JP2011171474A - Electromagnetic wave shielding material - Google Patents

Electromagnetic wave shielding material Download PDF

Info

Publication number
JP2011171474A
JP2011171474A JP2010033285A JP2010033285A JP2011171474A JP 2011171474 A JP2011171474 A JP 2011171474A JP 2010033285 A JP2010033285 A JP 2010033285A JP 2010033285 A JP2010033285 A JP 2010033285A JP 2011171474 A JP2011171474 A JP 2011171474A
Authority
JP
Japan
Prior art keywords
conductive
convex pattern
pattern layer
layer
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010033285A
Other languages
Japanese (ja)
Inventor
Shinya Kiura
伸哉 木浦
Yukihiro Kyoda
享博 京田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2010033285A priority Critical patent/JP2011171474A/en
Publication of JP2011171474A publication Critical patent/JP2011171474A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To avoid an adverse influence on product quality even if the line width of a conductive convex pattern layer formed by a draw-out primer intaglio printing method becomes thick when its printing speed is made extremely high in order to make the electromagnetic wave shielding performance highly compatible with light permeability of an electromagnetic wave shielding material. <P>SOLUTION: With regard to the electromagnetic wave shielding material 10 in which conductive convex pattern layers 3 are accumulated, the conductive convex pattern layers including conductive particles and binder resin on a transparent substrate 1 through a primer layer 2 having many openings 4 formed in the non-formation area where the primer layer is thicker in the formation area compared to the non-formation area of the conductive convex pattern layer in at least one of the two parallel striated groups in which the conductive convex pattern layers cross each other, the line width W becomes thick by a leaking part 5 and the main convex cross-sectional shape are different at both sides of the summit that the widths at the base from the summit to the primer layer surface, and a relation (Ww-Wn)/2Wn between the width Ww of wider base and the width Wn of a narrower base is set to be 0.5 or smaller. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は各種の用途、中でもディスプレイの前面に配置するのに好適な電磁波遮蔽材に関する。特に、印刷高速化時の導電性凸状パターン層のパターン精度低下を抑えて製品品質への影響を防げる電磁波遮蔽材に関する。   The present invention relates to an electromagnetic wave shielding material suitable for use in various applications, particularly in front of a display. In particular, the present invention relates to an electromagnetic wave shielding material that suppresses deterioration in pattern accuracy of a conductive convex pattern layer at the time of printing speedup and prevents an influence on product quality.

現在、ディスプレイ(画像表示装置とも言う)として、旧来のブラウン管(CRT)ディスプレイ以外に、フラットパネルディスプレイ(FPD)となる、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(以後PDPとも言う)、電界発光(EL)ディスプレイ等の各種ディスプレイが実用されている。これらの中でも、特に、PDPは不要な電磁波放出が強いため、ディスプレイの前面(観察者側面)に電磁波遮蔽材を配置している。   Currently, as a display (also referred to as an image display device), a liquid crystal display (LCD), a plasma display panel (hereinafter also referred to as PDP), an electroluminescence (hereinafter referred to as a PDP), a flat panel display (FPD), in addition to a conventional cathode ray tube (CRT) display. Various displays such as EL) displays are in practical use. Among these, in particular, since PDP has strong emission of unnecessary electromagnetic waves, an electromagnetic wave shielding material is disposed on the front surface (observer side surface) of the display.

また、ディスプレイ用途の電磁波遮蔽材では、優れた電磁波遮蔽性能と優れた可視光線に対する光透過性とを高度に両立できる点で、導電体層には導電性に優れた金属層など結果として不透明となる層が好適であり、不透明性な導電体層であっても光透過性を確保する為に、導電体層はメッシュ形状などのパターンで多数の開口部を設けた導電体パターン層として形成している。導電体パターン層の形成には、金属箔をフォトエッチング法で形成する方法もあるが、コスト的な面で印刷法が有利である。そして、導電体パターン層の形成に印刷法を利用した電磁波遮蔽材も各種提案されている。尚、本願明細書中に於いて、「電磁波」とは広義の電磁波の中で、特に、kHz〜GHz帯域を中心とした周波数帯域のもの(所謂電波)を意味する。より高周波数の赤外線、可視光線、紫外線等は、各々、赤外線、可視光線、紫外線等と呼称する。   In addition, the electromagnetic wave shielding material for display applications is highly opaque as a result of a highly conductive metal layer, such as a metal layer having excellent conductivity, in that it can achieve both excellent electromagnetic wave shielding performance and excellent light transmittance for visible light. In order to ensure light transmission even with an opaque conductor layer, the conductor layer is formed as a conductor pattern layer having a large number of openings in a pattern such as a mesh shape. ing. For forming the conductor pattern layer, there is a method of forming a metal foil by a photoetching method, but a printing method is advantageous in terms of cost. Various electromagnetic shielding materials using a printing method for forming the conductor pattern layer have been proposed. In the specification of the present application, “electromagnetic wave” means an electromagnetic wave in a broad sense, particularly a frequency band centered on the kHz to GHz band (so-called radio wave). Higher frequency infrared rays, visible rays, ultraviolet rays, etc. are referred to as infrared rays, visible rays, ultraviolet rays, etc., respectively.

また、印刷法の中でも、従来では不可能であった様な線幅が細く且つ精細なパターン形成が可能で、優れた電磁波遮蔽性と優れた光透過性とを高度に両立できる、最近本出願人によって提案された凹版印刷法がある(特許文献1)。特許文献1に開示の凹版印刷法は、透明基材上に施した流動状態のままのプライマ流動層上に導電性組成物のインキを凹版印刷する方法であり、しかもその際、版面上に透明基材が存在している間に、版面と透明基材間にあるプライマ流動層を紫外線照射などで固化させてプライマ層とした後に透明基材を凹版から離版して、透明基材上にプライマ層を介して導電体パターン層として導電性組成物を固化させた導電性凸状パターン層を印刷形成する方法である。このプライマ層は流動状態のときに、版から被印刷物へのインキの転移を促進する作用、言い換えると凹版の版面凹部内に充填されたインキを引き抜いて被印刷物(透明基材)に移す作用を有しており、この凹版印刷法は「引抜プライマ方式凹版印刷法」と呼べる印刷法である。   In addition, among the printing methods, it is possible to form fine patterns with fine line widths that were not possible in the past, and highly compatible with excellent electromagnetic wave shielding and excellent light transmittance. There is an intaglio printing method proposed by a person (Patent Document 1). The intaglio printing method disclosed in Patent Document 1 is a method of intaglio printing an ink of a conductive composition on a primer fluidized bed in a fluid state applied on a transparent substrate, and in that case, a transparent on the plate surface While the base material is present, the primer fluidized layer between the plate surface and the transparent base material is solidified by ultraviolet irradiation or the like to form a primer layer, and then the transparent base material is released from the intaglio plate on the transparent base material. In this method, a conductive convex pattern layer obtained by solidifying a conductive composition as a conductor pattern layer through a primer layer is printed. When the primer layer is in a fluid state, the primer layer promotes the transfer of ink from the printing plate to the printing material, in other words, draws out the ink filled in the concave portion of the intaglio plate surface and transfers it to the printing material (transparent substrate). This intaglio printing method is a printing method that can be called the “pulling primer type intaglio printing method”.

国際公開第2008/149969号のパンフレットPamphlet of International Publication No. 2008/149969

ただ、特許文献1で開示された「引抜プライマ方式凹版印刷法」は、従来では不可能であった様な、細く且つ精細なパターン形成が可能になるとは言え、一般的な印刷法と同様に印刷速度を速くしていくと、パターン精度が悪化してくる。もちろん、量産性、低コスト化等を目指すには、パターン精度が許容される限り、印刷速度は速い方が好ましい。印刷高速化時のパターン精度の悪化は、シリンダ形状(円筒状)の凹版を用いて、回転する凹版の版面に導電性組成物のインキを供給後、ドクターブレードで版面凸部上の不要なインキを掻き取るときのインキ掻取性の異方性が、顕在化することが原因である。   However, the “pulling primer type intaglio printing method” disclosed in Patent Document 1 can form a thin and fine pattern, which was impossible in the past, but it is similar to a general printing method. As printing speed is increased, pattern accuracy deteriorates. Of course, in order to achieve mass productivity and cost reduction, it is preferable that the printing speed is high as long as the pattern accuracy is allowed. The deterioration of pattern accuracy when printing speed is increased is that the ink of the conductive composition is supplied to the rotating intaglio plate surface using a cylinder-shaped (cylindrical) intaglio plate, and then unnecessary ink on the plate-surface convex portion with a doctor blade. This is because the anisotropy of the ink scraping property when scraping off becomes apparent.

これを図3の概念図で説明する。図3(a)の斜視図では、シリンダ形状(円筒状)で回転する凹版31には、その版面に印刷形成する導電性凸状パターン層に対応する溝パターンからなる凹部32が形成されている。そして、この凹版31の版面に、インキパン33に蓄えた導電性組成物からなるインキ34が供給される。版面に供給されたインキ34の余剰分はドクターブレード35によって掻き取って、凹部32内に充填されたインキ34を印刷対象物(透明基材)に転移させることで、凹版印刷する。なお、シリンダ形状の凹版31の回転方向Xpに対して、ドクターブレード35の掻取方向Xdは逆向きとなる。即ち、ここでドクターブレード35の掻取方向Xdは、版面(上に固定された架空の観察者)に対するドクターブレード35の相対的な移動方向として定義される。現実には、ドクターブレード35は凹版31の円周方向に対しては固定され、凹版31の方が回転する。また、同図では、版面上の凹部32の溝パターンは正方格子状のメッシュパターンで互いに直交して交差する2群の平行線条群からなり、凹版31の回転方向Xp(円周方向)に対して、2群の一方の平行線条群の線条が延在する方向は平行で、他方の平行線条群の線条が延在する方向は直角の関係となっている。   This will be described with reference to the conceptual diagram of FIG. In the perspective view of FIG. 3A, the intaglio 31 that rotates in a cylinder shape (cylindrical shape) is formed with a recess 32 made of a groove pattern corresponding to the conductive convex pattern layer printed on the plate surface. . Then, the ink 34 made of the conductive composition stored in the ink pan 33 is supplied to the plate surface of the intaglio 31. The surplus portion of the ink 34 supplied to the printing plate is scraped off by the doctor blade 35, and the intaglio printing is performed by transferring the ink 34 filled in the concave portion 32 to the printing object (transparent substrate). The scraping direction Xd of the doctor blade 35 is opposite to the rotation direction Xp of the cylinder-shaped intaglio 31. That is, here, the scraping direction Xd of the doctor blade 35 is defined as a relative movement direction of the doctor blade 35 with respect to the plate surface (an imaginary observer fixed on the plate surface). In reality, the doctor blade 35 is fixed in the circumferential direction of the intaglio 31 and the intaglio 31 rotates. In the figure, the groove pattern of the concave portion 32 on the plate surface is composed of two groups of parallel line stripes intersecting at right angles with each other in a square lattice mesh pattern, and the rotational direction Xp (circumferential direction) of the intaglio plate 31 On the other hand, the direction in which the line of one of the two groups of parallel lines extends is parallel, and the direction in which the line of the other parallel line group extends has a right angle relationship.

