JP2011169665A - Flow velocity measuring method and ultrasonic flowmeter - Google Patents

Flow velocity measuring method and ultrasonic flowmeter Download PDF

Info

Publication number
JP2011169665A
JP2011169665A JP2010032072A JP2010032072A JP2011169665A JP 2011169665 A JP2011169665 A JP 2011169665A JP 2010032072 A JP2010032072 A JP 2010032072A JP 2010032072 A JP2010032072 A JP 2010032072A JP 2011169665 A JP2011169665 A JP 2011169665A
Authority
JP
Japan
Prior art keywords
transmission frequency
vibrator
pipe
signal
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010032072A
Other languages
Japanese (ja)
Inventor
Kitaru Ito
来 伊藤
Kazutoshi Okamoto
和年 岡本
Satoshi Fukuhara
聡 福原
Hiroyuki Yamamoto
裕之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2010032072A priority Critical patent/JP2011169665A/en
Publication of JP2011169665A publication Critical patent/JP2011169665A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately measure a flow rate by deciding a transmission frequency at which flow rate measurement errors are minimal. <P>SOLUTION: A vibrator 31 is attached to a reflector 5, and the relation between the transmission frequency of the vibrator 31 and the signal strength of a reflection signal reflected and sent from the reflector 5 is acquired with respect to a predetermined transmission frequency range. Moreover the vibrator 31 is attached to a pipe for flow measurement, and the relation between the transmission frequency of the vibrator 31 and the signal strength of a reflection signal from the pipe itself or its transmission signal is acquired with respect to the predetermined frequency range. Next, this signal strength is divided by the strength of the reflection signal from the reflector 5, and based on the relation between the signal strength after the division and the transmission frequency of the vibrator 31 an optimum transmission frequency is decided. A flow velocity is measured by the transmission frequency. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、配管内を流れる被測定流体に対し振動子から所定の送信周波数の超音波を入射させて前記被測定流体の流速を測定する流量測定方法および超音波流量計に関する。   The present invention relates to a flow rate measuring method and an ultrasonic flowmeter for measuring a flow velocity of a fluid to be measured by causing an ultrasonic wave having a predetermined transmission frequency to enter the fluid to be measured flowing in a pipe.

超音波流量計は、配管内を流れる被測定流体の流速を測定する装置である。超音波流量計は、配管内の被測定流体中に含まれる気泡やパーティクルが被測定流体と同じ速度で移動すると仮定し、これら気泡やパーティクルの移動速度から被測定流体の流速分布や流量を測定する。   An ultrasonic flowmeter is a device that measures the flow velocity of a fluid to be measured flowing in a pipe. The ultrasonic flowmeter assumes that bubbles and particles contained in the fluid under measurement in the pipe move at the same speed as the fluid under measurement, and measures the flow velocity distribution and flow rate of the fluid under measurement from the movement speed of these bubbles and particles. To do.

被測定流体の流速分布や流量を求める方法として反射相関法が知られている。配管外の超音波振動子から配管内部の被測定流体へ超音波を送信する。送信された超音波は、楔、配管、配管内部の被測定流体の順番に伝播する。超音波が被測定流体中の気泡やパーティクルなどに当ると、それらが反射体となり、反射波が発生する。反射波は配管内部の被測定流体、配管、楔を伝播し、反射信号として取得される。超音波振動子が送信する超音波には所定の時間間隔が与えられる。最初に送信した超音波から得られる反射波の伝播時間と、次に送信した超音波から得られる反射波の伝播時間とに基づいて、反射体となった気泡やパーティクルなどの移動量を算出し、被測定流体の流速が求められる。配管の上下流においてこのような構造を設け、それぞれ同じ送信周波数で超音波振動子を駆動している。   A reflection correlation method is known as a method for obtaining a flow velocity distribution and a flow rate of a fluid to be measured. Ultrasonic waves are transmitted from the ultrasonic transducer outside the pipe to the fluid to be measured inside the pipe. The transmitted ultrasonic waves propagate in the order of the wedge, the pipe, and the fluid to be measured inside the pipe. When ultrasonic waves hit bubbles or particles in the fluid to be measured, they become reflectors and generate reflected waves. The reflected wave propagates through the fluid to be measured, the pipe, and the wedge inside the pipe and is acquired as a reflected signal. A predetermined time interval is given to the ultrasonic waves transmitted by the ultrasonic transducer. Based on the propagation time of the reflected wave obtained from the first transmitted ultrasonic wave and the propagation time of the reflected wave obtained from the next transmitted ultrasonic wave, the amount of movement of bubbles and particles that became the reflector is calculated. The flow rate of the fluid to be measured is obtained. Such a structure is provided upstream and downstream of the pipe, and the ultrasonic transducers are driven at the same transmission frequency.

被測定流体の流速分布や流量を求めるその他の手法としては、ドップラー法が知られている。   As another method for obtaining the flow velocity distribution and flow rate of the fluid to be measured, the Doppler method is known.

ところで、気泡やパーティクルなどからの反射信号から被測定流体の流量を求める超音波流量計は、超音波振動子が送信する超音波の送信周波数によって流量誤差が変化する。これは、配管内を多重に反射する波が測定対象信号である反射信号と多重に重なるためである。   By the way, in the ultrasonic flowmeter for obtaining the flow rate of the fluid to be measured from the reflected signal from bubbles or particles, the flow rate error changes depending on the transmission frequency of the ultrasonic wave transmitted by the ultrasonic transducer. This is because a wave reflected in the pipe in a multiple manner overlaps with a reflected signal that is a measurement target signal.

このように測定に影響を与える波の周波数は配管肉厚によって変化することが知られている。そこで、それらの波が反射信号に与える影響が小さくなる、最適な送信周波数を配管の肉厚から求め、流量誤差が小さくなるようにしている。   As described above, it is known that the frequency of the wave affecting the measurement changes depending on the pipe wall thickness. Therefore, the optimum transmission frequency that reduces the influence of these waves on the reflected signal is obtained from the thickness of the pipe so that the flow rate error is reduced.

流量誤差が小さくなる送信周波数は下記の式で求められる。

Figure 2011169665
f:送信周波数、C2:配管横波音速、t:配管肉厚、θ2:屈折角度、m:定数
ここで、
m=1,2,3,・・・
とした場合には、送信周波数fは配管の共鳴周波数となり、流量誤差が小さくなることが知られている。また、
m=1.5,2.5,3.5,・・・
とした場合には、送信周波数fは配管の非共鳴周波数となり、同様に流量誤差が小さくなることが知られている。したがって、上記の式(1)から配管の共鳴周波数あるいは非共鳴周波数となる周波数を算出し、その周波数を送信周波数として利用することで流量誤差の低減が図られる。 The transmission frequency with which the flow rate error is reduced can be obtained by the following equation.
Figure 2011169665
f: transmission frequency, C2: pipe transverse wave sound velocity, t: pipe wall thickness, θ2: refraction angle, m: constant
m = 1, 2, 3,...
In this case, it is known that the transmission frequency f becomes the resonance frequency of the pipe and the flow rate error becomes small. Also,
m = 1.5, 2.5, 3.5,...
In this case, it is known that the transmission frequency f becomes a non-resonant frequency of the pipe, and the flow rate error is similarly reduced. Therefore, the flow rate error can be reduced by calculating the frequency that is the resonance frequency or non-resonance frequency of the pipe from the above equation (1) and using that frequency as the transmission frequency.

下記特許文献1には、ドップラー式の超音波流量計であって、配管の肉厚に基づいて最適な送信周波数を求めるものが記載されている。   The following Patent Document 1 describes a Doppler type ultrasonic flowmeter that obtains an optimum transmission frequency based on the thickness of a pipe.

