear stage is greatly reduced. Therefore, the frequency of forced regeneration of the main filter 13 can be reduced as compared with the conventional case, so that the fuel consumed as post injection for increasing the exhaust temperature in the fuel injection device 16 can be remarkably suppressed, compared with the conventional case. The fuel consumption of the diesel engine 1 can be greatly improved.

また、図4は本発明の別の形態例を示すもので、先の図1の形態例で強制再生手段を燃料噴射装置16と燃料酸化触媒14とで構成していたことに替えて、サブフィルタ17の前段にバーナ18を配置して強制再生手段としたものであり、このバーナ18は、燃料をメインフィルタ13に向けて噴射する燃料噴射器19と、該燃料噴射器19から噴射される燃料に着火するイグナイタ20と、燃焼用空気を供給する燃焼用空気導入管21とを備えて構成されている。   FIG. 4 shows another embodiment of the present invention. In the embodiment shown in FIG. 1, the forced regeneration means is composed of the fuel injection device 16 and the fuel oxidation catalyst 14. A burner 18 is arranged in front of the filter 17 to form a forced regeneration means. The burner 18 injects fuel toward the main filter 13 and is injected from the fuel injector 19. An igniter 20 that ignites the fuel and a combustion air introduction pipe 21 that supplies combustion air are provided.

このようなバーナ18による燃焼で排気温度を所定温度以上に高めてメインフィルタ13の強制再生を実施するような排気浄化装置であっても、先の図1の形態例の場合と同様に、排気ガス9中の煤分の一部を前段のサブフィルタ17にて先行捕集することによって、後段のメインフィルタ13に溜まる煤分のペースを大幅に遅くして前記メインフィルタ13の強制再生の実施頻度を従来より少なくすることができるので、バーナ18で消費される燃料を著しく抑制することができ、従来よりもディーゼルエンジン1の燃費を大幅に改善することができる。   Even in an exhaust gas purification device that performs exhaustive regeneration of the main filter 13 by raising the exhaust gas temperature to a predetermined temperature or higher by combustion by such a burner 18, as in the case of the embodiment of FIG. A part of the spillage in the gas 9 is preliminarily collected by the sub-filter 17 in the front stage, so that the pace of the spillage accumulated in the main filter 13 in the back stage is greatly slowed down and the main filter 13 is forcibly regenerated. Since the frequency can be reduced as compared with the conventional frequency, the fuel consumed by the burner 18 can be remarkably suppressed, and the fuel consumption of the diesel engine 1 can be greatly improved as compared with the conventional frequency.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust emission control device of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

9 排気ガス
11 排気管
12 フィルタケース
13 メインフィルタ
14 燃料酸化触媒(強制再生手段)
16 燃料噴射装置(燃料添加手段:強制再生手段)
17 サブフィルタ
18 バーナ(強制再生手段)
9 Exhaust gas 11 Exhaust pipe 12 Filter case 13 Main filter 14 Fuel oxidation catalyst (forced regeneration means)
16 Fuel injection device (fuel addition means: forced regeneration means)
17 Sub-filter 18 Burner (Forced regeneration means)

Claims (5)

排気管途中に装備されて排気ガス中の煤分を捕集するメインフィルタと、該メインフィルタの前段に配置されて排気ガス中の煤分の一部を先行捕集し得るよう前記メインフィルタよりも捕集効率を相対的に落としたサブフィルタと、該サブフィルタの入側で排気温度を所定温度以上に高めて前記メインフィルタ内に捕集された煤分を燃焼除去せしめる強制再生手段とを備え、該強制再生手段により高められる排気温度よりも低い温度域で捕集済み煤分を酸化処理し得るよう前記サブフィルタに煤分酸化触媒を担持させたことを特徴とする排気浄化装置。   A main filter that is installed in the middle of the exhaust pipe and collects a portion of the exhaust gas, and a main filter that is arranged in front of the main filter so that a portion of the portion of the exhaust gas can be collected in advance. And a sub-filter having a relatively low collection efficiency, and a forced regeneration means for raising the exhaust temperature to a predetermined temperature or more on the inlet side of the sub-filter to burn and remove the soot collected in the main filter. An exhaust emission control apparatus comprising: a substituting oxidation catalyst supported on the sub-filter so as to oxidize the collected soot in a temperature range lower than the exhaust temperature raised by the forced regeneration means. CeO2、ZrO2、Pr611の何れか一種類以上を活性種とする煤分酸化触媒をサブフィルタに担持させ、メインフィルタには捕集済み煤分だけでなくCO及びHCを酸化処理することが可能なPtを活性種とするCO・HC酸化触媒を担持させたことを特徴とする請求項1に記載の排気浄化装置。 A sub-filter is supported by a sub-filter that contains one or more of CeO 2 , ZrO 2 , and Pr 6 O 11 as active species, and the main filter oxidizes not only the collected soot but also CO and HC. The exhaust emission control device according to claim 1, further comprising a CO / HC oxidation catalyst having Pt that can be activated as an active species. メインフィルタの平均気孔径が5〜25μmで且つ捕集効率が60〜100%であり、サブフィルタの平均気孔径が25〜100μmで且つ捕集効率が30〜70%であることを特徴とする請求項1又は2に記載の排気浄化装置。   The average pore diameter of the main filter is 5 to 25 μm and the collection efficiency is 60 to 100%, and the average pore diameter of the sub filter is 25 to 100 μm and the collection efficiency is 30 to 70%. The exhaust emission control device according to claim 1 or 2. サブフィルタの前段に配置されて排気ガス中の未燃燃料分を酸化処理して反応熱により排気ガスを加熱する燃料酸化触媒と、該燃料酸化触媒より上流で排気ガス中に燃料を添加する燃料添加手段とにより強制再生手段を構成したことを特徴とする請求項1、2又は3に記載の排気浄化装置。   A fuel oxidation catalyst that is disposed upstream of the sub-filter and that oxidizes the unburned fuel in the exhaust gas and heats the exhaust gas by reaction heat, and a fuel that adds fuel to the exhaust gas upstream from the fuel oxidation catalyst The exhaust emission control device according to claim 1, 2 or 3, wherein a forced regeneration means is constituted by the addition means. サブフィルタの前段に配置されたバーナにより強制再生手段を構成したことを特徴とする請求項1、2又は3に記載の排気浄化装置。   The exhaust emission control device according to claim 1, 2 or 3, wherein the forced regeneration means is constituted by a burner arranged in front of the sub-filter.
JP2010037459A 2010-02-23 2010-02-23 Exhaust purification equipment Expired - Fee Related JP5734573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037459A JP5734573B2 (en) 2010-02-23 2010-02-23 Exhaust purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037459A JP5734573B2 (en) 2010-02-23 2010-02-23 Exhaust purification equipment

