JP5509901B2 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP5509901B2
JP5509901B2 JP2010029394A JP2010029394A JP5509901B2 JP 5509901 B2 JP5509901 B2 JP 5509901B2 JP 2010029394 A JP2010029394 A JP 2010029394A JP 2010029394 A JP2010029394 A JP 2010029394A JP 5509901 B2 JP5509901 B2 JP 5509901B2
Authority
JP
Japan
Prior art keywords
valve
valve housing
cylindrical portion
housing
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010029394A
Other languages
Japanese (ja)
Other versions
JP2011163292A (en
Inventor
一男 山本
栄二 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010029394A priority Critical patent/JP5509901B2/en
Publication of JP2011163292A publication Critical patent/JP2011163292A/en
Application granted granted Critical
Publication of JP5509901B2 publication Critical patent/JP5509901B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関用の燃料噴射弁に関する。   The present invention relates to a fuel injection valve for an internal combustion engine.

従来、燃料配管から供給される燃料の圧力により内燃機関の支持面に押付けられる状態下、噴孔から内燃機関への燃料噴射を弁部材の往復移動により断続する燃料噴射弁が、広く用いられている。例えば特許文献1,2の燃料噴射弁では、弁部材を収容する弁ハウジングの外周側に配置される電磁コイルにつき、内燃機関の支持面に支持されるコイルハウジングによって外周側から覆い、当該電磁コイルへの通電によって磁力を発生させることで、弁部材を正確に駆動している。   2. Description of the Related Art Conventionally, a fuel injection valve in which fuel injection from an injection hole to an internal combustion engine is intermittently performed by reciprocating movement of a valve member in a state of being pressed against a support surface of the internal combustion engine by the pressure of fuel supplied from a fuel pipe has been widely used. Yes. For example, in the fuel injection valves disclosed in Patent Documents 1 and 2, the electromagnetic coil disposed on the outer peripheral side of the valve housing that accommodates the valve member is covered from the outer peripheral side by a coil housing supported on the support surface of the internal combustion engine, and the electromagnetic coil By generating a magnetic force by energizing the valve member, the valve member is accurately driven.

さて、特許文献1,2の燃料噴射弁では、弁ハウジングがコイルハウジングに圧入され、その圧入箇所において各ハウジングが互いに溶接されている。かかる構成によると、電磁コイルへの通電に応じて弁部材が駆動されるときには、当該駆動用の磁力を発生させるための磁気回路が各ハウジングを通って形成されることになる。   In the fuel injection valves disclosed in Patent Documents 1 and 2, the valve housing is press-fitted into the coil housing, and the housings are welded to each other at the press-fitting location. According to this configuration, when the valve member is driven in response to energization of the electromagnetic coil, a magnetic circuit for generating the driving magnetic force is formed through each housing.

特開2006−90278号公報JP 2006-90278 A 特開2009−243466号公報JP 2009-243466 A

しかし、特許文献1の燃料噴射弁では、コイルハウジングのうち弁ハウジングが内周側に圧入されて磁気回路を形成する筒状部分に溶接を施しているため、溶接熱による当該筒状部分の変形や溶接ばらつきに起因して、磁気回路の磁束密度を変化させるおそれがある。こうした磁束密度の変化は、磁力による弁部材の駆動特性をばらつかせることになるので、望ましくない。   However, in the fuel injection valve disclosed in Patent Document 1, since the valve housing of the coil housing is press-fitted on the inner peripheral side and welded to the cylindrical portion forming the magnetic circuit, the cylindrical portion is deformed by welding heat. There is a risk of changing the magnetic flux density of the magnetic circuit due to welding variations. Such a change in magnetic flux density is undesirable because it varies the drive characteristics of the valve member due to the magnetic force.

さらに特許文献1の燃料噴射弁において、燃料配管からの供給燃料の圧力により支持面側への押付軸力が作用する筒状の弁ハウジングは、当該支持面によって支持されるコイルハウジングに対して、圧入溶接される内周面が径方向に支持されているに過ぎない。そのため、弁ハウジングとコイルハウジングとの間の溶接界面にはせん断応力が発生して、当該溶接界面の疲労破壊を招くおそれがある。こうした溶接界面の疲労破壊は、耐久性を低下させることになるため、望ましくない。   Furthermore, in the fuel injection valve of Patent Document 1, the cylindrical valve housing in which the pressing axial force acts on the support surface side due to the pressure of the fuel supplied from the fuel pipe is compared with the coil housing supported by the support surface The inner peripheral surface to be press-welded is only supported in the radial direction. Therefore, shear stress is generated at the weld interface between the valve housing and the coil housing, and there is a risk of causing fatigue failure of the weld interface. Such fatigue failure at the weld interface is undesirable because it reduces durability.

一方、特許文献2の燃料噴射弁においてコイルハウジングは、弁ハウジングが圧入溶接される筒状部分よりも内周側へ突出して支持面に接触する部分を設け、当該突出部分を支持面とは反対側にて弁ハウジングに係合させている。かかる構成によると、弁ハウジングがコイルハウジングのうち支持面側の突出部分によって支持されることになるので、支持面側へ向かって弁ハウジングに作用する押付軸力は当該突出部分によって受け止められ得る。したがって、弁ハウジングとコイルハウジングとの間の溶接界面にせん断応力による疲労破壊が発生するのを抑制して、耐久性を確保することができるのである。   On the other hand, in the fuel injection valve of Patent Document 2, the coil housing is provided with a portion that protrudes inward from the cylindrical portion to which the valve housing is press-welded and contacts the support surface, and the protrusion is opposite to the support surface. Engage with the valve housing on the side. According to such a configuration, the valve housing is supported by the protruding portion on the support surface side of the coil housing, so that the pressing axial force acting on the valve housing toward the support surface side can be received by the protruding portion. Therefore, durability can be secured by suppressing the occurrence of fatigue failure due to shear stress at the weld interface between the valve housing and the coil housing.

但し、本発明者らが鋭意研究を行なった結果、特許文献2の燃料噴射弁であっても、コイルハウジングのうち弁ハウジングを圧入されて磁気回路を形成する筒状部分が溶接時の溶接熱により変形して、弁部材の駆動特性ばらつきを招くおそれのあることが判明したのである。以下、この問題について説明する。   However, as a result of intensive studies by the present inventors, even in the fuel injection valve of Patent Document 2, the cylindrical portion of the coil housing that is press-fitted into the valve housing to form a magnetic circuit is welded during welding. Thus, it has been found that there is a risk of causing variation in the drive characteristics of the valve member. Hereinafter, this problem will be described.