特開2006−30041号公報JP 2006-30041 A

しかしながら、上記の式(1)で算出される共鳴周波数(あるいは非共鳴周波数)は、配管肉厚tや配管横波音速C2が必ずしも正しく与えられないため、実際の共鳴周波数(あるいは非共鳴周波数)と異なってしまう。そのため、計算で求めた流量誤差が小さくなるとされる周波数と実際に流量誤差が小さくなる周波数とが異なると、実際の流量測定の際の流量誤差が大きくなる場合がある。   However, the resonance frequency (or non-resonance frequency) calculated by the above formula (1) is not necessarily given correctly as the pipe wall thickness t and the pipe transverse wave sound velocity C2, and therefore, the actual resonance frequency (or non-resonance frequency) It will be different. For this reason, if the frequency at which the flow rate error obtained by calculation is reduced and the frequency at which the flow rate error is actually reduced are different, the flow rate error in actual flow rate measurement may be increased.

本発明は、従来の問題をなくし、流量誤差が小さくなる送信周波数を配管の肉厚や配管横波音速などのパラメータによらず適切に選択し、より精度良く被測定流体の流量を測定できる流量測定方法および超音波流量計を提供することを目的とする。   The present invention eliminates the conventional problems and appropriately selects a transmission frequency that reduces the flow rate error regardless of parameters such as the thickness of the pipe or the sound velocity of the pipe shear wave, and can measure the flow rate of the fluid to be measured more accurately. It is an object to provide a method and an ultrasonic flow meter.

このような課題を達成するために、請求項1に記載の発明は、
配管内を流れる被測定流体に対し振動子から所定の送信周波数の超音波を入射させて前記被測定流体の流速を測定する流量測定方法において、
前記振動子を反射材に取り付け、所定の送信周波数範囲について前記振動子の送信周波数と前記反射材から反射されてくる反射信号の信号強度との関係を求める振動子特性取得ステップと、
前記配管を一定流速の液体で満たすとともに前記振動子をその配管に取り付け、前記所定の送信周波数範囲について前記振動子の送信周波数と前記配管自体からの反射信号あるいは透過信号の信号強度との関係を求める配管特性取得ステップと、
この配管特性取得ステップで得られた信号強度を前記振動子特性取得ステップで得られた信号強度で除算する信号強度正規化ステップと、
この信号強度正規化ステップで得られた除算後の信号強度と前記振動子の送信周波数との関係に基づいて最適な送信周波数を決定する送信周波数決定ステップと、
この送信周波数決定ステップで決定された送信周波数の超音波を前記被測定流体に入射させて流速を測定する流速測定ステップと、
を備えたことを特徴とする。
In order to achieve such a problem, the invention described in claim 1
In a flow measurement method for measuring the flow velocity of the fluid under measurement by causing ultrasonic waves of a predetermined transmission frequency to enter the fluid under measurement flowing in the pipe from the vibrator,
The vibrator is attached to a reflector, and a vibrator characteristic obtaining step for obtaining a relationship between a transmission frequency of the vibrator and a signal intensity of a reflected signal reflected from the reflector for a predetermined transmission frequency range;
The pipe is filled with a liquid having a constant flow velocity, and the vibrator is attached to the pipe, and the relationship between the transmission frequency of the vibrator and the signal intensity of the reflected signal or transmission signal from the pipe itself for the predetermined transmission frequency range. The required piping characteristics acquisition step;
A signal strength normalizing step of dividing the signal strength obtained in the piping property obtaining step by the signal strength obtained in the vibrator property obtaining step;
A transmission frequency determination step for determining an optimal transmission frequency based on the relationship between the signal strength after division obtained in this signal strength normalization step and the transmission frequency of the vibrator;
A flow velocity measuring step for measuring the flow velocity by causing the ultrasonic wave having the transmission frequency determined in the transmission frequency determining step to enter the fluid to be measured;
It is provided with.

請求項2に記載の発明は、
請求項1に記載の流速測定方法において、
前記送信周波数決定ステップは、前記信号強度正規化ステップで得られた除算後の信号強度が最大値または最小値となる送信周波数を最適な送信周波数として決定することを特徴とする。
The invention described in claim 2
The flow velocity measuring method according to claim 1,
In the transmission frequency determination step, the transmission frequency at which the signal strength after division obtained in the signal strength normalization step becomes a maximum value or a minimum value is determined as an optimal transmission frequency.

請求項3に記載の発明は、
請求項1に記載の流速測定方法において、
前記送信周波数決定ステップは、前記配管特性取得ステップで得られた信号強度が極大または極小となる送信周波数の近傍の周波数を最適な送信周波数として決定することを特徴とする。
The invention according to claim 3
The flow velocity measuring method according to claim 1,
In the transmission frequency determination step, a frequency in the vicinity of the transmission frequency at which the signal intensity obtained in the piping characteristic acquisition step is maximum or minimum is determined as an optimal transmission frequency.

請求項4に記載の発明は、
配管内を流れる被測定流体に対し振動子から所定の送信周波数の超音波を入射させて前記被測定流体の流速を測定する超音波流量計において、
前記振動子を反射材に取り付けた状態で、所定の送信周波数範囲について前記振動子の送信周波数と前記反射材から反射されてくる反射信号の信号強度との関係を求めた振動子特性データと、前記配管を一定流速の液体で満たし前記振動子を前記配管に取り付けた状態で、前記所定の送信周波数範囲について前記振動子の送信周波数と前記配管自体からの反射信号あるいは透過信号の信号強度との関係を求めた配管特性データを取得し、前記配管特性データを前記振動子特性データで除算し、この除算後の信号強度と前記振動子の送信周波数との関係に基づいて最適な送信周波数を決定する送信周波数決定部と、
この送信周波数決定部で決定された送信周波数の超音波を前記振動子から発生させる送信部と、
を備えたことを特徴とする。
The invention according to claim 4
In the ultrasonic flowmeter that measures the flow velocity of the fluid under measurement by causing ultrasonic waves of a predetermined transmission frequency to enter the fluid under measurement flowing in the pipe from the vibrator,
In a state where the vibrator is attached to a reflector, vibrator characteristic data obtained for a relationship between a transmission frequency of the vibrator and a signal intensity of a reflected signal reflected from the reflector for a predetermined transmission frequency range; With the pipe filled with a liquid at a constant flow rate and the vibrator attached to the pipe, the transmission frequency of the vibrator and the signal intensity of the reflected signal or transmission signal from the pipe itself for the predetermined transmission frequency range Obtain the piping characteristic data for which the relationship was obtained, divide the piping characteristic data by the vibrator characteristic data, and determine the optimum transmission frequency based on the relationship between the signal strength after this division and the transmission frequency of the vibrator A transmission frequency determining unit to perform,
A transmission unit that generates ultrasonic waves of the transmission frequency determined by the transmission frequency determination unit from the vibrator;
It is provided with.

請求項5に記載の発明は、
請求項4に記載の超音波流量計において、
前記送信周波数決定部は、除算後の前記信号強度が最大値または最小値となる送信周波数を最適な送信周波数として決定することを特徴とする。
The invention described in claim 5
The ultrasonic flowmeter according to claim 4,
The transmission frequency determining unit determines a transmission frequency at which the signal strength after division becomes a maximum value or a minimum value as an optimal transmission frequency.

請求項6に記載の発明は、
請求項4に記載の超音波流量計において、
前記送信周波数決定部は、前記配管特性取得ステップで得られた信号強度が極大または極小となる送信周波数の近傍の周波数を最適な送信周波数として決定することを特徴とする。
The invention described in claim 6
The ultrasonic flowmeter according to claim 4,
The transmission frequency determination unit determines, as an optimal transmission frequency, a frequency in the vicinity of the transmission frequency at which the signal intensity obtained in the pipe characteristic acquisition step is maximized or minimized.

