JP2011174169A - Method and device for controlling layer thickness of sintering starting material for sintering machine - Google Patents

Method and device for controlling layer thickness of sintering starting material for sintering machine Download PDF

Info

Publication number
JP2011174169A
JP2011174169A JP2010278821A JP2010278821A JP2011174169A JP 2011174169 A JP2011174169 A JP 2011174169A JP 2010278821 A JP2010278821 A JP 2010278821A JP 2010278821 A JP2010278821 A JP 2010278821A JP 2011174169 A JP2011174169 A JP 2011174169A
Authority
JP
Japan
Prior art keywords
layer thickness
raw material
ignition furnace
sintering
pallet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010278821A
Other languages
Japanese (ja)
Other versions
JP4840530B2 (en
Inventor
Takanori Hirota
孝紀 弘田
Masaya Kato
真哉 加藤
Yukinori Sato
幸徳 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010278821A priority Critical patent/JP4840530B2/en
Priority to CN201180006937.4A priority patent/CN102712964B/en
Priority to KR1020127018244A priority patent/KR101440701B1/en
Priority to PCT/JP2011/052190 priority patent/WO2011093518A1/en
Publication of JP2011174169A publication Critical patent/JP2011174169A/en
Application granted granted Critical
Publication of JP4840530B2 publication Critical patent/JP4840530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • C22B1/205Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B19/00Combinations of furnaces of kinds not covered by a single preceding main group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • F27B21/06Endless-strand sintering machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling the layer thickness of sintering starting material for a sintering machine, which properly controls the layer thickness of the sintering starting material on the entry side of the sintering machine. <P>SOLUTION: The pre-and post-ignition furnace layer thickness on the ignition furnace entry side and the ignition furnace exit side for the sintering starting material upon a palette is detected while the conveyance speed of the palette and the feeder rotation speed of a drum feeder are detected, and a gate opening command for a split gate is obtained on the basis of: a gate opening reference value for the split gate, which is obtained from the ignition furnace entry-side layer thickness, a first opening correction value based on the palette conveyance speed and the feeder rotation speed; and a second opening correction value based on the amount of decrease from the size of the sintering starting material layer at the initiation of ignition and absorption, which is obtained from the ignition furnace entry-side layer thickness and the ignition furnace exit-side layer thickness. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鉄鉱石を焼成して焼結鉱を生成する焼結機の焼結原料層厚制御方法及び装置に関する。   The present invention relates to a sintering raw material layer thickness control method and apparatus for a sintering machine that sinters iron ore to produce sintered ore.

焼結工場では、鉄鉱石・粉コークス・石灰石等の焼結原料を焼結機のパレットにドラムフィーダを用いて装入し、この焼結原料に点火炉で点火し、パレット下方の風箱から主排風機によって吸引を行って焼結鉱を生成する。ドラムフィーダへの焼結原料を貯留するホッパーの排出部には、焼結機幅方向に分割され且つ個々にゲート開度を調整可能な分割ゲートが設けられており、この分割ゲートのゲート開度を調整することで、生成される焼結鉱の強度・粒度が均質になるように、装入原料層厚制御を行っている。   At the sintering plant, iron ore, powder coke, limestone and other sintering materials are charged into the pallet of the sintering machine using a drum feeder, and the sintering material is ignited in an ignition furnace, Suction ore is produced by sucking with the main exhaust fan. The discharge part of the hopper that stores the sintering raw material to the drum feeder is provided with a divided gate that is divided in the width direction of the sintering machine and whose gate opening can be individually adjusted. The raw material layer thickness is controlled so that the strength and particle size of the produced sintered ore are uniform by adjusting the.

このような焼結原料層厚制御としては、例えばカットオフプレートの直前に焼結原料の層厚を検出する検出器を配置し、焼結機の起動時および焼結原料の装入層厚が一定の層厚範囲を超えた場合に、起動時のパターンテーブルおよび層厚異常時のパターンテーブルを内蔵したドラムフィーダ回転数パターン発生部からの指令に基づき、焼結原料を切り出すドラムフィーダの回転数、ドラムフィーダの切り出し部に配設した切り出し用のゲートの開度を操作して装入層厚を所定の厚みになるように制御するようにしたドワイトロイド式焼結機の装入層厚制御方法及び装置が知られている(例えば、特許文献1参照)。   As such a sintering raw material layer thickness control, for example, a detector for detecting the layer thickness of the sintering raw material is arranged immediately before the cut-off plate, and when the sintering machine is started up and the thickness of the charging raw material of the sintering raw material is set. Drum feeder rotation speed that incorporates a pattern table at startup and a pattern table at abnormal layer thickness when a certain layer thickness range is exceeded. , Control of the charging layer thickness of the Dwytroid-type sintering machine by controlling the opening thickness of the cutting gate disposed in the cutting part of the drum feeder so as to control the charging layer thickness to a predetermined thickness A method and an apparatus are known (for example, refer to Patent Document 1).

特開平3−243725号公報JP-A-3-243725

しかしながら、前記特許文献1に記載された従来例にあっては、焼結機のパレット上に形成された焼結原料の装入層厚を点火炉の上流側のカットオフゲートの手前側で検出器によって検出し、検出した装入層厚に基づいて装入層厚を所定の厚みになるように制御しているので、装入層厚を検出する検出器を通過した焼結原料が点火され、主排風機により吸引されると装入された焼結原料の密度が小さければ装入層厚が一定であっても、その部分だけレベルが落ち込むことになってしまい装入層厚を一定にしているとは言えないという未解決の課題がある。さらに、原料装入機器であるドラムフィーダの回転数及び焼結機のパレットの搬送速度が変化した場合、目標層厚への到達に遅れが生じてしまうという未解決の課題もある。
そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、点火炉の前後の装入層厚を検出することにより、焼結機入側の焼結原料の装入層厚を適正に制御することができる焼結機の焼結原料層厚制御方法及び装置を提供することを目的としている。
However, in the conventional example described in Patent Document 1, the thickness of the charged layer of the sintering material formed on the pallet of the sintering machine is detected on the upstream side of the cutoff gate on the upstream side of the ignition furnace. Since the charging layer thickness is controlled to be a predetermined thickness based on the detected charging layer thickness, the sintered raw material that has passed through the detector that detects the charging layer thickness is ignited. If the density of the sintered raw material charged is low when sucked by the main exhaust fan, even if the thickness of the charging layer is constant, the level will drop only in that part, and the charging layer thickness will be constant. There is an unresolved issue that cannot be said. Furthermore, when the rotation speed of the drum feeder which is a raw material charging device and the conveying speed of the pallet of the sintering machine are changed, there is also an unsolved problem that a delay in reaching the target layer thickness occurs.
Therefore, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and by detecting the thickness of the charging layer before and after the ignition furnace, the sintering raw material charging on the inlet side of the sintering machine is performed. It aims at providing the sintering raw material layer thickness control method and apparatus of a sintering machine which can control a layer thickness appropriately.

上記課題を解決するために、本発明の一の形態に係る焼結機の焼結原料層厚制御方法は、焼結原料を貯留するホッパーの排出部に、当該ホッパーから切出された焼結原料をパレット上に装入するドラムフィーダと、焼結機幅方向に分割され且つ個々にゲート開度を調整可能な分割ゲートとを備えた焼結機の焼結原料層厚制御方法であって、前記パレット上の焼結原料の点火炉前後における点火炉入側層厚レベル及び点火炉出側層厚レベルを検出し、前記パレットのパレット搬送速度及び前記ドラムフィーダのフィーダ回転速度を検出し、前記点火炉入側層厚レベルに基づく前記分割ゲートに対するゲート開度基準値と、前記パレット搬送速度及び前記フィーダ回転速度に基づく第1の開度補正値と、前記点火炉入側層厚レベル及び前記点火炉出側層厚レベルから求めた点火・吸引開始時の焼結原料層の嵩目減り量に基づく第2の開度補正値とに基づいて前記分割ゲートに対するゲート開度指令値を求めることを特徴としている。   In order to solve the above-mentioned problem, a sintering raw material layer thickness control method for a sintering machine according to an embodiment of the present invention includes a sintering cut out from the hopper at a discharge portion of the hopper storing the sintering raw material. A sintering raw material layer thickness control method for a sintering machine comprising a drum feeder for charging raw materials onto a pallet and a split gate that is divided in the width direction of the sintering machine and whose gate opening can be individually adjusted. Detecting the ignition furnace entrance side layer thickness level and the ignition furnace exit side layer thickness level before and after the ignition furnace of the sintered raw material on the pallet, detecting the pallet conveyance speed of the pallet and the feeder rotation speed of the drum feeder, A gate opening reference value for the split gate based on the ignition furnace entry side layer thickness level, a first opening correction value based on the pallet transfer speed and the feeder rotation speed, the ignition furnace entry side layer thickness level, and Ignition furnace A gate opening command value for the divided gate is obtained based on a second opening correction value based on a bulk reduction amount of the sintering raw material layer at the start of ignition / suction obtained from the side layer thickness level. .

本発明の他の形態に係る焼結機の焼結原料層厚制御方法は、前記点火炉入側層厚レベルを、原料層厚の幅方向に所定間隔を保って複数配設された点火炉入側層厚レベル計によって検出し、前記ゲート開度基準値を、レベル設定値から前記点火炉入側で検出された点火炉入側焼結原料層厚レベルを減算した値に、前記レベル計の間隔と、前記ドラムフィーダの装入部から前記点火炉入側層厚レベル計までの距離と原料嵩密度とを乗算して算出することを特徴としている。   A sintering raw material layer thickness control method for a sintering machine according to another aspect of the present invention is the ignition furnace in which a plurality of the ignition furnace inlet side layer thickness levels are arranged at predetermined intervals in the width direction of the raw material layer thickness. Detected by an inlet side layer thickness level meter, the gate opening reference value is subtracted from the level setting value obtained by subtracting the ignition furnace inlet side sintered raw material layer thickness level detected at the ignition furnace inlet side. This is calculated by multiplying the distance between the charging section, the distance from the charging section of the drum feeder to the ignition furnace inlet side layer thickness level meter, and the raw material bulk density.