特許文献2の燃料噴射弁に関する模式図8は、コイルハウジング1000の筒状部分1002のうち弁ハウジング1100との溶接箇所1002aに、圧入による緊迫力が強く作用する場合を示している。この場合、コイルハウジング1000の筒状部分1002のうち、緊迫力の強作用箇所1002aよりも電磁コイル1200側にて磁気回路を形成する箇所1002bには、弁ハウジング1100から径方向の外周側へと離間するような熱変形が生じ易くなる。ここで、磁気回路の形成箇所1002bが弁ハウジング1100から径方向に離間して空隙1300が生じると、当該磁気回路の磁束密度が低下するので、磁力による弁部材の駆動特性が設計特性からずれてしまうのである。   Schematic diagram 8 relating to the fuel injection valve of Patent Document 2 shows a case where a pressing force due to press-fitting strongly acts on a welded portion 1002a of the cylindrical portion 1002 of the coil housing 1000 with the valve housing 1100. In this case, in the tubular portion 1002 of the coil housing 1000, the portion 1002b where the magnetic circuit is formed on the electromagnetic coil 1200 side from the portion 1002a where the force is strongly applied is extended from the valve housing 1100 to the outer peripheral side in the radial direction. Thermal deformation such as separation tends to occur. Here, if the formation location 1002b of the magnetic circuit is separated from the valve housing 1100 in the radial direction and the air gap 1300 is generated, the magnetic flux density of the magnetic circuit is reduced, so that the drive characteristics of the valve member due to the magnetic force deviate from the design characteristics. It ends up.

また、特許文献2の燃料噴射弁に関する模式図9は、コイルハウジング1000の筒状部分1002のうち、溶接箇所1002aを挟んで当該ハウジング1000の突出部分1004とは反対側に位置する箇所1002bに、圧入による緊迫力が強く作用する場合を示している。この場合、筒状部分1002のうち緊迫力の強作用箇所1002bと、弁ハウジング1100に密着状態の溶接箇所1002aとには、熱変形が生じ難い。故に弁ハウジング1100のうち、溶接箇所1002aを挟んで緊迫力の強作用箇所1002bとは反対側においては、突出部分1004を弁ハウジング1100から軸方向へ離間させるような熱変形が生じ易くなる。ここで、突出部分1004が弁ハウジング1100から離間して空隙1302が生じると、弁ハウジング1100に作用する押付軸力を突出部分1004によって受け止めることが困難になる。その結果、弁ハウジング1100と溶接箇所1002aとの間の溶接界面にせん断応力が発生することになるので、上述の如き耐久性の確保効果が得られなくなってしまうのである。   Moreover, the schematic diagram 9 regarding the fuel injection valve of Patent Document 2 shows a portion 1002b of the cylindrical portion 1002 of the coil housing 1000 that is located on the opposite side of the protruding portion 1004 of the housing 1000 with the welded portion 1002a interposed therebetween. It shows the case where the tension force due to press-fitting acts strongly. In this case, thermal deformation is unlikely to occur in the tubular portion 1002 at the portion 1002b where the force is strongly applied and the welded portion 1002a in close contact with the valve housing 1100. Therefore, in the valve housing 1100, on the opposite side of the welded portion 1002a with respect to the strong acting portion 1002b, thermal deformation is likely to occur such that the protruding portion 1004 is separated from the valve housing 1100 in the axial direction. Here, when the protruding portion 1004 is separated from the valve housing 1100 and the gap 1302 is generated, it becomes difficult to receive the pressing axial force acting on the valve housing 1100 by the protruding portion 1004. As a result, a shear stress is generated at the weld interface between the valve housing 1100 and the welded portion 1002a, so that the durability ensuring effect as described above cannot be obtained.

本発明は、以上説明した問題に鑑みてなされたものであって、その目的は、弁部材の安定した駆動特性と共に高い耐久性を獲得する燃料噴射弁を提供することにある。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a fuel injection valve that obtains high durability as well as stable driving characteristics of a valve member.

請求項1に記載の発明は、燃料配管から供給される燃料の圧力により内燃機関の支持面に押付けられる状態下、噴孔から内燃機関への燃料噴射を弁部材の往復移動により断続する燃料噴射弁であって、弁部材を収容し、燃料配管からの供給燃料の圧力により支持面側へ向かって押付軸力が作用する筒状の弁ハウジングと、弁ハウジングの外周側に配置され、弁部材を駆動する磁力を通電により発生する電磁コイルと、電磁コイルを外周側から覆い、支持面に支持されるコイルハウジングと、を備えた燃料噴射弁において、コイルハウジングは、電磁コイルよりも支持面側にて弁ハウジングが内周側に圧入され、電磁コイルへの通電に応じて磁力を発生させるための磁気回路を弁ハウジングと共に形成する第一筒状部と、第一筒状部に対して支持面側に隣接し、内周側の弁ハウジングとの間に形成する径方向隙間を通じて当該弁ハウジングと溶接される第二筒状部と、第一筒状部との間に挟む第二筒状部よりも内周側へ突出して弁ハウジングに係合する突出部と、を有し、弁ハウジングにおいて径方向隙間を通じて第二筒状部が溶接される箇所の径方向厚さは、弁ハウジングにおいて第一筒状部が圧入される箇所の径方向厚さよりも厚いことを特徴としている。 According to the first aspect of the present invention, the fuel injection in which fuel injection from the nozzle hole to the internal combustion engine is intermittently performed by the reciprocating movement of the valve member in a state of being pressed against the support surface of the internal combustion engine by the pressure of the fuel supplied from the fuel pipe. A valve member that houses the valve member and is arranged on the outer peripheral side of the valve housing, and a cylindrical valve housing in which a pressing axial force acts toward the support surface side by the pressure of fuel supplied from the fuel pipe, In the fuel injection valve, comprising: an electromagnetic coil that generates a magnetic force for driving the coil by energization; and a coil housing that covers the electromagnetic coil from the outer peripheral side and is supported by the support surface. The valve housing is press-fitted into the inner periphery, and a magnetic circuit for generating a magnetic force in response to energization of the electromagnetic coil is formed with the valve housing, and the first cylindrical portion is supported with respect to the first cylindrical portion. A second cylindrical part sandwiched between a second cylindrical part adjacent to the surface side and welded to the valve housing through a radial gap formed between the inner peripheral side valve housing and the first cylindrical part. possess a protrusion that engages the valve housing protrudes into the inner peripheral side than the parts, the radial thickness of the portion where the second cylindrical portion is welded through the radial clearance in the valve housing, in a valve housing It is characterized by being thicker than the thickness in the radial direction of the portion where the first cylindrical portion is press-fitted .