本発明によれば、
前記振動子を反射材に取り付け、所定の送信周波数範囲について前記振動子の送信周波数と前記反射材から反射されてくる反射信号の信号強度との関係を求める振動子特性取得ステップと、
前記配管を一定流速の液体で満たすとともに前記振動子をその配管に取り付け、前記所定の送信周波数範囲について前記振動子の送信周波数と前記配管自体からの反射信号あるいは透過信号の信号強度との関係を求める配管特性取得ステップと、
この配管特性取得ステップで得られた信号強度を前記振動子特性取得ステップで得られた信号強度で除算する信号強度正規化ステップと、
この信号強度正規化ステップで得られた除算後の信号強度と前記振動子の送信周波数との関係に基づいて最適な送信周波数を決定する送信周波数決定ステップと、
この送信周波数決定ステップで決定された送信周波数の超音波を前記被測定流体に入射させて流速を測定する流速測定ステップと、
を備えたことにより、流量誤差が小さくなる送信周波数を配管の肉厚や配管横波音速などのパラメータによらず適切に選択し、より精度良く被測定流体の流量を測定できる流量測定方法を提供できる。
According to the present invention,
The vibrator is attached to a reflector, and a vibrator characteristic obtaining step for obtaining a relationship between a transmission frequency of the vibrator and a signal intensity of a reflected signal reflected from the reflector for a predetermined transmission frequency range;
The pipe is filled with a liquid having a constant flow velocity, and the vibrator is attached to the pipe, and the relationship between the transmission frequency of the vibrator and the signal intensity of the reflected signal or transmission signal from the pipe itself for the predetermined transmission frequency range. The required piping characteristics acquisition step;
A signal strength normalizing step of dividing the signal strength obtained in the piping property obtaining step by the signal strength obtained in the vibrator property obtaining step;
A transmission frequency determination step for determining an optimal transmission frequency based on the relationship between the signal strength after division obtained in this signal strength normalization step and the transmission frequency of the vibrator;
A flow velocity measuring step for measuring the flow velocity by causing the ultrasonic wave having the transmission frequency determined in the transmission frequency determining step to enter the fluid to be measured;
With this, a flow rate measurement method can be provided in which the flow rate of the fluid to be measured can be measured more accurately by appropriately selecting a transmission frequency that reduces the flow rate error regardless of parameters such as pipe wall thickness or pipe transverse wave sound velocity. .

また、本発明によれば、
前記振動子を反射材に取り付けた状態で、所定の送信周波数範囲について前記振動子の送信周波数と前記反射材から反射されてくる反射信号の信号強度との関係を求めた振動子特性データと、前記配管を一定流速の液体で満たし前記振動子を前記配管に取り付けた状態で、前記所定の送信周波数範囲について前記振動子の送信周波数と前記配管自体からの反射信号あるいは透過信号の信号強度との関係を求めた配管特性データを取得し、前記配管特性データを前記振動子特性データで除算し、この除算後の信号強度と前記振動子の送信周波数との関係に基づいて最適な送信周波数を決定する送信周波数決定部と、
この送信周波数決定部で決定された送信周波数の超音波を前記振動子から発生させる送信部と、
を備えたことにより、流量誤差が小さくなる送信周波数を配管の肉厚や配管横波音速などのパラメータによらず適切に選択し、より精度良く被測定流体の流量を測定できる超音波流量計を提供できる。
Moreover, according to the present invention,
In a state where the vibrator is attached to a reflector, vibrator characteristic data obtained for a relationship between a transmission frequency of the vibrator and a signal intensity of a reflected signal reflected from the reflector for a predetermined transmission frequency range; With the pipe filled with a liquid at a constant flow rate and the vibrator attached to the pipe, the transmission frequency of the vibrator and the signal intensity of the reflected signal or transmission signal from the pipe itself for the predetermined transmission frequency range Obtain the piping characteristic data for which the relationship was obtained, divide the piping characteristic data by the vibrator characteristic data, and determine the optimum transmission frequency based on the relationship between the signal strength after this division and the transmission frequency of the vibrator A transmission frequency determining unit to perform,
A transmission unit that generates ultrasonic waves of the transmission frequency determined by the transmission frequency determination unit from the vibrator;
Provides an ultrasonic flow meter that can measure the flow rate of the fluid under measurement more accurately by appropriately selecting the transmission frequency that reduces the flow error regardless of parameters such as pipe wall thickness and pipe transverse wave sound velocity. it can.

本発明の超音波流量計の一実施例を示す図である。It is a figure which shows one Example of the ultrasonic flowmeter of this invention. 被測定流体Lsの流量測定の動作フローである。It is an operation | movement flow of the flow volume measurement of the to-be-measured fluid Ls. 送信周波数xsを決定するための手順1を示す図である。It is a figure which shows the procedure 1 for determining the transmission frequency xs. 送信周波数xsを決定するための手順1を示す図である。It is a figure which shows the procedure 1 for determining the transmission frequency xs. 送信周波数xsを決定するための手順1を示す図である。It is a figure which shows the procedure 1 for determining the transmission frequency xs. 送信周波数xsを決定するための手順2を示す図である。It is a figure which shows the procedure 2 for determining the transmission frequency xs. 送信周波数xsを決定するための手順2を示す図である。It is a figure which shows the procedure 2 for determining the transmission frequency xs. 手順2を実施するための変形例を示す図である。It is a figure which shows the modification for implementing procedure 2. FIG.

図1は本発明の超音波流量計の一実施例を示す図である。図1の(a)において、1は被測定流体Lsが流れる配管、21,22は配管1の外周面に接するように所定の角度で斜めに固定された楔である。楔21は被測定流体Lsの上流側に固定され、楔22は被測定流体Lsの下流側で楔21の反対側に固定されている。31,32はこの楔21,22の端部に取り付けられた超音波振動子、41,42は超音波振動子31,32の制御全般および被測定流体Lsの流量を算出する変換器である。
なお、楔21,22、超音波振動子31,32、変換器41,42はそれぞれ同一構造のものとする。
FIG. 1 is a view showing an embodiment of the ultrasonic flowmeter of the present invention. In FIG. 1A, 1 is a pipe through which the fluid Ls to be measured flows, and 21 and 22 are wedges fixed obliquely at a predetermined angle so as to contact the outer peripheral surface of the pipe 1. The wedge 21 is fixed on the upstream side of the fluid Ls to be measured, and the wedge 22 is fixed on the opposite side of the wedge 21 on the downstream side of the fluid Ls to be measured. Reference numerals 31 and 32 denote ultrasonic vibrators attached to the ends of the wedges 21 and 22. Reference numerals 41 and 42 denote converters that calculate the overall control of the ultrasonic vibrators 31 and 32 and the flow rate of the fluid Ls to be measured.
The wedges 21 and 22, the ultrasonic transducers 31 and 32, and the transducers 41 and 42 have the same structure.

超音波振動子31は、配管1内部の被測定流体Lsへ超音波Sを送信する。送信された超音波Sは、楔21、配管1、配管1内部の被測定流体Lsの順番に伝播する。超音波Sが被測定流体Ls中の気泡やパーティクルなどに当ると、それらが反射体となり、反射波(エコー波)Sbが発生する。反射波は配管1内部の被測定流体Ls、配管1、楔21を伝播し、反射信号として取得される。取得された反射信号は変換器41に伝達される。超音波振動子31が送信する超音波Sには所定の時間間隔が与えられる。変換器41において、最初に送信した超音波Sから得られる反射波の伝播時間と、次に送信した超音波Sから得られる反射波の伝播時間とに基づいて、反射体となった気泡やパーティクルなどの移動量を算出し、被測定流体Lsの流速を求める。
被測定流体Lsの下流側にも同様の構成(超音波振動子32、楔22、変換器42)を設けて被測定流体Lsの流速を求め、上流側で求めた流速との平均を取り、被測定流体Lsの流速を算出する。
The ultrasonic transducer 31 transmits the ultrasonic wave S to the fluid Ls to be measured inside the pipe 1. The transmitted ultrasonic wave S propagates in the order of the wedge 21, the pipe 1, and the fluid Ls to be measured in the pipe 1. When the ultrasonic wave S hits bubbles or particles in the fluid Ls to be measured, they become reflectors, and a reflected wave (echo wave) Sb is generated. The reflected wave propagates through the fluid to be measured Ls, the pipe 1 and the wedge 21 inside the pipe 1 and is acquired as a reflected signal. The acquired reflected signal is transmitted to the converter 41. A predetermined time interval is given to the ultrasonic wave S transmitted by the ultrasonic transducer 31. Based on the propagation time of the reflected wave obtained from the ultrasonic wave S transmitted first and the propagation time of the reflected wave obtained from the ultrasonic wave S transmitted next, in the converter 41, bubbles and particles that have become reflectors And the flow rate of the fluid Ls to be measured is obtained.
A similar configuration (ultrasonic transducer 32, wedge 22, transducer 42) is also provided on the downstream side of the fluid Ls to be measured to obtain the flow velocity of the fluid Ls to be measured, and an average with the flow velocity obtained on the upstream side is obtained. The flow velocity of the fluid Ls to be measured is calculated.