また、本発明の他の形態に係る焼結機の焼結原料層厚制御方法は、前記第2の開度補正値を、点火・吸引開始時の焼結原料層の嵩目減り量に、装入量影響補正パラメータを乗じて算出することを特徴としている。
また、本発明の一の形態に係る焼結機の焼結原料層厚制御方法は、焼結原料を貯留するホッパーの排出部に、当該ホッパーから切出された焼結原料をパレット上に装入するドラムフィーダと、焼結機幅方向に分割され且つ個々にゲート開度を調整可能な分割ゲートとを備えた焼結機の焼結原料層厚制御方法であって、前記パレット上の焼結原料の点火炉前後における点火炉入側層厚レベル及び点火炉出側層厚レベルを検出し、前記パレットのパレット搬送速度及び前記ドラムフィーダのフィーダ回転速度を検出し、前記点火炉入側層厚レベルと、前記パレット搬送速度及び前記フィーダ回転速度とに基づいて前記分割ゲートに対する装入量変化を考慮した基本ゲート開度指令値を求め、さらに前記点火炉入側層厚レベル及び前記点火炉出側層厚レベルから求めた点火・吸引開始時の焼結原料層の嵩目減り量と前記パレット搬送速度及び前記フィーダ回転速度とに基づいてゲート開度補正値を求め、前記基本ゲート開度指令値を前記ゲート開度補正値で補正してゲート開度指令値を求めることを特徴としている。
Further, in the sintering raw material layer thickness control method for a sintering machine according to another aspect of the present invention, the second opening correction value is set to the bulk reduction amount of the sintering raw material layer at the start of ignition / suction. It is characterized in that it is calculated by multiplying the input amount effect correction parameter.
In addition, the sintering raw material layer thickness control method for a sintering machine according to one aspect of the present invention includes mounting a sintering raw material cut out from the hopper on a pallet in a discharge portion of the hopper storing the sintering raw material. A sintering raw material layer thickness control method for a sintering machine, comprising: a drum feeder to be inserted; and a dividing gate that is divided in the width direction of the sintering machine and whose gate opening can be individually adjusted. Ignition furnace inlet side layer thickness level and ignition furnace outlet side layer thickness level before and after the ignition furnace of the binder are detected, the pallet transport speed of the pallet and the feeder rotation speed of the drum feeder are detected, and the ignition furnace inlet side layer Based on the thickness level, the pallet transfer speed and the feeder rotation speed, a basic gate opening command value is calculated in consideration of the charging amount change with respect to the divided gate, and the ignition furnace entry side layer thickness level and the ignition furnace are determined. Outer layer The gate opening correction value is obtained based on the bulk reduction amount of the sintering raw material layer at the start of ignition / suction obtained from the level, the pallet conveyance speed and the feeder rotation speed, and the basic gate opening command value is obtained as the gate. The gate opening command value is obtained by correcting with the opening correction value.

本発明の他の形態に係る焼結機の焼結原料層厚制御方法は、前記点火炉入側層厚レベル及び点火炉出側層厚レベルの検出が、点火炉入側層厚レベル及び点火炉出側層厚レベルをレーザ距離計により行われることを特徴としている。
また、本発明の一の形態に係る焼結機の焼結原料層厚制御装置は、焼結原料を貯留するホッパーの排出部に、当該ホッパーから切出された焼結原料をパレット上に装入するドラムフィーダと、焼結機幅方向に分割され且つ個々にゲート開度を調整可能な分割ゲートとを備えた焼結機の焼結原料層厚制御装置であって、前記パレット上の焼結原料の点火炉前後において原料層厚レベルを検出する点火炉入側層厚レベル計及び点火炉出側層厚レベル計と、前記パレットのパレット搬送速度を検出する搬送速度検出器及び前記ドラムフィーダのフィーダ回転速度を検出する回転速度検出器と、前記点火炉入側層厚レベルと、前記パレット搬送速度及び前記フィーダ回転速度とに基づいて前記分割ゲートに対する装入量変化を考慮した基本ゲート開度指令値を算出する基本ゲート開度指令値演算部と、前記点火炉入側層厚レベル及び前記点火炉出側層厚レベルから求めた点火・吸引開始時の焼結原料層の嵩目減り量と前記パレット搬送速度及び前記フィーダ回転速度とに基づいてゲート開度補正値を算出するゲート開度補正値演算部と、前記基本ゲート開度指令値及び前記ゲート開度補正値に基づいてゲート開度指令値を演算するゲート開度指令値演算部とを備えたことを特徴としている。
In the sintering raw material layer thickness control method for a sintering machine according to another aspect of the present invention, the ignition furnace inlet side layer thickness level and the ignition furnace outlet side layer thickness level are detected by the ignition furnace inlet side layer thickness level and point. The furnace exit layer thickness level is measured by a laser distance meter.
The sintering raw material layer thickness control device for a sintering machine according to one embodiment of the present invention also mounts the sintering raw material cut out from the hopper on the pallet in the discharge portion of the hopper storing the sintering raw material. A sintering raw material layer thickness control device for a sintering machine, comprising: a drum feeder to be inserted; and a dividing gate that is divided in the width direction of the sintering machine and whose gate opening can be individually adjusted. Ignition furnace inlet-side layer thickness level meter and ignition furnace outlet-side layer thickness level meter that detect the raw material layer thickness level before and after the ignition furnace of the sintering raw material, a transport speed detector that detects the pallet transport speed of the pallet, and the drum feeder A basic gate opening in consideration of a change in charging amount with respect to the divided gate on the basis of the rotational speed detector for detecting the rotational speed of the feeder, the layer thickness level on the ignition furnace entry side, the pallet transport speed and the feeder rotational speed. Every time A basic gate opening command value calculating unit for calculating a command value, and a bulk reduction amount of the sintering raw material layer at the start of ignition / suction determined from the ignition furnace inlet side layer thickness level and the ignition furnace outlet side layer thickness level; A gate opening correction value calculation unit that calculates a gate opening correction value based on the pallet transfer speed and the feeder rotation speed, and a gate opening based on the basic gate opening command value and the gate opening correction value A gate opening command value calculation unit for calculating the command value is provided.

また、本発明の他の形態に係る焼結機の焼結原料層厚制御装置は、前記点火炉入側層厚レベル計が点火炉入側層厚レベルを検出するレーザ距離計であり、点火炉出側層厚レベル計が点火炉出側層厚レベルを検出するレーザ距離計であることを特徴としている。
また、本発明の他の形態に係る焼結機の焼結原料層厚制御装置は、前記レーザ距離計は、幅方向に所定間隔を保って配設された複数の首振り式レーザ距離計で構成されていることを特徴としている。
Further, the sintering raw material layer thickness control device of the sintering machine according to another embodiment of the present invention is a laser distance meter in which the ignition furnace entry-side layer thickness level meter detects the ignition furnace entry-side layer thickness level, The furnace exit-side layer thickness level meter is a laser distance meter that detects the ignition furnace exit-side layer thickness level.
Further, in the sintering raw material layer thickness control device for a sintering machine according to another embodiment of the present invention, the laser distance meter is a plurality of swinging laser distance meters arranged at predetermined intervals in the width direction. It is characterized by being composed.

本発明によれば、点火・吸引開始時の焼結原料層厚の減少分とパレット搬送速度及びドラムフィーダのフィーダ回転速度の変動による装入層厚変動とを考慮したゲート開度指令値で分割ゲートのゲート開度を適正に制御することができ、これにより焼結機入側の焼結原料の層厚を目標値に制御することができる。   According to the present invention, the gate opening command value is divided in consideration of the decrease in the sintering raw material layer thickness at the start of ignition / suction and the charging layer thickness fluctuation due to fluctuations in the pallet conveyance speed and the drum feeder feeder rotation speed. The gate opening degree of the gate can be appropriately controlled, whereby the layer thickness of the sintering raw material on the entrance side of the sintering machine can be controlled to a target value.

本発明の焼結機の焼結原料層厚制御方法の一実施形態を示す焼結機入側の斜視図である。It is a perspective view of the sintering machine entrance side which shows one Embodiment of the sintering raw material layer thickness control method of the sintering machine of this invention. 図1における分割ゲートのゲート開度を制御する制御装置の一例を示すブロック図である。It is a block diagram which shows an example of the control apparatus which controls the gate opening degree of the division | segmentation gate in FIG. 制御装置の他の例を示すブロック図である。It is a block diagram which shows the other example of a control apparatus. 本発明に適用し得るレーザ距離計を示す正面図である。It is a front view which shows the laser rangefinder which can be applied to this invention. レーザ距離計の測定原理を示す説明図である。It is explanatory drawing which shows the measurement principle of a laser distance meter. 層厚検出原理を示す説明図である。It is explanatory drawing which shows a layer thickness detection principle. 幅方向の層厚プロフィールを示す図である。It is a figure which shows the layer thickness profile of the width direction.

以下、本発明の一実施形態を図面に基づいて説明する。
図1は、焼結機における焼結原料装入部を示したものであり、焼結原料はパレット1によって同図の矢印方向に搬送される。この矢印方向と交差する方向を焼結機の幅方向と定義する。パレット1には、焼結原料を貯留するホッパー2から切出された焼結原料がドラムフィーダ3によって、パレット1上に装入され焼結原料装入層を形成する。ホッパー2の排出部であるドラムフィーダ3の装入部には、焼結機の幅方向に計7個の分割ゲート4が等間隔に配設されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a sintering material charging portion in a sintering machine, and the sintering material is conveyed by a pallet 1 in the direction of the arrow in FIG. The direction crossing this arrow direction is defined as the width direction of the sintering machine. In the pallet 1, the sintered raw material cut out from the hopper 2 for storing the sintered raw material is charged onto the pallet 1 by the drum feeder 3 to form a sintered raw material charging layer. A total of seven divided gates 4 are arranged at equal intervals in the loading direction of the drum feeder 3 which is a discharge part of the hopper 2 in the width direction of the sintering machine.

これら分割ゲート4のゲート開度は個別に設けたアクチュエータ5によって調節され、これらアクチュエータ5が後述する制御装置からのゲート開度指令値によって、夫々の分割ゲート4のゲート開度を調整することで、該当する部位の焼結原料の切出し量を増減制御することができる。なお、ドラムフィーダ2の排出部には、図示しないカットオフプレートが配設されている。このカットオフプレートは、所謂均し板であり、焼結原料の層厚方向に余剰な部分を不足の部分に補って、層厚を一様にするものである。   The gate openings of these divided gates 4 are adjusted by individually provided actuators 5, and these actuators 5 adjust the gate openings of the respective divided gates 4 according to gate opening command values from a control device described later. It is possible to increase / decrease the cutting amount of the sintering raw material at the corresponding part. Note that a cut-off plate (not shown) is disposed at the discharge portion of the drum feeder 2. This cut-off plate is a so-called leveling plate, and makes the layer thickness uniform by making up an excess portion in the layer thickness direction of the sintering raw material with an insufficient portion.

ドラムフィーダ3の焼結原料搬送方向における所定距離下流側には、焼結原料に上方から点火する点火炉6が設けられている。この点火炉6で焼結原料に点火し、パレット1下の風箱から図示しない主排風機で吸引することで焼結工程が開始される。
本実施形態では、この点火炉6の入側に、パレット1の上面から所定距離離れて計6個の焼結原料装入層の表面までの距離を検出して入側焼結原料層厚レベルLv1を検出する例えば超音波距離計等で構成される点火炉入側層厚レベル計7を焼結機の幅方向に等間隔に配設し、点火炉6の出側にも、パレット1の上面から所定距離離れて計6個の焼結原料装入層の表面までの距離を検出して出側焼結原料層厚レベルLv2を検出する点火炉入側層厚レベル計7と同様の出側層厚レベル計8を焼結機の幅方向に等間隔に配設している。
An ignition furnace 6 for igniting the sintered raw material from above is provided downstream of the drum feeder 3 by a predetermined distance in the direction of conveying the raw material. A sintering process is started by igniting the sintering raw material in the ignition furnace 6 and sucking it from a wind box below the pallet 1 by a main exhaust fan (not shown).
In the present embodiment, on the entrance side of the ignition furnace 6, the distance from the upper surface of the pallet 1 to a predetermined distance away from the surface of the total of 6 sintering material charging layers is detected, and the entrance sintering material layer thickness level is detected. Ignition furnace inlet side layer thickness level meters 7 configured by, for example, an ultrasonic distance meter or the like for detecting Lv1 are arranged at equal intervals in the width direction of the sintering machine, and the pallet 1 is also provided on the outlet side of the ignition furnace 6. The same output as the ignition furnace inlet side layer thickness level meter 7 that detects the distance from the upper surface to the surfaces of a total of six sintering raw material charging layers and detects the outgoing sintering raw material layer thickness level Lv2. Side layer thickness level meters 8 are arranged at equal intervals in the width direction of the sintering machine.