このように請求項1に記載の発明によると、弁ハウジングの外周側に配置の電磁コイルを外周側から覆うと共に内燃機関の支持面に支持されるコイルハウジングのうち、第一筒状部の内周側には、電磁コイルよりも支持面側にて弁ハウジングが圧入される。かかる構成により、弁ハウジングに収容された弁部材の駆動用磁力を電磁コイルへの通電に応じて発生させるための磁気回路は、第一筒状部と弁ハウジングの圧入箇所とを通って形成されることとなる。   As described above, according to the first aspect of the present invention, the electromagnetic coil disposed on the outer peripheral side of the valve housing is covered from the outer peripheral side, and the inner side of the first cylindrical portion of the coil housing supported by the support surface of the internal combustion engine. On the circumferential side, the valve housing is press-fitted on the support surface side of the electromagnetic coil. With this configuration, the magnetic circuit for generating the driving magnetic force of the valve member accommodated in the valve housing in response to the energization of the electromagnetic coil is formed through the first tubular portion and the press-fitted portion of the valve housing. The Rukoto.

しかし、請求項1に記載の発明のコイルハウジングでは、第一筒状部に対して支持面側に隣接する第二筒状部が、内周側の弁ハウジングとの間に形成する径方向隙間を通じて当該弁ハウジングと溶接される。かかる構成によると、第一筒状部が弁ハウジングの圧入箇所と共に形成する磁気回路は、電磁コイルから当該第一筒状部よりも支持面側へ離れた第二筒状部が弁ハウジングの溶接箇所との間に形成する溶接界面から、溶接ばらつきの影響を受け難くなる。また、弁ハウジングの圧入による緊迫力が第一筒状部に作用した状態で第二筒状部が弁ハウジングに溶接されても、その溶接熱による変形は、弁ハウジングとの間の径方向隙間によって緊迫力の作用が軽減されている第二筒状部に、集中し易くなる。これによれば、第一筒状部を弁ハウジングから離間させて磁気回路の磁束密度を低下させるようなコイルハウジングの変形が抑制されるので、磁力による弁部材の駆動特性を安定させることが可能になるのである。   However, in the coil housing according to the first aspect of the present invention, the second cylindrical portion adjacent to the support surface side with respect to the first cylindrical portion forms a radial gap formed between the inner peripheral side valve housing. And welded to the valve housing. According to this configuration, the magnetic circuit formed by the first cylindrical portion together with the press-fitting portion of the valve housing is such that the second cylindrical portion separated from the electromagnetic coil to the support surface side than the first cylindrical portion is welded to the valve housing. It becomes difficult to be affected by welding variations from the weld interface formed between the two parts. In addition, even if the second cylindrical portion is welded to the valve housing in a state where the pressing force due to the press-fitting of the valve housing is applied to the first cylindrical portion, the deformation due to the welding heat is caused by the radial clearance between the valve housing and the valve housing. Therefore, it becomes easy to concentrate on the second cylindrical portion in which the action of the tightening force is reduced. According to this, since the deformation of the coil housing that reduces the magnetic flux density of the magnetic circuit by separating the first tubular portion from the valve housing is suppressed, it is possible to stabilize the drive characteristics of the valve member due to the magnetic force. It becomes.

さらに請求項1に記載の発明によると、コイルハウジングにおいて弁ハウジングと溶接される第二筒状部よりも内周側へ突出する突出部は、弁ハウジングに係合する。かかる構成では、弁ハウジングが突出部によって軸方向に支持されることになるので、筒状の弁ハウジングに支持面側へ向かって作用する押付軸力は、当該突出部によって受け止められ得る。しかも、圧入による緊迫力が第一筒状部に作用した状態で第二筒状部が弁ハウジングに溶接されても、突出部が第一筒状部との間に挟む第二筒状部に上述の如く熱変形が集中することによれば、当該突出部を弁ハウジングから離間させる変形は抑制される。したがって、弁ハウジングと第二筒状部との間の溶接界面においてせん断応力による疲労破壊が発生するのを抑制して、耐久性を高めることも可能となるのである。 According to the first aspect of the present invention, the protruding portion that protrudes toward the inner peripheral side of the second cylindrical portion welded to the valve housing in the coil housing is engaged with the valve housing. In such a configuration, it means that the valve housing is supported in the axial direction by the unit out collision, pressing axial force acting towards the supporting surface in the cylindrical valve housing may be received by the protrusion. Moreover, even if the second cylindrical portion is welded to the valve housing in a state where the pressing force due to the press-fitting is applied to the first cylindrical portion, the protruding portion is sandwiched between the first cylindrical portion and the second cylindrical portion. If the thermal deformation is concentrated as described above, the deformation that separates the protrusion from the valve housing is suppressed. Accordingly, it is possible to suppress the occurrence of fatigue failure due to shear stress at the weld interface between the valve housing and the second cylindrical portion, and to improve durability.

請求項2に記載の発明によると、弁ハウジングは、支持面側へ向かって縮径する縮径部を有し、当該縮径部に鍔状の突出部が係合する。これによれば、コイルハウジングのうち内周側へ鍔状に突出する突出部は、弁ハウジングのうち支持面側へ向かって縮径する縮径部に全周にて係合して、当該弁ハウジングに支持面側へ向かって作用する押付軸力を確実に受け止めることが可能となる。したがって、第二筒状部へ熱変形の集中作用とも相俟って、せん断応力による疲労破壊の発生がハウジングと第二筒状部との間の溶接界面にて抑制され得るので、高い耐久性を獲得することが可能となるのである。   According to the second aspect of the present invention, the valve housing has the reduced diameter portion that is reduced in diameter toward the support surface side, and the flange-like protrusion is engaged with the reduced diameter portion. According to this, the protrusion part which protrudes in the shape of a bowl to the inner peripheral side of the coil housing is engaged with the reduced diameter part of the valve housing which is reduced in diameter toward the support surface side, so that the valve It is possible to reliably receive the pressing axial force acting on the housing toward the support surface. Therefore, in combination with the concentrated action of thermal deformation on the second cylindrical portion, the occurrence of fatigue failure due to shear stress can be suppressed at the weld interface between the housing and the second cylindrical portion, so that high durability is achieved. It becomes possible to acquire.