図1の(b)は変換器41の構成を示す図である。変換器41は、超音波および反射信号の送受信のタイミングを制御する送受信タイミング制御部4aと、超音波振動子31を制御して超音波を発生させる送信部4bと、送信する超音波の送信周波数を決定する送信周波数決定部4cと、反射信号を受信する受信部4dと、受信した反射信号をA/D変換するA/D変換器4eと、A/D変換器4eの出力に基づいて被測定流体Lsの流量を算出する演算部4fとから構成されている。   FIG. 1B is a diagram illustrating the configuration of the converter 41. The converter 41 includes a transmission / reception timing control unit 4a that controls transmission / reception timings of ultrasonic waves and reflected signals, a transmission unit 4b that controls the ultrasonic transducer 31 to generate ultrasonic waves, and a transmission frequency of ultrasonic waves to be transmitted. Based on the output of the A / D converter 4e, the A / D converter 4e for A / D converting the received reflected signal, the transmission frequency determining unit 4c for determining the reflected signal, the receiving unit 4d for receiving the reflected signal It is comprised from the calculating part 4f which calculates the flow volume of the measurement fluid Ls.

図2は被測定流体Lsの流量測定の動作フローである。
使用者によって被測定流体Lsの流量測定のためのコマンドが選択されると、このフローはスタートする。
ステップS1では、送信周波数決定部4cは、あらかじめ決定された超音波Sの送信周波数xsを送信部4bに設定し、ステップS2に進む。
ステップS2では、送信部4bは、送信周波数xsに対応する送信信号を生成し、ステップS3に進む。
ステップS3では、超音波振動子は、送信信号を送信周波数xsの超音波Sに変換し、被測定流体Lsに入射させ、ステップS4に進む。超音波振動子31が送信する超音波Sには所定の時間間隔が与えられる。
ステップS4では、受信部4dは、被測定流体Lsから反射されてくる反射信号Sbを受信する。反射信号はA/D変換器4eにおいてA/D変換され、演算部4fに入力され、ステップS5に進む。なお、超音波Sを送信するタイミングおよび反射信号Sbの受信のためのタイミングは、送受信タイミング制御部4aによって制御される。
ステップS5では、演算部4fは、最初に送信された超音波Sから得られる反射波の伝播時間と、所定の時間間隔をあけて次に送信された超音波Sから得られる反射波の伝播時間を算出する。そして、演算部4fは、それらの伝播時間に基づいて反射体となった気泡やパーティクルなどの移動量を算出し、被測定流体Lsの流速を求める。
その後、ステップS6に進む。
ステップS6では、演算部4fは、ステップS5で算出された流速に基づいて被測定流体Lsの流量を算出し、ステップS7に進む。
最後に、ステップS7において、ステップS6で算出された被測定流体Lsの流量を超音波流量計に設けられた何らかの表示手段に表示させ、流量測定を終了する。
FIG. 2 is an operation flow for measuring the flow rate of the fluid Ls to be measured.
When the user selects a command for measuring the flow rate of the fluid Ls to be measured, this flow starts.
In step S1, the transmission frequency determination unit 4c sets the transmission frequency xs of the ultrasonic wave S determined in advance in the transmission unit 4b, and proceeds to step S2.
In step S2, the transmission unit 4b generates a transmission signal corresponding to the transmission frequency xs, and proceeds to step S3.
In step S3, the ultrasonic transducer converts the transmission signal into an ultrasonic wave S having a transmission frequency xs, enters the measured fluid Ls, and proceeds to step S4. A predetermined time interval is given to the ultrasonic wave S transmitted by the ultrasonic transducer 31.
In step S4, the receiving unit 4d receives the reflected signal Sb reflected from the fluid Ls to be measured. The reflected signal is A / D converted by the A / D converter 4e and input to the calculation unit 4f, and the process proceeds to step S5. The transmission timing of the ultrasonic wave S and the timing for receiving the reflected signal Sb are controlled by the transmission / reception timing control unit 4a.
In step S5, the calculation unit 4f causes the propagation time of the reflected wave obtained from the ultrasonic wave S transmitted first and the propagation time of the reflected wave obtained from the ultrasonic wave S transmitted next after a predetermined time interval. Is calculated. Then, the calculation unit 4f calculates the amount of movement of the bubbles and particles that have become the reflector based on the propagation time, and obtains the flow velocity of the fluid Ls to be measured.
Then, it progresses to step S6.
In step S6, the computing unit 4f calculates the flow rate of the fluid Ls to be measured based on the flow velocity calculated in step S5, and proceeds to step S7.
Finally, in step S7, the flow rate of the fluid Ls calculated in step S6 is displayed on some display means provided in the ultrasonic flowmeter, and the flow rate measurement is terminated.

次に、送信周波数xsを決定する手法について説明する。送信周波数xsを決定する手法は、超音波振動子3自体の特性を調べる手順(手順1)と、配管1自体の特性を調べる手順(手順2)と、手順2で得られた特性を手順1で得られた特性を用いて正規化する手順(手順3)と、手順3で得られた結果を用いて最適な送信周波数xsを求める手順(手順4)に分けられる。   Next, a method for determining the transmission frequency xs will be described. The method of determining the transmission frequency xs includes a procedure for examining the characteristics of the ultrasonic transducer 3 itself (procedure 1), a procedure for examining the characteristics of the pipe 1 itself (procedure 2), and the characteristics obtained in procedure 2 according to the procedure 1. The procedure (normal procedure 3) for normalization using the characteristics obtained in step (3) and the procedure (procedure 4) for obtaining the optimum transmission frequency xs using the result obtained in the step 3 are divided.

まず手順1について説明する。図3と図4は送信周波数xsを決定するための手順1を示す図であり、図3の(a)は手順1の構成図、図3の(b)は手順1で得られる結果を示す図である。なお、図3の(a)においても、図示しないが、図1の(b)に示す変換器41が超音波振動子31に接続されている。図4は手順1のフローを示す図である。   First, procedure 1 will be described. 3 and 4 are diagrams showing a procedure 1 for determining the transmission frequency xs. FIG. 3A shows a configuration diagram of the procedure 1, and FIG. 3B shows a result obtained by the procedure 1. FIG. 3A, the converter 41 shown in FIG. 1B is connected to the ultrasonic transducer 31 (not shown). FIG. 4 is a flowchart showing the procedure 1.

この手順1では、超音波振動子31を反射材5に取り付け、この超音波振動子31の送信周波数と反射材5から反射されてくる反射信号の信号強度との関係を求める。   In this procedure 1, the ultrasonic transducer 31 is attached to the reflective material 5 and the relationship between the transmission frequency of the ultrasonic transducer 31 and the signal intensity of the reflected signal reflected from the reflective material 5 is obtained.

まず、ステップS100において、超音波振動子31を楔21を介して反射材5に設置する。超音波振動子31は、配管1に対する取り付け角度と同じ角度で反射材5に固定する。楔21から反射材5の反射面までの距離drは、超音波振動子31を配管1に取り付けた際の楔21と配管1との接触面から配管1の反対側の外側壁面までの超音波の伝播距離として使用する距離に一致させる。   First, in step S <b> 100, the ultrasonic transducer 31 is installed on the reflector 5 via the wedge 21. The ultrasonic transducer 31 is fixed to the reflector 5 at the same angle as the attachment angle with respect to the pipe 1. The distance dr from the wedge 21 to the reflecting surface of the reflector 5 is the ultrasonic wave from the contact surface between the wedge 21 and the pipe 1 when the ultrasonic transducer 31 is attached to the pipe 1 to the outer wall surface on the opposite side of the pipe 1. Match the distance used as the propagation distance.