次に、図3(b)の断面図では、ドクターブレード35の掻取方向XdをX軸の正の方向とし、掻取方向Xdと版面上で直交する方向をY軸としたときに、版面上で凹部32の溝が延在する方向がY軸に平行な溝、言い換えると、X軸方向に配列した平行線条群の溝、について、ドクターブレード35のインキ掻取状況を概念的に示してある。そして、印刷速度を速くしていくと、ドクターブレード35で版面凸部上の不要なインキ34を掻き取った後に、凹部32のドクターブレード35の掻取方向Xdで下流側に位置する版面凸部上に、凹部32の内部に充填されたインキ34がはみ出した様に、インキ34が版面凸部上に残る漏出部5が発生する。この結果、漏出部5のインキも印刷されて、印刷物上での漏出部5の分だけ線幅が太ることになる。   3B, when the scraping direction Xd of the doctor blade 35 is the positive direction of the X axis and the direction orthogonal to the scraping direction Xd on the printing plate is the Y axis, The direction in which the groove of the concave portion 32 extends is parallel to the Y axis, in other words, the groove of the parallel line group arranged in the X axis direction, conceptually showing the ink scraping situation of the doctor blade 35. It is. When the printing speed is increased, after the unnecessary ink 34 on the plate surface convex portion is scraped off by the doctor blade 35, the plate surface convex portion located downstream in the scraping direction Xd of the doctor blade 35 of the concave portion 32. On top of this, the leaked portion 5 where the ink 34 remains on the plate surface convex portion is generated, as the ink 34 filled in the concave portion 32 protrudes. As a result, the ink of the leaking part 5 is also printed, and the line width is increased by the amount of the leaking part 5 on the printed matter.

一方、凹部32の溝の延在方向がX軸に平行な溝であるときは、凹部32のドクターブレード35の掻取方向Xdの下流側は、引き続き凹部32に該当する溝が存在し、漏出部5が発生する版面凸部自体が存在しないので、漏出部5は発生しない。
この為、凹部32の溝パターンに、溝の延在方向にX軸方向とY軸方向とがある場合で説明すると、版面上の凹部32の溝幅がX軸方向とY軸方向で同じであっても、実際に印刷形成された導電性凸状パターン層の線幅では、X軸方向に対し直交する方向(Y軸方向)に延在する線条の方は線幅はX軸方向(掻取方向Xd)の正の方向に拡張され、線幅が太ることになる。一方、Y軸方向に対して直交する方向(X軸方向)に延在する線条の方は線幅は太らない。よって、X軸方向とY軸方向とで、線幅が異なる異方性が発生することになる。
また、「引抜プライマ方式凹版印刷法」を利用した電磁波遮蔽材では、流動状態のプライマ(流動)層の面に印刷する方式になるため、漏出部5の導電性組成物が固化したプライマ層2の内部に表面から埋まり込んだ(めり込んだ)様な形状となる{図1(a)参照}。
On the other hand, when the extending direction of the groove of the concave portion 32 is a groove parallel to the X axis, the groove corresponding to the concave portion 32 continues to exist on the downstream side in the scraping direction Xd of the doctor blade 35 of the concave portion 32, and leakage occurs. Since there is no plate surface convex portion itself where the portion 5 is generated, the leakage portion 5 is not generated.
For this reason, if the groove pattern of the concave portion 32 has an X-axis direction and a Y-axis direction in the extending direction of the groove, the groove width of the concave portion 32 on the plate surface is the same in the X-axis direction and the Y-axis direction. Even in the case of the line width of the conductive convex pattern layer actually printed and formed, the line width extending in the direction orthogonal to the X-axis direction (Y-axis direction) is the line width in the X-axis direction ( It is expanded in the positive direction of the scraping direction Xd) and the line width is increased. On the other hand, the line width extending in the direction orthogonal to the Y-axis direction (X-axis direction) is not thick. Therefore, anisotropy with different line widths occurs between the X-axis direction and the Y-axis direction.
Further, in the electromagnetic wave shielding material using the “pulling primer type intaglio printing method”, the printing is performed on the surface of the primer layer (flowing layer) in a fluid state, and therefore the primer layer 2 in which the conductive composition of the leaking portion 5 is solidified. It becomes a shape that is embedded (embedded) from the surface inside {see FIG. 1 (a)}.

そして、印刷物上に於ける漏出部5の内部では、漏出部以外の部分と比較して導電性粒子間の電気的接触が低下し不十分となる傾向があり、印刷形成された導電性凸状パターン層の導電性(表面抵抗率)への寄与が他の部分に比べて小さく、その一方で、メッシュパターンの開口部4に進入した漏出部5によって、可視光線の光透過性を低下させる{図1(a)参照}。従って、電磁波遮蔽性能と光透過率を高度に両立させる点でも、好ましい部分とは言えない。   And in the inside of the leaking part 5 on the printed matter, the electrical contact between the conductive particles tends to be lowered and insufficient as compared with the part other than the leaking part. The contribution of the pattern layer to the electrical conductivity (surface resistivity) is small compared to other parts, while the leakage portion 5 that has entered the openings 4 of the mesh pattern reduces the light transmittance of visible light { See FIG. 1 (a)}. Therefore, it cannot be said that it is a preferable part from the viewpoint of achieving both high electromagnetic shielding performance and light transmittance.

更に、印刷形成する導電性凸状パターン層3が、正方格子など格子状で互いに異なる2方向に延びる線条群同士で線幅が異なると、電磁波遮蔽材をディスプレイの前面に配置した時に、観察されるディスプレイの画質の均質性が低下し、製品品質上好ましくない。   Further, when the conductive convex pattern layer 3 to be printed has a line width that is different between two different groups extending in two directions in a lattice shape such as a square lattice, the observation is performed when the electromagnetic wave shielding material is disposed on the front surface of the display. The uniformity of the image quality of the display is reduced, which is not preferable in terms of product quality.

すなわち、本発明の課題は、特にPDPなど各種ディスプレイの前面(観察者側面)に配置する用途に好適な電磁波遮蔽材について、電磁波遮蔽性能と光透過性を高度に両立させる為に、「引抜プライマ方式凹版印刷法」によって形成した導電性凸状パターン層の形成部である線条(ライン部)の線幅に印刷速度を速くした時に生じる漏出部による、導電性の有効性及び光透過率の低下、並びに線幅の異方性に起因する画質の均質性の低下が製品品質へ影響するのを防いだ、電磁波遮蔽材を提供することである。   That is, the object of the present invention is to provide an electromagnetic shielding material suitable for use in the front surface (observer side surface) of various displays such as PDPs, in order to achieve both high electromagnetic shielding performance and light transmittance. Effectiveness of electrical conductivity and light transmittance due to the leaking part that occurs when the printing speed is increased to the line width of the line (line part) that is the formation part of the conductive convex pattern layer formed by the “system intaglio printing method” An object of the present invention is to provide an electromagnetic wave shielding material that prevents a reduction in image quality uniformity due to a decrease in line width anisotropy from affecting the product quality.

そこで、本発明の電磁波遮蔽材は、次の構成とした。
(1)透明基材上にプライマ層を介して、導電体パターン層として導電性粒子とバインダ樹脂を含む導電性凸状パターン層が形成され且つ該導電性凸状パターン層の非形成部として多数の開口部が形成され、前記プライマ層は該導電性凸状パターン層の非形成部での厚さに比べて導電性凸状パターン層の形成部での厚さが厚い、電磁波遮蔽材において、
導電性凸状パターン層は互いに交差する2群の平行線条群のうちの少なくとも1群について、導電性凸状パターン層の形成部である凸部の主切断面形状が、頂部両側で頂部からプライマ層面に至るまでの麓部の幅が異なり、広い方の麓部の幅をWw、狭い方の麓部の幅をWnとしたときに、(Ww−Wn)/2Wnを0.5以下とした、電磁波遮蔽材。
(2)更に、上記構成において、導電性凸状パターン層の凸部内の導電性粒子の分布が、相対的に、プライマ層近傍において分布が疎であり頂部近傍において分布が密である、電磁波遮蔽材、とした。
Therefore, the electromagnetic wave shielding material of the present invention has the following configuration.
(1) A conductive convex pattern layer containing conductive particles and a binder resin is formed as a conductor pattern layer on a transparent substrate via a primer layer, and many non-formed portions of the conductive convex pattern layer are formed. In the electromagnetic wave shielding material, the primer layer is thicker at the conductive convex pattern layer forming portion than at the non-formed portion of the conductive convex pattern layer.
The conductive convex pattern layer has at least one group of two groups of parallel lines intersecting each other, and the main cut surface shape of the convex part, which is the formation part of the conductive convex pattern layer, is from the top on both sides of the top. When the width of the collar part up to the primer layer surface is different, the width of the wide collar part is Ww, and the width of the narrow collar part is Wn, (Ww−Wn) / 2Wn is 0.5 or less. Electromagnetic wave shielding material.
(2) Furthermore, in the above configuration, the distribution of the conductive particles in the convex portions of the conductive convex pattern layer is relatively sparse in the vicinity of the primer layer and dense in the vicinity of the top portion. Material.