請求項3に記載の発明によると、第二筒状部の径方向厚さは、第一筒状部の径方向厚さよりも薄い。これによれば、圧入による緊迫力が第一筒状部に作用した状態で第二筒状部が弁ハウジングに溶接されても、径方向隙間によって緊迫力の作用が軽減されていると共に第一筒状部よりも径方向に薄く形成されている第二筒状部には、熱変形が確実に集中し得る。したがって、第一筒状部を弁ハウジングから離間させて磁気回路の磁束密度低下を招く変形や、突出部を弁ハウジングから離間させて溶接界面の疲労破壊を招く変形を、コイルハウジングにつき抑制して、弁部材の安定した駆動特性と高い耐久性とを獲得することが可能となる。   According to invention of Claim 3, the radial direction thickness of a 2nd cylindrical part is thinner than the radial direction thickness of a 1st cylindrical part. According to this, even when the second cylindrical portion is welded to the valve housing in a state where the pressing force due to press-fitting is applied to the first cylindrical portion, the action of the pressing force is reduced by the radial gap and the first cylindrical portion is welded. Thermal deformation can be reliably concentrated on the second cylindrical portion formed thinner in the radial direction than the cylindrical portion. Therefore, the coil housing is prevented from being deformed by causing the first cylindrical portion to be separated from the valve housing and causing a decrease in the magnetic flux density of the magnetic circuit, or by causing the protrusion to be separated from the valve housing and causing fatigue failure of the weld interface. Thus, it is possible to obtain a stable driving characteristic and high durability of the valve member.

請求項4に記載の発明によると、第二筒状部の径方向厚さは、弁ハウジングにおいて第二筒状部が溶接される箇所の径方向厚さよりも薄い。これによれば、圧入による緊迫力が第一筒状部に作用した状態で第二筒状部が弁ハウジングに溶接されても、径方向隙間によって緊迫力の作用が軽減されていると共に弁ハウジングの溶接箇所よりも径方向に薄く形成されている第二筒状部には、熱変形が確実に集中し得る。したがって、第一筒状部を弁ハウジングから離間させて磁気回路の磁束密度低下を招く変形や、突出部を弁ハウジングから離間させて溶接界面の疲労破壊を招く変形を、コイルハウジングにつき抑制して、弁部材の安定した駆動特性と高い耐久性とを実現することが可能となる。それと共に、弁ハウジングに収容される弁部材が当該弁ハウジングの変形により駆動を阻害される事態を回避して、弁部材の駆動特性を安定させることも可能となる。   According to invention of Claim 4, the radial direction thickness of a 2nd cylindrical part is thinner than the radial direction thickness of the location where a 2nd cylindrical part is welded in a valve housing. According to this, even if the second cylindrical portion is welded to the valve housing in a state where the pressing force due to the press-fitting is applied to the first cylindrical portion, the action of the pressing force is reduced by the radial gap and the valve housing Thermal deformation can be reliably concentrated on the second cylindrical portion formed to be thinner in the radial direction than the welded portion. Therefore, the coil housing is prevented from being deformed by causing the first cylindrical portion to be separated from the valve housing and causing a decrease in the magnetic flux density of the magnetic circuit, or by causing the protrusion to be separated from the valve housing and causing fatigue failure of the weld interface. Thus, it is possible to achieve stable driving characteristics and high durability of the valve member. At the same time, it is possible to avoid the situation in which the valve member housed in the valve housing is hindered from being driven by deformation of the valve housing, and to stabilize the drive characteristics of the valve member.

請求項5に記載の発明によると、第二筒状部と弁ハウジングとの間の径方向隙間は、第二筒状部の径方向厚さに対して半分以下の間隔に形成される。これにより第二筒状部は、当該第二筒状部の径方向厚さに対して半分以下の間隔の径方向隙間を通すことで、当該第二筒状部への熱変形の集中作用を妨げることなく、弁ハウジングに確実に溶接され得る。したがって、第一筒状部を弁ハウジングから離間させて磁気回路の磁束密度低下を招く変形や、突出部を弁ハウジングから離間させて溶接界面の疲労破壊を招く変形を、コイルハウジングにつき抑制して、弁部材の安定した駆動特性と高い耐久性とを獲得することが可能となる。   According to the invention described in claim 5, the radial gap between the second cylindrical portion and the valve housing is formed at an interval of half or less with respect to the radial thickness of the second cylindrical portion. As a result, the second cylindrical portion passes through the radial gap having a distance of half or less of the radial thickness of the second cylindrical portion, thereby concentrating the thermal deformation on the second cylindrical portion. It can be reliably welded to the valve housing without hindering. Therefore, the coil housing is prevented from being deformed by causing the first cylindrical portion to be separated from the valve housing and causing a decrease in the magnetic flux density of the magnetic circuit, or by causing the protrusion to be separated from the valve housing and causing fatigue failure of the weld interface. Thus, it is possible to obtain a stable driving characteristic and high durability of the valve member.

請求項6に記載の発明によると、第二筒状部は、第一筒状部の内周面よりも外周側へ凹む凹部を有し、当該凹部の開口を塞ぐ弁ハウジングの外周面と、当該凹部との間に径方向隙間を形成する。これにより径方向隙間は、第二筒状部において第一筒状部の内周面よりも外周側へ凹む凹部を弁ハウジングの外周面により塞ぐことで形成され得るので、第一筒状部への圧入面でもある弁ハウジングの外周面につき、面精度を確保し易い。したがって、弁ハウジングの外周面の面粗さに起因して当該外周面から第一筒状部が離間して磁気回路の磁束密度低下を招くような変形を、コイルハウジングにつき抑制して、弁部材の駆動特性を安定させることが可能となる。   According to the invention described in claim 6, the second cylindrical portion has a concave portion that is recessed toward the outer peripheral side with respect to the inner peripheral surface of the first cylindrical portion, and the outer peripheral surface of the valve housing that closes the opening of the concave portion, A radial gap is formed between the recess. As a result, the radial gap can be formed by closing the concave portion recessed toward the outer peripheral side of the first cylindrical portion with the outer peripheral surface of the valve housing in the second cylindrical portion. It is easy to ensure surface accuracy for the outer peripheral surface of the valve housing which is also the press-fitting surface. Accordingly, the deformation of the coil housing caused by the surface roughness of the outer peripheral surface of the valve housing and the first cylindrical portion being separated from the outer peripheral surface and causing a decrease in the magnetic flux density of the magnetic circuit is suppressed by the coil housing, and the valve member It becomes possible to stabilize the drive characteristics.