次に、ステップS101では、送信周波数xの範囲x0〜xnを設定し、ステップS102に進む。
送信周波数の範囲x0〜xnは、目安として式(1)を用いて配管1の共鳴周波数と非共鳴周波数を算出し、算出された共鳴周波数と非共鳴周波数を少なくとも1つずつまたぐ範囲とする。
Next, in step S101, a range x0 to xn of the transmission frequency x is set, and the process proceeds to step S102.
The transmission frequency range x0 to xn is a range in which the resonance frequency and the non-resonance frequency of the pipe 1 are calculated using the formula (1) as a guide, and the calculated resonance frequency and non-resonance frequency are crossed at least one by one.

ステップS102では、送信部4b(図示せず)は、送信周波数xの初期値として送信周波数x0に対応する送信信号を生成し、ステップS103に進む。
ステップS103では、超音波振動子31は、送信信号を送信周波数x0の超音波に変換し、反射材5に入射させ、ステップS104に進む。
ステップS104では、受信部4d(図示せず)は、反射材5からの反射信号を受信する。なお、超音波Sを送信するタイミングおよび反射信号Sbの受信のためのタイミングは、送受信タイミング制御部41(図示せず)によって制御される。反射信号の信号はA/D変換器4e(図示せず)においてA/D変換され、演算部4f(図示せず)に入力され、ステップS105に進む。
ステップS105では、送信周波数x0と反射信号の最大値yを記録し、ステップS106に進む。
ステップS106では、送信周波数xが周波数xn以上であるかを確認し、周波数xn以上である場合にはステップS107に進む。一方、送信周波数xが周波数xnよりも小さい場合には、送信周波数xから設定可能な最小単位分だけ大きな周波数に設定し、ステップS102に進む。つまり、送信周波数xを周波数x0〜xnの範囲で順次変化させていき、各周波数に対応する反射信号の最大値yを取得する。
最後に、ステップS107では、送信周波数xと反射信号の最大値yとの関係を数式化(y=f(x))する。
In step S102, the transmission unit 4b (not shown) generates a transmission signal corresponding to the transmission frequency x0 as an initial value of the transmission frequency x, and proceeds to step S103.
In step S103, the ultrasonic transducer 31 converts the transmission signal into an ultrasonic wave having a transmission frequency x0, enters the reflecting material 5, and proceeds to step S104.
In step S104, the receiving unit 4d (not shown) receives the reflected signal from the reflecting material 5. Note that the timing for transmitting the ultrasonic wave S and the timing for receiving the reflected signal Sb are controlled by a transmission / reception timing control unit 41 (not shown). The signal of the reflected signal is A / D converted by an A / D converter 4e (not shown) and input to the arithmetic unit 4f (not shown), and the process proceeds to step S105.
In step S105, the transmission frequency x0 and the maximum value y of the reflected signal are recorded, and the process proceeds to step S106.
In step S106, it is confirmed whether or not the transmission frequency x is equal to or higher than the frequency xn, and if it is equal to or higher than the frequency xn, the process proceeds to step S107. On the other hand, if the transmission frequency x is smaller than the frequency xn, the frequency is set to a frequency that is larger than the transmission frequency x by the minimum unit that can be set, and the process proceeds to step S102. That is, the transmission frequency x is sequentially changed in the range of frequencies x0 to xn, and the maximum value y of the reflected signal corresponding to each frequency is acquired.
Finally, in step S107, the relationship between the transmission frequency x and the maximum value y of the reflected signal is formulated (y = f (x)).

すなわち、手順1は、超音波振動子31から送信周波数xにて超音波Sを反射材5に入射し、反射材5から反射されてくる反射信号の信号強度(反射信号の最大値y)と送信周波数とを記録する。これを周波数範囲x0〜xn内で繰り返し行い、送信周波数xと反射信号yの関係y=f(x)を求める。   That is, in the procedure 1, the ultrasonic wave S is incident on the reflecting material 5 from the ultrasonic transducer 31 at the transmission frequency x, and the signal intensity of the reflected signal reflected from the reflecting material 5 (maximum value y of the reflected signal) is calculated. Record the transmission frequency. This is repeated in the frequency range x0 to xn to obtain the relationship y = f (x) between the transmission frequency x and the reflected signal y.

次に、手順2について説明する。図5と図6は送信周波数xsを決定するための手順2を示す図であり、図5の(a)は手順2の構成図、図5の(b)は手順2で得られる結果を示す図である。なお、図5の(a)においても、図示しないが、図1に示す変換器4が超音波振動子31に接続されている。図6は手順2のフローを示す図である。   Next, procedure 2 will be described. 5 and 6 are diagrams showing a procedure 2 for determining the transmission frequency xs. FIG. 5A shows a configuration diagram of the procedure 2, and FIG. 5B shows a result obtained by the procedure 2. FIG. 5A, the transducer 4 shown in FIG. 1 is connected to the ultrasonic transducer 31 although not shown. FIG. 6 is a flowchart illustrating the procedure 2.

この手順2では、配管1を一定流速の液体で満たすとともに超音波振動子31を配管1に取り付け、超音波振動子31の送信周波数と配管1自体からの反射信号あるいは透過信号の信号強度との関係を求める。   In this procedure 2, the pipe 1 is filled with a liquid having a constant flow velocity, and the ultrasonic vibrator 31 is attached to the pipe 1. The transmission frequency of the ultrasonic vibrator 31 and the signal intensity of the reflected signal or transmitted signal from the pipe 1 itself are determined. Seeking a relationship.

まず、ステップS110において、楔21、超音波振動子31、およびAE(アコースティックエミッション)センサ6を配管1の外周面に取り付ける。超音波振動子31は楔21を介して配管1に取り付ける。超音波振動子31の配管1に対する取り付け角度は、被測定流体Lsの測定時の取り付け角度と同じ角度とする。また、AEセンサ6は、配管1の楔21の反対側であって超音波振動子31からの超音波が被測定流体Lsを透過した透過信号Stを受信可能な位置に取り付ける。   First, in step S110, the wedge 21, the ultrasonic transducer 31, and the AE (acoustic emission) sensor 6 are attached to the outer peripheral surface of the pipe 1. The ultrasonic transducer 31 is attached to the pipe 1 via the wedge 21. The attachment angle of the ultrasonic transducer 31 to the pipe 1 is the same as the attachment angle at the time of measuring the fluid Ls to be measured. The AE sensor 6 is attached to a position on the opposite side of the wedge 21 of the pipe 1 so that the transmission signal St in which the ultrasonic wave from the ultrasonic transducer 31 has passed through the fluid Ls to be measured can be received.

なお、配管1は、被測定流体Lsではなく、一定流速(流速ゼロも含む)の水で満たしておく。   The pipe 1 is filled with water at a constant flow rate (including zero flow rate) instead of the fluid Ls to be measured.

次に、ステップS111では、送信周波数xの範囲を設定し、ステップS112に進む。送信周波数xの範囲は、手順1と同様に、周波数x0〜xnの範囲とする。   Next, in step S111, the range of the transmission frequency x is set, and the process proceeds to step S112. The range of the transmission frequency x is the range of frequencies x0 to xn, as in Procedure 1.

ステップS112では、送信部4b(図示せず)は、送信周波数xの初期値として送信周波数x0に対応する送信信号を生成し、ステップS113に進む。
ステップS113では、超音波振動子31は、送信信号を送信周波数x0の超音波に変換し、配管1に入射させ、ステップS114に進む。
ステップS114では、AEセンサ6は、超音波が被測定流体Lsを透過してきた透過信号Stを受信する。透過信号StはA/D変換器(図示せず)によりA/D変換され、ステップS115に進む。
ステップS115では、送信周波数x0と透過信号Stの最大値y’を記録し、ステップS116に進む。
ステップS116では、送信周波数xが周波数xn以上であるかを確認し、周波数xn以上である場合にはステップS117に進む。一方、送信周波数xが周波数xnよりも小さい場合には、送信周波数xから設定可能な最小単位分だけ大きな周波数に設定し、ステップS102に進む。つまり、送信周波数xを周波数x0〜xnの範囲で変化させ、各周波数に対応する透過信号Stの最大値y’を繰り返し取得する。
最後に、ステップS117では、送信周波数xと透過信号Stの最大値y’との関係を数式化(y’=f’(x))する。
In step S112, the transmission unit 4b (not shown) generates a transmission signal corresponding to the transmission frequency x0 as an initial value of the transmission frequency x, and proceeds to step S113.
In step S113, the ultrasonic transducer 31 converts the transmission signal into an ultrasonic wave having a transmission frequency x0, enters the pipe 1, and proceeds to step S114.
In step S114, the AE sensor 6 receives the transmission signal St that has been transmitted through the fluid Ls to be measured. The transmission signal St is A / D converted by an A / D converter (not shown), and the process proceeds to step S115.
In step S115, the transmission frequency x0 and the maximum value y ′ of the transmission signal St are recorded, and the process proceeds to step S116.
In step S116, it is confirmed whether or not the transmission frequency x is equal to or higher than the frequency xn, and if it is equal to or higher than the frequency xn, the process proceeds to step S117. On the other hand, if the transmission frequency x is smaller than the frequency xn, the frequency is set to a frequency that is larger than the transmission frequency x by the minimum unit that can be set, and the process proceeds to step S102. That is, the transmission frequency x is changed in the range of frequencies x0 to xn, and the maximum value y ′ of the transmission signal St corresponding to each frequency is repeatedly acquired.
Finally, in step S117, the relationship between the transmission frequency x and the maximum value y ′ of the transmission signal St is formulated (y ′ = f ′ (x)).

すなわち、手順2は、超音波振動子31から送信周波数xにて超音波を配管1に入射し、配管1からの透過信号Stの信号強度(透過信号の最大値y’)と送信周波数とを記録する。これを周波数範囲x0〜xn内で繰り返し行い、送信周波数xと透過信号y’の関係(y’=f’(x))を求める。   That is, in the procedure 2, an ultrasonic wave is incident on the pipe 1 from the ultrasonic transducer 31 at the transmission frequency x, and the signal intensity (maximum value y ′ of the transmission signal) of the transmission signal St from the pipe 1 and the transmission frequency are determined. Record. This is repeated within the frequency range x0 to xn, and the relationship between the transmission frequency x and the transmitted signal y '(y' = f '(x)) is obtained.

なお、送信周波数xが配管1の共鳴周波数にあたる場合には透過信号Stの最大値y’は大きくなり、非共鳴周波数にあたる場合には最大値y’は小さくなることが知られている。   It is known that the maximum value y 'of the transmission signal St increases when the transmission frequency x corresponds to the resonance frequency of the pipe 1, and the maximum value y' decreases when it corresponds to the non-resonance frequency.

次に、手順3について説明する。
図7は手順3で得られる結果を示す図である。手順3では、手順2で得られたy’=f’(x)に、手順1で求めたf(x)の逆数1/f(x)をかけた値y”=f’(x)/f(x)を求める。
すなわち、手順2で得られた信号強度を手順1で得られた信号強度で除算することにより、各周波数における信号強度を正規化する。
Next, procedure 3 will be described.
FIG. 7 is a diagram showing the results obtained in procedure 3. In the procedure 3, y ′ = f ′ (x) / y ′ = f ′ (x) obtained by multiplying the reciprocal 1 / f (x) of f (x) obtained in the procedure 1 by y ′ = f ′ (x) obtained in the procedure 2. Find f (x).
That is, the signal strength at each frequency is normalized by dividing the signal strength obtained at step 2 by the signal strength obtained at step 1.

次に、手順4では、手順3で求めた強度y”に基づいて各周波数における正規化後の信号強度を比較し、被測定流体Lsの実際の測定に用いる送信周波数を決定する。具体的には、正規化信号の強度y”が最大値となる周波数xmを送信周波数xsとして決定する。   Next, in step 4, the normalized signal strength at each frequency is compared based on the strength y ″ obtained in step 3, and the transmission frequency used for actual measurement of the fluid Ls to be measured is determined. Determines the frequency xm at which the intensity y ″ of the normalized signal is the maximum value as the transmission frequency xs.

このように決定された送信周波数xsは、図2に示すステップS1にて送信周波数決定部4cに記憶される。被測定流体Lsの実際の測定の際には、送信周波数xsの超音波を被測定流体Lsに入射させて流速を測定する(流速測定ステップ)。   The transmission frequency xs determined in this way is stored in the transmission frequency determination unit 4c in step S1 shown in FIG. In actual measurement of the fluid Ls to be measured, an ultrasonic wave having a transmission frequency xs is incident on the fluid Ls to be measured to measure the flow velocity (flow velocity measurement step).

本実施例は以上のように構成され、
超音波振動子31を反射材5に取り付け、所定の送信周波数範囲x0〜xnについて超音波振動子31の送信周波数と反射材5から反射されてくる反射信号の信号強度との関係を求める手順1と、
配管1を一定流速の水で満たすとともに超音波振動子31をその配管1に取り付け、所定の送信周波数範囲x0〜xnについて超音波振動子31の送信周波数と配管1からの透過信号Stの信号強度との関係を求める手順2と、
この手順2で得られた信号強度を手順1で得られた信号強度で除算する手順3と、
この手順3で得られた除算後の信号強度と超音波振動子31の送信周波数との関係に基づいて最適な送信周波数xsを決定する手順4と、
を備えたことにより、流量誤差が小さくなる送信周波数を配管1の肉厚や配管横波音速などのパラメータによらず適切に選択し、より精度良く被測定流体Lsの流量を測定できる。
This embodiment is configured as described above,
Procedure 1 for attaching the ultrasonic transducer 31 to the reflector 5 and determining the relationship between the transmission frequency of the ultrasonic transducer 31 and the signal intensity of the reflected signal reflected from the reflector 5 for a predetermined transmission frequency range x0 to xn. When,
The pipe 1 is filled with water at a constant flow rate, and an ultrasonic transducer 31 is attached to the pipe 1, and the transmission frequency of the ultrasonic transducer 31 and the signal intensity of the transmission signal St from the pipe 1 for a predetermined transmission frequency range x0 to xn. Procedure 2 for determining the relationship between
Procedure 3 for dividing the signal strength obtained in Procedure 2 by the signal strength obtained in Procedure 1;
Procedure 4 for determining the optimum transmission frequency xs based on the relationship between the signal intensity after division obtained in Procedure 3 and the transmission frequency of the ultrasonic transducer 31;
Since the transmission frequency with which the flow rate error is reduced is appropriately selected regardless of parameters such as the thickness of the pipe 1 and the pipe transverse wave sound velocity, the flow rate of the fluid Ls to be measured can be measured with higher accuracy.