(1)本発明によれば、導電性凸状パターン層を構成する互いに交差する2群の平行線条群の間で、漏出部の存在によって線幅が異なる異方性が生じても、線幅を上記の様に主切断面(延在方向と直交する断面)形状での麓部の幅の左右非対称性に着目して、麓部の幅を規定し制御することで、導電性凸状パターン層の導電性と光透過率への悪影響、及び、線幅の異方性に起因するディスプレイ画像の画質の均質性への悪影響を抑えて、製品品質の低下を防げる。
(2)更に、導電性凸状パターン層の凸部内部に於ける、導電性粒子の分布に所定の粗密を持たせることで、同じ導電性粒子使用量でも導電性凸状パターン層全体としての表面抵抗率を下げて電磁波遮蔽性能と光透過性とをより高度に両立できる上、導電性凸状パターン層とプライマ層との密着性を強化できる。
(1) According to the present invention, even if anisotropy having a different line width occurs due to the presence of the leaking portion between the two groups of parallel lines that intersect with each other constituting the conductive convex pattern layer, Paying attention to the left-right asymmetry of the width of the buttock in the shape of the main cut surface (cross section orthogonal to the extending direction) as described above, the width of the ridge is regulated and controlled so that the conductive convex shape The adverse effect on the conductivity and light transmittance of the pattern layer and the adverse effect on the uniformity of the image quality of the display image due to the anisotropy of the line width can be suppressed to prevent the product quality from deteriorating.
(2) Further, by providing the distribution of the conductive particles within the convex portions of the conductive convex pattern layer with a predetermined roughness, the entire conductive convex pattern layer can be used even with the same amount of conductive particles used. The surface resistivity can be lowered to achieve both higher electromagnetic shielding performance and light transmittance, and the adhesion between the conductive convex pattern layer and the primer layer can be enhanced.

本発明の電磁波遮蔽材の一形態を例示する説明図であり、(a)は断面図、(b)は平面図、(c)は漏出部が無い部分の断面図。It is explanatory drawing which illustrates one form of the electromagnetic wave shielding material of this invention, (a) is sectional drawing, (b) is a top view, (c) is sectional drawing of a part without a leakage part. 引抜プライマ方式凹版印刷法による導電性凸状パターン層の凸部(形成部)の一形態として、導電性凸状パターン層の非形成部よりも形成部でプライマ層が厚く、導電性凸状パターン層の凸部内での導電性粒子の分布が凸部の頂部近くが密でプライマ層近くが疎の形態を、概念的に示す断面図。As one form of the convex part (formation part) of the conductive convex pattern layer by the drawing primer type intaglio printing method, the primer layer is thicker in the formation part than the non-formation part of the conductive convex pattern layer, and the conductive convex pattern Sectional drawing which shows notionally the distribution of the electroconductive particle in the convex part of a layer that the top part of a convex part is dense, and the primer layer vicinity is a sparse form. 印刷時の凹版上の版面パターンと線幅の異方性の関係の説明面であり、(a)はシリンダ形状の凹版上の凹部の溝パターンとドクターブレードの関係を説明する斜視図、(b)は漏出部発生の原因となるドクターブレード掻取時のインキ漏出を説明する断面図。(B) is a perspective view for explaining the relationship between the groove pattern of the concave portion on the cylinder-shaped intaglio and the doctor blade; ) Is a cross-sectional view for explaining ink leakage at the time of scraping of the doctor blade, which causes the leakage portion.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

〔実施形態例〕
先ず、本発明の電磁波遮蔽材の一実施形態例を、図1(a)の断面図、図1(b)の平面図、及び図1(c)の断面図で説明する。同図の様に、本発明の電磁波遮蔽材10は、透明基材1の少なくとも片面に、プライマ層2が形成され、このプライマ層2の上に導電体パターン層として、導電性粒子とバインダ樹脂を含む導電性組成物の固化物として導電性凸状パターン層3が形成されており、該導電性凸状パターン層3の非形成部として光透過性確保の為の多数の開口部4が形成されている。また、本実施形態例では、導電性凸状パターン層3の平面視形状は図1(b)の様に、正方格子状のメッシュ形状であり、X軸方向に互いに平行に配列し且つX軸方向に直交する方向に直線的に延びる線条Lxと、Y軸方向に互いに平行に配列し且つY軸方向に直交する方向に直線的に延びる線条Lyとが、互いに直交して交差するメッシュパターンである。
[Example Embodiment]
First, an embodiment of the electromagnetic wave shielding material of the present invention will be described with reference to a cross-sectional view of FIG. 1A, a plan view of FIG. 1B, and a cross-sectional view of FIG. As shown in the figure, in the electromagnetic wave shielding material 10 of the present invention, a primer layer 2 is formed on at least one surface of a transparent substrate 1, and conductive particles and a binder resin are formed on the primer layer 2 as a conductor pattern layer. The conductive convex pattern layer 3 is formed as a solidified product of the conductive composition containing, and a large number of openings 4 for ensuring light transmission are formed as non-formed portions of the conductive convex pattern layer 3. Has been. Further, in the present embodiment example, the plan view shape of the conductive convex pattern layer 3 is a square lattice mesh shape, as shown in FIG. 1B, arranged parallel to each other in the X-axis direction and the X-axis. A line Lx that extends linearly in a direction orthogonal to the direction and a line Ly that is arranged parallel to each other in the Y-axis direction and linearly extends in a direction orthogonal to the Y-axis direction intersect each other at right angles It is a pattern.

しかも、線条Lxは、図1(a)の断面図で概念的に示す様に、頂部P両側の麓部の幅が左右非対称で異なる(図面では頂部右側が左側よりも広い)。なお、頂部Pとは最も標高が高い頂上部分であり、透明基材1表面からの垂直方向で最も離れた位置の部分である。又、麓部の幅とは、導電性凸状パターン層3のうちで、頂部Pを通り透明基材1と直交する仮想上の法線Nと導電性凸状パターン層3裾野(麓)の先端部En、Ewとの間の、法線Nと直交する方向の(透明基材1と平行な方向の)距離を云う。一方、線条Lyは図1(c)の断面図で概念的に示す様に、頂部P両側の麓部の先端部En、Enは何れも頂部を通る法線Nから等距離にあり、左右どちらの麓部の幅もWnで、凸状パターン層3の主切断面形状は法線Nに対して左右対称である。この為、その二倍の2Wnが線条Lyの線幅WでありWyとなっている(但し、凹版版面の凹部の断面形状が左右対称形状ではないときはこの限りでない)。
したがって、本実施形態例では、図1(b)の平面図で概念的に示す様に、線条Lxの線幅は、線条Lxと直交する線条Lyよりも線幅が広い。具体的には、線条Lxの線幅Wxは15μm、線条Lyの線幅Wyは14μmであり、線条Lx及び線条Lyの配列周期は同じで各々300μmである。
Moreover, in the line Lx, as conceptually shown in the cross-sectional view of FIG. 1A, the widths of the flanges on both sides of the top P are asymmetrically different (in the drawing, the right side of the top is wider than the left side). In addition, the top part P is a top part with the highest altitude, and is a part at a position farthest in the vertical direction from the surface of the transparent substrate 1. In addition, the width of the ridge portion means that, in the conductive convex pattern layer 3, the virtual normal N passing through the top portion P and orthogonal to the transparent substrate 1 and the skirt (麓) of the conductive convex pattern layer 3. The distance between the front ends En and Ew in the direction orthogonal to the normal N (in the direction parallel to the transparent substrate 1). On the other hand, the line Ly is conceptually shown in the cross-sectional view of FIG. 1 (c), and the tip portions En and En of the ridges on both sides of the top P are equidistant from the normal N passing through the top. The width of both ridges is Wn, and the shape of the main cut surface of the convex pattern layer 3 is symmetrical with respect to the normal line N. For this reason, the double 2Wn is the line width W of the line Ly and is Wy (however, this is not the case when the cross-sectional shape of the concave portion of the intaglio plate surface is not a symmetrical shape).
Therefore, in this embodiment, as conceptually shown in the plan view of FIG. 1B, the line width of the line Lx is wider than the line Ly that is orthogonal to the line Lx. Specifically, the line width Wx of the line Lx is 15 μm, the line width Wy of the line Ly is 14 μm, and the arrangement period of the line Lx and the line Ly is the same and 300 μm.

なお、本実施形態例では、透明基材1には厚さ100μmの帯状の透明なポリエチレンテレフタレートフィルムを用い、導電性凸状パターン層3は、銀の導電性粒子とポリエステル系樹脂、溶剤等からなる樹脂バインダからなる導電性組成物(インキ)を「引抜プライマ方式凹版印刷法」によって印刷形成したものである。また、プライマ層2は、アクリレート系の紫外線硬化性樹脂のプライマを用いて透明基材1上に厚さ7μmのプライマ層となる様に形成した。   In the present embodiment, a transparent polyethylene terephthalate film having a thickness of 100 μm is used for the transparent substrate 1, and the conductive convex pattern layer 3 is made of silver conductive particles, a polyester resin, a solvent, and the like. A conductive composition (ink) made of a resin binder is formed by printing by the “pulling primer type intaglio printing method”. The primer layer 2 was formed on the transparent substrate 1 to be a 7 μm-thick primer layer using an acrylate-based ultraviolet curable resin primer.

ただ、本実施形態では、線条Lxの線幅Wxが線条Lyの線幅Wyよりも広いとは言え、頂部両側の麓部の幅が非対称の方の線条Lxについて所定の寸法範囲内に抑えてあるので、ディスプレイ画像の画質の均質性に悪影響する様な製品品質の低下には至っていない。且つ、線条Lxの幅Wx=Ww+Wnのうち、(Ww+Wn)−ΔW=2Wnの部分(及び線条Lyの幅Wyの部分と)で所望の電磁波遮蔽性を確保するようにする為、電磁波遮蔽性にも不足はない。
すなわち、線条Lxについて広い方の麓部の幅Wwと、狭い方の麓部の幅Wnとの寸法関係を、(Ww−Wn)/2Wnが0.5以下となる様にしてある。ここで、2Wn、つまりWnの2倍は、麓部が理想的に印刷形成された時の線幅Wに該当し、凹版版面の凹部の溝幅に等しく印刷成された時であり、他の1群の平行線条群に属する図1(c)に示す線条Lyがこれに該当する。また、Ww−Wnは、片側の麓部の幅が印刷高速化に伴って広がった分、つまり漏出部5の幅ΔWに該当し、漏出部5の幅ΔW=Ww−Wnである。漏出部5は、凹版印刷時に版面上で凹部から版面凸部上に漏出したインキが転移し印刷された部分である。従って、線条Lxの線幅Wxは、麓部が理想的に印刷形成された時の線幅Wである2Wnに対して漏出部5の幅ΔWを加えた幅であり、Wx=2Wn+ΔWと言える。そして、(Ww−Wn)/2WnはΔW/2Wnであり、漏出部5の幅が理想的な線幅2Wnの5割以下とすればディスプレイ表示画質への影響を許容できる。そこで、本実施形態例では、(Ww−Wn)/2Wn=(8μm−7μm)/(2×7μm)=1μm/14μm=0.07(7%)として、0.5以下の条件を満足させてある。
However, in this embodiment, although the line width Wx of the line Lx is wider than the line width Wy of the line Ly, the width of the ridges on both sides of the top is asymmetrical within the predetermined dimension range for the line Lx. Therefore, the product quality has not been lowered so as to adversely affect the uniformity of the image quality of the display image. Further, in order to ensure a desired electromagnetic wave shielding property in the portion of (Ww + Wn) −ΔW = 2Wn (and the width Wy portion of the filament Ly) in the width Wx = Ww + Wn of the filament Lx, There is no shortage of sex.
In other words, the dimensional relationship between the width Ww of the wider collar portion and the width Wn of the narrow collar portion of the line Lx is such that (Ww−Wn) / 2Wn is 0.5 or less. Here, 2Wn, that is, twice Wn corresponds to the line width W when the collar portion is ideally printed and formed, and is printed when it is equal to the groove width of the concave portion of the intaglio plate surface. The line Ly shown in FIG. 1C belonging to one group of parallel line groups corresponds to this. Further, Ww−Wn corresponds to the width of the flange portion on one side that has increased with the increase in printing speed, that is, the width ΔW of the leakage portion 5, and the width ΔW = Ww−Wn of the leakage portion 5. The leaking portion 5 is a portion where ink leaked from the concave portion to the convex portion of the printing plate is transferred and printed on the printing plate during intaglio printing. Therefore, the line width Wx of the filament Lx is a width obtained by adding the width ΔW of the leakage portion 5 to 2Wn which is the line width W when the collar portion is ideally printed and formed, and it can be said that Wx = 2Wn + ΔW. . (Ww−Wn) / 2Wn is ΔW / 2Wn, and if the width of the leakage portion 5 is 50% or less of the ideal line width 2Wn, the influence on the display display image quality can be allowed. Therefore, in this embodiment, (Ww−Wn) / 2Wn = (8 μm−7 μm) / (2 × 7 μm) = 1 μm / 14 μm = 0.07 (7%), and the condition of 0.5 or less is satisfied. It is.