請求項7に記載の発明によると、弁ハウジングは、弁ハウジングの外周面から内周側へ凹む凹部を有し、当該凹部の開口を塞ぐ第二筒状部の内周面と、当該凹部との間に径方向隙間を形成する。これにより径方向隙間は、弁ハウジングの外周面から内周側へ凹む凹部を第二筒状部の内周面により塞ぐことで形成され得るので、弁ハウジングの外周面の加工により当該凹部を形成する作業を容易化して、生産性を高めることが可能となる。   According to the seventh aspect of the present invention, the valve housing has a concave portion that is recessed from the outer peripheral surface of the valve housing to the inner peripheral side, the inner peripheral surface of the second cylindrical portion that closes the opening of the concave portion, the concave portion, A radial gap is formed between the two. As a result, the radial gap can be formed by closing the concave portion recessed from the outer peripheral surface of the valve housing to the inner peripheral side with the inner peripheral surface of the second cylindrical portion, so that the concave portion is formed by processing the outer peripheral surface of the valve housing. It is possible to improve the productivity by facilitating the work to be performed.

本発明の第一実施形態による燃料噴射弁を示す断面図である。It is sectional drawing which shows the fuel injection valve by 1st embodiment of this invention. 本発明の第一実施形態による燃料噴射弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve by 1st embodiment of this invention. 本発明の第一実施形態による燃料噴射弁の特徴を説明するための模式図である。It is a schematic diagram for demonstrating the characteristic of the fuel injection valve by 1st embodiment of this invention. 本発明の第一実施形態による燃料噴射弁の作用効果を説明するための模式図である。It is a schematic diagram for demonstrating the effect of the fuel injection valve by 1st embodiment of this invention. 本発明の第一実施形態による燃料噴射弁の作用効果を説明するための模式図である。It is a schematic diagram for demonstrating the effect of the fuel injection valve by 1st embodiment of this invention. 本発明の第二実施形態による燃料噴射弁の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the fuel injection valve by 2nd embodiment of this invention. 本発明の第一実施形態による燃料噴射弁の特徴を説明するための模式図である。It is a schematic diagram for demonstrating the characteristic of the fuel injection valve by 1st embodiment of this invention. 本発明により解決する課題について説明するための模式図である。It is a schematic diagram for demonstrating the subject solved by this invention. 本発明により解決する課題について説明するための模式図である。It is a schematic diagram for demonstrating the subject solved by this invention.

以下、本発明の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する。   Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. In addition, the overlapping description is abbreviate | omitted by attaching | subjecting the same code | symbol to the corresponding component in each embodiment.

(第一実施形態)
図1は、本発明の第一実施形態による燃料噴射弁10を示している。燃料噴射弁10は内燃機関1と燃料配管2との間に取付けられ、燃料配管2から供給される燃料を内燃機関1のシリンダ室1aへ噴射する。尚、本実施形態において燃料噴射弁10は、ガソリン式内燃機関1のシリンダ室1aへ燃料噴射するものであるが、例えばガソリン式内燃機関1のシリンダ室1aと連通する吸気通路へ燃料噴射するものや、ディーゼル式内燃機関1のシリンダ室1aへ燃料噴射するもの等であってもよい。
(First embodiment)
FIG. 1 shows a fuel injection valve 10 according to a first embodiment of the present invention. The fuel injection valve 10 is attached between the internal combustion engine 1 and the fuel pipe 2 and injects fuel supplied from the fuel pipe 2 into the cylinder chamber 1 a of the internal combustion engine 1. In this embodiment, the fuel injection valve 10 injects fuel into the cylinder chamber 1a of the gasoline internal combustion engine 1. For example, the fuel injection valve 10 injects fuel into an intake passage communicating with the cylinder chamber 1a of the gasoline internal combustion engine 1. Or what injects a fuel into the cylinder chamber 1a of the diesel internal combustion engine 1 etc. may be sufficient.

(構成)
まず、第一実施形態による燃料噴射弁10の構成を、図1に基づき説明する。燃料噴射弁10は、弁ハウジング11、固定コア20、可動コア30、弁部材40、弾性部材50,52、並びに駆動部60を備えている。
(Constitution)
First, the structure of the fuel injection valve 10 by 1st embodiment is demonstrated based on FIG. The fuel injection valve 10 includes a valve housing 11, a fixed core 20, a movable core 30, a valve member 40, elastic members 50 and 52, and a drive unit 60.

弁ハウジング11は、パイプ部材12、入口部材13及びノズル部材14等から構成されている。パイプ部材12は円筒状に形成されており、内燃機関1のシリンダヘッド1b側から燃料配管2側へと向かう軸方向において順に、第一磁性部120、非磁性部121及び第二磁性部122を有している。磁性材からなる各磁性部120,122と、非磁性材からなる非磁性部121とは、例えばレーザ溶接等によって結合されている。かかる結合構造によって非磁性部121は、第一磁性部120と第二磁性部122の間において磁束が短絡するのを防止している。   The valve housing 11 includes a pipe member 12, an inlet member 13, a nozzle member 14, and the like. The pipe member 12 is formed in a cylindrical shape, and the first magnetic part 120, the nonmagnetic part 121, and the second magnetic part 122 are sequentially arranged in the axial direction from the cylinder head 1b side to the fuel pipe 2 side of the internal combustion engine 1. Have. The magnetic portions 120 and 122 made of a magnetic material and the nonmagnetic portion 121 made of a nonmagnetic material are coupled by, for example, laser welding. With such a coupling structure, the nonmagnetic portion 121 prevents the magnetic flux from being short-circuited between the first magnetic portion 120 and the second magnetic portion 122.

第二磁性部122において非磁性部121とは反対側の軸方向端部には、円筒状の入口部材13が固定されている。入口部材13は、燃料ポンプ(図示しない)から燃料配管2を通じて供給される燃料が流入するように、燃料流入口15を内周側に形成している。この燃料流入口15への供給燃料を濾過するために本実施形態では、入口部材13の内周側に燃料フィルタ16が収容されている。   A cylindrical inlet member 13 is fixed to the axial end of the second magnetic portion 122 opposite to the nonmagnetic portion 121. The inlet member 13 has a fuel inlet 15 formed on the inner peripheral side so that fuel supplied from a fuel pump (not shown) through the fuel pipe 2 flows. In this embodiment, a fuel filter 16 is accommodated on the inner peripheral side of the inlet member 13 in order to filter the fuel supplied to the fuel inlet 15.