Publications (2)

Publication Number Publication Date
JP2011174383A true JP2011174383A (en) 2011-09-08
JP5734573B2 JP5734573B2 (en) 2015-06-17

Family

ID=44687465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037459A Expired - Fee Related JP5734573B2 (en) 2010-02-23 2010-02-23 Exhaust purification equipment

Country Status (1)

Country Link
JP (1) JP5734573B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014016890A1 (en) * 2012-07-23 2014-01-30 トヨタ自動車株式会社 Exhaust purifier for internal-combustion engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005018A1 (en) * 2003-07-15 2005-01-20 Ibiden Co., Ltd. Honeycomb structure body
JP2008302355A (en) * 2007-05-07 2008-12-18 Ibiden Co Ltd Honeycomb filter
JP2009228618A (en) * 2008-03-25 2009-10-08 Toyota Motor Corp Exhaust emission control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005018A1 (en) * 2003-07-15 2005-01-20 Ibiden Co., Ltd. Honeycomb structure body
JP2008302355A (en) * 2007-05-07 2008-12-18 Ibiden Co Ltd Honeycomb filter
JP2009228618A (en) * 2008-03-25 2009-10-08 Toyota Motor Corp Exhaust emission control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014016890A1 (en) * 2012-07-23 2014-01-30 トヨタ自動車株式会社 Exhaust purifier for internal-combustion engine
EP2876271A4 (en) * 2012-07-23 2015-08-19 Toyota Motor Co Ltd Exhaust purifier for internal-combustion engine
JPWO2014016890A1 (en) * 2012-07-23 2016-07-07 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP5734573B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
KR101110649B1 (en) Diesel engine and a catalysed filter therefor
JP5705676B2 (en) Exhaust gas purification device for internal combustion engine
JP2005248787A (en) Exhaust cleaner
JP2009019556A (en) Exhaust emission control device
JP2011241690A (en) Dpf regeneration device
JP4736724B2 (en) Exhaust gas purification device for internal combustion engine
JP2006233935A (en) Exhaust emission control device
JP3545712B2 (en) Exhaust gas purification device
JP2007132202A (en) Exhaust gas temperature rise device
JP4561467B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2006022769A (en) Exhaust emission control device for internal combustion engine
JP2009092015A (en) Exhaust emission control device
JP2004290827A (en) Oxidation catalyst for burning light oil
JP2005264866A (en) Diesel exhaust emission control device
JP5734573B2 (en) Exhaust purification equipment
KR101180944B1 (en) Diesel particulate matter filter for purifying exhaust gas
JP2014134157A (en) Fuel addition device
JP2006161629A (en) Exhaust emission control device
JP2007120346A (en) Exhaust emission control device
KR100769571B1 (en) Harmfulness matter reduction system of diesel engine
JP2008057337A (en) Exhaust emission control device
JP2011047405A (en) Partial coating of platinum group metal on filter increasing soot mass limit and reducing cost
JP4162238B2 (en) Exhaust purification member regeneration method and exhaust purification member regeneration device
JP2004316441A (en) Method for raising temperature of particulate filter
JP2005291062A (en) Filter device, and exhaust emission control device provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140814

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150415

R150 Certificate of patent or registration of utility model

Ref document number: 5734573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees