JP2011169243A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2011169243A
JP2011169243A JP2010033967A JP2010033967A JP2011169243A JP 2011169243 A JP2011169243 A JP 2011169243A JP 2010033967 A JP2010033967 A JP 2010033967A JP 2010033967 A JP2010033967 A JP 2010033967A JP 2011169243 A JP2011169243 A JP 2011169243A
Authority
JP
Japan
Prior art keywords
fitting portion
fuel
inlet
injection valve
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010033967A
Other languages
Japanese (ja)
Other versions
JP5402713B2 (en
Inventor
Ryutaro Omori
竜太郎 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010033967A priority Critical patent/JP5402713B2/en
Publication of JP2011169243A publication Critical patent/JP2011169243A/en
Application granted granted Critical
Publication of JP5402713B2 publication Critical patent/JP5402713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection valve for an internal combustion engine, having high durability. <P>SOLUTION: The fuel injection valve 10 includes: a cylindrical inlet member 13 having an inlet fitting portion 130 on an opposite side from fuel piping 2 in an axial direction, in which pressing axial force N acts toward a support face portion 1d side by the pressure of supplied fuel from the fuel piping 2 and the supplied fuel flows to an inner peripheral side in a radial direction; and a cylindrical reception member 12 having a reception fitting portion 120, which is welded to the inlet fitting portion 130 coaxially fitted from a fuel piping 2 side, supported in the axial direction by a support face portion 1d and containing a valve member 40 on the inner peripheral side in the radial direction. The end face 122 of the reception fitting portion 120 axially contacts with a projection 132 projecting in the radial direction more than the inlet fitting portion 130. The reception fitting portion 120 and the inlet fitting portion 130 are welded in the radial direction at a part axially separated from a contact interface 70 between the end face 122 and the projection 132. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関用の燃料噴射弁に関する。   The present invention relates to a fuel injection valve for an internal combustion engine.

従来、燃料配管から供給される燃料の圧力により内燃機関の支持面部に押付けられる状態下、噴孔から内燃機関への燃料噴射を弁部材の往復移動により断続する燃料噴射弁が、広く用いられている。例えば特許文献1の燃料噴射弁では、燃料配管からの供給燃料が径方向内周側へ流入する筒状の入口部材と、支持面部により軸方向に支持されると共に弁部材を径方向内周側に収容する筒状の収容部材とを、同軸上に嵌合して溶接している。   2. Description of the Related Art Conventionally, a fuel injection valve in which fuel injection from an injection hole to an internal combustion engine is intermittently performed by reciprocating movement of a valve member in a state of being pressed against a support surface portion of the internal combustion engine by the pressure of fuel supplied from a fuel pipe has been widely used. Yes. For example, in the fuel injection valve disclosed in Patent Literature 1, a cylindrical inlet member into which fuel supplied from a fuel pipe flows into the radially inner peripheral side and the support surface portion support the valve member in the axial direction and the valve member on the radially inner peripheral side. A cylindrical housing member housed in the housing is coaxially fitted and welded.

さて、特許文献1の燃料噴射弁では、入口部材のうち燃料配管とは反対側の軸方向端部を、収容部材のうち燃料配管側の軸方向端部に対して、径方向に溶接している。そのため、燃料配管からの供給燃料の圧力により支持面部側への押付軸力(以下、単に「押付軸力」ともいう)が作用する入口部材は、収容部材によって径方向に支持されているに過ぎず、それら部材が径方向に溶接されてなる溶接界面においては、疲労破壊を招くようなせん断応力の発生が懸念される。   In the fuel injection valve of Patent Document 1, the axial end of the inlet member opposite to the fuel pipe is welded in the radial direction to the axial end of the housing member on the fuel pipe side. Yes. For this reason, the inlet member on which the pressing axial force (hereinafter also simply referred to as “pressing axial force”) acts on the support surface side due to the pressure of the fuel supplied from the fuel pipe is only supported in the radial direction by the housing member. However, there is a concern about the generation of shear stress that causes fatigue failure at the weld interface where these members are welded in the radial direction.

これに対して特許文献2の燃料噴射弁は、収容部材から径方向へ突出させた突出部に対して、入口部材の端面部を軸方向に接触させた構造を、備えている。こうした特許文献2の構造を特許文献1の燃料噴射弁に適用した場合、支持面部が軸方向に支持する収容部材の突出部によって、押付軸力の作用する入口部材の軸方向支持も可能となる。したがって、その場合には、入口部材及び収容部材が径方向に溶接されてなる溶接界面において、せん断応力が発生し難くなるのである。   On the other hand, the fuel injection valve of patent document 2 is provided with the structure which made the end surface part of the inlet member contact the axial direction with respect to the protrusion part made to protrude from the accommodating member to radial direction. When such a structure of Patent Document 2 is applied to the fuel injection valve of Patent Document 1, it is possible to support the inlet member in which the pressing axial force acts in the axial direction by the protruding portion of the housing member that the support surface portion supports in the axial direction. . Therefore, in that case, it is difficult for shear stress to occur at the weld interface formed by welding the inlet member and the housing member in the radial direction.

特開2009−243466号公報JP 2009-243466 A 特開2007−218205号公報JP 2007-218205 A

しかし、特許文献2の燃料噴射弁の構造では、同文献の図1からも明らかなように、入口部材の端面部と収容部材の突出部とが、それらの界面において軸方向に溶接されている。このように入口部材及び収容部材が軸方向に溶接されてなる溶接界面には、燃料圧力による押付軸力が入口部材を通じて継続的に作用するので、特許文献2の構造を特許文献1の燃料噴射弁に適用しても、当該溶接界面に疲労破壊が生じて耐久性の低下を招くおそれがあった。   However, in the structure of the fuel injection valve of Patent Document 2, as is clear from FIG. 1 of the same document, the end surface portion of the inlet member and the protruding portion of the housing member are welded in the axial direction at the interface between them. . Since the pressing axial force due to the fuel pressure continuously acts through the inlet member on the weld interface formed by welding the inlet member and the housing member in the axial direction in this way, the structure of Patent Document 2 is the fuel injection of Patent Document 1. Even when applied to a valve, fatigue failure may occur at the weld interface, leading to a decrease in durability.

本発明は、以上説明した問題に鑑みてなされたものであって、その目的は、耐久性の高い燃料噴射弁を提供することにある。   The present invention has been made in view of the problems described above, and an object thereof is to provide a highly durable fuel injection valve.

請求項1に記載の発明は、燃料配管から供給される燃料の圧力により内燃機関の支持面部に押付けられる状態下、噴孔から内燃機関への燃料噴射を弁部材の往復移動により断続する燃料噴射弁であって、軸方向の燃料配管とは反対側に入口嵌合部を有し、燃料配管からの供給燃料の圧力により支持面部側へ向かって押付軸力が作用すると共に、当該供給燃料が径方向内周側へ流入する筒状の入口部材と、燃料配管側から同軸上に嵌合する入口嵌合部に対して溶接される収容嵌合部を有し、支持面部により軸方向に支持されると共に弁部材を径方向内周側に収容する筒状の収容部材と、を備えた燃料噴射弁において、収容嵌合部及び入口嵌合部のうち一方における端面部は、収容嵌合部及び入口嵌合部のうち他方よりも径方向へ突出する突出部に対して軸方向に接触し、端面部及び突出部の接触界面から軸方向に離間する箇所において、収容嵌合部及び入口嵌合部が径方向に溶接されることを特徴としている。   According to the first aspect of the present invention, the fuel injection in which fuel injection from the nozzle hole to the internal combustion engine is intermittently performed by the reciprocating movement of the valve member in a state of being pressed against the support surface portion of the internal combustion engine by the pressure of the fuel supplied from the fuel pipe. The valve has an inlet fitting portion on the opposite side to the fuel pipe in the axial direction, and a pressing axial force acts toward the support surface portion side by the pressure of the fuel supplied from the fuel pipe, and the supplied fuel is It has a cylindrical inlet member that flows into the radially inner peripheral side, and an accommodation fitting part that is welded to the inlet fitting part that fits coaxially from the fuel pipe side, and is supported in the axial direction by the support surface part And a cylindrical housing member that houses the valve member on the radially inner peripheral side, and an end face portion of one of the housing fitting portion and the inlet fitting portion is a housing fitting portion And a protruding portion that protrudes more radially than the other of the inlet fitting portions Contact axially against at locations axially spaced from the contact surface of the end surface portion and the protruding portion, is characterized in that housing engaging portion and the inlet fitting portion is welded in a radial direction.

このように、燃料配管からの供給燃料が径方向内周側へ流入する筒状の入口部材において軸方向の燃料配管とは反対側の入口嵌合部は、弁部材を径方向内周側に収容する筒状の収容部材の収容嵌合部に燃料配管側から同軸上に嵌合して、当該収容嵌合部と溶接される。ここで、収容嵌合部及び入口嵌合部の一方における端面部は、それら嵌合部の他方よりも径方向へ突出する突出部に軸方向に接触するので、内燃機関の支持面部が軸方向に支持する収容部材の端面部又は突出部により、入口部材の突出部又は端面部をも軸方向に支持し得る。しかも、そうした軸方向支持を可能とする端面部及び突出部の接触界面から軸方向に離間する箇所にて両嵌合部が径方向に溶接されてなる溶接界面には、燃料圧力による押付軸力の入口部材を通じた作用も、当該軸力に起因したせん断応力の発生も抑制され得る。したがって、両嵌合部の溶接界面が疲労破壊する事態を回避して、高い耐久性を獲得することが可能となるのである。   Thus, in the cylindrical inlet member into which the fuel supplied from the fuel pipe flows into the radially inner peripheral side, the inlet fitting portion on the side opposite to the axial fuel pipe has the valve member on the radially inner peripheral side. The housing fitting portion of the tubular housing member to be housed is fitted coaxially from the fuel pipe side and welded to the housing fitting portion. Here, since the end surface portion in one of the accommodation fitting portion and the inlet fitting portion is in axial contact with the protruding portion protruding in the radial direction from the other of the fitting portions, the support surface portion of the internal combustion engine is in the axial direction. The projecting portion or the end surface portion of the inlet member can also be supported in the axial direction by the end surface portion or the projecting portion of the housing member that is supported. In addition, a pressing axial force due to fuel pressure is applied to the weld interface where both fitting portions are welded in a radial direction at a position spaced axially from the contact interface between the end face portion and the protruding portion that enables axial support. The action through the inlet member and the generation of shear stress due to the axial force can be suppressed. Therefore, it is possible to avoid a situation in which the weld interface between the two fitting portions is fatigued and to obtain high durability.

さて、収容嵌合部が同軸上の入口嵌合部に対して相対的に傾いている場合、燃料圧力による押付軸力の作用によって、それら嵌合部を径方向に溶接してなる溶接界面にせん断応力が発生し、疲労破壊を招くことが懸念される。   Now, when the accommodation fitting part is inclined relative to the coaxial inlet fitting part, the welding interface is formed by welding the fitting parts in the radial direction by the action of the pressing axial force due to the fuel pressure. There is a concern that shear stress may occur and cause fatigue failure.

そこで、請求項2に記載の発明によると、収容嵌合部及び入口嵌合部のうち、径方向内周側の嵌合部は径方向外周側の嵌合部に圧入される。このような圧入によれば、押付軸力の作用や振動等によって、収容嵌合部が同軸上の入口嵌合部に対して相対的に傾くことを抑制し得る。したがって、両嵌合部を径方向に溶接してなる溶接界面においては、せん断応力の発生による疲労破壊を回避して、高い耐久性を維持することが可能となるのである。   Therefore, according to the second aspect of the present invention, the fitting portion on the radially inner peripheral side of the housing fitting portion and the inlet fitting portion is press-fitted into the fitting portion on the radially outer peripheral side. According to such press-fitting, it is possible to suppress the accommodation fitting portion from being inclined relative to the coaxial inlet fitting portion due to the action or vibration of the pressing axial force. Therefore, at the weld interface formed by welding both fitting portions in the radial direction, fatigue failure due to the generation of shear stress can be avoided and high durability can be maintained.

また、請求項3に記載の発明によると、収容嵌合部及び入口嵌合部のうち端面部にて突出部と接触する一方は、当該端面部の径方向内周側において突出部を露出させる空隙部を、形成する。これによれば、収容嵌合部及び入口嵌合部の一方の端面部は、径方向内周側の空隙部により露出される突出部に軸方向接触するので、その接触界面の形成箇所は、燃料噴射弁において可及的に径方向外周側に位置することとなる。故に、接触界面をなす端面部及び突出部の面粗さに起因して、収容嵌合部が同軸上の入口嵌合部に対して相対的に傾いたとしても、その傾き角度を小さく抑えることができる。したがって、両嵌合部を径方向に溶接してなる溶接界面においては、せん断応力の発生による疲労破壊を回避して、高い耐久性を維持することが可能となるのである。   According to the invention described in claim 3, one of the accommodating fitting portion and the inlet fitting portion that contacts the protruding portion at the end surface portion exposes the protruding portion on the radially inner peripheral side of the end surface portion. A void is formed. According to this, since one end surface portion of the accommodation fitting portion and the inlet fitting portion is in axial contact with the protruding portion exposed by the gap portion on the radially inner peripheral side, the formation portion of the contact interface is In the fuel injection valve, the fuel injection valve is positioned as far as possible on the radially outer side. Therefore, even if the accommodation fitting portion is inclined relative to the coaxial inlet fitting portion due to the surface roughness of the end surface portion and the protruding portion forming the contact interface, the inclination angle is kept small. Can do. Therefore, at the weld interface formed by welding both fitting portions in the radial direction, fatigue failure due to the generation of shear stress can be avoided and high durability can be maintained.

さらにまた、請求項4に記載の発明によると、収容嵌合部及び入口嵌合部のうち一方における端面部は、収容嵌合部及び入口嵌合部のうち他方よりも径方向外周側へ突出する突出部に対して軸方向に接触する。これによれば、収容嵌合部及び入口嵌合部の一方の端面部は、それら嵌合部の他方よりも径方向外周側へ突出する突出部に軸方向接触するので、その接触界面の形成箇所は、燃料噴射弁において可及的に径方向外周側に位置することとなる。故に、接触界面をなす端面部及び突出部の面粗さに起因して、収容嵌合部が同軸上の入口嵌合部に対して相対的に傾いたとしても、その傾き角度を小さく抑えることができる。したがって、両嵌合部を径方向に溶接してなる溶接界面においては、せん断応力の発生による疲労破壊を回避して、高い耐久性を維持することが可能となるのである。   Furthermore, according to the invention described in claim 4, the end surface portion of one of the housing fitting portion and the inlet fitting portion projects more radially outward than the other of the housing fitting portion and the inlet fitting portion. Axial contact with the protruding part. According to this, since one end surface portion of the accommodation fitting portion and the inlet fitting portion is in axial contact with the protruding portion that protrudes more radially outward than the other of the fitting portions, the contact interface is formed. A location will be located in the radial direction outer periphery side as much as possible in a fuel injection valve. Therefore, even if the accommodation fitting portion is inclined relative to the coaxial inlet fitting portion due to the surface roughness of the end surface portion and the protruding portion forming the contact interface, the inclination angle is kept small. Can do. Therefore, at the weld interface formed by welding both fitting portions in the radial direction, fatigue failure due to the generation of shear stress can be avoided and high durability can be maintained.

請求項5に記載の発明は、端面部及び突出部の接触界面を径方向外周側から覆う樹脂部材を、さらに備え、突出部は、突出部の外周面部から径方向内周側へ凹む凹部に樹脂部材が入り込んでなるラビリンス構造を、樹脂部材と共に形成する。これによれば、収容嵌合部及び入口嵌合部のうち一方の端面部と他方の突出部との接触界面を径方向外周側から覆う樹脂部材は、当該突出部の外周面部から径方向内周側へ凹む凹部に入り込んで、当該突出部と共にラビリンス構造を形成する。ここで、上述したように径方向外周側へ突出する突出部に対して端面部が軸方向接触してなる接触界面は、それを径方向外周側から覆う樹脂部材が当該突出部の凹部となすラビリンス構造につき、樹脂部材の周囲空間との間に介在された形態となる。それと共に両嵌合部は、径方向外周側へ突出の突出部に端面部が軸方向接触する上述の構成によって、それら突出部及び端面部の接触界面よりも径方向内周側にて嵌合し溶接される形態となる。以上の形態により、樹脂部材の周囲空間からラビリンス構造へ水が浸入したとしても、当該水は、ラビリンス構造よりも下流側となる端面部及び突出部の接触界面には勿論、当該接触界面よりも内周側にて両嵌合部が溶接されてなる溶接界面までは、浸入を抑制され得る。したがって、浸水により溶接界面が腐食する事態を回避して、耐久性を高めることが可能となるのである。   The invention according to claim 5 further includes a resin member that covers the contact interface between the end face portion and the protruding portion from the outer peripheral side in the radial direction, and the protruding portion is a recess that is recessed from the outer peripheral surface portion of the protruding portion toward the inner peripheral side in the radial direction. A labyrinth structure including a resin member is formed together with the resin member. According to this, the resin member that covers the contact interface between one end surface portion and the other protrusion portion of the accommodation fitting portion and the inlet fitting portion from the radially outer peripheral side is radially inward from the outer peripheral surface portion of the protrusion portion. The labyrinth structure is formed together with the protruding portion by entering the concave portion recessed toward the circumferential side. Here, as described above, the contact interface formed by the axial contact of the end surface portion with the protruding portion protruding to the radially outer peripheral side is formed by the resin member that covers the protruding portion from the radially outer peripheral side. The labyrinth structure is interposed between the resin member and the surrounding space. At the same time, both fitting parts are fitted on the radially inner peripheral side with respect to the contact interface between the projecting part and the end face part by the above-described configuration in which the end face part is in axial contact with the projecting part projecting radially outward. And is welded. Even if water intrudes into the labyrinth structure from the surrounding space of the resin member by the above form, the water is, of course, in the contact interface between the end surface portion and the protruding portion on the downstream side of the labyrinth structure than the contact interface. Intrusion can be suppressed up to the weld interface where both fitting portions are welded on the inner peripheral side. Therefore, it is possible to avoid the situation where the weld interface corrodes due to water immersion and to improve the durability.

尚、収容嵌合部及び入口嵌合部のうち一方における端面部については、請求項6に記載の発明の如く、収容嵌合部及び入口嵌合部のうち他方よりも径方向内周側へ突出する突出部に対して軸方向に接触するように、形成してもよい。   In addition, about the end surface part in one among an accommodation fitting part and an inlet fitting part, like the invention of Claim 6, it is to radial inner peripheral side rather than the other among an accommodation fitting part and an inlet fitting part. You may form so that it may contact an axial direction with respect to the protrusion part which protrudes.

請求項7に記載の発明によると、収容嵌合部の端面部は、入口部材において入口嵌合部よりも径方向へ突出する突出部に対して軸方向に接触する。これによれば、内燃機関の支持面部が軸方向に支持する収容部材の収容嵌合部の端面部によって、入口嵌合部よりも径方向へ突出する入口部材の突出部をも軸方向に支持し得る。故に、両嵌合部が径方向に溶接されてなる溶接界面においては、燃料圧力による押付軸力に起因したせん断応力の発生が抑制されるので、当該溶接界面の疲労破壊を回避して耐久性を高めることが可能となる。またこのように、径方向へ突出して端面部と軸方向接触する突出部は、入口部材に形成されることになるので、弁部材を径方向内周側に収容する収容部材については、当該突出部の形成に起因する歪みを免れ得る。したがって、収容部材の内周側においては、弁部材の所望の駆動性を獲得することが可能となるのである。   According to the seventh aspect of the present invention, the end surface portion of the accommodation fitting portion is in axial contact with the protruding portion that protrudes more radially than the inlet fitting portion in the inlet member. According to this, the protruding portion of the inlet member that protrudes in the radial direction from the inlet fitting portion is also supported in the axial direction by the end surface portion of the receiving fitting portion of the receiving member that the supporting surface portion of the internal combustion engine supports in the axial direction. Can do. Therefore, at the welding interface where both fitting parts are welded in the radial direction, the generation of shear stress due to the pressing axial force due to fuel pressure is suppressed, so fatigue damage at the welding interface is avoided and durability is reduced. Can be increased. Further, since the protruding portion that protrudes in the radial direction and contacts the end surface portion in the axial direction is formed in the inlet member, the protruding member is accommodated for the accommodating member that accommodates the valve member on the radially inner peripheral side. The distortion caused by the formation of the part can be avoided. Therefore, it is possible to obtain a desired drive performance of the valve member on the inner peripheral side of the housing member.

請求項8に記載の発明は、弁部材を駆動する磁力を通電により発生する電磁コイルを、さらに備え、収容部材は、電磁コイルへの通電に応じて磁力を発生させるための磁気回路を形成する。このように、弁部材の駆動用磁力を電磁コイルへの通電に応じて発生させるための磁気回路を形成する収容部材については、収容嵌合部の端面部が軸方向接触する突出部が形成されないので、当該突出部の形成に起因する磁気回路の特性変化を免れ得る。したがって、弁部材の収容状態にて磁気回路を形成する収容部材の内周側においては、弁部材の所望の駆動性を獲得することが可能となるのである。   The invention according to claim 8 further includes an electromagnetic coil for generating a magnetic force for driving the valve member by energization, and the housing member forms a magnetic circuit for generating the magnetic force in response to the energization to the electromagnetic coil. . As described above, with respect to the housing member that forms the magnetic circuit for generating the driving magnetic force of the valve member in response to the energization of the electromagnetic coil, the protruding portion where the end surface portion of the housing fitting portion contacts in the axial direction is not formed. Therefore, it is possible to avoid changes in the characteristics of the magnetic circuit due to the formation of the protrusions. Therefore, it is possible to obtain a desired drivability of the valve member on the inner peripheral side of the storage member that forms the magnetic circuit in the storage state of the valve member.

請求項9に記載の発明によると、入口嵌合部の端面部は、収容部材において収容嵌合部よりも径方向へ突出する突出部に対して軸方向に接触する。これによれば、内燃機関の支持面部が軸方向に支持する収容部材において収容嵌合部よりも径方向へ突出する突出部によって、入口部材の端面部をも軸方向に支持し得る。故に、両嵌合部が径方向に溶接されてなる溶接界面においては、燃料圧力による押付軸力に起因したせん断応力の発生が抑制されるので、当該溶接界面の疲労破壊を回避して耐久性を高めることが可能となる。   According to the ninth aspect of the present invention, the end surface portion of the inlet fitting portion is in axial contact with the protruding portion that protrudes in the radial direction from the receiving fitting portion in the receiving member. According to this, the end surface portion of the inlet member can also be supported in the axial direction by the projecting portion that projects in the radial direction from the housing fitting portion in the housing member that the support surface portion of the internal combustion engine supports in the axial direction. Therefore, at the welding interface where both fitting parts are welded in the radial direction, the generation of shear stress due to the pressing axial force due to fuel pressure is suppressed, so fatigue damage at the welding interface is avoided and durability is reduced. Can be increased.

本発明の第一実施形態による燃料噴射弁を示す断面図である。It is sectional drawing which shows the fuel injection valve by 1st embodiment of this invention. 本発明の第一実施形態による燃料噴射弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve by 1st embodiment of this invention. 本発明の第一実施形態による燃料噴射弁の特徴を説明するための模式図である。It is a schematic diagram for demonstrating the characteristic of the fuel injection valve by 1st embodiment of this invention. 本発明の第二実施形態による燃料噴射弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve by 2nd embodiment of this invention. 本発明の第三実施形態による燃料噴射弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve by 3rd embodiment of this invention. 本発明の第四実施形態による燃料噴射弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve by 4th embodiment of this invention. 本発明の第五実施形態による燃料噴射弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve by 5th embodiment of this invention. 本発明の第六実施形態による燃料噴射弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve by 6th embodiment of this invention. 本発明の第七実施形態による燃料噴射弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve by 7th embodiment of this invention. 本発明の第八実施形態による燃料噴射弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve by 8th embodiment of this invention. 本発明の第九実施形態による燃料噴射弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve by 9th embodiment of this invention.