また、本実施例によれば、
超音波振動子31を反射材5に取り付けた状態で、所定の送信周波数範囲x0〜xnについて超音波振動子31の送信周波数と反射材5から反射されてくる反射信号の信号強度との関係を求めた振動子特性データy=f(x)と、配管1を一定流速の水で満たし超音波振動子31を配管1に取り付けた状態で、所定の送信周波数範囲x0〜xnについて超音波振動子31の送信周波数と配管1からの透過信号Stの信号強度との関係を求めた配管特性データy’=f’(x)を取得し、配管特性データy’=f’(x)を振動子特性データy=f(x)で除算し、この除算後の信号強度と超音波振動子31の送信周波数との関係y”=f”(x)に基づいて最適な送信周波数xsを決定する送信周波数決定部4cと、
この送信周波数決定部で決定された送信周波数の超音波を超音波振動子31から発生させる送信部4bと、
を備えたことにより、流量誤差が小さくなる送信周波数を配管1の肉厚や配管横波音速などのパラメータによらず適切に選択し、より精度良く被測定流体の流量を測定できる超音波流量計を提供できる。
Moreover, according to this embodiment,
With the ultrasonic transducer 31 attached to the reflective material 5, the relationship between the transmission frequency of the ultrasonic transducer 31 and the signal intensity of the reflected signal reflected from the reflective material 5 in a predetermined transmission frequency range x0 to xn. The ultrasonic transducer for a predetermined transmission frequency range x0 to xn in a state where the obtained transducer characteristic data y = f (x) and the pipe 1 are filled with water at a constant flow rate and the ultrasonic vibrator 31 is attached to the pipe 1 The pipe characteristic data y ′ = f ′ (x) obtained from the relationship between the transmission frequency of 31 and the signal intensity of the transmission signal St from the pipe 1 is obtained, and the pipe characteristic data y ′ = f ′ (x) is obtained as a transducer. Transmission that divides by the characteristic data y = f (x) and determines the optimum transmission frequency xs based on the relationship y ″ = f ″ (x) between the signal intensity after the division and the transmission frequency of the ultrasonic transducer 31 A frequency determining unit 4c;
A transmission unit 4b for generating ultrasonic waves of the transmission frequency determined by the transmission frequency determination unit from the ultrasonic transducer 31,
The ultrasonic flowmeter that can measure the flow rate of the fluid to be measured with higher accuracy by appropriately selecting the transmission frequency that reduces the flow rate error regardless of parameters such as the wall thickness of the pipe 1 and the sound velocity of the pipe transverse wave. Can be provided.

なお、本実施例では、超音波振動子31、楔21、変換器41を被測定流体Lsの上流側に設け、超音波振動子32、楔22、変換器42を下流側に設けて被測定流体Lsの流速の平均値を取ったが、これらの構成は必ずしも上流側と下流側とに設けられている必要はない。上流側、下流側に限らず、同様の複数の構成を用いて流速を求め、平均値を取るようにすればよい。   In this embodiment, the ultrasonic transducer 31, the wedge 21, and the transducer 41 are provided on the upstream side of the fluid Ls to be measured, and the ultrasonic transducer 32, the wedge 22, and the transducer 42 are provided on the downstream side, and the measurement is performed. Although the average value of the flow velocity of the fluid Ls is taken, these configurations are not necessarily provided on the upstream side and the downstream side. What is necessary is just to obtain | require an average value by calculating | requiring the flow velocity not only upstream and downstream but using the same some structure.

また、本実施例では、手順4において、正規化信号の強度y”が最大値となる周波数xmを送信周波数xsとして決定したが、強度y”が最小値となる周波数xmを送信周波数xsとして決定してもよい。あるいは、配管特性データy’が極大または極小となる送信周波数の近傍の周波数を最適な送信周波数xsとして決定してもよい。なお、配管特性データy’が極大または極小となる送信周波数とは、配管1自体の共鳴周波数または非共鳴周波数に相当する。   In this embodiment, in step 4, the frequency xm at which the normalized signal strength y ″ is the maximum value is determined as the transmission frequency xs. However, the frequency xm at which the strength y ″ is the minimum value is determined as the transmission frequency xs. May be. Alternatively, a frequency near the transmission frequency at which the piping characteristic data y ′ is maximum or minimum may be determined as the optimal transmission frequency xs. Note that the transmission frequency at which the pipe characteristic data y 'is maximum or minimum corresponds to the resonance frequency or non-resonance frequency of the pipe 1 itself.

また、本実施例では、手順2の実施にあたり、配管1に入射させた超音波の透過信号Stの測定するためにAEセンサを用いたが、図8に示すように、超音波振動子31’を支持した楔21’を配管1の反対側に設け、この超音波振動子31’により透過信号Stを受信してもよい。   In the present embodiment, the AE sensor is used to measure the transmission signal St of the ultrasonic wave incident on the pipe 1 when performing the procedure 2. However, as shown in FIG. May be provided on the opposite side of the pipe 1, and the transmission signal St may be received by the ultrasonic transducer 31 '.

また、本実施例では、手順2の実施にあたり、配管1に入射させた超音波の透過信号Stを測定することにより配管1の特性を調べたが、楔やフランジ、ボス等からの反射信号を測定することにより配管1の特性を調べても良い。または、配管多重波の強度を測定することにより配管1の特性を調べてもよい。   Further, in this embodiment, when the procedure 2 is performed, the characteristics of the pipe 1 are examined by measuring the transmission signal St of the ultrasonic wave incident on the pipe 1, but the reflected signal from the wedge, flange, boss, etc. You may investigate the characteristic of the piping 1 by measuring. Or you may investigate the characteristic of the piping 1 by measuring the intensity | strength of piping multiwave.

なお、本実施例では、本発明を反射相関法の超音波流量計に適用した例について説明したが、本発明は反射相関法に限らず、ドップラー法の超音波流量計にも適用できる。   In this embodiment, the example in which the present invention is applied to the reflection correlation method ultrasonic flowmeter has been described. However, the present invention is not limited to the reflection correlation method, and can be applied to an Doppler method ultrasonic flowmeter.

なお、本実施例における、送信周波数xsを決定する手法の手順1は特許請求の範囲における振動子特性取得ステップに相当し、手順2は配管特性取得ステップに相当し、手順3は信号強度正規化ステップに相当し、手順4は送信周波数決定ステップに相当する。
また、超音波振動子31,32は特許請求の範囲における振動子に相当する。
In this embodiment, the procedure 1 of the method for determining the transmission frequency xs corresponds to the transducer characteristic acquisition step in the claims, the procedure 2 corresponds to the piping characteristic acquisition step, and the procedure 3 corresponds to the signal intensity normalization. Step 4 corresponds to a transmission frequency determination step.
The ultrasonic transducers 31 and 32 correspond to the transducers in the claims.

1 配管
31,32 超音波振動子
4a 送受信タイミング制御部
4b 送信部
4c 送信周波数決定部
4d 受信部
4f 演算部
Ls 被測定流体
DESCRIPTION OF SYMBOLS 1 Piping 31, 32 Ultrasonic vibrator 4a Transmission / reception timing control part 4b Transmission part 4c Transmission frequency determination part 4d Reception part 4f Operation part Ls Fluid to be measured

Claims (6)