一方、印刷速度を速くしていき、(Ww−Wn)/2Wnが0.5を超えてしまうと、線幅の異方性が目立ち画質の均質性が低下し製品品質に悪影響する。なお、太い方の麓部の幅Wwが狭い方の麓部の幅Wnの2倍以上となるときに、(Ww−Wn)/2Wn>0.5となる。   On the other hand, if the printing speed is increased and (Ww−Wn) / 2Wn exceeds 0.5, the anisotropy of the line width is conspicuous and the uniformity of the image quality is lowered, which adversely affects the product quality. Note that (Ww−Wn) / 2Wn> 0.5 when the width Ww of the thicker collar is more than twice the width Wn of the narrower collar.

〔各層の詳細〕
以下、本発明の電磁波遮蔽材の各層について、更に詳述する。
[Details of each layer]
Hereinafter, each layer of the electromagnetic wave shielding material of the present invention will be described in more detail.

[透明基材]
先ず、透明基材1には、公知の透明な材料を使用すれば良く、樹脂フィルムの様な有機系基材、ガラス、セラミックスの様な無機系基材があるが、可視光線領域での透明性、耐熱性、機械的強度、取扱性等を考慮すると、樹脂フィルム(乃至シート)が代表的である。樹脂フィルム(乃至シート)の樹脂は例えば、ポリエチレンテレフタレート等のポリエステル系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、或いは、シクロオレフィン重合体などのポリオレフィン系樹脂、トリアセチルセルロースなどのセルロース系樹脂等である。なかでも、2軸延伸ポリエチレンテレフタレートフィルムは好適な材料である。なお、透明基材1の厚みは、取扱性、コスト等の点で通常は、12〜500μm、好ましくは25〜200μmだが、特に制限はない。
なお、透明基材1は、生産性に優れたロール・ツー・ロール方式での生産適性の点で、フレキシブルな(可撓性の)材料を選べる樹脂フィルムが好ましい。更に、この点では、透明基材1は、ロールに巻き取り可能な程度に長手方向に連続して長い連続帯状の樹脂フィルムを用いるのが好ましい。
[Transparent substrate]
First, a known transparent material may be used for the transparent substrate 1, and there are an organic substrate such as a resin film, and an inorganic substrate such as glass and ceramics. In view of properties, heat resistance, mechanical strength, handleability, etc., resin films (or sheets) are typical. The resin of the resin film (or sheet) is, for example, a polyester resin such as polyethylene terephthalate, an acrylic resin, a polycarbonate resin, a polyamide resin, a polyolefin resin such as a cycloolefin polymer, or a cellulose resin such as triacetyl cellulose. Resin or the like. Among these, a biaxially stretched polyethylene terephthalate film is a suitable material. The thickness of the transparent substrate 1 is usually 12 to 500 μm, preferably 25 to 200 μm, in view of handling properties and cost, but is not particularly limited.
In addition, the transparent base material 1 is preferably a resin film from which a flexible (flexible) material can be selected from the viewpoint of productivity in the roll-to-roll method with excellent productivity. Further, in this respect, the transparent substrate 1 is preferably a continuous strip-like resin film that is continuously long in the longitudinal direction to such an extent that it can be wound around a roll.

[プライマ層]
プライマ層2は、後述図2の様に導電性凸状パターン層3の形成部と非形成部での厚み差を有し、所謂引抜プライマ方式凹版印刷法に特有の層であり、透明な樹脂層として形成する。該樹脂としては、熱可塑性樹脂、硬化性樹脂などを使用でき、硬化性樹脂としては、熱硬化性樹脂、電離放射線硬化性樹脂を使用できる。ただ、該樹脂としては、凹版印刷時に、流動状態から固化状態への迅速な変化を制御できる点で、好ましくは電離放射線硬化性樹脂が使用される。なお、電離放射線硬化性樹脂としては公知のものから適宜選択できる。例えば、電離放射線で架橋など重合硬化するモノマー及び/又はプレポリマーを含む組成物を使用する。モノマーやプレポリマーにはラジカル重合性やカチオン重合性の化合物を使用する。なかでも、アクリレート系化合物を用いた電離放射性硬化性樹脂が代表的である。また、電離放射線としては、通常、紫外線、電子線などが使用される。プライマ層2の固化後の厚みとしては、2〜30μm程度、好ましくは、7〜23μmである。
[Primer layer]
The primer layer 2 has a thickness difference between the formation part and non-formation part of the conductive convex pattern layer 3 as shown in FIG. 2 to be described later, and is a layer peculiar to the so-called drawing primer type intaglio printing method. Form as a layer. A thermoplastic resin, a curable resin, or the like can be used as the resin, and a thermosetting resin or an ionizing radiation curable resin can be used as the curable resin. However, as the resin, an ionizing radiation curable resin is preferably used in that a rapid change from a fluid state to a solidified state can be controlled during intaglio printing. The ionizing radiation curable resin can be appropriately selected from known ones. For example, a composition containing a monomer and / or a prepolymer that is polymerized and cured by ionizing radiation or the like is used. As the monomer or prepolymer, a radical polymerizable or cationic polymerizable compound is used. Among these, ionizing radiation curable resins using acrylate compounds are typical. Moreover, as ionizing radiation, ultraviolet rays, electron beams and the like are usually used. The thickness of the primer layer 2 after solidification is about 2 to 30 μm, preferably 7 to 23 μm.

[導電性凸状パターン層]
導電性凸状パターン層3は、導電性粒子を樹脂バインダ中に分散させた導電性組成物を用いて引抜プライマ方式凹版印刷法で形成する層であり、導電性組成物の固化物からなる。また、導電性凸状パターン層3の非形成部として無数の開口部4が形成される(図1参照)。なお、導電性凸状パターン層3の厚みは、電磁波遮蔽性能等の点から、通常は2〜100μm、より好ましくは5〜20μm程度である。
[Conductive convex pattern layer]
The conductive convex pattern layer 3 is a layer formed by a drawing primer type intaglio printing method using a conductive composition in which conductive particles are dispersed in a resin binder, and is made of a solidified product of the conductive composition. Innumerable openings 4 are formed as non-formed portions of the conductive convex pattern layer 3 (see FIG. 1). The thickness of the conductive convex pattern layer 3 is usually about 2 to 100 μm, more preferably about 5 to 20 μm, from the viewpoint of electromagnetic shielding performance.

導電性凸状パターン層3のパターンの平面視形状はメッシュ形状であり、互いに交差する2群の平行線条群からなるパターン形状を有する。平行線条群は、直線を成す線条をその延在方向を互いに平行にして且つ延在方向に直交する方向に多数配列させた線群である。そして、2群の平行線条群が交差する角度が直角で、且つ2群の平行線条群の夫々の線条の配列ピッチが同じとき、所謂正方格子状のパターンとなる。なお、メッシュ形状は、この他、交差する角度が直角でないパターンでもよく、また、配列ピッチが互いに交差する2群で異なっていてもよく、また、配列ピッチ自体が不規則でも良い。尚、線条Lx、Lyの配列ピッチ(周期)は、各線条の幅、開口率、所望の電磁波遮蔽性と光透過性にもよるが、一般に、線条Lx、Lyの配列ピッチとも150〜500μmである。
なお、線条の線幅、つまり導電性凸状パターン層3の形成部3aの凸部の線幅は(図2参照)、電磁波遮蔽性能などの観点から通常は5〜50μmである。また、導電性凸状パターン層3の開口率〔(導電性凸状パターン層3の開口部4の合計面積/導電性凸状パターン層3の開口部4及び導電性凸状パターン層3の形成部3aを含めた全被覆面積)×100で定義〕は、電磁波遮蔽性能及び可視光透過性との両立の点から、50〜95%程度である。
The plan view shape of the pattern of the conductive convex pattern layer 3 is a mesh shape, and has a pattern shape composed of two groups of parallel lines that intersect each other. The parallel line group is a line group in which a large number of lines forming a straight line are arranged in a direction perpendicular to the extending direction with their extending directions parallel to each other. When the angle at which the two groups of parallel filaments intersect is a right angle and the arrangement pitch of the two groups of parallel filaments is the same, a so-called square lattice pattern is obtained. In addition, the mesh shape may be a pattern in which the intersecting angle is not a right angle, the array pitch may be different in the two groups intersecting each other, and the array pitch itself may be irregular. The arrangement pitch (period) of the filaments Lx and Ly depends on the width of each filament, the aperture ratio, the desired electromagnetic wave shielding property and light transmittance, but generally the arrangement pitch of the filaments Lx and Ly is 150 to 500 μm.
In addition, the line width of a filament, ie, the line width of the convex part of the formation part 3a of the electroconductive convex pattern layer 3 (refer FIG. 2), is normally 5-50 micrometers from viewpoints, such as electromagnetic wave shielding performance. Further, the aperture ratio of the conductive convex pattern layer 3 [(total area of the openings 4 of the conductive convex pattern layer 3 / formation of the openings 4 of the conductive convex pattern layer 3 and the conductive convex pattern layer 3] The total coverage area including the portion 3a) defined by x100] is about 50 to 95% from the viewpoint of compatibility with electromagnetic wave shielding performance and visible light transmittance.