以下、本発明の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. In addition, the overlapping description is abbreviate | omitted by attaching | subjecting the same code | symbol to the corresponding component in each embodiment.

(第一実施形態)
図1は、本発明の第一実施形態による燃料噴射弁10を示している。燃料噴射弁10は内燃機関1と燃料配管2との間に取付けられ、燃料配管2から供給される燃料を内燃機関1のシリンダ室1aへ噴射する。尚、本実施形態において燃料噴射弁10は、ガソリン式内燃機関1のシリンダ室1aへ燃料噴射するものであるが、例えばガソリン式内燃機関1のシリンダ室1aと連通する吸気通路へ燃料噴射するものや、ディーゼル式内燃機関1のシリンダ室1aへ燃料噴射するもの等であってもよい。
(First embodiment)
FIG. 1 shows a fuel injection valve 10 according to a first embodiment of the present invention. The fuel injection valve 10 is attached between the internal combustion engine 1 and the fuel pipe 2 and injects fuel supplied from the fuel pipe 2 into the cylinder chamber 1 a of the internal combustion engine 1. In this embodiment, the fuel injection valve 10 injects fuel into the cylinder chamber 1a of the gasoline internal combustion engine 1. For example, the fuel injection valve 10 injects fuel into an intake passage communicating with the cylinder chamber 1a of the gasoline internal combustion engine 1. Or what injects a fuel into the cylinder chamber 1a of the diesel internal combustion engine 1 etc. may be sufficient.

(構成)
まず、第一実施形態による燃料噴射弁10の構成を、図1に基づき説明する。燃料噴射弁10は、弁ハウジング11、固定コア20、可動コア30、弁部材40、弾性部材50,52、並びに駆動部60を備えている。
(Constitution)
First, the structure of the fuel injection valve 10 by 1st embodiment is demonstrated based on FIG. The fuel injection valve 10 includes a valve housing 11, a fixed core 20, a movable core 30, a valve member 40, elastic members 50 and 52, and a drive unit 60.

弁ハウジング11は、収容部材12、入口部材13及びノズル部材14等から構成されている。収容部材12は円筒状に形成されており、内燃機関1のシリンダヘッド1b側から燃料配管2側へと向かう軸方向において順に、第一磁性部12a、非磁性部12b及び第二磁性部12cを有している。磁性材からなる各磁性部12a,12cと、非磁性材からなる非磁性部12bとは、例えばレーザ溶接等によって結合されている。かかる結合構造によって非磁性部12bは、第一磁性部12aと第二磁性部12cの間において磁束が短絡するのを防止している。   The valve housing 11 includes an accommodation member 12, an inlet member 13, a nozzle member 14, and the like. The housing member 12 is formed in a cylindrical shape. The first magnetic portion 12a, the nonmagnetic portion 12b, and the second magnetic portion 12c are sequentially arranged in the axial direction from the cylinder head 1b side to the fuel pipe 2 side of the internal combustion engine 1. Have. The magnetic parts 12a and 12c made of a magnetic material and the nonmagnetic part 12b made of a nonmagnetic material are coupled by, for example, laser welding. With such a coupling structure, the nonmagnetic portion 12b prevents the magnetic flux from being short-circuited between the first magnetic portion 12a and the second magnetic portion 12c.

第二磁性部12cにおいて非磁性部12bとは反対側の軸方向端部には、円筒状の入口部材13が固定されている。入口部材13は、燃料ポンプ(図示しない)から燃料配管2を通じて供給される燃料が流入するように、燃料流入口15を径方向の内周側に形成している。この燃料流入口15への流入燃料を濾過するために本実施形態では、燃料流入口15に燃料フィルタ16が収容されている。   A cylindrical inlet member 13 is fixed to the axial end of the second magnetic portion 12c opposite to the nonmagnetic portion 12b. The inlet member 13 has a fuel inlet 15 formed on the inner peripheral side in the radial direction so that fuel supplied from the fuel pump (not shown) through the fuel pipe 2 flows in. In this embodiment, a fuel filter 16 is accommodated in the fuel inlet 15 in order to filter the fuel flowing into the fuel inlet 15.

第一磁性部12aにおいて非磁性部12bとは反対側の軸方向端部には、ノズル部材14が固定されている。ノズル部材14は有底円筒状に形成されており、燃料を流通させる燃料通路17を収容部材12と共同して形成している。ノズル部材14は、収容部材12のうち第一磁性部12aと共に、シリンダヘッド1bの取付孔1cに挿入されている。ノズル部材14には、噴孔18及び弁座19が設けられている。燃料通路17に連通する噴孔18は、ノズル部材14の中心軸線周りに等間隔をあけて複数設けられ、それぞれ円筒孔状に形成されている。弁座19は、各噴孔18よりも燃料上流側において燃料通路17の周囲に形成されている。   A nozzle member 14 is fixed to the axial end of the first magnetic portion 12a opposite to the nonmagnetic portion 12b. The nozzle member 14 is formed in a bottomed cylindrical shape, and forms a fuel passage 17 through which fuel is circulated in cooperation with the housing member 12. The nozzle member 14 is inserted into the mounting hole 1c of the cylinder head 1b together with the first magnetic portion 12a of the housing member 12. The nozzle member 14 is provided with a nozzle hole 18 and a valve seat 19. A plurality of nozzle holes 18 communicating with the fuel passage 17 are provided at equal intervals around the central axis of the nozzle member 14 and are each formed in a cylindrical hole shape. The valve seat 19 is formed around the fuel passage 17 on the fuel upstream side of each nozzle hole 18.

固定コア20は、磁性材によって円筒状に形成されており、収容部材12のうち非磁性部12b及び第二磁性部12cの内周面部に同軸上に固定されている。固定コア20は、軸方向に貫通する貫通孔21を、径方向の中央部において円筒孔状に形成している。貫通孔21は、入口部材13の燃料流入口15と連通しており、当該流入口15への流入燃料が流れ込む。貫通孔21の径方向内周側には、第一弾性部材50が弾性変形可能に収容されていると共に、当該弾性部材50のセット荷重を調整するためのアジャスティングパイプ22が圧入によって固定されている。   The fixed core 20 is formed in a cylindrical shape by a magnetic material, and is coaxially fixed to the inner peripheral surface portions of the nonmagnetic portion 12 b and the second magnetic portion 12 c of the housing member 12. The fixed core 20 is formed with a through hole 21 penetrating in the axial direction in a cylindrical hole shape in the central portion in the radial direction. The through hole 21 communicates with the fuel inlet 15 of the inlet member 13, and the fuel flowing into the inlet 15 flows into the through hole 21. A first elastic member 50 is accommodated in the radially inner peripheral side of the through hole 21 so as to be elastically deformable, and an adjusting pipe 22 for adjusting a set load of the elastic member 50 is fixed by press-fitting. Yes.

可動コア30は、磁性材によって円筒状に形成されており、弁ハウジング11の収容部材12の径方向内周側に同軸上に収容されて一方の端面部32を固定コア20と対向させている。可動コア30は、収容部材12のうち非磁性部12bによって軸方向両側に摺動案内される。これにより可動コア30の端面部32は、固定コア20側への軸方向移動によって当該コア20に当接可能となっている。   The movable core 30 is formed of a magnetic material in a cylindrical shape, is coaxially accommodated on the radially inner peripheral side of the accommodating member 12 of the valve housing 11, and has one end surface portion 32 opposed to the fixed core 20. . The movable core 30 is slidably guided on both sides in the axial direction by the nonmagnetic portion 12b of the housing member 12. Thereby, the end surface part 32 of the movable core 30 can contact | abut to the said core 20 by the axial direction movement to the fixed core 20 side.

可動コア30は、軸方向に貫通する軸方向孔34を、径方向の中央部において円筒孔状に形成している。このような可動コア30において軸方向孔34は、固定コア20側の端面部32と、固定コア20とは反対側の端面部33とに、開口する形となっている。   The movable core 30 is formed with an axial hole 34 penetrating in the axial direction in the shape of a cylindrical hole in the central portion in the radial direction. In such a movable core 30, the axial hole 34 is open to an end surface portion 32 on the fixed core 20 side and an end surface portion 33 on the opposite side to the fixed core 20.

弁部材40は、非磁性材によって円形横断面のニードル状に形成されている。弁部材40は、弁ハウジング11の収容部材12及びノズル部材14の各々の径方向内周側に、同軸上に収容されている。弁部材40は、ノズル部材14の弁座19と対向するシート部41を、ノズル部材14側の軸方向端部に有している。弁部材40は、固定コア20側への軸方向移動によってシート部41を弁座19から離座させることで、各噴孔18を燃料通路17に対して開放する。また一方、弁部材40は、固定コア20とは反対側への軸方向移動によってシート部41を弁座19に着座させることで、各噴孔18を燃料通路17に対して閉塞する。このように弁部材40は、軸方向両側への往復移動によって各噴孔18を開閉することにより、それら噴孔18からシリンダ室1aへの燃料噴射を断続可能となっている。   The valve member 40 is formed in a needle shape having a circular cross section by a nonmagnetic material. The valve member 40 is coaxially accommodated on the radially inner peripheral side of each of the accommodating member 12 and the nozzle member 14 of the valve housing 11. The valve member 40 has a seat portion 41 that faces the valve seat 19 of the nozzle member 14 at the end in the axial direction on the nozzle member 14 side. The valve member 40 opens each nozzle hole 18 with respect to the fuel passage 17 by moving the seat portion 41 away from the valve seat 19 by moving in the axial direction toward the fixed core 20. On the other hand, the valve member 40 closes each injection hole 18 with respect to the fuel passage 17 by seating the seat portion 41 on the valve seat 19 by moving in the axial direction opposite to the fixed core 20. Thus, the valve member 40 can intermittently inject fuel from the nozzle holes 18 to the cylinder chamber 1a by opening and closing each nozzle hole 18 by reciprocating movement in both axial directions.

弁部材40は、シート部41から固定コア20側へ向かって軸方向に延伸する円柱状の軸部42を、当該部材40の本体部として有している。軸部42は可動コア30の軸方向孔34に同軸上に挿入されて、当該孔34の内周面部に対し軸方向の両側に摺動可能となっている。   The valve member 40 has a columnar shaft portion 42 extending in the axial direction from the seat portion 41 toward the fixed core 20 side as a main body portion of the member 40. The shaft portion 42 is coaxially inserted into the axial hole 34 of the movable core 30 and is slidable on both sides in the axial direction with respect to the inner peripheral surface portion of the hole 34.

弁部材40は、軸部42から径方向外周側へ突出する円形鍔状の突部44を、固定コア20側の軸方向端部に有している。固定コア20の貫通孔21よりも小径に形成される突部44は、当該孔21に挿入されて第一弾性部材50と接触している。また、可動コア30の軸方向孔34よりも大径に形成される突部44は、当該コア30の端面部32に固定コア20側から当接可能となっている。   The valve member 40 has a circular hook-shaped protrusion 44 that protrudes from the shaft portion 42 toward the outer peripheral side in the radial direction at the axial end portion on the fixed core 20 side. The protrusion 44 formed with a smaller diameter than the through hole 21 of the fixed core 20 is inserted into the hole 21 and is in contact with the first elastic member 50. Further, the protrusion 44 formed with a larger diameter than the axial hole 34 of the movable core 30 can come into contact with the end surface portion 32 of the core 30 from the fixed core 20 side.

弁部材40は、軸部42及び突部44に跨って燃料孔46を有している。燃料孔46は、突部44のうち第一弾性部材50との接触面部と、軸部42のうち軸方向孔34から露出する外周面部とに開口している。かかる開口形態によって燃料孔46は、突部44の挿入される貫通孔21と、燃料通路17との間を連通している。したがって、燃料流入口15から貫通孔21へと流れ込んだ燃料は、燃料孔46を経由して燃料通路17まで届くこととなる。   The valve member 40 has a fuel hole 46 across the shaft portion 42 and the protrusion 44. The fuel hole 46 is open to a contact surface portion of the protrusion 44 with the first elastic member 50 and an outer peripheral surface portion of the shaft portion 42 exposed from the axial hole 34. The fuel hole 46 communicates between the through hole 21 into which the protrusion 44 is inserted and the fuel passage 17 by such an opening form. Accordingly, the fuel that has flowed from the fuel inlet 15 into the through hole 21 reaches the fuel passage 17 via the fuel hole 46.