第一磁性部120において非磁性部121とは反対側の軸方向端部には、ノズル部材14が固定されている。ノズル部材14は有底円筒状に形成されており、燃料を流通させる燃料通路17をパイプ部材12と共同して形成している。ノズル部材14は、弁ハウジング11のパイプ部材12のうち第一磁性部120と共に、シリンダヘッド1bの取付孔1c内に挿入されている。ノズル部材14には、噴孔18及び弁座19が設けられている。燃料通路17に連通する噴孔18は、ノズル部材14の中心軸線周りに等間隔をあけて複数設けられ、それぞれ円筒孔状に形成されている。弁座19は、各噴孔18よりも燃料上流側において燃料通路17の周囲に形成されている。   The nozzle member 14 is fixed to an axial end of the first magnetic part 120 opposite to the nonmagnetic part 121. The nozzle member 14 is formed in a bottomed cylindrical shape, and a fuel passage 17 through which fuel flows is formed in cooperation with the pipe member 12. The nozzle member 14 is inserted into the mounting hole 1c of the cylinder head 1b together with the first magnetic portion 120 of the pipe member 12 of the valve housing 11. The nozzle member 14 is provided with a nozzle hole 18 and a valve seat 19. A plurality of nozzle holes 18 communicating with the fuel passage 17 are provided at equal intervals around the central axis of the nozzle member 14 and are each formed in a cylindrical hole shape. The valve seat 19 is formed around the fuel passage 17 on the fuel upstream side of each nozzle hole 18.

固定コア20は、磁性材によって円筒状に形成されており、弁ハウジング11のパイプ部材12のうち非磁性部121及び第二磁性部122の内周面に同軸上に固定されている。固定コア20は、軸方向に貫通する貫通孔21を、径方向の中央部において円筒孔状に形成している。貫通孔21は、入口部材13の燃料流入口15と連通しており、当該流入口15への供給燃料が流入する。貫通孔21の内周側には、第一弾性部材50が弾性変形可能に収容されていると共に、当該弾性部材50のセット荷重を調整するためのアジャスティングパイプ22が圧入によって固定されている。   The fixed core 20 is formed in a cylindrical shape from a magnetic material, and is coaxially fixed to the inner peripheral surfaces of the nonmagnetic portion 121 and the second magnetic portion 122 in the pipe member 12 of the valve housing 11. The fixed core 20 is formed with a through hole 21 penetrating in the axial direction in a cylindrical hole shape in the central portion in the radial direction. The through hole 21 communicates with the fuel inlet 15 of the inlet member 13, and the supplied fuel flows into the inlet 15. A first elastic member 50 is accommodated in the inner peripheral side of the through hole 21 so as to be elastically deformable, and an adjusting pipe 22 for adjusting a set load of the elastic member 50 is fixed by press-fitting.

可動コア30は、磁性材によって円筒状に形成されており、弁ハウジング11のパイプ部材12の内周側に同軸上に収容されて一方の軸方向端面32を固定コア20と対向させている。可動コア30は、弁ハウジング11のパイプ部材12のうち非磁性部121によって軸方向両側に摺動案内される。これにより可動コア30の軸方向端面32は、固定コア20側への軸方向移動によって当該コア20に当接可能となっている。   The movable core 30 is formed of a magnetic material in a cylindrical shape, is coaxially accommodated on the inner peripheral side of the pipe member 12 of the valve housing 11, and has one axial end face 32 opposed to the fixed core 20. The movable core 30 is slidably guided on both sides in the axial direction by the nonmagnetic portion 121 of the pipe member 12 of the valve housing 11. Thereby, the axial end surface 32 of the movable core 30 can contact | abut to the said core 20 by the axial direction movement to the fixed core 20 side.

可動コア30は、軸方向に貫通する軸方向孔34を、径方向の中央部において円筒孔状に形成している。このような可動コア30において軸方向孔34は、固定コア20側の軸方向端面32と、固定コア20とは反対側の軸方向端面33とに、開口する形となっている。   The movable core 30 is formed with an axial hole 34 penetrating in the axial direction in the shape of a cylindrical hole in the central portion in the radial direction. In such a movable core 30, the axial hole 34 is open to an axial end face 32 on the fixed core 20 side and an axial end face 33 on the opposite side to the fixed core 20.

弁部材40は、非磁性材によって円形横断面のニードル状に形成されており、弁ハウジング11のパイプ部材12及びノズル部材14の内周側に同軸上に収容されている。弁部材40は、ノズル部材14の弁座19と対向するシート部41を、ノズル部材14側の軸方向端部に有している。弁部材40は、固定コア20側への軸方向移動によってシート部41を弁座19から離座させることで、各噴孔18を燃料通路17に対して開放する。また一方、弁部材40は、固定コア20とは反対側への軸方向移動によってシート部41を弁座19に着座させることで、各噴孔18を燃料通路17に対して閉塞する。このように弁部材40は、軸方向両側への往復移動によって各噴孔18を開閉することにより、それら噴孔18からシリンダ室1aへの燃料噴射を断続可能となっている。   The valve member 40 is formed of a nonmagnetic material into a needle shape having a circular cross section, and is accommodated coaxially on the inner peripheral side of the pipe member 12 and the nozzle member 14 of the valve housing 11. The valve member 40 has a seat portion 41 that faces the valve seat 19 of the nozzle member 14 at the end in the axial direction on the nozzle member 14 side. The valve member 40 opens each nozzle hole 18 with respect to the fuel passage 17 by moving the seat portion 41 away from the valve seat 19 by moving in the axial direction toward the fixed core 20. On the other hand, the valve member 40 closes each injection hole 18 with respect to the fuel passage 17 by seating the seat portion 41 on the valve seat 19 by moving in the axial direction opposite to the fixed core 20. Thus, the valve member 40 can intermittently inject fuel from the nozzle holes 18 to the cylinder chamber 1a by opening and closing each nozzle hole 18 by reciprocating movement in both axial directions.

弁部材40は、シート部41から固定コア20側へ向かって軸方向に延伸する円柱状の軸部42を、当該部材40の本体部として有している。軸部42は可動コア30の軸方向孔34に同軸上に挿入されて、当該孔34の内周面に対し軸方向両側に摺動可能となっている。   The valve member 40 has a columnar shaft portion 42 extending in the axial direction from the seat portion 41 toward the fixed core 20 side as a main body portion of the member 40. The shaft portion 42 is coaxially inserted into the axial hole 34 of the movable core 30 and is slidable on both sides in the axial direction with respect to the inner peripheral surface of the hole 34.