なお、導電性凸状パターン層3を形成する為の導電性組成物は、導電性粒子を樹脂バインダ中に分散させた液状の組成物(インキ)であり、溶剤乾燥、電離放射線照射、加熱などのエネルギー付加、化学反応などの固化手段によって固化し、固化物が導電性を示す組成物である。導電性粒子及び樹脂バインダには公知の物、例えば、導電ペースト、導電インキなどを適宜採用できる。
導電性粒子としては、金、銀、白金、銅、錫、アルミニウム、ニッケルなど高導電性金属(乃至その合金)の粒子やコロイド、或いは、樹脂粒子や無機非金属物粒子の表面を金、銀など上記高導電性金属(乃至その合金)で被覆した金属被覆粒子、或いは黒鉛粒子、などを用いる。
樹脂バインダは導電性組成物から導電性粒子を除いた残りの成分であり、樹脂バインダの樹脂(バインダ樹脂)としては、熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂などを単独使用又は併用する。熱可塑性樹脂には熱可塑性ポリエステル樹脂、熱可塑性アクリル樹脂など、熱硬化性樹脂にはメラミン樹脂、熱硬化性ポリエステル樹脂、熱硬化性アクリル樹脂、熱硬化性ウレタン樹脂などを使用する。また、電離放射線硬化性樹脂には、電離放射線で架橋など重合硬化するモノマー及び/又はプレポリマーを含む組成物を使用する。モノマーやプレポリマーにはラジカル重合性やカチオン重合性の化合物を使用する。なかでも、アクリレート系化合物を用いた電離放射性硬化性樹脂が代表的である。
また、導電性組成物は、焼成加熱の様な透明基材1等を構成する樹脂が劣化する様な高温ではなく低温加熱により導電性を向上できる様な、ナノサイズの導電性粒子、導電性樹脂、導電性化合物、化学反応によって導電性となる導電性化合物などを含む組成物でもよい。また、誘導加熱処理、その他の加熱処理等の物理的処理、酸や水と接触させて表面抵抗を低減する薬品処理などの化学処理、電気化学的処理等によって、導電性を向上させてもよい。
The conductive composition for forming the conductive convex pattern layer 3 is a liquid composition (ink) in which conductive particles are dispersed in a resin binder, such as solvent drying, ionizing radiation irradiation, and heating. The composition is solidified by solidification means such as energy addition and chemical reaction, and the solidified product exhibits conductivity. For the conductive particles and the resin binder, known materials such as a conductive paste and a conductive ink can be appropriately employed.
The conductive particles include gold, silver, platinum, copper, tin, aluminum, nickel particles or colloids of highly conductive metals (or alloys thereof), or resin particles or inorganic non-metallic particles on the surface of gold, silver. For example, metal-coated particles coated with the above highly conductive metal (or an alloy thereof), graphite particles, or the like is used.
The resin binder is the remaining component obtained by removing the conductive particles from the conductive composition, and as the resin binder resin (binder resin), a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, or the like is used alone. Combined. A thermoplastic polyester resin, a thermoplastic acrylic resin, or the like is used as the thermoplastic resin, and a melamine resin, a thermosetting polyester resin, a thermosetting acrylic resin, a thermosetting urethane resin, or the like is used as the thermosetting resin. Further, as the ionizing radiation curable resin, a composition containing a monomer and / or prepolymer that is polymerized and cured by ionizing radiation and the like is used. As the monomer or prepolymer, a radical polymerizable or cationic polymerizable compound is used. Among these, ionizing radiation curable resins using acrylate compounds are typical.
In addition, the conductive composition is composed of nano-sized conductive particles, conductive materials that can improve conductivity by low-temperature heating instead of high-temperature that causes deterioration of the resin constituting the transparent substrate 1 and the like such as baking and heating. A composition containing a resin, a conductive compound, a conductive compound that becomes conductive by a chemical reaction, or the like may also be used. In addition, the electrical conductivity may be improved by physical treatment such as induction heat treatment or other heat treatment, chemical treatment such as chemical treatment for reducing surface resistance by contact with acid or water, electrochemical treatment, or the like. .

なお、国際公開第2008/149969号のパンフレットに開示の所謂「引抜プライマ方式凹版印刷法」では、例えば次の様にして印刷する。印刷インキとして導電性ペーストなどの固化前の導電性組成物を、凹版の版面の凹部のみにドクターブレードによって充填すると共に凹部以外の版面凸部上の導電性組成物は掻き取って除去する。凹部に充填された導電性組成物の表面は版面(凸部)と完全な面一にならず僅かに窪んだ凹みが生じる。この凹版に、未だ流動状態のプライマ流動層が塗工された透明基材1を供給してプライマ流動層を版面に圧着すると、プライマ流動層が凹みに流れ込み凹みを充填し、また版面凸部も覆う。この状態でプライマ流動層を紫外線照射による硬化等によって固化してプライマ層2とした後、透明基材1を凹版から離版して、透明基材1上にプライマ層2と、未硬化の導電性組成物、或いは導電性組成物が固化済みの導電性凸状パターン層3が積層された印刷物を得る。なお、導電性組成物の固化は、未硬化の導電性組成物が溶剤を含むときは離版後に行い、無溶剤の場合は離版後、或いは、離版前のプライマ固化と同時又はプライマ固化後に行う。   In the so-called “drawing primer type intaglio printing method” disclosed in the pamphlet of International Publication No. 2008/149969, for example, printing is performed as follows. A conductive composition such as a conductive paste as a printing ink before solidification is filled only by a doctor blade into the concave portion of the intaglio plate surface, and the conductive composition on the convex portion of the plate surface other than the concave portion is scraped off and removed. The surface of the conductive composition filled in the recesses is not completely flush with the plate surface (convex portions), and a slightly depressed recess is generated. When the transparent base material 1 on which the fluidized primer fluidized layer is still applied is supplied to the intaglio plate and the primer fluidized bed is pressure-bonded to the plate surface, the primer fluidized bed flows into the recess and fills the indentation. cover. In this state, the primer fluidized layer is solidified by curing by ultraviolet irradiation or the like to form the primer layer 2, and then the transparent base material 1 is released from the intaglio, and the primer layer 2 and the uncured conductive material are formed on the transparent base material 1. A printed matter in which the conductive convex pattern layer 3 having the solidified conductive composition or the conductive composition is laminated is obtained. Solidification of the conductive composition is performed after release when the uncured conductive composition contains a solvent, and after release or in the case of no solvent, or at the same time as primer solidification before release or primer solidification. To do later.

そして、この様な、「引抜プライマ方式凹版印刷法」による印刷物が、他の印刷法に見られない大きな特徴は、図2の断面図(透明基材1は略して図示)で概念的に示す様に、プライマ層2と導電性凸状パターン層3との界面について、プライマ層2は、導電性凸状パターン層3の形成部3aでの厚さTaが導電性凸状パターン層3の非形成部3bでの厚さTbよりも厚い形状となることである。なお、非形成部3bの厚さTbは、形成部3aの厚さTaの影響のない非形成部3bつまり開口部4の中央部での厚さとする。   And the big characteristic which such a printed matter by the "drawing primer system intaglio printing method" cannot be seen in other printing methods is conceptually shown in the sectional view of FIG. 2 (the transparent substrate 1 is omitted). Similarly, with respect to the interface between the primer layer 2 and the conductive convex pattern layer 3, the primer layer 2 has a thickness Ta at the formation portion 3a of the conductive convex pattern layer 3 that is not the same as that of the conductive convex pattern layer 3. The shape is thicker than the thickness Tb in the formation portion 3b. The thickness Tb of the non-formed part 3b is the thickness at the non-formed part 3b, that is, the central part of the opening 4, which is not affected by the thickness Ta of the formed part 3a.

更に、プライマ層2と導電性凸状パターン層3との界面は、次の(A)〜(C)のいずれかの1以上の断面形態を有する(但し、図2では図示は省略)。(A)プライマ層2と導電性凸状パターン層3との界面が非直線状に入り組んでいる断面形態、(B)プライマ層2を構成する成分と導電性凸状パターン層3を構成する成分とが混合している混合層を界面近傍に有する断面形態、(C)導電性凸状パターン層3を構成する導電性組成物中にプライマ層2に含まれる成分が存在している断面形態。この様な、界面の断面形態は、プライマ層2がプライマ層2と導電性凸状パターン層3との離版時の密着性を強化し、凹版からインキ(導電性組成物)の被印刷物(透明基材1)への転移を促進し高精度且つ高品質の凹版印刷を可能にしている理由であると思われる。   Furthermore, the interface between the primer layer 2 and the conductive convex pattern layer 3 has one or more of the following cross-sectional forms (A to C) (however, illustration is omitted in FIG. 2). (A) A cross-sectional configuration in which the interface between the primer layer 2 and the conductive convex pattern layer 3 is in a non-linear manner, (B) a component constituting the primer layer 2 and a component constituting the conductive convex pattern layer 3 And (C) a cross-sectional form in which the components contained in the primer layer 2 are present in the conductive composition constituting the conductive convex pattern layer 3. Such a cross-sectional form of the interface is such that the primer layer 2 reinforces the adhesion at the time of release between the primer layer 2 and the conductive convex pattern layer 3, and the printing material (ink conductive composition) from the intaglio plate ( This seems to be the reason why the transition to the transparent substrate 1) is promoted to enable high-precision and high-quality intaglio printing.