第一弾性部材50は金属製の圧縮コイルスプリングからなり、固定コア20の貫通孔21の径方向内周側に同軸上に収容されている。第一弾性部材50の一端部はアジャスティングパイプ22に係止され、当該弾性部材50の他端部は弁部材40の突部44に係止されている。かかる係止構造により第一弾性部材50は、アジャスティングパイプ22と弁部材40との間で圧縮されて弾性変形することで、弁部材40を固定コア20とは反対側へ付勢する復原力を発生する。   The first elastic member 50 is made of a metal compression coil spring, and is accommodated coaxially on the radially inner peripheral side of the through hole 21 of the fixed core 20. One end of the first elastic member 50 is locked to the adjusting pipe 22, and the other end of the elastic member 50 is locked to the protrusion 44 of the valve member 40. With this locking structure, the first elastic member 50 is compressed between the adjusting pipe 22 and the valve member 40 and elastically deformed, thereby restoring the force that biases the valve member 40 to the side opposite to the fixed core 20. Is generated.

第二弾性部材52は金属製の圧縮コイルスプリングからなり、収容部材12のうち第一磁性部12aの径方向内周側且つ弁部材40のうち軸部42の径方向外周側に同軸上に収容されている。第二弾性部材52の一端部は第一磁性部12aに係止され、当該弾性部材52の他端部は可動コア30の軸方向孔34に係止されている。かかる係止構造により第二弾性部材52は、弁ハウジング11と可動コア30との間で圧縮されて弾性変形することで、可動コア30を固定コア20側へ付勢する復原力を第一弾性部材50の復原力よりも小さく発生する。   The second elastic member 52 is made of a metal compression coil spring, and is accommodated coaxially on the radially inner peripheral side of the first magnetic portion 12a of the housing member 12 and on the radially outer peripheral side of the shaft portion 42 of the valve member 40. Has been. One end of the second elastic member 52 is locked to the first magnetic portion 12 a, and the other end of the elastic member 52 is locked to the axial hole 34 of the movable core 30. With such a locking structure, the second elastic member 52 is compressed between the valve housing 11 and the movable core 30 and is elastically deformed, whereby a restoring force that urges the movable core 30 toward the fixed core 20 is provided as the first elasticity. It occurs smaller than the restoring force of the member 50.

駆動部60は、電磁コイル61、樹脂ボビン62、コネクタ64及びコイルハウジング66等から構成されている。電磁コイル61は、樹脂ボビン62に金属線材を巻回してなる。電磁コイル61は、収容部材12のうち非磁性部12b及び第二磁性部12cの径方向外周側に、同軸上に配置されている。コネクタ64は、外部の制御回路(図示しない)と電磁コイル61との間を電気接続するターミナル64aを有しており、当該制御回路によって電磁コイル61への通電が制御されるようになっている。   The drive unit 60 includes an electromagnetic coil 61, a resin bobbin 62, a connector 64, a coil housing 66, and the like. The electromagnetic coil 61 is formed by winding a metal wire around a resin bobbin 62. The electromagnetic coil 61 is coaxially disposed on the radially outer peripheral side of the nonmagnetic portion 12b and the second magnetic portion 12c of the housing member 12. The connector 64 has a terminal 64 a that electrically connects an external control circuit (not shown) and the electromagnetic coil 61, and energization of the electromagnetic coil 61 is controlled by the control circuit. .

コイルハウジング66は、磁性材によって円筒状に形成されており、電磁コイル61及び弁ハウジング11の径方向外周側に配置されて当該コイル61を覆っている。コイルハウジング66は、内燃機関1の取付孔1cにおいて燃料配管2側へ拡径するように形成された段差面状の支持面部1dに対し押付けられることで、当該支持面部1dにより軸方向に支持されている。ここで収容部材12のうち第一磁性部12aは、支持面部1d側となる軸方向のノズル部材14側へと向かって縮径し且つコイルハウジング66が当該支持面部1d側から係合する段差面状の縮径部124を、形成している。これにより収容部材12は、コイルハウジング66のうち径方向内周側へ突出する内周フランジ部66aを介して、支持面部1dにより軸方向支持された形となっている。またここで、弁ハウジング11の入口部材13には、燃料配管2から供給される燃料の圧力によって、支持面部1d側へと向かう押付軸力Nが作用するようになっている。したがって、かかる押付軸力Nの作用により燃料噴射弁10は、収容部材12がコイルハウジング66の内周フランジ部66aを介して支持面部1dに押付けられる状態下、各噴孔18からの燃料噴射を断続するのである。   The coil housing 66 is formed in a cylindrical shape by a magnetic material, and is disposed on the radially outer peripheral side of the electromagnetic coil 61 and the valve housing 11 to cover the coil 61. The coil housing 66 is supported by the support surface portion 1d in the axial direction by being pressed against the support surface portion 1d having a stepped surface formed so as to expand toward the fuel pipe 2 in the mounting hole 1c of the internal combustion engine 1. ing. Here, the first magnetic portion 12a of the housing member 12 is reduced in diameter toward the nozzle member 14 in the axial direction, which is the support surface portion 1d side, and the step surface where the coil housing 66 engages from the support surface portion 1d side. A reduced diameter portion 124 is formed. Thus, the accommodating member 12 is supported in the axial direction by the support surface portion 1d via the inner peripheral flange portion 66a protruding to the radially inner peripheral side of the coil housing 66. Further, here, the inlet member 13 of the valve housing 11 is subjected to a pressing axial force N directed toward the support surface portion 1d by the pressure of the fuel supplied from the fuel pipe 2. Therefore, the fuel injection valve 10 causes the fuel injection valve 10 to inject fuel from each injection hole 18 under the state in which the housing member 12 is pressed against the support surface portion 1d via the inner peripheral flange portion 66a of the coil housing 66 by the action of the pressing axial force N. It is intermittent.

ここで、電磁コイル61が通電によって励磁するときには、コイルハウジング66、収容部材12の第一磁性部12a、可動コア30、固定コア20、並びに収容部材12の第二磁性部12cが共同して形成する磁気回路に、磁束が流れる。その結果、互いに対向する可動コア30と固定コア20との間に、可動コア30を固定コア20側へ吸引して駆動する「磁力」としての磁気吸引力が、発生する。また一方、通電の停止によって電磁コイル61が消磁するときには、磁気回路に磁束が流れなくなるため、可動コア30と固定コア20との間において磁気吸引力が消失する。   Here, when the electromagnetic coil 61 is excited by energization, the coil housing 66, the first magnetic part 12 a of the housing member 12, the movable core 30, the fixed core 20, and the second magnetic part 12 c of the housing member 12 are formed jointly. Magnetic flux flows through the magnetic circuit. As a result, a magnetic attractive force is generated between the movable core 30 and the fixed core 20 facing each other as a “magnetic force” that attracts and drives the movable core 30 toward the fixed core 20. On the other hand, when the electromagnetic coil 61 is demagnetized by stopping energization, the magnetic flux does not flow in the magnetic circuit, so that the magnetic attractive force disappears between the movable core 30 and the fixed core 20.

このように構成された燃料噴射弁10の開弁作動では、電磁コイル61への通電が開始されるのに応じて、磁気吸引力が可動コア30に作用する。この磁気吸引力の作用により可動コア30は、第一弾性部材50の復原力を受けて突部44が固定コア20側の端面部32に当接している弁部材40を、当該復原力に抗して押圧する。その結果、端面部32が固定コア20と衝突するまで可動コア30は、弁部材40と一体となって当該コア20側へと移動するので、シート部41が弁座19から離座して各噴孔18から燃料が噴射されることになる。   In the valve opening operation of the fuel injection valve 10 configured as described above, the magnetic attractive force acts on the movable core 30 as the energization of the electromagnetic coil 61 is started. Due to the action of the magnetic attraction force, the movable core 30 receives the restoring force of the first elastic member 50, and resists the valve member 40 in which the protrusion 44 is in contact with the end surface portion 32 on the fixed core 20 side against the restoring force. Then press. As a result, the movable core 30 moves together with the valve member 40 toward the core 20 until the end face portion 32 collides with the fixed core 20. Fuel is injected from the nozzle hole 18.

また、開弁作動後における燃料噴射弁10の閉弁作動では、電磁コイル61への通電が停止するのに応じて、可動コア30に作用する磁気吸引力が消失する。この磁気吸引力の消失により、第二弾性部材52よりも大きな復原力を第一弾性部材50から受ける弁部材40は、突部44を端面部32に当接させて可動コア30を固定コア20とは反対側へ押圧する。その結果、シート部41が弁座19に着座するので、弁部材40の移動が停止すると共に、各噴孔18からの燃料噴射も停止することになる。   Further, in the valve closing operation of the fuel injection valve 10 after the valve opening operation, the magnetic attractive force acting on the movable core 30 disappears as the energization of the electromagnetic coil 61 is stopped. Due to the disappearance of the magnetic attractive force, the valve member 40 that receives a restoring force larger than that of the second elastic member 52 from the first elastic member 50 brings the projecting portion 44 into contact with the end surface portion 32, and moves the movable core 30 to the fixed core 20. Press to the opposite side. As a result, since the seat portion 41 is seated on the valve seat 19, the movement of the valve member 40 is stopped, and the fuel injection from each nozzle hole 18 is also stopped.

(特徴)
次に、第一実施形態による燃料噴射弁10の特徴について、詳しく説明する。図1,2に示すように、ステンレス鋼等の金属材からなる入口部材13は、軸方向の燃料配管2とは反対側に、円筒状の入口嵌合部130を形成している。またこれに対応して、収容部材12のうちステンレス鋼等の金属磁性材からなる第二磁性部12cは、軸方向の燃料配管2側から入口嵌合部130が同軸上に嵌合するように、円筒状の収容嵌合部120を形成している。ここで、入口嵌合部130が収容嵌合部120よりも小径に形成される本実施形態では、収容嵌合部120の径方向内周側に入口嵌合部130が圧入状態にて嵌合している。尚、入口嵌合部130の圧入代については、それら嵌合部120,130の相対的な傾きを抑制可能な限りで適宜設定され得るが、例えば30μm等に設定されることとなる。
(Characteristic)
Next, features of the fuel injection valve 10 according to the first embodiment will be described in detail. As shown in FIGS. 1 and 2, the inlet member 13 made of a metal material such as stainless steel forms a cylindrical inlet fitting portion 130 on the side opposite to the fuel pipe 2 in the axial direction. Correspondingly, in the housing member 12, the second magnetic portion 12c made of a metal magnetic material such as stainless steel is coaxially fitted with the inlet fitting portion 130 from the fuel pipe 2 side in the axial direction. A cylindrical accommodation fitting portion 120 is formed. Here, in the present embodiment in which the inlet fitting portion 130 is formed to have a smaller diameter than the housing fitting portion 120, the inlet fitting portion 130 is fitted in the press-fitted state on the radially inner peripheral side of the housing fitting portion 120. is doing. The press-fitting allowance of the inlet fitting portion 130 can be appropriately set as long as the relative inclination of the fitting portions 120 and 130 can be suppressed, but is set to 30 μm, for example.

このように、径方向外周側の収容嵌合部120と径方向内周側の入口嵌合部130とが嵌合してなる弁ハウジング11においては、それら嵌合部120,130同士が径方向に溶接されて同軸状態を保っている。本実施形態において嵌合部120,130の溶接は、例えばYAGレーザ等のレーザ光を収容嵌合部120の外周側から径方向に照射して、その光エネルギーにより収容嵌合部120及び入口嵌合部130を順次溶融させ、その後の冷却固化工程を経ることで、実現され得る。   Thus, in the valve housing 11 formed by fitting the accommodation fitting portion 120 on the radially outer peripheral side and the inlet fitting portion 130 on the radially inner peripheral side, the fitting portions 120 and 130 are in the radial direction. It is welded to maintain a coaxial state. In this embodiment, the fitting portions 120 and 130 are welded by, for example, irradiating laser light such as a YAG laser in the radial direction from the outer peripheral side of the accommodation fitting portion 120, and the accommodation fitting portion 120 and the inlet fitting by the light energy. This can be realized by sequentially melting the joint portion 130 and then performing a cooling and solidifying step.