また、各分割ゲート4のアクチュエータ5を制御する制御装置11は、図2に示すように、前述した点火炉入側層厚レベル計7で検出した入側焼結原料層厚レベルLv1及び点火炉出側層厚レベル計8で検出した出側焼結原料層厚レベルLv2が入力されている。また、制御装置11には、焼結機の搬送速度すなわちパレット搬送速度Psを検出する搬送速度検出器12及びドラムフィーダ3のフィーダ回転速度Ddを検出する回転速度検出器13が接続され、これら検出器12及び13で検出されたパレット搬送速度Ps及びフィーダ回転速度Ddが入力されている。
この制御装置11は、入力される入側焼結原料層厚レベルLv1及び出側焼結原料層厚レベルLv2とパレット搬送速度Ps及びフィーダ回転速度Ddとに基づいて下記(1)式の演算を行って分割ゲート4のアクチュエータ5に対するt秒後のゲート開度指令値Go(t)を演算する。
Further, as shown in FIG. 2, the control device 11 that controls the actuator 5 of each divided gate 4 includes the inlet-side sintered raw material layer thickness level Lv1 detected by the ignition furnace inlet-side layer thickness level meter 7 and the ignition furnace. The outgoing side sintering raw material layer thickness level Lv2 detected by the outgoing side layer thickness level meter 8 is input. Further, the control device 11 is connected with a conveying speed detector 12 for detecting a conveying speed of the sintering machine, that is, a pallet conveying speed Ps, and a rotational speed detector 13 for detecting a feeder rotational speed Dd of the drum feeder 3. The pallet conveyance speed Ps and the feeder rotation speed Dd detected by the containers 12 and 13 are input.
The control device 11 calculates the following equation (1) based on the input-side sintered raw material layer thickness level Lv1, the outgoing-side sintered raw material layer thickness level Lv2, the pallet transport speed Ps, and the feeder rotation speed Dd. Then, the gate opening command value Go (t) after t seconds for the actuator 5 of the divided gate 4 is calculated.

Go(t)=α[(S−Lv1(t))L1・L2・Ds+a{β(1−1/Ps)−γ(1−Dd)}
+b(Lv1(t)−Lv2(t+T))L3・L4・Ds+a{β(1−1/Ps)−γ(1−Dd)}]
………………(1)
α:質量−ゲート開度変換係数〔%/kg〕
S:レベル設定値〔m〕
Lv1(t):t秒後のレベル測定値〔m〕
L1:点火炉前の各点火炉入側層厚レベル計間隔〔m〕
L2:装入部から点火炉前設置の点火炉入側層厚レベル計までの距離〔m〕
Lv2(t+T):点火・吸引開始時の焼結原料層厚レベル
L3:点火炉後設置の各レベル計間隔〔m〕
L4:点火炉前設置の点火炉入側層厚レベル計から点火炉後設置の点火炉出側層厚レベル計までの距離〔m〕 b: 装入量影響補正パラメータ
Go (t) = α [(S−Lv1 (t)) L1 · L2 · Ds + a {β (1-1 / Ps) −γ (1−Dd)}
+ B (Lv1 (t) −Lv2 (t + T)) L3 · L4 · Ds + a {β (1-1 / Ps) −γ (1−Dd)}]
……………… (1)
α: Mass-gate opening conversion coefficient [% / kg]
S: Level set value [m]
Lv1 (t): Level measurement value after t seconds [m]
L1: Each ignition furnace entrance side layer thickness level meter interval [m] before the ignition furnace
L2: distance [m] from charging section to ignition furnace entrance side layer thickness level meter installed in front of ignition furnace
Lv2 (t + T): Sintering raw material layer thickness level at the start of ignition / suction L3: Interval between each level meter [m] installed after the ignition furnace
L4: Distance [m] from ignition furnace inlet side layer thickness level meter installed before ignition furnace to ignition furnace outlet side layer thickness level meter installed after ignition furnace b: Charge amount influence correction parameter

Ds:原料嵩密度〔kg/m
Ps:パレット搬送速度〔m/s〕
Ddはドラムフィーダ回転速度〔min−1
a:重み付けパラメータ
β:開度変換係数〔%/m/s〕
γは開度変換係数〔%/m/s〕
この(1)式における右辺の〔 〕内の第1項は、点火炉入側層厚レベル計7で検出された点火炉入側、つまり点火・吸引開始前の焼結原料層厚レベルLv1とレベル設定値Sとの差から求められる焼結原料層質量誤差であり、この点火炉入側の焼結原料層質量誤差が分割ゲート3のゲート開度基準値となる。
Ds: Raw material bulk density [kg / m 3 ]
Ps: Pallet transport speed [m / s]
Dd is the drum feeder rotation speed [min −1 ]
a: Weighting parameter β: Opening conversion coefficient [% / m / s]
γ is the opening conversion coefficient [% / m / s]
The first term in [] on the right side of the equation (1) is the ignition furnace inlet side detected by the ignition furnace inlet side layer thickness level meter 7, that is, the sintering raw material layer thickness level Lv1 before starting ignition / suction. It is a sintering raw material layer mass error obtained from the difference from the level setting value S, and this sintering raw material layer mass error on the ignition furnace entrance side becomes the gate opening reference value of the divided gate 3.

また、(1)式における右辺の〔 〕内の第2及び第4項は、パレット搬送速度Psとフィーダ回転速度Ddとに基づいてパレット1上に装入される焼結原料における装入量の変動の影響を補正する第1の開度補正値となる。つまり、第2項は、基準開度Gb(t)導出における焼結機速度・ドラムシュート回転数の影響を考慮した項であり、第4項は、補正開度Ga(t)導出における焼結機速度・ドラムシュート回転数の影響を考慮した項である。   Further, the second and fourth terms in [] on the right side in the equation (1) indicate the amount of charge in the sintered raw material charged on the pallet 1 based on the pallet conveyance speed Ps and the feeder rotation speed Dd. This is the first opening correction value that corrects the influence of fluctuation. That is, the second term is a term that takes into account the influence of the sintering machine speed and the drum chute rotational speed in deriving the reference opening Gb (t), and the fourth term is the sintering in deriving the corrected opening Ga (t). This is a term that takes into account the effects of machine speed and drum chute rotation speed.

さらに、(1)式における右辺の〔 〕内の第3項は、点火炉入側層厚レベル計7で検出された点火炉入側、つまり点火・吸引開始前の焼結原料層厚レベルLv1と点火炉出側層厚レベル計8で検出された点火炉出側、つまり点火・吸引開始時の焼結原料層厚レベルLv2の差に、点火・吸引開始前焼結原料嵩密度Ds及び装入量影響補正パラメータbの積値、即ち点火・吸引開始時原料嵩密度Ds’を乗じた焼結原料層質量誤差であり、この点火炉出側焼結原料層質量誤差が分割ゲート4の第2の開度補正値となる。つまり、焼結原料の点火/吸引開始により焼結原料の密度が増大し、それに伴って嵩が目減りするので、この嵩目減り量を求め、その分だけ、ゲート開度基準値を補正する。   Further, the third term in [] on the right side of the expression (1) is the ignition furnace inlet side detected by the ignition furnace inlet side layer thickness level meter 7, that is, the sintering raw material layer thickness level Lv1 before the start of ignition / suction. And the ignition raw material layer thickness level Lv2 detected at the ignition furnace outlet side layer thickness level meter 8, that is, the sintering raw material layer thickness level Lv2 at the start of ignition / suction. This is a mass value error of the sintered raw material layer multiplied by the product value of the input quantity influence correction parameter b, that is, the raw material bulk density Ds ′ at the start of ignition / suction. The opening correction value is 2. That is, since the density of the sintered raw material is increased by the ignition / suction start of the sintered raw material, and the bulk is reduced accordingly, the bulk reduction amount is obtained, and the gate opening reference value is corrected accordingly.

そして、上記(1)式に従って演算されたゲート開度指令値Go(t)に基づいて各分割ゲート4のアクチュエータ5を制御することにより、パレット1上の装入部で装入される焼結原料を適正に制御することができる。
すなわち、本実施形態の焼結機の焼結原料層厚制御方法によれば、点火炉入側層厚レベルLv1に基づく分割ゲート4に対するゲート開度基準値と、パレット搬送速度及び前記フィーダ回転速度に基づく第1の開度補正値と、点火炉入側で検出された焼結原料層厚レベルLv1と点火炉出側で検出された焼結原料層厚レベルLv2から求めた点火・吸引開始時の焼結原料層の嵩目減り量に基づく第2の開度補正値とに基づいて分割ゲート4に対するゲート開度指令値Go(t)を算出するようにしている。
Then, by controlling the actuator 5 of each divided gate 4 based on the gate opening command value Go (t) calculated according to the above equation (1), the sintering charged in the charging portion on the pallet 1. The raw material can be properly controlled.
That is, according to the sintering raw material layer thickness control method of the sintering machine of the present embodiment, the gate opening reference value for the divided gate 4 based on the ignition furnace entry side layer thickness level Lv1, the pallet conveyance speed, and the feeder rotation speed At the start of ignition / suction determined from the first opening correction value based on the above, the sintering material layer thickness level Lv1 detected on the ignition furnace entry side, and the sintering material layer thickness level Lv2 detected on the ignition furnace exit side The gate opening command value Go (t) for the divided gate 4 is calculated based on the second opening correction value based on the bulk reduction amount of the sintering raw material layer.

このため、点火・吸引開始時の焼結原料層の減少分とパレット搬送速度及びドラムフィーダのフィーダ回転速度の変動による装入層厚変動とを考慮したゲート開度指令値とすることができ、このゲート開度指令値を分割ゲート4のアクチュエータ5に適正にフィードバックすることができ、これにより焼結機入側の焼結原料の層厚を適正に制御することができる。   For this reason, it is possible to set the gate opening command value in consideration of the decrease in the sintering raw material layer at the start of ignition / suction and the variation in the charging layer thickness due to the variation in the pallet transport speed and the feeder rotation speed of the drum feeder, This gate opening command value can be properly fed back to the actuator 5 of the divided gate 4, whereby the layer thickness of the sintering raw material on the sintering machine entrance side can be properly controlled.

また、入側焼結原料層厚レベルを検出する層厚レベル計が原料層厚の幅方向に所定間隔を保って複数配設され、前記ゲート開度基準値は、レベル設定値から前記点火炉入側で検出された点火炉入側焼結原料層厚レベルを減算した値に、前記レベル計間隔と、前記ドラムフィーダの装入部からレベル計までの距離と原料嵩密度とを乗算して算出するので、点炉入側の焼結原料層質量誤差を正確に求めることができる。
さらに、点火・吸引開始時の焼結原料層の嵩目減り量に、装入量影響パラメータを乗じて第2の開度補正値を算出するので、点火・吸引開始時の焼結原料層の減少分を質量として適正にフィードバックすることが可能となる。
In addition, a plurality of layer thickness level meters for detecting the entry-side sintered raw material layer thickness level are disposed at predetermined intervals in the width direction of the raw material layer thickness, and the gate opening reference value is determined from the level set value according to the ignition furnace. The value obtained by subtracting the ignition furnace entrance-side sintered raw material layer thickness level detected on the entrance side is multiplied by the level meter interval, the distance from the charging unit of the drum feeder to the level meter, and the raw material bulk density. Since the calculation is performed, the mass error of the sintering material layer on the entry side of the point furnace can be accurately obtained.
Furthermore, since the second opening correction value is calculated by multiplying the bulk reduction amount of the sintering raw material layer at the start of ignition / suction by the charging amount influence parameter, the reduction of the sintering raw material layer at the start of ignition / suction It is possible to appropriately feed back the minute as the mass.

さらに、基本ゲート開度指令値Gb(t)とゲート開度補正値Ga(t)との夫々に、パレット搬送速度及びドラムフィーダのフィーダ回転速度の変動による装入層厚変動とを考慮した第1の開度補正値を加えているので、装入層厚変動の影響を受けることなく、装入時の焼結原料層厚を正確に制御することができる。
因みに、各分割ゲート4のアクチュエータ5を、点火炉6の入側に配設された点火炉入側層厚レベル計7で検出した入側焼結原料層厚レベルLv1のみによって制御して、分割ゲート4のゲート開度を調整する場合には、下記(2)式に基づいてゲート開度指令値Go′(t)を算出することになる。
Go′(t)=α(S−Lv1(t))L1・L2・Ds …………(2)
Further, the basic gate opening command value Gb (t) and the gate opening correction value Ga (t) are each considered in consideration of fluctuations in the charging layer thickness due to fluctuations in the pallet conveying speed and the feeder speed of the drum feeder. Since the opening degree correction value of 1 is added, the sintering raw material layer thickness at the time of charging can be accurately controlled without being affected by the charging layer thickness fluctuation.
Incidentally, the actuator 5 of each divided gate 4 is controlled only by the inlet-side sintered raw material layer thickness level Lv1 detected by the ignition furnace inlet-side layer thickness level meter 7 disposed on the inlet side of the ignition furnace 6, and divided. When adjusting the gate opening of the gate 4, the gate opening command value Go ′ (t) is calculated based on the following equation (2).
Go ′ (t) = α (S−Lv1 (t)) L1, L2, Ds (2)

この(2)式では、点火炉6の入側の入側焼結原料層厚レベルLv1及びレベル設定値Sの偏差と原料嵩密度Dsとによってゲート開度指令値Go′(t)を算出するので、パレット搬送速度Ps及びフィーダ回転速度Ddが一定である場合には、点火炉6の入側における焼結原料層厚レベルを一定にすることが可能であるが、パレット搬送速度Ps及びフィーダ回転速度Ddの少なくとも一方が変化してパレット1上に装入される焼結原料装入量が変動した場合には、点火炉6の入側の入側焼結原料層厚レベルLv1を一定に制御することはできない。   In this equation (2), the gate opening command value Go ′ (t) is calculated from the deviation of the inlet side sintered raw material layer thickness level Lv1 and level set value S on the inlet side of the ignition furnace 6 and the raw material bulk density Ds. Therefore, when the pallet conveyance speed Ps and the feeder rotation speed Dd are constant, the sintering raw material layer thickness level on the entry side of the ignition furnace 6 can be constant, but the pallet conveyance speed Ps and the feeder rotation When at least one of the speeds Dd is changed and the amount of the sintering material charged on the pallet 1 is changed, the inlet side sintering material layer thickness level Lv1 on the inlet side of the ignition furnace 6 is controlled to be constant. I can't do it.

このため、下記(3)式に示すように、パレット搬送速度Ps及びフィーダ回転速度Ddに基づいてパレット1への焼結原料の装入量変動を考慮したゲート開度指令値Go″(t)を演算することにより、点火炉6の入側の入側焼結原料層厚レベルLv1を一定にすることが可能となる。
Go″(t)=α(S−Lv1(t))L1・L2・Ds
+a{β(1−1/Ps)−γ(1−Dd)}…………(3)
この(3)式によって点火炉6の入側における入側焼結原料層厚レベルLv1を一定にすることはできるが、点火炉6で焼結原料に点火し、パレット1の下側から図示しない風箱を介して主排風機で吸引することにより焼結工程を開始したときの点火炉6の出側における出側焼結原料層厚レベル変化を考慮していないので、焼結工程の開始時の焼結原料層厚の変化によって焼結時間が異なることになり、焼結鉱の焼結強度に影響を与えることが知見された。
For this reason, as shown in the following equation (3), the gate opening command value Go ″ (t) in consideration of fluctuations in the charged amount of the sintered raw material to the pallet 1 based on the pallet conveyance speed Ps and the feeder rotation speed Dd. Is calculated, it becomes possible to make the entrance side sintered raw material layer thickness level Lv1 on the entrance side of the ignition furnace 6 constant.
Go ″ (t) = α (S−Lv1 (t)) L1, L2, Ds
+ A {β (1-1 / Ps) −γ (1-Dd)} (3)
Although the entrance side sintered raw material layer thickness level Lv1 on the entrance side of the ignition furnace 6 can be made constant by the equation (3), the sintered raw material is ignited in the ignition furnace 6 and is not shown from the lower side of the pallet 1. At the start of the sintering process, the change in the exit-side sintered raw material layer thickness level on the exit side of the ignition furnace 6 when the sintering process is started by suctioning with the main exhaust fan through the wind box is not considered. It has been found that the sintering time differs depending on the thickness of the sintering raw material layer, which affects the sintering strength of the sintered ore.

そこで、本実施形態では、前述した(1)式に従って分割ゲート4のアクチュエータ5に対するゲート開度指令値Go(t)を演算するので、点火炉6の出側における出側焼結原料層厚レベルLv2を考慮することにより、の焼結工程の開示時の焼結原料層厚レベルを一定に制御することが可能となり、焼結時間が変動することなく、焼結鉱の焼結強度を一定に維持することができる。しかも、パレット搬送速度Ps及びフィーダ回転速度Ddを考慮してパレット1へ装入される焼結原料の装入量変動の影響も考慮したので、焼結工程開始時の焼結原料層厚レベルをより適正に維持することができる。   Therefore, in the present embodiment, the gate opening command value Go (t) for the actuator 5 of the divided gate 4 is calculated according to the above-described equation (1), so that the outgoing sintered raw material layer thickness level on the outgoing side of the ignition furnace 6 is calculated. By considering Lv2, it becomes possible to control the sintering raw material layer thickness level at the time of disclosure of the sintering process to be constant, and to keep the sintering strength constant without changing the sintering time. Can be maintained. Moreover, since the influence of fluctuations in the amount of the sintering material charged into the pallet 1 is also considered in consideration of the pallet conveyance speed Ps and the feeder rotation speed Dd, the sintering material layer thickness level at the start of the sintering process is set. It can be maintained more appropriately.

ここで、制御装置11は、例えば図2に示すように、前記(1)式における〔 〕内の第1項の演算を行うゲート開度基準値演算回路21と、前記(1)式における〔 〕内の第2項及び第4項の演算を行う第1の補正値演算回路22と、前記(1)式における〔 〕内の第3項の演算を行う第2の補正値演算回23とを備えている。
具体的には、ゲート開度基準値演算回路21では、点火炉入側層厚レベル計7で検出した入側焼結原料層厚レベルLv1に基づいて下記(4)式の演算を行って、点火・吸引開始前の焼結原料層厚レベルLv1とレベル設定値Sとの差から求められる焼結原料層質量誤差を表すゲート開度基準値gb(t)を演算する。
gb(t)=(S−Lv1(t))L1・L2・Ds ……(4)
Here, for example, as shown in FIG. 2, the control device 11 includes a gate opening reference value calculation circuit 21 that performs the calculation of the first term in [] in the equation (1), and the [ ] A first correction value calculation circuit 22 that performs the calculation of the second term and the fourth term in [], and a second correction value calculation circuit 23 that performs the calculation of the third term in [] in the equation (1), It has.
Specifically, the gate opening reference value calculation circuit 21 calculates the following equation (4) based on the entry-side sintered raw material layer thickness level Lv1 detected by the ignition furnace entry-side layer thickness level meter 7, A gate opening reference value gb (t) representing a sintering raw material layer mass error obtained from the difference between the sintering raw material layer thickness level Lv1 and the level setting value S before ignition / suction start is calculated.
gb (t) = (S−Lv1 (t)) L1, L2, Ds (4)

また、第1の補正値演算回路22では、パレット搬送速度Ps及びフィーダ回転速度Ddに基づいて下記(5)式の演算を行ってパレット1への焼結原料の装入量の影響を補正する第1の開度補正値ga1(t)を演算する。
ga1(t)=a{β(1−1/Ps)−γ(1−Dd)} ……(5)
さらに、第2の補正値演算回路23では、点火炉入側層厚レベル計7で検出した入側焼結原料層厚レベルLv1及び点火炉出側層厚レベル計8で検出した出側焼結原料層厚レベルLv2に基づいて下記(6)式の演算を行って、点火炉出側焼結原料層質量誤差を表す第2の開度補正値ga2(t)を演算する。
ga2(t)=b(Lv1(t)−Lv2(t+T))L3・L4・Ds ……(6)
Further, the first correction value calculation circuit 22 performs the calculation of the following equation (5) based on the pallet conveyance speed Ps and the feeder rotation speed Dd to correct the influence of the amount of the raw material charged into the pallet 1. A first opening correction value ga1 (t) is calculated.
ga1 (t) = a {β (1-1 / Ps) −γ (1-Dd)} (5)
Further, in the second correction value calculation circuit 23, the inlet side sintering raw material layer thickness level Lv 1 detected by the ignition furnace inlet side layer thickness level meter 7 and the outlet side sintering detected by the ignition furnace outlet side layer thickness level meter 8. Based on the raw material layer thickness level Lv2, the following equation (6) is calculated to calculate a second opening correction value ga2 (t) representing an ignition furnace outlet-side sintered raw material layer mass error.
ga2 (t) = b (Lv1 (t) −Lv2 (t + T)) L3 · L4 · Ds (6)

また、制御装置11は、ゲート開度基準値演算回路21から出力されるゲート開度基準値gb(t)と第1の補正値演算回路22から出力される第1の開度補正値ga1(t)とを加算して、基本ゲート開度指令値Gb(t)を算出する加算器24と、第2の補正値演算回路23から出力される第2の開度補正値ga2(t)と第1の補正値演算回路22から出力される第1の開度補正値ga1(t)とを加算して、ゲート開度補正値Ga(t)を算出する加算器25と、加算器24及び25の出力Gb(t)及びGa(t)に基づいてゲート開度指令値Go(t)を演算するゲート指令値演算回路26とを備えている。
ここで、ゲート指令値演算回路26は、下記(7)式の演算を行ってゲート開度指令値Go(t)を演算し、演算したゲート開度指令値Go(t)で分割ゲート4のアクチュエータ5を制御して分割ゲート4の開度を調節する。
Go(t)=α(Gb(t)+Ga(t)) ……(7)
In addition, the control device 11 includes a gate opening reference value gb (t) output from the gate opening reference value calculation circuit 21 and a first opening correction value ga1 (from the first correction value calculation circuit 22). t) and the adder 24 for calculating the basic gate opening command value Gb (t), the second opening correction value ga2 (t) output from the second correction value calculation circuit 23, and An adder 25 for calculating a gate opening correction value Ga (t) by adding the first opening correction value ga1 (t) output from the first correction value calculation circuit 22, an adder 24, And a gate command value calculation circuit 26 that calculates a gate opening command value Go (t) based on 25 outputs Gb (t) and Ga (t).
Here, the gate command value calculation circuit 26 calculates the gate opening command value Go (t) by performing the calculation of the following equation (7), and the gate opening command value Go (t) is used to calculate the gate opening command value Go (t). The actuator 5 is controlled to adjust the opening of the divided gate 4.
Go (t) = α (Gb (t) + Ga (t)) (7)

このように、本実施形態の焼結機の焼結原料層厚制御方法によれば、点火炉入側層厚レベルLv1に基づく分割ゲート4に対するゲート開度基準値と、パレット搬送速度及び前記フィーダ回転速度に基づく第1の開度補正値と、点火炉入側で検出された焼結原料層厚レベルLv1と点火炉出側で検出された焼結原料層厚レベルLv2から求めた点火・吸引開始時の焼結原料層の嵩目減り量に基づく第2の開度補正値とに基づいて分割ゲート4に対するゲート開度指令値Go(t)を算出するようにしている。   Thus, according to the sintering raw material layer thickness control method of the sintering machine of the present embodiment, the gate opening reference value for the divided gate 4 based on the ignition furnace entry-side layer thickness level Lv1, the pallet conveyance speed, and the feeder Ignition / suction determined from the first opening correction value based on the rotational speed, the sintering material layer thickness level Lv1 detected on the ignition furnace entry side, and the sintering material layer thickness level Lv2 detected on the ignition furnace exit side The gate opening command value Go (t) for the divided gate 4 is calculated based on the second opening correction value based on the bulk reduction amount of the sintering raw material layer at the start.

このため、点火・吸引開始時の焼結原料層の減少分とパレット搬送速度及びドラムフィーダのフィーダ回転速度の変動による装入層厚変動とを考慮したゲート開度指令値とすることができ、このゲート開度指令値を分割ゲート4のアクチュエータ5に適正にフィードバックすることができ、これにより焼結機入側の焼結原料の層厚を適正に制御することができる。   For this reason, it is possible to set the gate opening command value in consideration of the decrease in the sintering raw material layer at the start of ignition / suction and the variation in the charging layer thickness due to the variation in the pallet transport speed and the feeder rotation speed of the drum feeder, This gate opening command value can be properly fed back to the actuator 5 of the divided gate 4, whereby the layer thickness of the sintering raw material on the sintering machine entrance side can be properly controlled.

また、入側焼結原料層厚レベルを検出する点火炉入側層厚レベル計7が原料層厚の幅方向に所定間隔を保って複数配設され、前記ゲート開度基準値は、レベル設定値から前記点火炉入側で検出された点火炉入側焼結原料層厚レベルを減算した値に、前記レベル計間隔と、前記ドラムフィーダの装入部からレベル計までの距離と原料嵩密度とを乗算して算出するので、点炉入側の焼結原料層質量誤差を正確に求めることができる。   Also, a plurality of ignition furnace inlet side layer thickness level gauges 7 for detecting the inlet side sintered raw material layer thickness level are disposed at predetermined intervals in the width direction of the raw material layer thickness, and the gate opening reference value is set to a level. The value obtained by subtracting the ignition furnace entrance-side sintered raw material layer thickness level detected at the ignition furnace entry side from the value, the distance between the level meter, the distance from the charged portion of the drum feeder to the level meter, and the raw material bulk density Therefore, the mass error of the sintering raw material layer on the point furnace entry side can be accurately obtained.

さらに、点火・吸引開始時の焼結原料層の嵩目減り量に、装入量影響パラメータを乗じて第2の開度補正値を算出するので、点火・吸引開始時の焼結原料層の減少分を質量として適正にフィードバックすることが可能となる。
さらに、基本ゲート開度指令値Gb(t)とゲート開度補正値Ga(t)との夫々に、パレット搬送速度及びドラムフィーダのフィーダ回転速度の変動による装入層厚変動とを考慮した第1の開度補正値を加えているので、装入層厚変動の影響を受けることなく、装入時の焼結原料層厚を正確に制御することができる。
Furthermore, since the second opening correction value is calculated by multiplying the bulk reduction amount of the sintering raw material layer at the start of ignition / suction by the charging amount influence parameter, the reduction of the sintering raw material layer at the start of ignition / suction It is possible to appropriately feed back the minute as the mass.
Further, the basic gate opening command value Gb (t) and the gate opening correction value Ga (t) are each considered in consideration of fluctuations in the charging layer thickness due to fluctuations in the pallet conveying speed and the feeder speed of the drum feeder. Since the opening degree correction value of 1 is added, the sintering raw material layer thickness at the time of charging can be accurately controlled without being affected by the charging layer thickness fluctuation.

なお、上記実施形態においては、制御装置11をゲート基準値演算回路25、第1の補正値演算回路22、第2の補正値演算回路23、加算器24,25及びゲート指令値演算回路26で構成した場合について説明したが、これに限定されるものではなく、図3に示すように構成するようにしてもよい。すなわち、前述したゲート基準値演算回路21と第1の補正値演算回路22と加算器24とを一体化して基本ゲート開度指令値演算回路31を構成するともに、第2の補正値演算回路23と第1の補正値演算回路22と加算器25とを一体化してゲート開度補正値演算回路32を構成し、基本ゲート開度指令値演算回路31から出力される基本ゲート開度指令値Gb(t)及びゲート開度補正値演算回路32から出力されるゲート開度補正値Ga(t)をゲート指令値演算回路26に供給するようにしてもよい。   In the above-described embodiment, the control device 11 includes the gate reference value calculation circuit 25, the first correction value calculation circuit 22, the second correction value calculation circuit 23, the adders 24 and 25, and the gate command value calculation circuit 26. Although the case where it comprised is demonstrated, it is not limited to this, You may make it comprise as shown in FIG. That is, the gate reference value calculation circuit 21, the first correction value calculation circuit 22, and the adder 24 are integrated to form the basic gate opening command value calculation circuit 31, and the second correction value calculation circuit 23. , The first correction value calculation circuit 22 and the adder 25 are integrated to form a gate opening correction value calculation circuit 32, and a basic gate opening command value Gb output from the basic gate opening command value calculation circuit 31. (t) and the gate opening correction value Ga (t) output from the gate opening correction value calculation circuit 32 may be supplied to the gate command value calculation circuit 26.

この場合、基本ゲート開度指令値演算回路31では、入側焼結原料層厚レベルLv1、パレット搬送速度Ps及びフィーダ回転速度Ddに基づいて下記(8)式の演算を行って装入量変化を考慮した基本ゲート開度指令値Gb(t)を演算する。
Gb(t)=(S−Lv1(t))L1・L2・Ds
+a{β(1−1/Ps)−γ(1−Dd)}…………(8)
ゲート開度補正値演算回路32では、入側焼結原料層厚レベルLv1、出側焼結原料層厚レベルLv2、パレット搬送速度Ps及びフィーダ回転速度Ddに基づいて下記(9)式の演算を行ってt秒後のゲート開度補正値Ga(t)を演算する。
Ga(t)=b(Lv1(t)−Lv2(t+T))L3・L4・Ds
+a{β(1−1/Ps)−γ(1−Dd) …………(9)
In this case, the basic gate opening command value calculation circuit 31 performs the calculation of the following equation (8) based on the entry-side sintered raw material layer thickness level Lv1, the pallet conveyance speed Ps, and the feeder rotation speed Dd to change the charging amount. The basic gate opening command value Gb (t) taking into account is calculated.
Gb (t) = (S−Lv1 (t)) L1, L2, Ds
+ A {β (1-1 / Ps) −γ (1-Dd)} (8)
In the gate opening correction value calculation circuit 32, the calculation of the following equation (9) is performed based on the entrance side sintering material layer thickness level Lv1, the exit side sintering material layer thickness level Lv2, the pallet conveying speed Ps and the feeder rotation speed Dd. The gate opening correction value Ga (t) after t seconds is calculated.
Ga (t) = b (Lv1 (t) −Lv2 (t + T)) L3 · L4 · Ds
+ A {β (1-1 / Ps) −γ (1-Dd) (9)

また、上記実施形態においては、入側層厚レベル計7及び出側層厚レベル計8として超音波距離計を適用した場合について説明したが、これに限定されるものではなく、図4に示すレーザ距離計LD1〜LD5を適用することができる。
ここで、レーザ距離計LD1〜LD5としては、固定点で首振り式に走査するようにしている。首振り式とは、固定位置に設置したレーザ距離計を幅方向断面内で回動させて、レーザ光の投射位置をかえながら、線上に走査する方式であり、この方式のレーザ距離計を首振り式レーザ距離計と称する。この首振り式レーザ距離計は、固定位置で回動するだけであるため、装置駆動系への負荷が小さく耐久的に非常に有利となる。さらに、幅方向の区間を分割して複数のレーザ距離計を同調させて、固定点で首振り式に走査することも可能である。1つのレーザ距離計で首振りさせる場合、焼結機パレット1の全幅を走査させるには、レーザ距離計を焼結機上方の高い位置に設置することが必要となる。その理由は、低い位置からレーザ光を投射すると、装入原料の形成する斜面の角度により、レーザ光の当たらない影の部分を生じ、測定不能となる箇所が生じるためである。
Moreover, in the said embodiment, although the case where an ultrasonic distance meter was applied as the entrance layer thickness level meter 7 and the exit layer thickness level meter 8 was demonstrated, it is not limited to this and is shown in FIG. Laser distance meters LD1 to LD5 can be applied.
Here, the laser distance meters LD1 to LD5 are configured to scan in a swinging manner at a fixed point. The swing type is a method in which a laser rangefinder installed at a fixed position is rotated within the cross section in the width direction and scanned on a line while changing the projection position of the laser beam. This is called a swinging laser rangefinder. Since this swinging laser rangefinder only rotates at a fixed position, the load on the apparatus drive system is small and it is extremely advantageous in terms of durability. Furthermore, it is also possible to divide the section in the width direction and synchronize a plurality of laser distance meters to scan in a swinging manner at a fixed point. When the head is swung by one laser distance meter, it is necessary to install the laser distance meter at a high position above the sintering machine in order to scan the entire width of the sintering machine pallet 1. The reason is that when the laser beam is projected from a low position, a shadow portion where the laser beam does not hit is generated due to the angle of the inclined surface formed by the charged raw material, and a portion where measurement is impossible occurs.

この原理を、図5を用いて説明する。図5(a)はレーザ距離計LDで低い位置からレーザ光を投射する状況である。焼結原料42の安息角は最大50°程度であるため、この場合は、黒く示す位置が測定不可能領域43となる。測定不可能領域43をなくすためには、それ以上の俯角(例えば60°以上の俯角)の範囲で測定する必要があり、そのためには、図5(b)に示すように、レーザ距離計LDの設置位置は高い位置が必要となる。特にサイドウォール部は原料が高角の斜面を作る機会が多いので、レーザ光の俯角を大きくとるために、レーザ距離計LDをサイドウォールの直上に近い位置に配置するのが好ましい。   This principle will be described with reference to FIG. FIG. 5A shows a situation in which laser light is projected from a low position by the laser distance meter LD. Since the angle of repose of the sintered raw material 42 is about 50 ° at the maximum, in this case, the black position is the non-measurable region 43. In order to eliminate the non-measurable region 43, it is necessary to measure in a range of a depression angle larger than that (for example, a depression angle of 60 ° or more). For this purpose, as shown in FIG. A high position is required for the installation position. In particular, since there are many opportunities for the raw material to form a high-angle slope in the sidewall portion, it is preferable to arrange the laser distance meter LD at a position close to the sidewall directly in order to increase the depression angle of the laser beam.

設備の都合上、このような高い位置への設置が困難な場合、焼結機パレット1の幅方向区間を分割して、複数台のレーザ距離計LDで首振り式に走査するのであれば、設置位置をより低くすることが可能である。焼結原料面からのレーザ距離計LDの高さは、レーザ光の俯角を大きく取り、且つレーザ距離計LDの測定レンジの制限に応じて0.8〜4.5m、望むらくは0.8〜2mに設置することが望ましい。複数台で走査する場合は、レーザ距離計LDの回動動作を同調させ、短時間で全て幅方向区間を一度に走査することにより、走査時間中の焼結機パレット進行距離を極短い距離にすることができ、実質的にパレット進行によるズレを無視することができる。1回の走査に要する時間は短い方が良く、現実的には10秒以下が望ましい。   If installation at such a high position is difficult due to facilities, if the section in the width direction of the sintering machine pallet 1 is divided and scanned by a plurality of laser rangefinders LD, It is possible to lower the installation position. The height of the laser distance meter LD from the surface of the sintering raw material is 0.8 to 4.5 m, preferably 0.8, depending on the limit of the measurement range of the laser distance meter LD, taking a large depression angle of the laser beam. It is desirable to install in ~ 2m. When scanning with multiple units, synchronize the rotational movement of the laser rangefinder LD and scan the entire width direction at a time in a short time, so that the traveling distance of the sintering machine pallet during the scanning time is extremely short. The deviation due to the pallet progression can be substantially ignored. It is better that the time required for one scan is short, and in reality, 10 seconds or less is desirable.

レーザ距離計LDによる距離測定では、投射光に対し、検出する反射光の侵入角度変化から距離を測定するので、レーザ距離計を原料表面に近い低位置に設置すると、侵入角度変化を大きく検出するから、距離微小変化による角度変化を検出しやすくなり、距離測定の精度向上効果も得られる。
このため、図4に示すように、焼結機パレット1の装入層の上方位置に幅方向に延長して架構45を配設し、この架構45の前後面の一方例えば後面に回動機構としてのレーザヘッドLH1〜LH5にレーザ距離計LD1〜LD5を装着し、レーザヘッドLH1〜LH5を距離計制御装置47で所定の角度範囲で同期して回動させる。
In the distance measurement by the laser distance meter LD, the distance is measured from the change in the incident angle of the reflected light to be detected with respect to the projection light. Therefore, when the laser distance meter is installed at a low position close to the surface of the raw material, a large change in the incident angle is detected. Therefore, it becomes easy to detect the angle change due to the minute distance change, and the effect of improving the accuracy of distance measurement can be obtained.
Therefore, as shown in FIG. 4, a frame 45 is disposed extending in the width direction above the charging layer of the sintering machine pallet 1, and a rotating mechanism is provided on one of the front and rear surfaces of the frame 45, for example, the rear surface. Laser distance meters LD1 to LD5 are mounted on the laser heads LH1 to LH5, and the laser heads LH1 to LH5 are rotated synchronously within a predetermined angle range by the distance meter controller 47.

この所定角度範囲は、隣接するレーザ距離計LDj(j=1〜4)及びLDj+1において、それらの中間位置の装入層上でオーバーラップするように選定されている。このように、複数のレーザ距離計LD1〜LD5を首振り式に回動させると、レーザ距離計LD1〜LD5が固定位置で回動するだけであるため、装置駆動系への負荷が小さく耐久性的に非常に有利となる。さらに、複数のレーザ距離計LD1〜LD5を同期回動させて首振り式に走査することにより1回の走査で、装入層の幅方向の全域の層厚を測定することが可能となる。この場合、隣接するレーザ距離計LD1〜LD5では、例えば回動開始位置の角度を回動範囲の一方側の最大角度に全て揃えることにより、隣接する一方のレーザ距離計から出射されたレーザ光が隣接する他方のレーザ距離計に入射されることを確実に阻止することが好ましい。   This predetermined angle range is selected so that the laser distance meters LDj (j = 1 to 4) and LDj + 1 adjacent to each other overlap on the charging layer at the intermediate position. In this way, when the plurality of laser distance meters LD1 to LD5 are swung in a swinging manner, the laser distance meters LD1 to LD5 only rotate at a fixed position, so the load on the apparatus drive system is small and durable. Very advantageous. Furthermore, by rotating the plurality of laser distance meters LD1 to LD5 synchronously and scanning them in a swinging manner, it is possible to measure the layer thickness of the entire loading layer in the width direction by one scanning. In this case, in the adjacent laser distance meters LD1 to LD5, for example, by aligning all the rotation start position angles to the maximum angle on one side of the rotation range, the laser light emitted from one of the adjacent laser distance meters It is preferable to reliably prevent the light from entering the other adjacent laser distance meter.

このレーザ距離計LD1〜LD5を使用する場合には、その高い収束性から測定個所を数mmのスポットに限定できるため、位置を特定して測定することができる。このレーザ距離計LD1〜LD5を焼結機パレット1の幅方向に走査して装入層の層厚を測定することで、幅方向の各々の位置で正確に測定した層厚のプロフィールを作成することが可能となる。
このように、複数のレーザ距離計LD1〜LD5で首振り式に走査する場合には、装入層9の上面からの高さは、レーザ光の俯角を大きく取り、且つ距離計の測定レンジの制限に応じて0.8〜4.5m、望むらくは0.8〜2mに設置することが望ましい。
また、複数台で走査する場合は、レーザ距離計の回動動作を同調させ、短時間で全ての区間を一度に走査することにより、走査時間中のパレット進行距離を極短い距離にすることができ、実質的にパレット進行によるズレを無視することができる。1回の走査に要する時間は短い方が良く、現実的には10秒以下が望ましい。
When these laser distance meters LD1 to LD5 are used, the measurement location can be limited to a spot of several mm because of its high convergence, so that the position can be specified and measured. By scanning the laser distance meters LD1 to LD5 in the width direction of the sintering machine pallet 1 and measuring the layer thickness of the charging layer, a profile of the layer thickness accurately measured at each position in the width direction is created. It becomes possible.
Thus, when scanning with a plurality of laser rangefinders LD1 to LD5 in a swinging manner, the height from the upper surface of the charging layer 9 takes a large depression angle of the laser beam and is within the measurement range of the rangefinder. It is desirable to install at 0.8 to 4.5 m, preferably 0.8 to 2 m depending on the limit.
In addition, when scanning with multiple units, the pallet travel distance during the scanning time can be made extremely short by synchronizing the rotation of the laser rangefinder and scanning all sections at once in a short time. The displacement due to the pallet progression can be substantially ignored. It is better that the time required for one scan is short, and in reality, 10 seconds or less is desirable.

ここで、レーザ距離計LD1〜LD5で検出した計測した距離L1〜L5と、そのときのレーザヘッドLH1〜LH5の回動中心を通る垂線に対する回動角θ1〜θ5とが前述した距離計制御装置47に供給されて、この距離計制御装置47で下記(10)式及び(11)式の演算を行って幅方向の計測位置Wk(k=1〜5)及び原料装厚Hkを算出する。
Wk=WBk+Lk*sinθk …………(10)
Hk=HL−Lk*cosθk …………(11)
ここで、WBkは各レーザ距離計LDkの回動中心点の幅方向の基準点となる一端から距離、Lkは各レーザ距離計LDkで計測した計測距離、θkは各レーザヘッドLHkの回動中心を通る垂線に対する仰角であって前記基準点側を負値、基準点とは反対側を正値とする。また、HLはレーザ距離計LD1〜LD5の計測原点すなわちレーザヘッドLH1〜LH5の回動中心の焼結機パレット1の上面からの高さである。
Here, the distances L1 to L5 measured by the laser distance meters LD1 to LD5 and the rotation angles θ1 to θ5 with respect to the perpendicular passing through the rotation centers of the laser heads LH1 to LH5 at that time are the distance meter control devices described above. 47, the distance meter controller 47 calculates the following formulas (10) and (11) to calculate the measurement position Wk (k = 1 to 5) and the material thickness Hk in the width direction.
Wk = WBk + Lk * sin θk (10)
Hk = HL−Lk * cos θk (11)
Here, WBk is a distance from one end which is a reference point in the width direction of the rotation center point of each laser distance meter LDk, Lk is a measurement distance measured by each laser distance meter LDk, and θk is a rotation center of each laser head LHk. Is an elevation angle with respect to a perpendicular passing through the reference point side, and the reference point side is a negative value, and the opposite side of the reference point is a positive value. HL is the measurement origin of the laser distance meters LD1 to LD5, that is, the height from the upper surface of the sintering machine pallet 1 at the rotation center of the laser heads LH1 to LH5.

そして、距離計制御装置47では、算出された計測位置Wk及び原料層厚Hkを対として記憶部に記憶して、幅方向の層厚のプロフィールを作成する。このとき、隣接するレーザ距離計LD1〜LD5でオーバーラップしている装入層の表面位置については、計測した幅方向位置と前回の幅方向位置との変化が少ない方の幅方向位置Wk及び原料層厚Hkを選択する。   Then, the distance meter control device 47 stores the calculated measurement position Wk and the raw material layer thickness Hk as a pair in the storage unit, and creates a layer thickness profile in the width direction. At this time, with respect to the surface position of the charging layer overlapped by the adjacent laser distance meters LD1 to LD5, the width direction position Wk and the raw material with less change between the measured width direction position and the previous width direction position. The layer thickness Hk is selected.

すなわち、図6に示すように、レーザ距離計LDj及びLDj+1の中間位置にレーザ距離計LDj側で急峻な傾斜面を有し、反対側のレーザ距離計LDj+1側で比較的緩やかな傾斜面の突出部48が存在する場合には、レーザ距離計LDjでは、突出部48の頂部を含む全ての距離を計測可能であるが、レーザ距離計LDj+1では突出部48の頂部を超えた部分については急峻な傾斜面をとらえることができず、遠くの平坦部の距離を測定することになり、幅方向位置Wj+1(n)及び原料層厚Hj+1(n)に大きな誤差を生じ、前回の幅方向位置Wj+1(n-1)に対する変化量ΔWが急増する。このため、幅方向位置の変化量ΔWが少ないレーザ距離計LDjの計測値による幅方向位置Wj(n)及び原料層厚Hj(n)が選択される。   That is, as shown in FIG. 6, the laser distance meter LDj + 1 has a steep inclined surface on the laser distance meter LDj side at the intermediate position between the laser distance meters LDj and LDj + 1, and a relatively gentle inclined surface protrusion on the opposite laser distance meter LDj + 1 side. In the case where the portion 48 is present, the laser distance meter LDj can measure all the distances including the top of the protrusion 48, but the laser distance meter LDj + 1 has a steep portion beyond the top of the protrusion 48. Since the inclined surface cannot be captured, the distance of the far flat portion is measured, and a large error occurs in the width direction position Wj + 1 (n) and the raw material layer thickness Hj + 1 (n), and the previous width direction position Wj + 1 ( The amount of change ΔW with respect to n-1) increases rapidly. Therefore, the width direction position Wj (n) and the raw material layer thickness Hj (n) based on the measurement value of the laser distance meter LDj with a small amount of change ΔW in the width direction position are selected.

このようにして、図7に示す装入層の幅方向における層厚Hkの幅方向プロフィールが所定時間(例えば10分)毎に測定され、測定された層厚Hkの幅方向プロフィールが距離計制御装置47内に設けられた記憶部47aに順次記憶される。
そして、記憶部47aに記憶された層厚Hkの幅方向プロフィールから各分割ゲート4に対応する幅方向領域の平均値を算出し、これを層厚レベルLv1及びLv2として制御装置11に供給する。
In this way, the width direction profile of the layer thickness Hk in the width direction of the charging layer shown in FIG. 7 is measured every predetermined time (for example, 10 minutes), and the measured width direction profile of the layer thickness Hk is a distance meter control. The data are sequentially stored in a storage unit 47 a provided in the device 47.
And the average value of the width direction area | region corresponding to each division | segmentation gate 4 is calculated from the width direction profile of layer thickness Hk memorize | stored in the memory | storage part 47a, and this is supplied to the control apparatus 11 as layer thickness level Lv1 and Lv2.

1…パレット、2…ホッパー、3…ドラムフィーダ、4…分割ゲート、5…アクチュエータ、6…点火炉、7…入側層厚レベル計、8…出側層厚レベル計、11…制御装置、12…パレット搬送速度検出器、13…フィーダ回転速度検出器、21…ゲート開度基準値演算回路、22…第1の補正値演算回路、23…第2の補正値演算回路、24,25…加算器、26…ゲート指令値演算回路、31…基本ゲート開度指令値演算回路、32…ゲート開度補正値演算回路、LD1〜LD5…レーザ距離計、LH1〜LH5…レーザヘッド、45…架構、47…距離計制御装置、47a…記憶部   DESCRIPTION OF SYMBOLS 1 ... Pallet, 2 ... Hopper, 3 ... Drum feeder, 4 ... Divided gate, 5 ... Actuator, 6 ... Ignition furnace, 7 ... Inlet side layer thickness level meter, 8 ... Outlet layer thickness level meter, 11 ... Control device, DESCRIPTION OF SYMBOLS 12 ... Pallet conveyance speed detector, 13 ... Feeder rotational speed detector, 21 ... Gate opening reference value calculation circuit, 22 ... 1st correction value calculation circuit, 23 ... 2nd correction value calculation circuit, 24, 25 ... Adder, 26 ... Gate command value calculation circuit, 31 ... Basic gate opening command value calculation circuit, 32 ... Gate opening correction value calculation circuit, LD1-LD5 ... Laser distance meter, LH1-LH5 ... Laser head, 45 ... Frame 47 ... Distance meter control device, 47a ... Storage section

Claims (8)

焼結原料を貯留するホッパーの排出部に、当該ホッパーから切出された焼結原料をパレット上に装入するドラムフィーダと、焼結機幅方向に分割され且つ個々にゲート開度を調整可能な分割ゲートとを備えた焼結機の焼結原料層厚制御方法であって、
前記パレット上の焼結原料の点火炉前後における点火炉入側層厚レベル及び点火炉出側層厚レベルを検出し、
前記パレットのパレット搬送速度及び前記ドラムフィーダのフィーダ回転速度を検出し、
前記点火炉入側層厚レベルに基づく前記分割ゲートに対するゲート開度基準値と、前記パレット搬送速度及び前記フィーダ回転速度に基づく第1の開度補正値と、前記点火炉入側層厚レベル及び前記点火炉出側層厚レベルから求めた点火・吸引開始時の焼結原料層の嵩目減り量に基づく第2の開度補正値とに基づいて前記分割ゲートに対するゲート開度指令値を求める
ことを特徴とする焼結機の焼結原料層厚制御方法。
Drum feeder for loading sintered raw material cut out from the hopper onto the pallet, and the gate opening can be adjusted individually in the width direction of the sintering machine at the discharge part of the hopper for storing the raw material. A method for controlling a sintering material layer thickness of a sintering machine equipped with a split gate,
Ignition furnace inlet side layer thickness level and ignition furnace outlet side layer thickness level before and after the ignition furnace of the sintered raw material on the pallet,
Detecting the pallet conveyance speed of the pallet and the feeder rotation speed of the drum feeder;
A gate opening reference value for the split gate based on the ignition furnace entry side layer thickness level, a first opening correction value based on the pallet transfer speed and the feeder rotation speed, the ignition furnace entry side layer thickness level, and Obtaining a gate opening command value for the divided gate based on the second opening correction value based on the bulk reduction amount of the sintering raw material layer at the start of ignition / suction determined from the ignition furnace outlet layer thickness level; A method for controlling the thickness of a sintering material layer of a sintering machine.
前記点火炉入側層厚レベルを、原料層厚の幅方向に所定間隔を保って複数配設された点火炉入側層厚レベル計によって検出し、
前記ゲート開度基準値を、レベル設定値から前記点火炉入側で検出された点火炉入側焼結原料層厚レベルを減算した値に、前記レベル計の間隔と、前記ドラムフィーダの装入部から前記点火炉入側層厚レベル計までの距離と原料嵩密度とを乗算して算出する
ことを特徴とする請求項1に記載の焼結機の焼結原料層厚制御方法。
The ignition furnace entry side layer thickness level is detected by a plurality of ignition furnace entry side layer thickness levels arranged at predetermined intervals in the width direction of the raw material layer thickness,
The gate opening reference value is set to a value obtained by subtracting the ignition furnace entrance-side sintered raw material layer thickness level detected on the ignition furnace entrance side from the level setting value, and the level meter interval and the drum feeder insertion The sintering raw material layer thickness control method for a sintering machine according to claim 1, wherein the calculation is performed by multiplying a distance from a part to the ignition furnace inlet side layer thickness level meter and a raw material bulk density.
前記第2の開度補正値を、点火・吸引開始時の焼結原料層の嵩目減り量に、装入量影響補正パラメータを乗じて算出することを特徴とする請求項1又は2に記載の焼結機の焼結原料層厚制御方法。   The second opening degree correction value is calculated by multiplying the bulk reduction amount of the sintering raw material layer at the start of ignition / suction by a charging amount influence correction parameter. Sintering raw material layer thickness control method of a sintering machine. 焼結原料を貯留するホッパーの排出部に、当該ホッパーから切出された焼結原料をパレット上に装入するドラムフィーダと、焼結機幅方向に分割され且つ個々にゲート開度を調整可能な分割ゲートとを備えた焼結機の焼結原料層厚制御方法であって、
前記パレット上の焼結原料の点火炉前後における点火炉入側層厚レベル及び点火炉出側層厚レベルを検出し、
前記パレットのパレット搬送速度及び前記ドラムフィーダのフィーダ回転速度を検出し、
前記点火炉入側層厚レベルと、前記パレット搬送速度及び前記フィーダ回転速度とに基づいて前記分割ゲートに対する装入量変化を考慮した基本ゲート開度指令値を求め、さらに前記点火炉入側層厚レベル及び前記点火炉出側層厚レベルから求めた点火・吸引開始時の焼結原料層の嵩目減り量と前記パレット搬送速度及び前記フィーダ回転速度とに基づいてゲート開度補正値を求め、前記基本ゲート開度指令値を前記ゲート開度補正値で補正してゲート開度指令値を求める
ことを特徴とする焼結機の焼結原料層厚制御方法。
Drum feeder for loading sintered raw material cut out from the hopper onto the pallet, and the gate opening can be adjusted individually in the width direction of the sintering machine at the discharge part of the hopper for storing the raw material. A method for controlling a sintering material layer thickness of a sintering machine equipped with a split gate,
Ignition furnace inlet side layer thickness level and ignition furnace outlet side layer thickness level before and after the ignition furnace of the sintered raw material on the pallet,
Detecting the pallet conveyance speed of the pallet and the feeder rotation speed of the drum feeder;
Based on the ignition furnace entry side layer thickness level, the pallet transport speed and the feeder rotation speed, a basic gate opening command value is calculated in consideration of a change in charging amount with respect to the divided gate, and the ignition furnace entry layer Obtain a gate opening correction value based on the bulk reduction amount of the sintering raw material layer at the start of ignition / suction determined from the thickness level and the ignition furnace outlet layer thickness level, the pallet conveyance speed and the feeder rotation speed, A sintering material layer thickness control method for a sintering machine, wherein the basic gate opening command value is corrected with the gate opening correction value to obtain a gate opening command value.
前記点火炉入側層厚レベル及び点火炉出側層厚レベルの検出が、点火炉入側層厚レベル及び点火炉出側層厚レベルをレーザ距離計により行われることを特徴とする請求項1から4の何れか1項に記載の焼結機の焼結原料層厚制御方法。   2. The ignition furnace inlet side layer thickness level and the ignition furnace outlet side layer thickness level are detected by a laser distance meter with respect to the ignition furnace inlet side layer thickness level and the ignition furnace outlet side layer thickness level. 5. A sintering raw material layer thickness control method for a sintering machine according to any one of items 1 to 4. 焼結原料を貯留するホッパーの排出部に、当該ホッパーから切出された焼結原料をパレット上に装入するドラムフィーダと、焼結機幅方向に分割され且つ個々にゲート開度を調整可能な分割ゲートとを備えた焼結機の焼結原料層厚制御装置であって、
前記パレット上の焼結原料の点火炉前後において原料層厚レベルを検出する点火炉入側層厚レベル計及び点火炉出側層厚レベル計と、
前記パレットのパレット搬送速度を検出する搬送速度検出器及び前記ドラムフィーダのフィーダ回転速度を検出する回転速度検出器と、
前記点火炉入側層厚レベルと、前記パレット搬送速度及び前記フィーダ回転速度とに基づいて前記分割ゲートに対する装入量変化を考慮した基本ゲート開度指令値を算出する基本ゲート開度指令値演算部と、
前記点火炉入側層厚レベル及び前記点火炉出側層厚レベルから求めた点火・吸引開始時の焼結原料層の嵩目減り量と前記パレット搬送速度及び前記フィーダ回転速度とに基づいてゲート開度補正値を算出するゲート開度補正値演算部と、
前記基本ゲート開度指令値及び前記ゲート開度補正値に基づいてゲート開度指令値を演算するゲート開度指令値演算部と
を備えたことを特徴とする焼結機の焼結原料層厚制御装置。
Drum feeder for loading sintered raw material cut out from the hopper onto the pallet, and the gate opening can be adjusted individually in the width direction of the sintering machine at the discharge part of the hopper for storing the raw material. A sintering material layer thickness control device for a sintering machine equipped with a split gate,
Ignition furnace inlet side layer thickness level meter and ignition furnace outlet side layer thickness level meter that detect the raw material layer thickness level before and after the ignition furnace of the sintered raw material on the pallet,
A conveyance speed detector for detecting a pallet conveyance speed of the pallet and a rotation speed detector for detecting a feeder rotation speed of the drum feeder;
A basic gate opening command value calculation that calculates a basic gate opening command value in consideration of a change in the charging amount with respect to the divided gate based on the ignition furnace entry side layer thickness level, the pallet transfer speed and the feeder rotation speed. And
Based on the bulk reduction amount of the sintering raw material layer at the start of ignition / suction obtained from the ignition furnace inlet side layer thickness level and the ignition furnace outlet side layer thickness level, the pallet transfer speed, and the feeder rotation speed, A gate opening correction value calculation unit for calculating a degree correction value;
A sintering material layer thickness of a sintering machine, comprising: a gate opening command value calculation unit that calculates a gate opening command value based on the basic gate opening command value and the gate opening correction value Control device.
前記点火炉入側層厚レベル計が点火炉入側層厚レベルを検出するレーザ距離計であり、
点火炉出側層厚レベル計が点火炉出側層厚レベルを検出するレーザ距離計である
ことを特徴とする請求項6に記載の焼結機の焼結原料層厚制御装置。
The ignition furnace entry-side layer thickness level meter is a laser distance meter that detects the ignition furnace entry-side layer thickness level,
The sintering raw material layer thickness control device for a sintering machine according to claim 6, wherein the ignition furnace outlet layer thickness level meter is a laser distance meter that detects the ignition furnace outlet layer thickness level.
前記レーザ距離計は、幅方向に所定間隔を保って配設された複数の首振り式レーザ距離計で構成されていることを特徴とする請求項7に記載の焼結機の焼結原料層厚制御装置。   The sintering raw material layer of the sintering machine according to claim 7, wherein the laser distance meter is composed of a plurality of swinging laser distance meters arranged at predetermined intervals in the width direction. Thickness control device.
JP2010278821A 2010-01-29 2010-12-15 Sintering raw material layer thickness control method and apparatus for sintering machine Active JP4840530B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010278821A JP4840530B2 (en) 2010-01-29 2010-12-15 Sintering raw material layer thickness control method and apparatus for sintering machine
CN201180006937.4A CN102712964B (en) 2010-01-29 2011-01-27 Method and device for controlling layer thickness of sintering starting material for sintering machine
KR1020127018244A KR101440701B1 (en) 2010-01-29 2011-01-27 Method and device for controlling layer thickness of sintering starting material for sintering machine
PCT/JP2011/052190 WO2011093518A1 (en) 2010-01-29 2011-01-27 Method and device for controlling layer thickness of sintering starting material for sintering machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010019025 2010-01-29
JP2010019025 2010-01-29
JP2010278821A JP4840530B2 (en) 2010-01-29 2010-12-15 Sintering raw material layer thickness control method and apparatus for sintering machine