弁部材40は、軸部42から外周側へ突出する円形鍔状の突部44を、固定コア20側の軸方向端部に有している。固定コア20の貫通孔21よりも小径に形成される突部44は、当該孔21に挿入されて第一弾性部材50と接触している。また、可動コア30の軸方向孔34よりも大径に形成される突部44は、当該コア30の軸方向端面32に固定コア20側から当接可能となっている。   The valve member 40 has a circular hook-shaped protrusion 44 protruding from the shaft portion 42 toward the outer peripheral side at an axial end portion on the fixed core 20 side. The protrusion 44 formed with a smaller diameter than the through hole 21 of the fixed core 20 is inserted into the hole 21 and is in contact with the first elastic member 50. Further, the protrusion 44 formed with a larger diameter than the axial hole 34 of the movable core 30 can come into contact with the axial end surface 32 of the core 30 from the fixed core 20 side.

弁部材40は、軸部42及び突部44に跨って燃料孔46を有している。燃料孔46は、突部44のうち第一弾性部材50との接触面と、軸部42のうち軸方向孔34から露出する外周面とに開口している。かかる開口形態によって燃料孔46は、突部44の挿入される貫通孔21と、燃料通路17との間を連通している。したがって、燃料流入口15から貫通孔21へと流入した燃料は、燃料孔46を経由して燃料通路17まで届くようになっている。   The valve member 40 has a fuel hole 46 across the shaft portion 42 and the protrusion 44. The fuel hole 46 is open to the contact surface of the protrusion 44 with the first elastic member 50 and the outer peripheral surface of the shaft portion 42 exposed from the axial hole 34. The fuel hole 46 communicates between the through hole 21 into which the protrusion 44 is inserted and the fuel passage 17 by such an opening form. Therefore, the fuel that has flowed into the through hole 21 from the fuel inlet 15 reaches the fuel passage 17 via the fuel hole 46.

第一弾性部材50は金属製の圧縮コイルスプリングからなり、固定コア20の貫通孔21の内周側に同軸上に収容されている。第一弾性部材50の一端部はアジャスティングパイプ22に係止され、当該弾性部材50の他端部は弁部材40の突部44に係止されている。かかる係止構造により第一弾性部材50は、アジャスティングパイプ22と弁部材40との間で圧縮されて弾性変形することにより、弁部材40を固定コア20とは反対側へ付勢する復原力を発生する。   The first elastic member 50 is made of a metal compression coil spring and is coaxially accommodated on the inner peripheral side of the through hole 21 of the fixed core 20. One end of the first elastic member 50 is locked to the adjusting pipe 22, and the other end of the elastic member 50 is locked to the protrusion 44 of the valve member 40. With such a locking structure, the first elastic member 50 is compressed between the adjusting pipe 22 and the valve member 40 to be elastically deformed, thereby restoring force that biases the valve member 40 to the side opposite to the fixed core 20. Is generated.

第二弾性部材52は金属製の圧縮コイルスプリングからなり、弁ハウジング11のパイプ部材12のうち第一磁性部120の内周側且つ弁部材40のうち軸部42の外周側に同軸上に収容されている。第二弾性部材52の一端部は第一磁性部120に係止され、当該弾性部材52の他端部は可動コア30の軸方向孔34に係止されている。かかる係止構造により第二弾性部材52は、弁ハウジング11と可動コア30との間で圧縮されて弾性変形することにより、可動コア30を固定コア20側へ付勢する復原力を第一弾性部材50の復原力よりも小さく発生する。   The second elastic member 52 is made of a metal compression coil spring, and is accommodated coaxially on the inner peripheral side of the first magnetic portion 120 of the pipe member 12 of the valve housing 11 and on the outer peripheral side of the shaft portion 42 of the valve member 40. Has been. One end portion of the second elastic member 52 is locked to the first magnetic portion 120, and the other end portion of the elastic member 52 is locked to the axial hole 34 of the movable core 30. With this locking structure, the second elastic member 52 is compressed between the valve housing 11 and the movable core 30 and elastically deformed, thereby restoring the restoring force that urges the movable core 30 toward the fixed core 20 side. It occurs smaller than the restoring force of the member 50.

駆動部60は、電磁コイル61、樹脂ボビン62、コネクタ64及びコイルハウジング66等から構成されている。電磁コイル61は、樹脂ボビン62に金属線材を巻回してなる。電磁コイル61は、弁ハウジング11のパイプ部材12のうち固定コア20の外周側となる非磁性部121及び第二磁性部122の外周側に、同軸上に配置されている。コネクタ64は、外部の制御回路(図示しない)と電磁コイル61との間を電気接続するターミナル64aを有しており、当該制御回路によって電磁コイル61への通電が制御されるようになっている。   The drive unit 60 includes an electromagnetic coil 61, a resin bobbin 62, a connector 64, a coil housing 66, and the like. The electromagnetic coil 61 is formed by winding a metal wire around a resin bobbin 62. The electromagnetic coil 61 is coaxially disposed on the outer peripheral side of the nonmagnetic portion 121 and the second magnetic portion 122 on the outer peripheral side of the fixed core 20 in the pipe member 12 of the valve housing 11. The connector 64 has a terminal 64 a that electrically connects an external control circuit (not shown) and the electromagnetic coil 61, and energization of the electromagnetic coil 61 is controlled by the control circuit. .

コイルハウジング66は、磁性材によって円筒状に形成されており、電磁コイル61及び弁ハウジング11の外周側に配置されて当該コイル61を覆っている。それと共にコイルハウジング66は、内燃機関1の取付孔1cのうち燃料配管2側へ拡径する形に形成された段差面状の支持面1dに対し、押付状態にて軸方向に支持されている。ここで、特に本実施形態において弁ハウジング11の入口部材13には、燃料配管2から燃料流入口15へ供給される燃料の圧力によって、支持面1d側となる軸方向のノズル部材14側へと向かう押付軸力Nが作用するようになっている。したがって、本実施形態の燃料噴射弁10は、かかる押付軸力Nの作用によってコイルハウジング66が支持面1dに押付けられる状態下、各噴孔18からの燃料噴射を断続することになるのである。   The coil housing 66 is formed in a cylindrical shape by a magnetic material, and is disposed on the outer peripheral side of the electromagnetic coil 61 and the valve housing 11 to cover the coil 61. At the same time, the coil housing 66 is supported in the axial direction in a pressed state against a stepped support surface 1d formed in the mounting hole 1c of the internal combustion engine 1 so as to expand to the fuel pipe 2 side. . Here, in particular, in the present embodiment, the inlet member 13 of the valve housing 11 is moved to the axial nozzle member 14 side, which is the support surface 1d side, by the pressure of fuel supplied from the fuel pipe 2 to the fuel inlet 15. A pressing axial force N is applied. Therefore, the fuel injection valve 10 according to the present embodiment intermittently injects fuel from each injection hole 18 under the state where the coil housing 66 is pressed against the support surface 1d by the action of the pressing axial force N.