また、導電性凸状パターン層3の形成部3aである導電性凸状パターン層3自体の凸部の内部では、図2で概念的に示す様に、導電性粒子Cpが一様な均一な分布ではなく、導電性粒子Cpの分布が、相対的に、凸部の頂部の近くが密でそれよりも頂部から遠いプライマ層2の近くが疎である分布を持つ内部構造が好ましい。密とは単位体積中の導電性粒子Cpの粒子数で見た数密度(体積密度)である。つまり、凸部内部の導電性粒子Cpの数密度が、プライマ層2近くに比べて頂部P近くの方が大きくなる分布である。数密度が大きい方が導電性粒子Cp同士の電気的接触が行われ易い。従って、たとえ導電性凸状パターン層3中の導電性粒子Cpの平均濃度が同じであっても、同じ数の導電性粒子Cpを数密度一様で分布させた場合に比べて、数密度が大きい部分での体積抵抗率の低下が寄与して全体として体積抵抗率が下がり、電磁波遮蔽性能が向上する。更に、プライマ層2との境界近傍での導電性粒子Cpの数密度が小さいことによって、導電性凸状パターン層3とプライマ層2との密着性が向上する。尚、導電性凸状パターン層3中に於ける導電性粒子Cpの分布状態は、線条Lx、Lyの延在方向には依存性を持たない(延在方向には単位体積中の粒子の数密度は一定)。その為、この様な単位体積中の導電性粒子Cpの数密度は、線条Lx、Lyの主切断面に於ける単位面積中の導電性粒子Cpの数密度(面密度)で評価出来る。すなわち、図2の如く、主切断面内に於いて、導電性粒子Cpの面密度がプライマ層2近くに比べて頂部P近くの方が大きくなる分布であれば、導電性粒子Cpの体積密度もプライマ層2近くに比べて頂部P近くの方が大きくなる分布であると判断して良い。
この様に凸部の頂部Pの方に導電性粒子Cpを偏在させるには、例えば、プライマ流動層形成済みの透明基材1を版面に圧着する圧着力を強くすると共に、導電性組成物は粘度を低めにし且つ凹版凹部内では固化させずに版面から離版後に固化させると良い。この他、導電性粒子Cpと樹脂バインダとの比重差、固化前の導電性組成物の粘度(樹脂材料及び樹脂量、溶剤量、その他添加剤量、導電性粒子の形状、粒度分布、含有量など関係)、固化条件などにも依存するので、これらは適宜実験的に決定すると良い。導電性粒子Cpと樹脂バインダとの比重差については、もしも、頂部Pが重力の向きと逆向き(鉛直上向き)にして導電性凸状パターン層3を流動状態から固化させる場合は、導電性粒子Cpの比重<樹脂バインダの比重、とする。もしも、頂部Pが重力の向きと同じ向き(鉛直下向き)にして導電性凸状パターン層3を流動状態から固化させる場合は、導電性粒子Cpの比重>樹脂バインダの比重、とする。ただ、一般には、導電性粒子Cpとして金属を用い、樹脂バインダとして有機高分子化合物を用いる場合には、導電性粒子Cpの比重>樹脂バインダの比重、となる為、比重差のみを利用して導電性粒子の数密度を前記の如くの分布にする場合は、頂部Pが重力の向きと同じ向きにして導電性凸状パターン層3を固化させることになる。
In addition, within the convex portion of the conductive convex pattern layer 3 itself, which is the formation portion 3a of the conductive convex pattern layer 3, as shown conceptually in FIG. 2, the conductive particles Cp are uniform and uniform. It is preferable that the internal structure has a distribution in which the conductive particles Cp are relatively distributed, not the distribution but relatively dense near the top of the convex portion and sparse near the primer layer 2 far from the top. The term “dense” refers to the number density (volume density) of the conductive particles Cp in the unit volume as viewed from the number of particles. That is, the distribution of the number density of the conductive particles Cp inside the convex portion is larger near the top portion P than near the primer layer 2. The larger the number density, the easier the electrical contact between the conductive particles Cp. Therefore, even if the average concentration of the conductive particles Cp in the conductive convex pattern layer 3 is the same, the number density is higher than that in the case where the same number of conductive particles Cp are uniformly distributed. A decrease in volume resistivity at a large portion contributes to a decrease in volume resistivity as a whole, and electromagnetic wave shielding performance is improved. Furthermore, since the number density of the conductive particles Cp near the boundary with the primer layer 2 is small, the adhesion between the conductive convex pattern layer 3 and the primer layer 2 is improved. The distribution state of the conductive particles Cp in the conductive convex pattern layer 3 does not depend on the extending direction of the filaments Lx and Ly (in the extending direction, the distribution of particles in a unit volume). Number density is constant). Therefore, the number density of the conductive particles Cp in such a unit volume can be evaluated by the number density (surface density) of the conductive particles Cp in the unit area on the main cut surfaces of the filaments Lx and Ly. That is, as shown in FIG. 2, if the distribution of the surface density of the conductive particles Cp in the main cutting plane is greater near the top portion P than in the vicinity of the primer layer 2, the volume density of the conductive particles Cp. It may be determined that the distribution near the top P is larger than that near the primer layer 2.
Thus, in order to make the conductive particles Cp unevenly distributed toward the top part P of the convex part, for example, while increasing the pressure-bonding force for pressure-bonding the transparent substrate 1 on which the primer fluidized layer is formed to the plate surface, the conductive composition is It is preferable to lower the viscosity and solidify after releasing from the plate surface without solidifying in the intaglio recess. In addition, the specific gravity difference between the conductive particles Cp and the resin binder, the viscosity of the conductive composition before solidification (the amount of resin material and resin, the amount of solvent, the amount of other additives, the shape of the conductive particles, the particle size distribution, the content Etc.), and also depends on the solidification conditions, etc., so these should be determined experimentally as appropriate. Regarding the specific gravity difference between the conductive particles Cp and the resin binder, if the top P is opposite to the direction of gravity (vertically upward) and the conductive convex pattern layer 3 is solidified from a fluid state, the conductive particles Cp specific gravity <resin binder specific gravity. If the top P is in the same direction as the direction of gravity (vertically downward) and the conductive convex pattern layer 3 is solidified from the fluidized state, the specific gravity of the conductive particles Cp> the specific gravity of the resin binder. However, in general, when a metal is used as the conductive particles Cp and an organic polymer compound is used as the resin binder, the specific gravity of the conductive particles Cp> the specific gravity of the resin binder. When the number density of the conductive particles is distributed as described above, the conductive convex pattern layer 3 is solidified with the apex P in the same direction as the direction of gravity.

(漏出部)
「引抜プライマ方式凹版印刷法」では高精度な導電性凸状パターン層3が形成できるが、それでも、図3で説明した様に、印刷速度を速くしていくと漏出部5が生じる。生産性を全く考慮しなければ、漏出部5が生じないか生じても殆ど無視できる程度の印刷速度で印刷すれば良いのだが、生産性は製品コストとも密接に関係するので、可能な限り印刷速度は速くした方が好ましい。そこで、漏出部5が生じても、許容できる範囲を規定したのが本発明である。
(Leakage part)
In the “pulling primer type intaglio printing method”, a highly accurate conductive convex pattern layer 3 can be formed. However, as described with reference to FIG. 3, when the printing speed is increased, the leakage portion 5 is generated. If productivity is not taken into consideration at all, it is only necessary to print at a printing speed that can be almost ignored even if the leakage portion 5 does not occur, but since productivity is closely related to product cost, printing is possible as much as possible. It is preferable to increase the speed. Therefore, the present invention defines an allowable range even when the leakage portion 5 occurs.

なお、「引抜プライマ方式凹版印刷法」では、従来の凹版印刷法とは異なり、印刷最中の印刷対象面が流動状態のプライマ流動層である関係上、漏出部5は印刷対象物の表面上に転移し堆積するではなく、表面下に潜り込んで転移する。つまり、プライマ流動層が固化したプライマ層2中に埋まり込んだ(めり込んだ)様な状態となる。この状態を概念的に示したのが、図1(a)の断面図であり、漏出部5は印刷結果物ではプライマ層2に嵌入した嵌入部となる。また、漏出部5は、ドクターブレード35の掻取特性に起因する関係上、ドクターブレード35の掻取方向Xdで正の方向、つまり、図3(b)の如く、凹部を構成する溝の下流側の版面凸部上にのみに現れ、その結果、導電性凸状パターン層3の凸部は、頂部両側の麓部の幅が左右(上流側と下流側とで)非対称の幅となり、主切断面形状が左右非対称形状となる。なお、主切断面とは、透明基材1の表面に垂直でなお且つ導電性凸状パターン層3の線条が延在する方向に直交する断面である。   In the “pulling primer type intaglio printing method”, unlike the conventional intaglio printing method, the surface to be printed during printing is a fluidized primer fluidized bed, so that the leakage portion 5 is on the surface of the printing object. Instead of transferring and depositing, it sinks under the surface and transfers. That is, the primer fluidized bed is embedded (embedded) in the solidified primer layer 2. FIG. 1A is a cross-sectional view conceptually showing this state, and the leakage portion 5 is a fitting portion fitted into the primer layer 2 in the printed product. Further, the leakage portion 5 has a positive direction in the scraping direction Xd of the doctor blade 35, that is, downstream of the groove forming the recess as shown in FIG. As a result, the convex portion of the conductive convex pattern layer 3 has an asymmetric width between the left and right sides (upstream and downstream) of the convex portion of the conductive convex pattern layer 3. The cut surface shape is an asymmetric shape. The main cut surface is a cross section perpendicular to the surface of the transparent substrate 1 and perpendicular to the direction in which the filaments of the conductive convex pattern layer 3 extend.