Publications (2)

Publication Number Publication Date
JP2011174169A true JP2011174169A (en) 2011-09-08
JP4840530B2 JP4840530B2 (en) 2011-12-21

Family

ID=44319493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010278821A Active JP4840530B2 (en) 2010-01-29 2010-12-15 Sintering raw material layer thickness control method and apparatus for sintering machine

Country Status (4)

Country Link
JP (1) JP4840530B2 (en)
KR (1) KR101440701B1 (en)
CN (1) CN102712964B (en)
WO (1) WO2011093518A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140686A (en) * 2011-01-05 2012-07-26 Jfe Steel Corp Method and device for controlling layer thickness of sintering raw material in sintering machine
CN106086395A (en) * 2016-08-25 2016-11-09 中冶北方(大连)工程技术有限公司 A kind of pelletizing cloth intelligence control system and method
CN106940138A (en) * 2016-01-04 2017-07-11 中冶长天国际工程有限责任公司 A kind of thickness of feed layer detection means and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106940176B (en) * 2016-01-04 2019-03-01 中冶长天国际工程有限责任公司 A kind of thickness of feed layer detection device and method
CN113295001B (en) * 2020-09-28 2023-06-23 中冶长天国际工程有限责任公司 System, method and device for detecting thickness of material layer of trolley of sintering machine
CN113671921B (en) * 2021-08-24 2024-01-30 马鞍山钢铁股份有限公司 Serialized sintering parameter control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116204A (en) * 1974-07-31 1976-02-09 Nippon Steel Corp RENZOKUSHIKISHOKETSUKINO GENRYOSOATSUSEIGYOSOCHI
JPS53135387A (en) * 1977-04-28 1978-11-25 Nippon Steel Corp Detecting method of depth and profile of sintered layer of sintering raw material layer
JPS549104A (en) * 1977-06-23 1979-01-23 Sumitomo Metal Ind Ltd Method of producing sintered ore
JPS5547330A (en) * 1978-09-30 1980-04-03 Sumitomo Metal Ind Ltd Controlling method for permeabilty of charging material in sintering apparatus
JPH055589A (en) * 1991-06-26 1993-01-14 Sumitomo Metal Ind Ltd Operating method for sintering machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3262770A (en) * 1962-05-11 1966-07-26 Yawata Iron & Steel Co Method of controlling the thickness of a charged raw material layer in dwight-lloyd sintering machine
JPS59197529A (en) * 1983-04-20 1984-11-09 Kawasaki Steel Corp Control of layer thickness distribution of sintering stock material
JPH0774398B2 (en) * 1990-02-20 1995-08-09 新日本製鐵株式会社 Method and apparatus for controlling charging layer thickness of Dwightroid type sintering machine
JP3243725B2 (en) * 1992-07-29 2002-01-07 清水建設株式会社 Multistory building
CN100441996C (en) * 2005-11-24 2008-12-10 广东韶钢松山股份有限公司 Sintering automatic distributing method
CN201203351Y (en) * 2008-02-26 2009-03-04 北京中冶博瑞特科技有限公司 Automatic distributing control system of sintering machine
CN201297849Y (en) * 2008-11-12 2009-08-26 山西太钢不锈钢股份有限公司 Automatic distribution control device of a sintering machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116204A (en) * 1974-07-31 1976-02-09 Nippon Steel Corp RENZOKUSHIKISHOKETSUKINO GENRYOSOATSUSEIGYOSOCHI
JPS53135387A (en) * 1977-04-28 1978-11-25 Nippon Steel Corp Detecting method of depth and profile of sintered layer of sintering raw material layer
JPS549104A (en) * 1977-06-23 1979-01-23 Sumitomo Metal Ind Ltd Method of producing sintered ore
JPS5547330A (en) * 1978-09-30 1980-04-03 Sumitomo Metal Ind Ltd Controlling method for permeabilty of charging material in sintering apparatus
JPH055589A (en) * 1991-06-26 1993-01-14 Sumitomo Metal Ind Ltd Operating method for sintering machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140686A (en) * 2011-01-05 2012-07-26 Jfe Steel Corp Method and device for controlling layer thickness of sintering raw material in sintering machine
CN106940138A (en) * 2016-01-04 2017-07-11 中冶长天国际工程有限责任公司 A kind of thickness of feed layer detection means and method
CN106940138B (en) * 2016-01-04 2019-01-25 中冶长天国际工程有限责任公司 A kind of thickness of feed layer detection device and method
CN106086395A (en) * 2016-08-25 2016-11-09 中冶北方(大连)工程技术有限公司 A kind of pelletizing cloth intelligence control system and method

Also Published As

Publication number Publication date
CN102712964B (en) 2014-05-07
KR20120103707A (en) 2012-09-19
CN102712964A (en) 2012-10-03
WO2011093518A1 (en) 2011-08-04
JP4840530B2 (en) 2011-12-21
KR101440701B1 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP4840530B2 (en) Sintering raw material layer thickness control method and apparatus for sintering machine
JP5703755B2 (en) Sintering raw material layer thickness control method and apparatus for sintering machine
JP5597918B2 (en) Sintering raw material layer thickness level control method of sintering machine
CN101560599B (en) Thickness control method and control system of mixed material layer
CN103744441A (en) Tobacco shred material flow control device and method
US20220380859A1 (en) Method for operating blast furnace
JP2012066888A (en) Raw material stowage apparatus
JP5779716B2 (en) Method and adjuster for adjusting firing completion point in sintering machine
CN102344977B (en) Blast furnace under-groove coke weighing control system without dispersing hopper
JP5633121B2 (en) Method for producing sintered ore
KR101225733B1 (en) Method for calculating level of molten iron in blast furnace
JP4992033B2 (en) Powder level control method and apparatus
JP3259778B2 (en) Sintering completion point control method for sintering machine
JPH0499135A (en) Method for controlling sintering of calcined lump ore
JPH06287647A (en) Operation of sintering machine
CN102443663B (en) Weighing control method of coke under bunker of blast furnace without dispersing hopper
JP2005350540A (en) Method for controlling coal charge level in coke oven
JP2014112053A (en) Measuring method of coal moisture on conveyor
JP2020090331A (en) Fuel feeding system
JP2020094283A (en) Operation method of blast furnace
JP3053906B2 (en) Position control method for classifier
JP2005350539A (en) Method for controlling coal charge level in coke oven
KR20180024219A (en) Method for controlling profile of surge hopper
UA139763U (en) METHOD OF LOADING MACHINE MATERIALS INTO THE DOMAIN FURNACE
JP5231660B1 (en) Steel process line controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110630

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4840530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250