さらに、本実施形態において入口部材13には、入口嵌合部130の燃料配管2側の軸方向端部131よりも径方向外周側へ突出するように、円環平板状(円形鍔状)の突出部132が形成されている。またこれに対応して、収容部材12のうち第二磁性部12cが形成する収容嵌合部120の燃料配管2側の軸方向端部121には、突出部132に対して支持面部1d側から軸方向に接触するように、円環平面状の端面部122が形成されている。   Further, in the present embodiment, the inlet member 13 has an annular flat plate shape (circular bowl shape) so as to protrude more radially outward than the axial end portion 131 on the fuel pipe 2 side of the inlet fitting portion 130. A protruding portion 132 is formed. Correspondingly, the axial end portion 121 on the fuel pipe 2 side of the accommodating fitting portion 120 formed by the second magnetic portion 12c of the accommodating member 12 is formed from the support surface portion 1d side with respect to the protruding portion 132. An end surface 122 having an annular plane shape is formed so as to be in contact with the axial direction.

以上の構成により収容嵌合部120と入口嵌合部130とは、端面部122と突出部132の側面部134との接触界面70から軸方向の支持面部1d側へ離間した箇所に、上記径方向溶接による溶接界面71を形成している。そしてさらに本実施形態では、コネクタ64と同一の樹脂材にて形成されて電磁コイル61とコイルハウジング66との間に介装される樹脂部材68によって、突出部132と接触界面70と収容嵌合部120とが径方向の外周側から覆われている。したがって、樹脂部材68と突出部132との界面73及び接触界面70の両界面よりも内周側に位置する溶接界面71は、樹脂部材68の周囲空間72との間にそれら両界面73,70が介在された形態となっているので、当該空間72からの浸水は達し難い。   With the above-described configuration, the accommodating fitting portion 120 and the inlet fitting portion 130 have the above-mentioned diameters at locations separated from the contact interface 70 between the end surface portion 122 and the side surface portion 134 of the protruding portion 132 toward the support surface portion 1d in the axial direction. A welding interface 71 is formed by directional welding. Further, in this embodiment, the protrusion 132 and the contact interface 70 are accommodated and fitted by the resin member 68 that is formed of the same resin material as the connector 64 and interposed between the electromagnetic coil 61 and the coil housing 66. The portion 120 is covered from the outer peripheral side in the radial direction. Accordingly, the welding interface 71 located on the inner peripheral side of both the interface 73 and the contact interface 70 between the resin member 68 and the protrusion 132 is between the peripheral space 72 of the resin member 68 and both the interfaces 73 and 70. Therefore, the water from the space 72 is difficult to reach.

ここまでの第一実施形態によると、支持面部1dが軸方向支持する収容部材12において収容嵌合部120の端面部122は、入口部材13において入口嵌合部130よりも径方向へ突出する突出部132に軸方向接触するので、当該入口部材13を軸方向支持し得る。しかも、そうした軸方向支持を可能にする端面部122及び突出部132の接触界面70から軸方向に離間する箇所で、両嵌合部120,130が径方向に溶接されてなる溶接界面71においては、押付軸力Nの作用も当該軸力起因のせん断応力の発生も抑制され得る。したがって、溶接界面71の疲労破壊を回避して、高い耐久性を獲得することが可能となるのである。   According to the first embodiment thus far, the end surface portion 122 of the accommodation fitting portion 120 in the accommodation member 12 that the support surface portion 1d supports in the axial direction protrudes more radially than the inlet fitting portion 130 in the inlet member 13. Since the portion 132 is in axial contact, the inlet member 13 can be supported in the axial direction. In addition, in the weld interface 71 in which both the fitting portions 120 and 130 are welded in the radial direction at a position spaced apart from the contact interface 70 between the end surface portion 122 and the projecting portion 132 enabling such axial support. The action of the pressing axial force N and the generation of shear stress due to the axial force can be suppressed. Therefore, fatigue failure of the weld interface 71 can be avoided and high durability can be obtained.

さらに第一実施形態によると、収容嵌合部120の径方向内周側に入口嵌合部130が圧入されているので、それら嵌合部120,130は、押付軸力Nの作用や振動等によっては相対的に傾き難くなる。それと共に第一実施形態によると、収容嵌合部120の端面部122は、入口嵌合部130よりも径方向外周側へ突出する突出部132に軸方向接触することで、その接触界面70の形成箇所は、燃料噴射弁10において可及的に径方向外周側に位置している。故に図3の如く、接触界面70をなす各面部122,134の面粗さに起因して、嵌合部120,130が相対的に傾いたとしても、その傾き中心から接触界面70までの傾き半径Rが可及的に大きくなることにより、傾き角度θが小さくなるのである。これらのことから、嵌合部120,130間の溶接界面71においては、それら嵌合部120,130の傾きによるせん断応力の発生が抑制され得るので、高い耐久性を維持することが可能である。   Further, according to the first embodiment, since the inlet fitting portion 130 is press-fitted on the radially inner peripheral side of the housing fitting portion 120, the fitting portions 120, 130 are operated by the pressing axial force N, vibration, etc. Depending on the situation, it becomes relatively difficult to tilt. At the same time, according to the first embodiment, the end surface portion 122 of the housing fitting portion 120 is in axial contact with the protruding portion 132 that protrudes more radially outward than the inlet fitting portion 130, thereby forming the contact interface 70. The formation location is located on the outer peripheral side in the radial direction as much as possible in the fuel injection valve 10. Therefore, as shown in FIG. 3, even if the fitting portions 120 and 130 are relatively inclined due to the surface roughness of the surface portions 122 and 134 forming the contact interface 70, the inclination from the inclination center to the contact interface 70. As the radius R increases as much as possible, the tilt angle θ decreases. From these things, since the generation of shear stress due to the inclination of the fitting portions 120 and 130 can be suppressed at the welding interface 71 between the fitting portions 120 and 130, it is possible to maintain high durability. .

またさらに第一実施形態によると、径方向へ突出して端面部122と軸方向接触する突出部132は、弁部材40を収容し且つその駆動のための磁気回路を形成する収容部材12にではなく、入口部材13に形成されている。これによれば、突出部132の形成による収容部材12の歪みや磁気回路の特性変化を回避して、弁部材40の所望の駆動性を獲得することも可能となるのである。   Still further, according to the first embodiment, the protruding portion 132 that protrudes in the radial direction and contacts the end surface portion 122 in the axial direction is not the receiving member 12 that receives the valve member 40 and forms a magnetic circuit for driving the valve member 40. The inlet member 13 is formed. According to this, it becomes possible to obtain the desired drivability of the valve member 40 by avoiding the distortion of the housing member 12 and the change in characteristics of the magnetic circuit due to the formation of the protruding portion 132.

(第二実施形態)
図4に示すように、本発明の第二実施形態は第一実施形態の変形例である。第二実施形態では、入口部材13において径方向外周側へ突出する突出部132に、その外周面部135から径方向内側へ凹む凹部136が円環溝状に形成されている。そして、この凹部136に対して、突出部132の外周面部135を覆う樹脂部材68が周方向の全域にて入り込むことにより、ラビリンス構造80が形成されている。即ち、本実施形態では、端面部122により軸方向支持される突出部132として、径方向外周側へと突出させて厚肉化した部分を、ラビリンス構造80をなす凹部136の形成に兼用しているのである。
(Second embodiment)
As shown in FIG. 4, the second embodiment of the present invention is a modification of the first embodiment. In the second embodiment, a recess 136 that is recessed radially inward from the outer peripheral surface portion 135 is formed in an annular groove shape in the protruding portion 132 that protrudes radially outward in the inlet member 13. And the labyrinth structure 80 is formed when the resin member 68 which covers the outer peripheral surface part 135 of the protrusion part 132 enters this recessed part 136 in the whole region of the circumferential direction. That is, in this embodiment, as the protruding portion 132 supported in the axial direction by the end surface portion 122, the thickened portion that protrudes toward the outer peripheral side in the radial direction is also used for forming the concave portion 136 that forms the labyrinth structure 80. It is.

このような第二実施形態によると、突出部132と端面部122との接触界面70は、それを径方向外周側から覆う樹脂部材68が当該突出部132の凹部136と共に形成するラビリンス構造80を、樹脂部材68の周囲空間72との間に介在され得る。故に、樹脂部材68の周囲空間72からラビリンス構造80へ水が浸入したとしても、当該水は、ラビリンス構造80よりも下流側となる接触界面70には勿論、当該界面70よりも径方向内周側の溶接界面71までは、浸入を抑制され得る。したがって、浸水により溶接界面71が腐食する事態を回避して、耐久性を高めることが可能となるのである。   According to the second embodiment, the contact interface 70 between the projecting portion 132 and the end surface portion 122 includes the labyrinth structure 80 in which the resin member 68 that covers the contact interface 70 from the outer peripheral side in the radial direction forms the recess 136 of the projecting portion 132. The resin member 68 can be interposed between the surrounding space 72 and the resin member 68. Therefore, even if water enters the labyrinth structure 80 from the surrounding space 72 of the resin member 68, the water is not limited to the contact interface 70 on the downstream side of the labyrinth structure 80, and the radially inner periphery of the interface 70. The penetration can be suppressed up to the welding interface 71 on the side. Therefore, it is possible to avoid the situation where the weld interface 71 is corroded by water so as to improve the durability.

(第三実施形態)
図5に示すように、本発明の第三実施形態は第二実施形態の変形例である。第三実施形態では、収容部材12において端面部122を有する収容嵌合部120は、当該端面部122の径方向内周側に円筒状の空隙部74を形成している。これにより空隙部74は、端面部122が入口部材13の突出部132と接触してなる接触界面70の径方向内周側のうち周方向の全域で、突出部132の側面部134を露出させる形となっている。
(Third embodiment)
As shown in FIG. 5, the third embodiment of the present invention is a modification of the second embodiment. In the third embodiment, the accommodation fitting portion 120 having the end surface portion 122 in the accommodation member 12 forms a cylindrical gap portion 74 on the radially inner peripheral side of the end surface portion 122. As a result, the gap 74 exposes the side surface 134 of the protruding portion 132 in the entire region in the circumferential direction on the radially inner peripheral side of the contact interface 70 in which the end surface portion 122 is in contact with the protruding portion 132 of the inlet member 13. It is in shape.

このような第三実施形態によると、径方向外周側へ突出する突出部132に端面部122を接触させていることと相俟って、接触界面70の形成箇所は、燃料噴射弁10において可及的に径方向外周側に位置することとなる。故に、接触界面70をなす各面部122,134の面粗さに起因して嵌合部120,130が相対的に傾いたとしても、その傾き角度は小さくなるのである。したがって、嵌合部120,130間の溶接界面71においては、それら嵌合部120,130の相対的な傾きによるせん断応力の発生が抑制され得るので、高い耐久性を維持することが可能となる。   According to the third embodiment as described above, in combination with the contact of the end face 122 with the projecting portion 132 projecting to the radially outer peripheral side, the location where the contact interface 70 is formed is acceptable in the fuel injection valve 10. As a result, it is located on the radially outer peripheral side. Therefore, even if the fitting portions 120 and 130 are relatively inclined due to the surface roughness of the surface portions 122 and 134 forming the contact interface 70, the inclination angle becomes small. Therefore, since the generation of shear stress due to the relative inclination of the fitting portions 120 and 130 can be suppressed at the welding interface 71 between the fitting portions 120 and 130, it is possible to maintain high durability. .