配管内を流れる被測定流体に対し振動子から所定の送信周波数の超音波を入射させて前記被測定流体の流速を測定する流量測定方法において、
前記振動子を反射材に取り付け、所定の送信周波数範囲について前記振動子の送信周波数と前記反射材から反射されてくる反射信号の信号強度との関係を求める振動子特性取得ステップと、
前記配管を一定流速の液体で満たすとともに前記振動子をその配管に取り付け、前記所定の送信周波数範囲について前記振動子の送信周波数と前記配管自体からの反射信号あるいは透過信号の信号強度との関係を求める配管特性取得ステップと、
この配管特性取得ステップで得られた信号強度を前記振動子特性取得ステップで得られた信号強度で除算する信号強度正規化ステップと、
この信号強度正規化ステップで得られた除算後の信号強度と前記振動子の送信周波数との関係に基づいて最適な送信周波数を決定する送信周波数決定ステップと、
この送信周波数決定ステップで決定された送信周波数の超音波を前記被測定流体に入射させて流速を測定する流速測定ステップと、
を備えたことを特徴とする流速測定方法。
In a flow measurement method for measuring the flow velocity of the fluid under measurement by causing ultrasonic waves of a predetermined transmission frequency to enter the fluid under measurement flowing in the pipe from the vibrator,
The vibrator is attached to a reflector, and a vibrator characteristic obtaining step for obtaining a relationship between a transmission frequency of the vibrator and a signal intensity of a reflected signal reflected from the reflector for a predetermined transmission frequency range;
The pipe is filled with a liquid having a constant flow velocity, and the vibrator is attached to the pipe, and the relationship between the transmission frequency of the vibrator and the signal intensity of the reflected signal or transmission signal from the pipe itself for the predetermined transmission frequency range. The required piping characteristics acquisition step;
A signal strength normalizing step of dividing the signal strength obtained in the piping property obtaining step by the signal strength obtained in the vibrator property obtaining step;
A transmission frequency determination step for determining an optimal transmission frequency based on the relationship between the signal strength after division obtained in this signal strength normalization step and the transmission frequency of the vibrator;
A flow velocity measuring step for measuring the flow velocity by causing the ultrasonic wave having the transmission frequency determined in the transmission frequency determining step to enter the fluid to be measured;
A flow rate measuring method characterized by comprising:
前記送信周波数決定ステップは、前記信号強度正規化ステップで得られた除算後の信号強度が最大値または最小値となる送信周波数を最適な送信周波数として決定することを特徴とする請求項1に記載の流速測定方法。   The transmission frequency determination step determines a transmission frequency at which the signal strength after division obtained in the signal strength normalization step becomes a maximum value or a minimum value as an optimal transmission frequency. Flow rate measurement method. 前記送信周波数決定ステップは、前記配管特性取得ステップで得られた信号強度が極大または極小となる送信周波数の近傍の周波数を最適な送信周波数として決定することを特徴とする請求項1に記載の流速測定方法。   2. The flow velocity according to claim 1, wherein in the transmission frequency determination step, a frequency in the vicinity of the transmission frequency at which the signal intensity obtained in the piping characteristic acquisition step is maximized or minimized is determined as an optimum transmission frequency. Measuring method. 配管内を流れる被測定流体に対し振動子から所定の送信周波数の超音波を入射させて前記被測定流体の流速を測定する超音波流量計において、
前記振動子を反射材に取り付けた状態で、所定の送信周波数範囲について前記振動子の送信周波数と前記反射材から反射されてくる反射信号の信号強度との関係を求めた振動子特性データと、前記配管を一定流速の液体で満たし前記振動子を前記配管に取り付けた状態で、前記所定の送信周波数範囲について前記振動子の送信周波数と前記配管自体からの反射信号あるいは透過信号の信号強度との関係を求めた配管特性データを取得し、前記配管特性データを前記振動子特性データで除算し、この除算後の信号強度と前記振動子の送信周波数との関係に基づいて最適な送信周波数を決定する送信周波数決定部と、
この送信周波数決定部で決定された送信周波数の超音波を前記振動子から発生させる送信部と、
を備えたことを特徴とする超音波流量計。
In the ultrasonic flowmeter that measures the flow velocity of the fluid under measurement by causing ultrasonic waves of a predetermined transmission frequency to enter the fluid under measurement flowing in the pipe from the vibrator,
In a state where the vibrator is attached to a reflector, vibrator characteristic data obtained for a relationship between a transmission frequency of the vibrator and a signal intensity of a reflected signal reflected from the reflector for a predetermined transmission frequency range; With the pipe filled with a liquid at a constant flow rate and the vibrator attached to the pipe, the transmission frequency of the vibrator and the signal intensity of the reflected signal or transmission signal from the pipe itself for the predetermined transmission frequency range Obtain the piping characteristic data for which the relationship was obtained, divide the piping characteristic data by the vibrator characteristic data, and determine the optimum transmission frequency based on the relationship between the signal strength after this division and the transmission frequency of the vibrator A transmission frequency determining unit to perform,
A transmission unit that generates ultrasonic waves of the transmission frequency determined by the transmission frequency determination unit from the vibrator;
An ultrasonic flowmeter comprising:
前記送信周波数決定部は、除算後の前記信号強度が最大値または最小値となる送信周波数を最適な送信周波数として決定することを特徴とする請求項4に記載の超音波流量計。   The ultrasonic flowmeter according to claim 4, wherein the transmission frequency determination unit determines a transmission frequency at which the signal intensity after division becomes a maximum value or a minimum value as an optimal transmission frequency. 前記送信周波数決定部は、前記配管特性取得ステップで得られた信号強度が極大または極小となる送信周波数の近傍の周波数を最適な送信周波数として決定することを特徴とする請求項4に記載の超音波流量計。   5. The super frequency according to claim 4, wherein the transmission frequency determination unit determines a frequency in the vicinity of the transmission frequency at which the signal intensity obtained in the pipe characteristic acquisition step is maximum or minimum as an optimum transmission frequency. Sonic flow meter.
JP2010032072A 2010-02-17 2010-02-17 Flow velocity measuring method and ultrasonic flowmeter Pending JP2011169665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010032072A JP2011169665A (en) 2010-02-17 2010-02-17 Flow velocity measuring method and ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010032072A JP2011169665A (en) 2010-02-17 2010-02-17 Flow velocity measuring method and ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2011169665A true JP2011169665A (en) 2011-09-01

Family

ID=44683955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010032072A Pending JP2011169665A (en) 2010-02-17 2010-02-17 Flow velocity measuring method and ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2011169665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597131A (en) * 2014-12-15 2015-05-06 武汉绿丰新创环保科技有限公司 Urban catering oil fume monitoring probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597131A (en) * 2014-12-15 2015-05-06 武汉绿丰新创环保科技有限公司 Urban catering oil fume monitoring probe
CN104597131B (en) * 2014-12-15 2017-11-10 武汉新创光科科技有限公司 A kind of urban catering cooking fume probe

Similar Documents

Publication Publication Date Title
JP6727308B2 (en) Improved beam shaping acoustic signal propagation time difference type flow meter
JP6682500B2 (en) Signal transit time difference type flow meter
JP2747618B2 (en) Ultrasonic flow velocity measuring method and apparatus
US7806003B2 (en) Doppler type ultrasonic flow meter
KR20100079462A (en) Ultrasonic flowmeter and method of measuring flux by ultrasonic waves
JP6671565B2 (en) Ultrasonic flaw detector
JP2001304931A (en) Clamping-on ultrasonic flow rate measuring method and multipath ultrasonic flow rate measuring method as well as clamping-on ultrasonic flowmeter and multipath ultrasonic flowmeter
RU2396518C2 (en) Method and device for acoustic measurement of gas flow rate
JP6207428B2 (en) Ultrasonic sound velocity measuring device and ultrasonic sound velocity measuring method
JP2011169665A (en) Flow velocity measuring method and ultrasonic flowmeter
JP2010261872A (en) Ultrasonic flowmeter
JP2007309794A (en) Apparatus and method for measuring plate thickness
Mahadeva et al. Studies of the accuracy of clamp-on transit time ultrasonic flowmeters
JP5156918B2 (en) Ultrasonic density meter
RU2313068C2 (en) Mode of measuring gas consumption in main pipelines and an arrangement for its execution
JP4827008B2 (en) Ultrasonic flow meter, ultrasonic transducer, ultrasonic transmission / reception unit, and flow measurement method using ultrasonic flow meter
WO2005064288A1 (en) Ultrasonic flowmeter, wedge for ultrasonic flowmeter, method for setting ultrasonic transmitting/receiving unit, and ultrasonic transmitting/receiving unit
JP2007178244A (en) Ultrasonic flowmeter and wedge therefor
JP2011095030A (en) Ultrasonic current meter and ultrasonic flow velocity measuring method
JP2008304283A (en) Ultrasonic flow meter
KR101806306B1 (en) Apparatus for measuring flow velocity based on measurement for thickness of pipe
JP2006194634A (en) Doppler-type ultrasonic flowmeter, method for adjusting transmission voltage to ultrasonic vibrator in it, and method for monitoring state in fluid inside piping
JPS6040916A (en) Correcting method of temperature-change error of ultrasonic wave flow speed and flow rate meter
JP2023113206A (en) Ultrasonic flow meter and flow rate measurement method
RU2004109828A (en) METHOD FOR MEASURING FLOW CONSUMPTION AND DEVICE FOR ITS IMPLEMENTATION