そこで、本発明では、図1(a)の如く漏出部5が存在しても、導電性凸状パターン層3の凸部の主切断面形状において、その頂部Pからプライマ層面に至る麓部の先端部En、Ew迄の幅Wn、Wwが漏出部5によって左右非対称形状で異なる様に印刷形成されるときは、広い方の麓部の幅をWw、狭い方の麓部の幅をWnとしたときに、(Ww−Wn)/2Wn≦0.5とした。なお、麓部の幅とは、前記と通り、導電性凸状パターン層3の頂部Pを通る法線Nから導電性凸状パターン層3がプライマ層面に至る麓部の先端部En、Ewまで法線Nに垂直に測った距離である。麓部の幅は、また、導電性凸状パターン層3の頂部Pから各々両側に向かって測った凸部の部分の水平距離(透明基材1の面に水平な方向での距離)でもある。漏出部5を生じないで印刷形成された時は、凹版31の凹部の主切断面形状が左右対称であれば、麓部の幅は左右対称で同じ幅となり、この時の幅は狭い方の幅と同じWnとなる。従って、このときの線幅Wは2Wnである。また、Ww−Wn=ΔWは漏出部5の幅に該当する。つまり、漏出部5の幅ΔWを漏出部の発生がない(ときの理想的な)線幅2Wnに対して、1/2以下とすれば、外観状許容できることが判明した。もちろん、漏出部5は少ない方が良く、より好ましくは、(Ww−Wn)/2Wn=ΔW/2Wn≦0.2とするのが均質性の点で望ましい。又、線条Lxの幅Wx=Ww+Wnのうち、(Ww+Wn)−ΔW=2Wnの部分、及び線条Lyの幅2Wの部分とで所望の電磁波遮蔽性を確保するようにする。   Therefore, in the present invention, even if the leaking portion 5 exists as shown in FIG. 1A, in the main cut surface shape of the convex portion of the conductive convex pattern layer 3, the flange portion extending from the top portion P to the primer layer surface is formed. When the widths Wn and Ww up to the leading ends En and Ew are printed and formed differently by the leaking part 5 in the left-right asymmetric shape, the width of the wide collar part is Ww and the width of the narrow collar part is Wn. (Ww−Wn) /2Wn≦0.5. As described above, the width of the flange portion is from the normal N passing through the top P of the conductive convex pattern layer 3 to the tip portions En and Ew of the flange portion where the conductive convex pattern layer 3 reaches the primer layer surface. The distance measured perpendicular to the normal N. The width of the collar portion is also the horizontal distance (distance in a direction horizontal to the surface of the transparent substrate 1) of the convex portions measured from the top P of the conductive convex pattern layer 3 toward both sides. . When the main cut surface shape of the concave portion of the intaglio 31 is left-right symmetric when printed and formed without causing the leakage portion 5, the width of the collar portion is symmetric and the same width, and the width at this time is narrower Wn is the same as the width. Accordingly, the line width W at this time is 2 Wn. Further, Ww−Wn = ΔW corresponds to the width of the leakage portion 5. In other words, it has been found that if the width ΔW of the leakage portion 5 is set to ½ or less of the line width 2Wn at which the leakage portion does not occur (ideal), the appearance is acceptable. Of course, the number of leaking parts 5 should be small, and more preferably (Ww−Wn) /2Wn=ΔW/2Wn≦0.2 from the viewpoint of homogeneity. Further, among the width Wx = Ww + Wn of the filament Lx, a desired electromagnetic wave shielding property is ensured at the portion of (Ww + Wn) −ΔW = 2Wn and the portion of the filament Ly at the width 2W.

ところで、漏出部5の大きさ(幅)は、導電性凸状パターン層3の平面視形状に於けるメッシュ形状を構成する互いに交差する2群の平行線条群の線条の延在する方向が、印刷時にドクターブレード35の掻取方向Xdに直交する方向のとき、言い換えると、ドクターブレード35が延在する方向に平行なときに、顕著に現れる。そして、線条が延在する方向が掻取方向Xdに直交する方向から傾いていくに従って、漏出部5の大きさが減少し、線条が延在する方向が掻取方向Xdに平行のときは現れない{図1(c)参照}。そして、前記実施形態例では、2群の平行線条群のうちの1群の線条Lxの延在方向が掻取方向Xdに直交し、他方の1群の線条Lyが掻取方向Xdに平行で、2群の平行線条群は互いに直角で交差する例であり、最も異方性が顕著な場合であった。   By the way, the size (width) of the leaking portion 5 is the direction in which the filaments of the two parallel filament groups intersecting each other constituting the mesh shape in the plan view shape of the conductive convex pattern layer 3 extend. However, it appears remarkably when it is in a direction perpendicular to the scraping direction Xd of the doctor blade 35 during printing, in other words, parallel to the direction in which the doctor blade 35 extends. When the direction in which the filament extends extends from the direction perpendicular to the scraping direction Xd, the size of the leakage portion 5 decreases, and the direction in which the filament extends is parallel to the scraping direction Xd. Does not appear {see FIG. 1 (c)}. In the embodiment, the extending direction of one group of the line Lx out of the two groups of parallel lines is perpendicular to the scraping direction Xd, and the other group of lines Ly is the scraping direction Xd. The parallel line group of two groups intersects at right angles to each other, and is the case where the anisotropy is most remarkable.

ただし、凹版31の版面上での凹部32が成す溝パターンは、これに限定されない。例えば、印刷形成された導電性凸状パターン層3が、2群の平行線条群が互いに交差する角度が直角以外でも良いし、また直角であっても2群両方の線条群を構成する線状が掻取方向Xdに直交していない凹版31を用いて形成されたものでも良い。
つまり、印刷時の方向関係を定義した図3(a)で示したXY座標系のX軸の方向と、印刷物上での方向関係を定義した図1(b)で示したXY座標系のX軸の方向とが一致し平行とはならずに、両座標系のX軸が互いに交差する関係である。また、印刷物上での方向関係を定義した図1(b)で示したXY座標系は直交座標系であったが、X軸、Y軸は各々、2群の平行線条群の配列方向乃至は線条が延在する方向を示し、2群の平行線条群が直角に交差しない場合は、そのXY座標系は直交座標系ではなく斜交座標となる。
However, the groove pattern formed by the concave portions 32 on the plate surface of the intaglio plate 31 is not limited to this. For example, the conductive convex pattern layer 3 formed by printing may have an angle other than a right angle at which the two groups of parallel line segments intersect each other, and even if the angle is a right angle, the two groups of the line groups are formed. It may be formed using an intaglio 31 whose linear shape is not orthogonal to the scraping direction Xd.
That is, the X-axis direction of the XY coordinate system shown in FIG. 3A that defines the directional relationship during printing and the X-axis of the XY coordinate system shown in FIG. 1B that defines the directional relationship on the printed matter. The X axis of both coordinate systems intersect each other without matching the directions of the axes and being parallel. In addition, although the XY coordinate system shown in FIG. 1B that defines the directional relationship on the printed material is an orthogonal coordinate system, the X-axis and the Y-axis are arranged in two parallel line groups. Indicates the direction in which the filament extends, and when the two parallel filament groups do not intersect at right angles, the XY coordinate system is not an orthogonal coordinate system but an oblique coordinate.

従って、互いに交差する2群の平行線条群の両方の群に無視できない漏出部5が発生し両側麓部の幅が異なるときは、上記麓部の幅に関する規定を両方の群に適用することが好ましい。例えば、掻取方向Xdに対して線条群Lxの延在方向及び線条群Lyの延在方向の両方が45度の角度で交叉し、且つ線条群Lx及び線条群Ly同士は互いに直交して正方格子をなす形態(図3(a)に於いて、版面上の凹部32の溝を版面上に於いて45度時計回りに回転させた場合(その他は図3(a)のまま)に相当)。この場合は、各線条Lx及び各線条Lyについて、図1の如く、麓部の幅Wn及びWwが異なる(Wn<Ww)。そして、この場合に於いては、各線条Lx及び各線条Lyの各々両方について、(Ww−Wn)/2Wn≦0.5となるように、且つ各線条Lx及び各線条Lyの各々両方について、頂部Pから両側にWnずつで計2Wnの幅の部分のみで所望の電磁波遮蔽性を確保する様に設計する。その他、導電性凸状パターン層3が正方格子の場合で、掻取方向Xdに対して線条群Lxの延在方向及び線条群Lyの延在方向の両方が、例えば、各々、5度と85度になる場合、15度と75度となる場合、30度と60度になる場合等に於いても同様である。
なお、連続帯状の透明基材1に対して印刷形成された導電性凸状パターン層3では、通常は、透明基材1の長手方向がドクターブレードの掻取方向Xdに平行となるので、上記角度関係にて「掻取方向Xd」は「長手方向」に言い換えることができる。
Therefore, when the leaking part 5 that cannot be ignored occurs in both groups of the two groups of parallel lines that intersect with each other and the widths of both side collars are different, the above-mentioned provisions regarding the widths of the collar parts should be applied to both groups. Is preferred. For example, both the extending direction of the line group Lx and the extending direction of the line group Ly intersect with the scraping direction Xd at an angle of 45 degrees, and the line group Lx and the line group Ly are mutually Form in which a square lattice is formed orthogonally (in FIG. 3A, when the groove of the recess 32 on the plate surface is rotated 45 degrees clockwise on the plate surface (the others remain as in FIG. 3A) )). In this case, as shown in FIG. 1, the widths Wn and Ww of the flanges are different for each filament Lx and each filament Ly (Wn <Ww). In this case, for each of the filaments Lx and each of the filaments Ly, (Ww−Wn) /2Wn≦0.5, and for each of the filaments Lx and each of the filaments Ly, It is designed so as to ensure a desired electromagnetic shielding property only in a portion having a width of 2 Wn in total, Wn on both sides from the top P. In addition, when the conductive convex pattern layer 3 is a square lattice, both the extending direction of the line group Lx and the extending direction of the line group Ly with respect to the scraping direction Xd are, for example, 5 degrees each. The same applies to the case of 85 degrees, the case of 15 degrees and 75 degrees, the case of 30 degrees and 60 degrees, and the like.
In the conductive convex pattern layer 3 printed on the continuous belt-shaped transparent substrate 1, the longitudinal direction of the transparent substrate 1 is usually parallel to the doctor blade scraping direction Xd. In terms of the angle, the “scraping direction Xd” can be rephrased as the “longitudinal direction”.

[導電性金属層]
なお、導電性凸状パターン層3の表面には、更に、電解めっき等によって導電性金属層を形成して表面抵抗率を下げてもよい。この場合、導電性凸状パターン層3と導電性金属層とから導電体パターン層が構成され、導電体パターン層全体として表面抵抗率が要求を満足する様にすればよい。導電性金属層の金属としては、導電性が高く容易にめっき可能な金属(乃至は合金)であれば特に制限はなく、例えば、銅、銀、金、白金、クロム、ニッケル、錫、などを用いることができる。なかでも、銅は材料費及び導電性に優れているので、好ましい金属の一種である。
[Conductive metal layer]
The surface resistivity may be lowered by further forming a conductive metal layer on the surface of the conductive convex pattern layer 3 by electrolytic plating or the like. In this case, a conductive pattern layer is constituted by the conductive convex pattern layer 3 and the conductive metal layer, and the surface resistivity of the conductive pattern layer as a whole may satisfy the requirement. The metal of the conductive metal layer is not particularly limited as long as it is highly conductive and easily plated metal (or alloy). For example, copper, silver, gold, platinum, chromium, nickel, tin, etc. Can be used. Especially, since copper is excellent in material cost and electroconductivity, it is 1 type of a preferable metal.

[黒化処理]
また、導電性金属層に対して、更に黒化処理を施しても良い。黒化処理は、公知の処理、例えば黒化ニッケルめっき、銅−コバルト合金めっき、或いは粗面化処理等を利用できる。黒化処理により、画像の明室コントラストが向上する。
[Blackening treatment]
Further, the conductive metal layer may be further blackened. As the blackening treatment, a known treatment such as blackening nickel plating, copper-cobalt alloy plating, or roughening treatment can be used. The darkening process improves the bright room contrast of the image.