(第四実施形態)
図6に示すように、本発明の第四実施形態は第二実施形態の変形例である。第四実施形態では、入口部材13の入口嵌合部130が収容部材12の収容嵌合部120よりも大径の円筒状に形成されており、入口嵌合部130の径方向内周側に収容嵌合部120が圧入状態にて嵌合している。そして、このように径方向内周側の収容嵌合部120と径方向外周側の入口嵌合部130とが嵌合してなる弁ハウジング11においては、それら嵌合部120,130同士が径方向に溶接されて同軸状態を保っているのである。尚、収容嵌合部120の圧入代については、第一実施形態における入口嵌合部130の圧入代の場合と同様に、設定され得る。また、嵌合部120,130の溶接は、レーザ光を入口嵌合部130の外周側から径方向に照射する以外は第一実施形態と同様にして、実現され得る。
(Fourth embodiment)
As shown in FIG. 6, the fourth embodiment of the present invention is a modification of the second embodiment. In the fourth embodiment, the inlet fitting portion 130 of the inlet member 13 is formed in a cylindrical shape having a larger diameter than the housing fitting portion 120 of the housing member 12, and is formed on the radially inner peripheral side of the inlet fitting portion 130. The accommodation fitting part 120 is fitted in a press-fit state. In the valve housing 11 in which the accommodation fitting portion 120 on the radially inner peripheral side and the inlet fitting portion 130 on the radially outer peripheral side are fitted in this way, the fitting portions 120 and 130 have a diameter. It is welded in the direction to maintain a coaxial state. In addition, about the press fitting allowance of the accommodation fitting part 120, it can set similarly to the case of the press fitting allowance of the inlet fitting part 130 in 1st embodiment. Further, the welding of the fitting portions 120 and 130 can be realized in the same manner as in the first embodiment except that the laser beam is irradiated in the radial direction from the outer peripheral side of the inlet fitting portion 130.

さらに、第四実施形態において入口部材13には、入口嵌合部130の燃料配管2側の軸方向端部131よりも、突出部132とは反対側となる径方向内周側へと突出するように、円筒状の突出部1132が形成されている。そして、この突出部1132に対して、支持面部1dにより軸方向支持される収容部材12のうち収容嵌合部120の端面部122が軸方向に接触することで、入口部材13も軸方向支持されている。   Further, in the fourth embodiment, the inlet member 13 protrudes toward the radially inner peripheral side that is opposite to the protruding portion 132 from the axial end portion 131 on the fuel pipe 2 side of the inlet fitting portion 130. As described above, a cylindrical protrusion 1132 is formed. The inlet member 13 is also supported in the axial direction by the end surface portion 122 of the housing fitting portion 120 in the housing member 12 supported in the axial direction by the support surface portion 1d with respect to the protruding portion 1132 in the axial direction. ing.

以上の構成により収容嵌合部120と入口嵌合部130とは、端面部122と突出部1132の側面部1134との接触界面1070から軸方向の支持面部1d側へ離間した箇所に、それら嵌合部120,130の径方向溶接による溶接界面1071を形成しているのである。故に、上述の軸方向支持を可能にする端面部122及び突出部1132の接触界面1070から軸方向に離間した溶接界面1071においては、押付軸力Nの作用も当該軸力起因のせん断応力の発生も抑制され得る。したがって、第四実施形態においても、溶接界面1071の疲労破壊を回避して、高い耐久性を獲得することが可能となるのである。   With the above-described configuration, the accommodating fitting portion 120 and the inlet fitting portion 130 are fitted at locations separated from the contact interface 1070 between the end surface portion 122 and the side surface portion 1134 of the protruding portion 1132 toward the support surface portion 1d in the axial direction. The welding interface 1071 is formed by radial welding of the joint portions 120 and 130. Therefore, at the weld interface 1071 that is axially spaced from the contact interface 1070 between the end face portion 122 and the protruding portion 1132 that enables the axial support described above, the action of the pressing axial force N is also caused by the generation of shear stress due to the axial force. Can also be suppressed. Therefore, also in the fourth embodiment, it is possible to avoid fatigue fracture of the weld interface 1071 and obtain high durability.

さらに第四実施形態によると、入口嵌合部130の径方向内周側に収容嵌合部120が圧入されるので、それら嵌合部130,120は、押付軸力Nの作用や振動等によっては相対的に傾き難い。またさらに第四実施形態によると、径方向へ突出して端面部122と軸方向接触する突出部1132も、突出部132と同様、弁部材40を収容し且つ磁気回路を形成する収容部材12にではなく、入口部材13に形成されている。これらのことから、嵌合部130,120の傾きによる界面1071でのせん断応力の発生を抑制して高い耐久性を維持すると共に、突出部1132,132の形成による収容部材12の歪みや磁気回路の特性変化を回避して弁部材40の所望の駆動性を獲得可能である。   Furthermore, according to the fourth embodiment, since the accommodation fitting portion 120 is press-fitted to the radially inner peripheral side of the inlet fitting portion 130, the fitting portions 130 and 120 are caused by the action of the pressing axial force N, vibration, or the like. Is relatively difficult to tilt. Furthermore, according to the fourth embodiment, the protruding portion 1132 that protrudes in the radial direction and contacts the end surface portion 122 in the axial direction is also similar to the protruding portion 132 in the accommodating member 12 that accommodates the valve member 40 and forms the magnetic circuit. It is not formed in the inlet member 13. Accordingly, the generation of shear stress at the interface 1071 due to the inclination of the fitting portions 130 and 120 is suppressed to maintain high durability, and the distortion of the housing member 12 and the magnetic circuit due to the formation of the protruding portions 1132 and 132 are maintained. It is possible to obtain the desired drivability of the valve member 40 by avoiding this characteristic change.

尚、第四実施形態の樹脂部材68は、外周面部135に凹部136が開口する突出部132と、入口嵌合部130とを、径方向の外周側から覆っている。これにより第四実施形態では、樹脂部材68が凹部136に入り込んでなるラビリンス構造80よりも内周側であって、長手筒状の入口嵌合部130と樹脂部材68との界面75よりも内周側に、溶接界面1071が位置している。したがって、溶接界面1071は、ラビリンス構造80及び界面75が樹脂部材68の周囲空間72との間に介在された形となっているので、当該空間72からの浸水につき懸念される経路距離が延長されて耐久性の向上が図られているのである。   In addition, the resin member 68 of 4th embodiment has covered the protrusion part 132 which the recessed part 136 opens in the outer peripheral surface part 135, and the inlet fitting part 130 from the outer peripheral side of radial direction. As a result, in the fourth embodiment, the inner side of the labyrinth structure 80 in which the resin member 68 enters the recess 136, and the inner side of the interface 75 between the longitudinal cylindrical inlet fitting portion 130 and the resin member 68. A welding interface 1071 is located on the circumferential side. Accordingly, since the welding interface 1071 has a shape in which the labyrinth structure 80 and the interface 75 are interposed between the surrounding space 72 of the resin member 68, the path distance that is concerned about water immersion from the space 72 is extended. Thus, durability is improved.

(第五実施形態)
図7に示すように、本発明の第五実施形態は第四実施形態の変形例である。第五実施形態では、収容部材12において端面部122を有する収容嵌合部120は、当該端面部122の径方向内周側に空隙部1074を形成している。これにより空隙部1074は、端面部122が入口部材13の突出部1132と接触してなる接触界面1070の径方向内周側のうち周方向の全域で、突出部1132の側面部1134を露出させる形となっている。
(Fifth embodiment)
As shown in FIG. 7, the fifth embodiment of the present invention is a modification of the fourth embodiment. In the fifth embodiment, the accommodation fitting portion 120 having the end surface portion 122 in the accommodation member 12 forms a gap portion 1074 on the radially inner peripheral side of the end surface portion 122. Thus, the gap portion 1074 exposes the side surface portion 1134 of the protruding portion 1132 in the entire region in the circumferential direction on the radially inner peripheral side of the contact interface 1070 in which the end surface portion 122 contacts the protruding portion 1132 of the inlet member 13. It is in shape.

このような第五実施形態によると、接触界面1070の形成箇所を、燃料噴射弁10において可及的に径方向外周側に設定し得る。故に、接触界面1070をなす各面部122,1134の面粗さに起因して嵌合部120,130が相対的に傾いたとしても、その傾き角度は、小さく抑えられることとなる。したがって、嵌合部120,130間の溶接界面1071においては、それら嵌合部120,130の相対的な傾きによるせん断応力の発生を抑制して、高い耐久性を維持することが可能となるのである。   According to such a fifth embodiment, the location where the contact interface 1070 is formed can be set as radially as possible in the fuel injection valve 10. Therefore, even if the fitting portions 120 and 130 are relatively inclined due to the surface roughness of the surface portions 122 and 1134 forming the contact interface 1070, the inclination angle can be kept small. Therefore, at the welding interface 1071 between the fitting portions 120 and 130, it is possible to suppress the generation of shear stress due to the relative inclination of the fitting portions 120 and 130, and to maintain high durability. is there.

(第六実施形態)
図8に示すように、本発明の第六実施形態は第四実施形態の変形例である。第六実施形態において入口部材13には、突出部1132が設けられておらず、その代わりに収容部材12において、突出部128が設けられている。この突出部128は、収容部材12の第二磁性部12cが形成する収容嵌合部120のうち支持面部1d側の軸方向端部127よりも、径方向外周側へ円筒状に突出している。またこれに対応して、入口部材13の入口嵌合部130において支持面部1d側の軸方向端部137には、突出部128に対して燃料配管2側から軸方向に接触するように、円環平面状の端面部138が形成されている。即ち、支持面部1dにより軸方向支持される収容部材12のうち突出部128に入口嵌合部130の端面部138が軸方向に接触することで、入口部材13も軸方向支持されている。
(Sixth embodiment)
As shown in FIG. 8, the sixth embodiment of the present invention is a modification of the fourth embodiment. In the sixth embodiment, the inlet member 13 is not provided with the protruding portion 1132, and instead, the accommodating member 12 is provided with the protruding portion 128. The protruding portion 128 protrudes in a cylindrical shape toward the outer peripheral side in the radial direction from the axial end portion 127 on the support surface portion 1 d side in the accommodating fitting portion 120 formed by the second magnetic portion 12 c of the accommodating member 12. Correspondingly, the circular end of the inlet fitting portion 130 of the inlet member 13 is in contact with the protruding portion 128 in the axial direction from the fuel pipe 2 side on the support surface portion 1d side. An annular plane end surface portion 138 is formed. That is, the inlet member 13 is also supported in the axial direction by the end surface portion 138 of the inlet fitting portion 130 contacting the protruding portion 128 of the housing member 12 supported in the axial direction by the support surface portion 1d in the axial direction.

以上の構成により入口嵌合部130と収容嵌合部120とは、端面部138と突出部128の側面部129との接触界面76から軸方向の燃料配管2側へ離間した箇所に、径方向溶接による溶接界面1071を形成している。故に、上述の軸方向支持を可能にする端面部138と突出部128との接触界面76に対して軸方向に離間した溶接界面1071においては、押付軸力Nの作用も当該軸力起因のせん断応力の発生も抑制され得る。したがって、第五実施形態においても、溶接界面1071の疲労破壊を回避して高い耐久性を獲得することが可能となるのである。   With the above-described configuration, the inlet fitting portion 130 and the housing fitting portion 120 are arranged in a radial direction at locations separated from the contact interface 76 between the end surface portion 138 and the side surface portion 129 of the protruding portion 128 toward the fuel pipe 2 in the axial direction. A welding interface 1071 is formed by welding. Therefore, at the welding interface 1071 that is axially spaced from the contact interface 76 between the end face portion 138 and the protrusion 128 that enables the axial support described above, the action of the pressing axial force N is also caused by the shear caused by the axial force. The generation of stress can also be suppressed. Therefore, also in the fifth embodiment, it is possible to avoid fatigue fracture of the weld interface 1071 and obtain high durability.

さらに第六実施形態によると、入口嵌合部130の端面部138は、収容嵌合部120よりも径方向外周側へ突出する突出部128に軸方向接触することで、その接触界面76の形成箇所は、燃料噴射弁10において可及的に径方向外周側に位置している。故に、接触界面76をなす各面部138,129の面粗さに起因して、嵌合部130,120が相対的に傾いたとしても、その傾き角度は小さくなるのである。それと共に第六実施形態によっても、入口嵌合部130の径方向内周側に収容嵌合部120が圧入されているので、それら嵌合部130,120は、押付軸力Nの作用や振動等によっては相対的に傾き難い。これらのことから、嵌合部130,120間の溶接界面1071においては、それら嵌合部130,120の傾きによるせん断応力の発生が抑制され得るので、高い耐久性を維持することが可能となるのである。   Furthermore, according to the sixth embodiment, the end surface portion 138 of the inlet fitting portion 130 is in axial contact with the protruding portion 128 that protrudes more radially outward than the housing fitting portion 120, thereby forming the contact interface 76 thereof. The location is located on the outer peripheral side in the radial direction as much as possible in the fuel injection valve 10. Therefore, even if the fitting portions 130 and 120 are relatively inclined due to the surface roughness of the surface portions 138 and 129 forming the contact interface 76, the inclination angle becomes small. At the same time, according to the sixth embodiment, since the accommodation fitting portion 120 is press-fitted to the radially inner peripheral side of the inlet fitting portion 130, the fitting portions 130, 120 are subjected to the action and vibration of the pressing axial force N. In some cases, it is relatively difficult to tilt. For these reasons, at the welding interface 1071 between the fitting portions 130 and 120, the generation of shear stress due to the inclination of the fitting portions 130 and 120 can be suppressed, so that high durability can be maintained. It is.