[その他の層]
なお、本発明による電磁波遮蔽材は、本発明の主旨を逸脱しない範囲内であれば、上記した以外のその他の層を含んでもよい。例えば、導電性金属層の表面酸化を防止する防錆層、導電性凸状パターン層3による凹凸を平坦化する平坦化樹脂層、導電性凸状パターン層3が形成された側とは反対側の透明基材1の面に、ディスプレイ前面板などの被着体に貼り付ける為の粘着剤層、その面を一時的に保護するセパレータフィルムなどである。或いは、導電性凸状パターン層3側の面、或いはその反対側の透明基材1の面に対する、各種光学フィルタ、光学フィルタ以外のその他の機能層などである。例えば、光学フィルタは、近赤外線吸収層、紫外線吸収層、ネオン光吸収層、色補正層、反射防止層(防眩、反射防止、防眩及び反射防止兼用のいずれか)、微小ルーバによる外光反射防止層(特開2007−272161号公報など参照)などであり、光学フィルタ以外の機能層は、保護層、ハードコート層、帯電防止層、汚染防止層、耐衝撃層、粘着剤層などである。なお、これらの層には公知のものを適宜使用すれば良い。
[Other layers]
The electromagnetic wave shielding material according to the present invention may include other layers other than those described above as long as they do not depart from the gist of the present invention. For example, a rust preventive layer for preventing the surface oxidation of the conductive metal layer, a flattening resin layer for flattening unevenness due to the conductive convex pattern layer 3, and the side opposite to the side on which the conductive convex pattern layer 3 is formed An adhesive layer for adhering to an adherend such as a display front plate on the surface of the transparent substrate 1, a separator film for temporarily protecting the surface. Or it is various optical filters with respect to the surface by the side of the conductive convex pattern layer 3, or the surface of the transparent base material 1 of the other side, other functional layers other than an optical filter, etc. For example, an optical filter includes a near infrared absorption layer, an ultraviolet absorption layer, a neon light absorption layer, a color correction layer, an antireflection layer (antiglare, antireflection, antiglare and antireflection), or external light from a fine louver. Anti-reflection layer (see JP 2007-272161 A) and the like, and functional layers other than the optical filter include a protective layer, a hard coat layer, an anti-static layer, a contamination-preventing layer, an impact resistant layer, an adhesive layer, etc. is there. In addition, what is necessary is just to use a well-known thing suitably for these layers.

〔用途〕
本発明による電磁波遮蔽材は、特に、テレビジョン受像装置、測定機器や計器類、事務用機器、医療機器、電算機器、電話機、電子看板、遊戯機器等の表示部等に用いられるPDP、CRT、LCD、ELなどの各種画像表示装置の前面フィルタ用として好適であり、特にPDP用として好適である。又、その他、住宅、学校、病院、事務所、店舗等の建築物の窓、車輛、航空機、船舶等の乗物の窓、電子レンジ等の各種家電製品の窓等に於ける電磁波遮蔽用途にも使用可能である。
[Use]
The electromagnetic wave shielding material according to the present invention is a PDP, CRT, and the like used for display units of television receivers, measuring instruments and instruments, office equipment, medical equipment, computer equipment, telephones, electronic signboards, game machines, etc. It is suitable for a front filter of various image display devices such as LCD and EL, and particularly suitable for a PDP. In addition, it is also used for electromagnetic shielding in windows for buildings such as houses, schools, hospitals, offices, stores, vehicles, vehicles, aircraft, ships, etc., windows for various household appliances such as microwave ovens, etc. It can be used.

1 透明基材
2 プライマ層
3 導電性凸状パターン層
3a 導電性凸状パターン層の形成部
3b 導電性凸状パターン層の非形成部
4 開口部
5 漏出部
10 電磁波遮蔽材
31 シリンダ形状の凹版
32 版面上の凹部(溝)
33 インキパン
34 インキ(導電性組成物)
35 ドクターブレード
Cp 導電性粒子
Lx X軸に直交する方向に延在する線条(群)
Ly Y軸に直交する方向に延在する線条(群)
Ta 導電性凸状パターン層の形成部(凸部)のプライマ層の厚み
Tb 導電性凸状パターン層の非形成部のプライマ層の厚み
W 線幅
Wn 狭い方の麓部の幅
Ww 広い方の麓部の幅
Wx X軸と直交する線条Lxの(X軸方向の)線幅
Wy Y軸と直交する線条Lyの(Y軸方向の)線幅
ΔW 漏出部の幅(=広い方と狭い方の麓部の幅の差)
X 印刷方向(=掻取方向)に平行な座標軸
Xd ドクターブレードの掻取方向(=印刷方向)
Xp 版の回転方向
Y X軸に直交する座標軸
DESCRIPTION OF SYMBOLS 1 Transparent base material 2 Primer layer 3 Conductive convex pattern layer 3a Formation part of conductive convex pattern layer 3b Non-formation part of conductive convex pattern layer 4 Opening part 5 Leakage part 10 Electromagnetic wave shielding material 31 Cylinder-shaped intaglio 32 Recesses (grooves) on the plate surface
33 Ink pan 34 Ink (conductive composition)
35 Doctor blade Cp Conductive particle Lx Line (group) extending in the direction perpendicular to the X axis
Lys (group) extending in the direction perpendicular to the Y axis
Ta Thickness of primer layer of conductive convex pattern layer forming portion (convex portion) Tb Thickness of primer layer of non-forming portion of conductive convex pattern layer W Line width Wn Width of narrow flange Ww Wide one Width of the ridge Wx Line width (in the X-axis direction) of the line Lx perpendicular to the X-axis Wy Line width (in the Y-axis direction) of the line Ly perpendicular to the Y-axis ΔW Width of the leaking part (= Difference in width of the narrow buttock)
X Coordinate axis parallel to the printing direction (= scraping direction) Xd Scraping direction of the doctor blade (= printing direction)
Xp Rotation direction of plate Y Coordinate axis orthogonal to X axis

Claims (2)

透明基材上にプライマ層を介して、導電体パターン層として導電性粒子とバインダ樹脂を含む導電性凸状パターン層が形成され且つ該導電性凸状パターン層の非形成部として多数の開口部が形成され、前記プライマ層は該導電性凸状パターン層の非形成部での厚さに比べて導電性凸状パターン層の形成部での厚さが厚い、電磁波遮蔽材において、
導電性凸状パターン層は互いに交差する2群の平行線条群のうちの少なくとも1群について、導電性凸状パターン層の形成部である凸部の主切断面形状が、頂部両側で頂部からプライマ層面に至るまでの麓部の幅が異なり、広い方の麓部の幅をWw、狭い方の麓部の幅をWnとしたときに、(Ww−Wn)/2Wnを0.5以下とした、電磁波遮蔽材。
A conductive convex pattern layer containing conductive particles and a binder resin is formed as a conductor pattern layer on a transparent substrate via a primer layer, and a large number of openings as non-formation portions of the conductive convex pattern layer In the electromagnetic wave shielding material, the primer layer is thicker at the formation portion of the conductive convex pattern layer than the thickness at the non-formation portion of the conductive convex pattern layer.
The conductive convex pattern layer has at least one group of two groups of parallel lines intersecting each other, and the main cut surface shape of the convex part, which is the formation part of the conductive convex pattern layer, is from the top on both sides of the top. When the width of the collar part up to the primer layer surface is different, the width of the wide collar part is Ww, and the width of the narrow collar part is Wn, (Ww−Wn) / 2Wn is 0.5 or less. Electromagnetic wave shielding material.
導電性凸状パターン層の凸部内の導電性粒子の分布が、相対的に、プライマ層近傍において分布が疎であり頂部近傍において分布が密である、請求項1記載の電磁波遮蔽材。
The electromagnetic wave shielding material according to claim 1, wherein the distribution of the conductive particles in the convex portion of the conductive convex pattern layer is relatively sparse in the vicinity of the primer layer and dense in the vicinity of the top portion.
JP2010033285A 2010-02-18 2010-02-18 Electromagnetic wave shielding material Withdrawn JP2011171474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033285A JP2011171474A (en) 2010-02-18 2010-02-18 Electromagnetic wave shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033285A JP2011171474A (en) 2010-02-18 2010-02-18 Electromagnetic wave shielding material

Publications (1)

Publication Number Publication Date
JP2011171474A true JP2011171474A (en) 2011-09-01

Family

ID=44685287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033285A Withdrawn JP2011171474A (en) 2010-02-18 2010-02-18 Electromagnetic wave shielding material

Country Status (1)

Country Link
JP (1) JP2011171474A (en)

Similar Documents

Publication Publication Date Title
US8395059B2 (en) Electromagnetic wave shielding material, and method for manufacturing same
US7569282B2 (en) Electromagnetic shielding copper foil, method of production thereof and electromagnetic shield
JP2011096225A (en) Electrode film for touch panel and touch panel
JP2012089782A (en) Electroconductive external light-shielding material, electroconductive external light-shielding sheet body, front filter for image display device, and image display device
JP2011222853A (en) Method of manufacturing electromagnetic wave shielding filter, and electromagnetic wave shielding filter
JP2012169353A (en) Optical sheet, and front filter for plasma display using the sheet
JP2011176194A (en) Electromagnetic wave shielding material
JP2010080826A (en) Electromagnetic shield member
JP2011171474A (en) Electromagnetic wave shielding material
JP2009059762A (en) Equipment for manufacturing electromagnetic wave shield layer and method, filter for display device including electromagnetic wave shield layer, and display device with filter
JP2011175989A (en) Electromagnetic wave shielding material
JP2006140346A (en) Electromagnetic wave shielding member and its manufacturing method
JP2011071375A (en) Electromagnetic wave shielding material
JP2012204782A (en) Composite filter, and image display device having the filter arranged in front thereof
JP5585163B2 (en) Method for reducing electrical resistance and method for producing electromagnetic shielding material
JP5494016B2 (en) Multi-tank electrolytic copper plating method and manufacturing method of electromagnetic shielding material
JP2011077068A (en) Electromagnetic wave shielding material
JP2013062364A (en) Electromagnetic wave shielding member, combined laminate, and image display device
JP2011166074A (en) Method for manufacturing electromagnetic wave shielding material
JP2012204731A (en) Electromagnetic wave shield sheet
JP2011134869A (en) Electromagnetic shielding material
JP2009049299A (en) Apparatus for producing electromagnetic wave shielding layer, filter for display device including electromagnetic wave shielding layer, and display device with filter
JP2011187721A (en) Electromagnetic wave shielding material and front filter for plasma display
JP2011054586A (en) Multilayer intermittent coating method of functional layer of electromagnetic wave shielding material
JP2011077196A (en) Electromagnetic wave shielding material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507