尚、第六実施形態の樹脂部材68は、第四実施形態と同様に突出部132及び入口嵌合部130を径方向外周側から覆っていることに加え、接触界面76と突出部128とについても径方向外周側から覆っている。これにより第六実施形態では、樹脂部材68が凹部136に入り込んでなるラビリンス構造80よりも内周側であって、長手筒状の入口嵌合部130と樹脂部材68との界面75並びに接触界面76の両界面よりも内周側に、溶接界面1071が位置している。したがって、溶接界面1071は、ラビリンス構造80及び界面75,76が樹脂部材68の周囲空間72との間に介在された形となっているので、当該空間72からの浸水につき懸念される経路距離が延長されて耐久性の向上が図られているのである。   In addition, the resin member 68 of the sixth embodiment covers the protruding portion 132 and the inlet fitting portion 130 from the outer peripheral side in the radial direction, as in the fourth embodiment, and the contact interface 76 and the protruding portion 128. Also covers from the outer peripheral side in the radial direction. As a result, in the sixth embodiment, the inner circumferential side of the labyrinth structure 80 in which the resin member 68 enters the recess 136, and the interface 75 and the contact interface between the longitudinal cylindrical inlet fitting portion 130 and the resin member 68. A welding interface 1071 is located on the inner peripheral side of both interfaces 76. Therefore, since the welding interface 1071 has a shape in which the labyrinth structure 80 and the interfaces 75 and 76 are interposed between the surrounding space 72 of the resin member 68, there is a path distance that is concerned about water immersion from the space 72. It is extended to improve durability.

(第七実施形態)
図9に示すように、本発明の第七実施形態は第六実施形態の変形例である。第七実施形態の収容部材12において径方向外周側へ突出する突出部128には、その外周面部125から径方向内側へ凹む円環溝状の凹部126が、軸方向に複数形成されている。そして、これらの凹部126に対して、突出部128の外周面部125を覆う樹脂部材68が周方向の全域にて入り込むことにより、ラビリンス構造82が形成されている。即ち、本実施形態では、端面部138を軸方向支持する突出部128として、径方向外周側へと突出させて厚肉化した部分を、ラビリンス構造82をなす凹部126の形成に兼用しているのである。
(Seventh embodiment)
As shown in FIG. 9, the seventh embodiment of the present invention is a modification of the sixth embodiment. In the housing member 12 of the seventh embodiment, the protrusion 128 that protrudes radially outward is formed with a plurality of annular groove-shaped recesses 126 that are recessed radially inward from the outer peripheral surface portion 125 in the axial direction. And the labyrinth structure 82 is formed when the resin member 68 which covers the outer peripheral surface part 125 of the protrusion part 128 penetrates into these recessed parts 126 in the whole region of the circumferential direction. That is, in the present embodiment, as the protruding portion 128 that supports the end surface portion 138 in the axial direction, a portion that protrudes toward the outer peripheral side in the radial direction and is thickened is also used for forming the concave portion 126 that forms the labyrinth structure 82. It is.

このような第七実施形態において溶接界面1071は、接触界面76を径方向外周側から覆う樹脂部材68が突出部128の各凹部126と共に形成するラビリンス構造82に対し、内周側に位置することとなる。これによれば、浸水による溶接界面1071の腐食回避作用を確実なものとして、耐久性を高めることが可能となるのである。   In such a seventh embodiment, the welding interface 1071 is positioned on the inner peripheral side with respect to the labyrinth structure 82 formed by the resin member 68 that covers the contact interface 76 from the outer peripheral side in the radial direction together with the concave portions 126 of the protrusions 128. It becomes. According to this, it is possible to improve the durability by ensuring the corrosion avoidance action of the weld interface 1071 due to water immersion.

(第八実施形態)
図10に示すように、本発明の第八実施形態は第六実施形態の変形例である。第八実施形態では、入口部材13において端面部138を有する入口嵌合部130は、当該端面部138の径方向内周側に空隙部78を形成している。これにより空隙部78は、端面部138が収容部材12の突出部128と接触してなる接触界面76の径方向内周側のうち周方向の全域で、突出部128の側面部129を露出させる形となっている。
(Eighth embodiment)
As shown in FIG. 10, the eighth embodiment of the present invention is a modification of the sixth embodiment. In the eighth embodiment, the inlet fitting portion 130 having the end surface portion 138 in the inlet member 13 forms a gap portion 78 on the radially inner peripheral side of the end surface portion 138. As a result, the gap portion 78 exposes the side surface portion 129 of the protruding portion 128 in the entire region in the circumferential direction on the radially inner peripheral side of the contact interface 76 in which the end surface portion 138 contacts the protruding portion 128 of the housing member 12. It is in shape.

このような第八実施形態によると、接触界面76の形成箇所を、燃料噴射弁10において可及的に径方向外周側に設定し得る。故に、接触界面76をなす各面部138,129の面粗さに起因して嵌合部120,130が相対的に傾いたとしても、その傾き角度は、小さく抑えられることとなる。したがって、嵌合部120,130間の溶接界面1071においては、それら嵌合部120,130の相対的な傾きによるせん断応力の発生を抑制して、高い耐久性を維持することが可能となるのである。   According to such an eighth embodiment, the location where the contact interface 76 is formed can be set as radially as possible in the fuel injection valve 10. Therefore, even if the fitting portions 120 and 130 are relatively inclined due to the surface roughness of the surface portions 138 and 129 forming the contact interface 76, the inclination angle can be kept small. Therefore, at the welding interface 1071 between the fitting portions 120 and 130, it is possible to suppress the generation of shear stress due to the relative inclination of the fitting portions 120 and 130, and to maintain high durability. is there.

(第九実施形態)
図11に示すように、本発明の第九実施形態は第二実施形態の変形例である。第九実施形態において入口部材13には、突出部132が設けられておらず、その代わりに収容部材12には、突出部1128が設けられている。この突出部1128は、収容部材12の第二磁性部12cが形成する収容嵌合部120のうち支持面部1d側の軸方向端部127よりも、径方向内周側へ円筒状に突出している。またこれに対応して、入口部材13の入口嵌合部130において支持面部1d側の軸方向端部137には、突出部128に対して燃料配管2側から軸方向接触するように、円環平面状の端面部1138が形成されている。即ち、支持面部1dにより軸方向支持される収容部材12のうち突出部1128に入口嵌合部130の端面部1138が軸方向に接触することで、入口部材13も軸方向支持されている。
(Ninth embodiment)
As shown in FIG. 11, the ninth embodiment of the present invention is a modification of the second embodiment. In the ninth embodiment, the inlet member 13 is not provided with the protruding portion 132, and instead, the accommodating member 12 is provided with the protruding portion 1128. The protruding portion 1128 protrudes in a cylindrical shape toward the radially inner peripheral side from the axial end portion 127 on the support surface portion 1 d side in the accommodating fitting portion 120 formed by the second magnetic portion 12 c of the accommodating member 12. . Correspondingly, an annular ring is formed so that the axial end 137 on the support surface 1d side of the inlet fitting portion 130 of the inlet member 13 is in axial contact with the protrusion 128 from the fuel pipe 2 side. A planar end surface portion 1138 is formed. That is, the inlet member 13 is also supported in the axial direction by the end surface portion 1138 of the inlet fitting portion 130 contacting the protruding portion 1128 of the housing member 12 supported in the axial direction by the support surface portion 1d in the axial direction.

以上の構成により入口嵌合部130と収容嵌合部120とは、端面部1138と突出部1128の側面部1129との接触界面1076から軸方向の燃料配管2側へ離間した箇所に、径方向溶接による溶接界面71を形成している。故に、上述の軸方向支持を可能にする端面部1138及び突出部1128の接触界面1076に対して軸方向に離間した溶接界面71においては、押付軸力Nの作用も当該軸力起因のせん断応力の発生も抑制され得る。したがって、第九実施形態においても、溶接界面71の疲労破壊を回避して高い耐久性を獲得することが可能となるのである。   With the above-described configuration, the inlet fitting portion 130 and the housing fitting portion 120 are arranged in a radial direction at locations separated from the contact interface 1076 between the end surface portion 1138 and the side surface portion 1129 of the protruding portion 1128 toward the fuel pipe 2 in the axial direction. A welding interface 71 is formed by welding. Therefore, at the welding interface 71 that is axially spaced from the contact interface 1076 of the end surface portion 1138 and the protrusion 1128 that enables the axial support described above, the action of the pressing axial force N is also caused by the shear stress due to the axial force. Generation | occurrence | production of can also be suppressed. Therefore, also in the ninth embodiment, it is possible to avoid fatigue failure of the weld interface 71 and obtain high durability.

さらに第九実施形態によっても、収容嵌合部120の径方向内周側に入口嵌合部130が圧入されているので、それら嵌合部120,130は、押付軸力Nの作用や振動等によっては相対的に傾き難い。したがって、嵌合部120,130間の溶接界面71においては、それら嵌合部120,130の傾きによるせん断応力の発生が抑制され得るので、高い耐久性を維持することが可能となるのである。   Furthermore, also according to the ninth embodiment, the inlet fitting portion 130 is press-fitted on the radially inner peripheral side of the housing fitting portion 120, so that the fitting portions 120 and 130 are operated by the pressing axial force N, vibration, and the like. Some of them are relatively hard to tilt. Therefore, since the generation of shear stress due to the inclination of the fitting portions 120 and 130 can be suppressed at the weld interface 71 between the fitting portions 120 and 130, high durability can be maintained.

(他の実施形態)
以上、本発明の複数の実施形態について説明したが、本発明はそれらの実施形態に限定して解釈されるものではなく、その要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
(Other embodiments)
Although a plurality of embodiments of the present invention have been described above, the present invention is not construed as being limited to these embodiments, and can be applied to various embodiments without departing from the scope of the present invention. .

具体的には、第一〜第八実施形態において嵌合部120,130については、径方向内周側の嵌合部を径方向外側の嵌合部に圧入しないで、それら嵌合部間に嵌合クリアランスを形成するように変更してもよい。また、第三〜第八実施形態においては、凹部136へ樹脂部材68を入り込ませてなるラビリンス構造80,82を形成しないように変更してもよく、逆に第九実施形態においては、収容嵌合部120の端面部122から離間させた突出部132の凹部136によりラビリンス構造80を形成してもよい。さらにまた、第七実施形態においては、第八実施形態の空隙部78を入口嵌合部130に形成してもよく、同様に第九実施形態においては、第五実施形態の空隙部1074に準ずる空隙部を収容嵌合部120側に代えて、入口嵌合部130側に形成してもよい。   Specifically, in the first to eighth embodiments, the fitting portions 120 and 130 do not press-fit the radially inner fitting portion into the radially outer fitting portion between the fitting portions. You may change so that a fitting clearance may be formed. In the third to eighth embodiments, the labyrinth structures 80 and 82 formed by inserting the resin member 68 into the concave portion 136 may be changed so as not to be formed. The labyrinth structure 80 may be formed by the concave portion 136 of the projecting portion 132 separated from the end surface portion 122 of the joint portion 120. Furthermore, in the seventh embodiment, the gap portion 78 of the eighth embodiment may be formed in the inlet fitting portion 130. Similarly, in the ninth embodiment, the gap portion 1074 of the fifth embodiment is applied. The space may be formed on the inlet fitting portion 130 side instead of the accommodating fitting portion 120 side.

1 内燃機関、1d 支持面部、2 燃料配管、10 燃料噴射弁、11 弁ハウジング、12 収容部材、12a 第一磁性部、12b 非磁性部、12c 第二磁性部、13 入口部材、15 燃料流入口、18 噴孔、20 固定コア、30 可動コア、40 弁部材、50 第一弾性部材、52 第二弾性部材、60 駆動部、61 電磁コイル、64 コネクタ、68 樹脂部材、70,76,1070,1076 接触界面、71,1071 溶接界面、72 周囲空間、74,78,1074 空隙部、80,82 ラビリンス構造、120 収容嵌合部、121,127,131,137 軸方向端部、122,138,1138 端面部、124 縮径部、125,135 外周面部、126,136 凹部、128,132,1128,1132 突出部、129,134,1129,1134 側面部、130 入口嵌合部、N 押付軸力 DESCRIPTION OF SYMBOLS 1 Internal combustion engine, 1d Support surface part, 2 Fuel piping, 10 Fuel injection valve, 11 Valve housing, 12 Housing member, 12a 1st magnetic part, 12b Nonmagnetic part, 12c 2nd magnetic part, 13 Inlet member, 15 Fuel inflow port , 18 nozzle hole, 20 fixed core, 30 movable core, 40 valve member, 50 first elastic member, 52 second elastic member, 60 drive unit, 61 electromagnetic coil, 64 connector, 68 resin member, 70, 76, 1070, 1076 Contact interface, 71, 1071 Weld interface, 72 Ambient space, 74, 78, 1074 Gap, 80, 82 Labyrinth structure, 120 Housing fitting, 121, 127, 131, 137 Axial end, 122, 138, 1138 End surface portion, 124 Reduced diameter portion, 125, 135 Outer peripheral surface portion, 126, 136 Recessed portion, 128, 132, 1128, 113 2 Protruding part, 129, 134, 1129, 1134 Side face part, 130 inlet fitting part, N pressing axial force

Claims (9)

燃料配管から供給される燃料の圧力により内燃機関の支持面部に押付けられる状態下、噴孔から前記内燃機関への燃料噴射を弁部材の往復移動により断続する燃料噴射弁であって、
軸方向の前記燃料配管とは反対側に入口嵌合部を有し、前記燃料配管からの供給燃料の圧力により前記支持面部側へ向かって押付軸力が作用すると共に、当該供給燃料が径方向内周側へ流入する筒状の入口部材と、
前記燃料配管側から同軸上に嵌合する前記入口嵌合部に対して溶接される収容嵌合部を有し、前記支持面部により軸方向に支持されると共に前記弁部材を径方向内周側に収容する筒状の収容部材と、
を備えた燃料噴射弁において、
前記収容嵌合部及び前記入口嵌合部のうち一方における端面部は、前記収容嵌合部及び前記入口嵌合部のうち他方よりも径方向へ突出する突出部に対して軸方向に接触し、前記端面部及び前記突出部の接触界面から軸方向に離間する箇所において、前記収容嵌合部及び前記入口嵌合部が径方向に溶接されることを特徴とする燃料噴射弁。
A fuel injection valve for intermittently injecting fuel from an injection hole to the internal combustion engine by reciprocating movement of a valve member under a state of being pressed against a support surface portion of the internal combustion engine by pressure of fuel supplied from a fuel pipe;
An inlet fitting portion is provided on the opposite side of the fuel pipe in the axial direction, and a pressing axial force acts toward the support surface portion side by the pressure of the fuel supplied from the fuel pipe, and the supplied fuel is in the radial direction. A cylindrical inlet member flowing into the inner peripheral side;
A housing fitting portion welded to the inlet fitting portion that is coaxially fitted from the fuel pipe side is supported in the axial direction by the support surface portion, and the valve member is radially inward. A cylindrical housing member to be housed in,
In a fuel injection valve equipped with
An end surface portion of one of the accommodation fitting portion and the inlet fitting portion is in axial contact with a protruding portion that projects more radially than the other of the accommodation fitting portion and the inlet fitting portion. The fuel injection valve is characterized in that the housing fitting portion and the inlet fitting portion are welded in a radial direction at a position spaced apart from the contact interface between the end face portion and the protruding portion in the axial direction.
前記収容嵌合部及び前記入口嵌合部のうち、径方向内周側の嵌合部は径方向外周側の嵌合部に圧入されることを特徴とする請求項1に記載の燃料噴射弁。   2. The fuel injection valve according to claim 1, wherein, of the accommodating fitting portion and the inlet fitting portion, a radially inner circumferential fitting portion is press-fitted into a radially outer circumferential fitting portion. . 前記収容嵌合部及び前記入口嵌合部のうち前記端面部にて前記突出部と接触する一方は、当該端面部の径方向内周側において前記突出部を露出させる空隙部を、形成することを特徴とする請求項1又は2に記載の燃料噴射弁。   One of the accommodating fitting portion and the inlet fitting portion that contacts the protruding portion at the end surface portion forms a void portion that exposes the protruding portion on the radially inner peripheral side of the end surface portion. The fuel injection valve according to claim 1 or 2. 前記収容嵌合部及び前記入口嵌合部のうち一方における前記端面部は、前記収容嵌合部及び前記入口嵌合部のうち他方よりも径方向外周側へ突出する前記突出部に対して軸方向に接触することを特徴とする請求項1〜3のいずれか一項に記載の燃料噴射弁。   The end surface portion in one of the accommodation fitting portion and the inlet fitting portion is a shaft with respect to the protruding portion that projects more radially outward than the other of the accommodation fitting portion and the inlet fitting portion. It contacts in a direction, The fuel injection valve as described in any one of Claims 1-3 characterized by the above-mentioned. 前記端面部及び前記突出部の前記接触界面を径方向外周側から覆う樹脂部材を、さらに備え、
前記突出部は、前記突出部の外周面部から径方向内周側へ凹む凹部に前記樹脂部材が入り込んでなるラビリンス構造を、前記樹脂部材と共に形成することを特徴とする請求項4に記載の燃料噴射弁。
Further comprising a resin member that covers the contact interface of the end surface portion and the protruding portion from a radially outer peripheral side;
5. The fuel according to claim 4, wherein the projecting portion forms a labyrinth structure in which the resin member enters a recess recessed from the outer peripheral surface portion of the projecting portion toward the radially inner peripheral side together with the resin member. Injection valve.
前記収容嵌合部及び前記入口嵌合部のうち一方における前記端面部は、前記収容嵌合部及び前記入口嵌合部のうち他方よりも径方向内周側へ突出する前記突出部に対して軸方向に接触することを特徴とする請求項1〜3のいずれか一項に記載の燃料噴射弁。   The end surface part in one of the accommodation fitting part and the inlet fitting part is opposed to the protruding part projecting radially inward from the other of the accommodation fitting part and the inlet fitting part. It contacts in an axial direction, The fuel injection valve as described in any one of Claims 1-3 characterized by the above-mentioned. 前記収容嵌合部の前記端面部は、前記入口部材において前記入口嵌合部よりも径方向へ突出する前記突出部に対して軸方向に接触することを特徴とする請求項1〜6のいずれか一項に記載の燃料噴射弁。   The said end surface part of the said accommodation fitting part contacts the axial direction with respect to the said protrusion part which protrudes in a radial direction rather than the said inlet fitting part in the said inlet member. A fuel injection valve according to claim 1. 前記弁部材を駆動する磁力を通電により発生する電磁コイルを、さらに備え、
前記収容部材は、前記電磁コイルへの通電に応じて前記磁力を発生させるための磁気回路を形成することを特徴とする請求項7に記載の燃料噴射弁。
An electromagnetic coil that generates a magnetic force for driving the valve member by energization;
The fuel injection valve according to claim 7, wherein the housing member forms a magnetic circuit for generating the magnetic force in response to energization of the electromagnetic coil.
前記入口嵌合部の前記端面部は、前記収容部材において前記収容嵌合部よりも径方向へ突出する前記突出部に対して、軸方向に接触することを特徴とする請求項1〜6のいずれか一項に記載の燃料噴射弁。   The end face portion of the inlet fitting portion is in axial contact with the protruding portion protruding in the radial direction from the receiving fitting portion in the receiving member. The fuel injection valve according to any one of the above.
JP2010033967A 2010-02-18 2010-02-18 Fuel injection valve Active JP5402713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010033967A JP5402713B2 (en) 2010-02-18 2010-02-18 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010033967A JP5402713B2 (en) 2010-02-18 2010-02-18 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2011169243A true JP2011169243A (en) 2011-09-01
JP5402713B2 JP5402713B2 (en) 2014-01-29

Family

ID=44683609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010033967A Active JP5402713B2 (en) 2010-02-18 2010-02-18 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP5402713B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012956A (en) * 2010-06-29 2012-01-19 Denso Corp Fuel injection valve
JP2017067055A (en) * 2015-10-02 2017-04-06 株式会社デンソー Fuel injection device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017026A (en) * 2004-07-01 2006-01-19 Toyota Motor Corp Fuel injection valve
JP2007218205A (en) * 2006-02-17 2007-08-30 Hitachi Ltd Solenoid fuel injection valve and its assembling method
JP2007278218A (en) * 2006-04-10 2007-10-25 Denso Corp Fuel injection valve
JP2008063952A (en) * 2006-09-05 2008-03-21 Keihin Corp Solenoid fuel injection valve
WO2008038396A1 (en) * 2006-09-25 2008-04-03 Hitachi, Ltd. Fuel injection valve
JP2009133209A (en) * 2007-11-28 2009-06-18 Keihin Corp Electromagnetic fuel-injection valve
JP2009221879A (en) * 2008-03-13 2009-10-01 Keihin Corp Manufacturing method of electromagnetic fuel injection valve
JP2009243466A (en) * 2008-03-14 2009-10-22 Denso Corp Fuel injection valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017026A (en) * 2004-07-01 2006-01-19 Toyota Motor Corp Fuel injection valve
JP2007218205A (en) * 2006-02-17 2007-08-30 Hitachi Ltd Solenoid fuel injection valve and its assembling method
JP2007278218A (en) * 2006-04-10 2007-10-25 Denso Corp Fuel injection valve
JP2008063952A (en) * 2006-09-05 2008-03-21 Keihin Corp Solenoid fuel injection valve
WO2008038396A1 (en) * 2006-09-25 2008-04-03 Hitachi, Ltd. Fuel injection valve
JP2009133209A (en) * 2007-11-28 2009-06-18 Keihin Corp Electromagnetic fuel-injection valve
JP2009221879A (en) * 2008-03-13 2009-10-01 Keihin Corp Manufacturing method of electromagnetic fuel injection valve
JP2009243466A (en) * 2008-03-14 2009-10-22 Denso Corp Fuel injection valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012012956A (en) * 2010-06-29 2012-01-19 Denso Corp Fuel injection valve
JP2017067055A (en) * 2015-10-02 2017-04-06 株式会社デンソー Fuel injection device

Also Published As

Publication number Publication date
JP5402713B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP2007016774A (en) Fuel injection valve and its manufacturing method
JP4897728B2 (en) Electromagnetic fuel injection valve
US7063279B2 (en) Fuel injection valve
JP5262972B2 (en) Fuel injection valve
JP2017008944A (en) Fuel injection valve
JP5014090B2 (en) Electromagnetic fuel injection valve and manufacturing method thereof
JP2010180758A (en) Fuel injection valve
JP6471618B2 (en) Fuel injection device
JP4453745B2 (en) Fuel injection valve
JP5402713B2 (en) Fuel injection valve
JP5509901B2 (en) Fuel injection valve
WO2015136862A1 (en) Fuel injection device
JP6380323B2 (en) Fuel injection device
JP2011144731A (en) Fuel injection valve
US10107243B2 (en) Fuel injection valve
JP2009167901A (en) Fuel injection valve
JP4866336B2 (en) Electromagnetic fuel injection valve
JP6669282B2 (en) Fuel injection device
JP4669852B2 (en) Electromagnetic fuel injection valve
JP4378638B2 (en) Fuel injection valve
JP6292272B2 (en) Fuel injection valve
JP2015183581A (en) Solenoid fuel injection valve
JP2018162791A (en) Fuel injection device
JP2006152812A (en) Fuel injection valve and method of manufacturing the same
JP2005282458A (en) Fuel injection valve and method of manufacturing fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R151 Written notification of patent or utility model registration

Ref document number: 5402713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250