ここで、電磁コイル61が通電によって励磁するときには、コイルハウジング66、第一磁性部120、可動コア30、固定コア20及び第二磁性部122が共同して形成する磁気回路C(図3参照)に、磁束が流れる。その結果、互いに対向する可動コア30と固定コア20との間に、可動コア30を固定コア20側へ吸引して駆動する「磁力」としての磁気吸引力が、発生する。また一方、通電の停止によって電磁コイル61が消磁するときには、磁気回路Cに磁束が流れなくなるため、可動コア30と固定コア20との間にて磁気吸引力が消失する。   Here, when the electromagnetic coil 61 is excited by energization, the magnetic circuit C formed by the coil housing 66, the first magnetic part 120, the movable core 30, the fixed core 20, and the second magnetic part 122 is formed together (see FIG. 3). In addition, magnetic flux flows. As a result, a magnetic attractive force is generated between the movable core 30 and the fixed core 20 facing each other as a “magnetic force” that attracts and drives the movable core 30 toward the fixed core 20. On the other hand, when the electromagnetic coil 61 is demagnetized by stopping energization, the magnetic flux does not flow in the magnetic circuit C, so that the magnetic attractive force disappears between the movable core 30 and the fixed core 20.

このように構成された燃料噴射弁10の開弁作動では、電磁コイル61への通電が開始されることに応じて、磁気吸引力が可動コア30に作用する。この磁気吸引力の作用により可動コア30は、第一弾性部材50の復原力を受けて突部44が固定コア20側の軸方向端面32と当接している弁部材40を、当該復原力に抗して押圧する。その結果、軸方向端面32が固定コア20と衝突するまで可動コア30は、弁部材40と一体となって当該コア20側へ移動するので、シート部41が弁座19から離座して各噴孔18から燃料が噴射されることになる。   In the valve opening operation of the fuel injection valve 10 configured as described above, a magnetic attractive force acts on the movable core 30 in response to the start of energization of the electromagnetic coil 61. Due to the action of the magnetic attraction force, the movable core 30 receives the restoring force of the first elastic member 50, and the valve member 40 in which the protrusion 44 is in contact with the axial end surface 32 on the fixed core 20 side is used as the restoring force. Press against. As a result, the movable core 30 moves together with the valve member 40 toward the core 20 until the axial end surface 32 collides with the fixed core 20, so that the seat portion 41 moves away from the valve seat 19 and moves to the core 20 side. Fuel is injected from the nozzle hole 18.

また、開弁作動後における燃料噴射弁10の閉弁作動では、電磁コイル61への通電が停止することに応じて、可動コア30に作用する磁気吸引力が消失する。この磁気吸引力の消失により、第二弾性部材52よりも大きな復原力を第一弾性部材50から受ける弁部材40は、突部44を軸方向端面32に当接させて可動コア30を固定コア20とは反対側へ押圧する。その結果、シート部41が弁座19に着座するので、弁部材40の移動が停止すると共に、各噴孔18からの燃料噴射も停止することになる。   Further, in the valve closing operation of the fuel injection valve 10 after the valve opening operation, the magnetic attractive force acting on the movable core 30 disappears in response to the stop of energization of the electromagnetic coil 61. Due to the disappearance of the magnetic attractive force, the valve member 40 that receives a restoring force larger than that of the second elastic member 52 from the first elastic member 50 causes the projecting portion 44 to abut against the axial end surface 32 to fix the movable core 30 to the fixed core. 20 is pressed to the opposite side. As a result, since the seat portion 41 is seated on the valve seat 19, the movement of the valve member 40 is stopped, and the fuel injection from each nozzle hole 18 is also stopped.

(特徴)
次に、第一実施形態による燃料噴射弁10の特徴について、詳しく説明する。図1,2に示すように、弁ハウジング11のパイプ部材12のうち第一磁性部120は、支持面1d側となる軸方向のノズル部材14側へ向かって縮径するように、縮径部120aを形成している。縮径部120aは、コイルハウジング66を介して支持面1dにより支持されている。ここで、特に本実施形態の縮径部120aは、段階的に縮径する段差面状に形成されているが、例えば漸次縮径するテーパ面状等に形成されていてもよい。
(Feature)
Next, features of the fuel injection valve 10 according to the first embodiment will be described in detail. As shown in FIGS. 1 and 2, the first magnetic part 120 of the pipe member 12 of the valve housing 11 is reduced in diameter so as to reduce in diameter toward the nozzle member 14 in the axial direction that is the support surface 1 d side. 120a is formed. The reduced diameter portion 120 a is supported by the support surface 1 d via the coil housing 66. Here, in particular, the reduced diameter portion 120a of the present embodiment is formed in a stepped surface shape that gradually decreases in diameter, but may be formed in a tapered surface shape that gradually decreases in diameter, for example.

コイルハウジング66は、ノズル部材14側へ向かう軸方向において順に、コイル収容部660、第一筒状部662、第二筒状部664及び突出部666を図2の如く有している。具体的には、有底円筒状のコイル収容部660は、電磁コイル61を径方向の外周側から覆って収容している。   The coil housing 66 has a coil housing portion 660, a first tubular portion 662, a second tubular portion 664, and a protruding portion 666 in order in the axial direction toward the nozzle member 14 as shown in FIG. Specifically, the bottomed cylindrical coil housing portion 660 covers and accommodates the electromagnetic coil 61 from the outer peripheral side in the radial direction.

円筒状の第一筒状部662は、コイル収容部660に対して軸方向の支持面1d側に隣接することで、電磁コイル61よりも当該支持面1d側に位置している。第一筒状部662の内周面662aは、弁ハウジング11のパイプ部材12のうち縮径部120aを挟んで支持面1dとは反対側に位置する箇所120bにて、第一磁性部120の外周面120cに圧入されている。これにより、電磁コイル61への通電に応じて第一筒状部662は、図3に磁力線を模式的に示すように、弁部材40を駆動する磁気吸引力を発生するための磁気回路Cを第一磁性部120と共に形成する。   The cylindrical first tubular portion 662 is located closer to the support surface 1d than the electromagnetic coil 61 by being adjacent to the coil support portion 660 on the support surface 1d side in the axial direction. An inner peripheral surface 662a of the first cylindrical portion 662 is located at a portion 120b of the pipe member 12 of the valve housing 11 on the side opposite to the support surface 1d across the reduced diameter portion 120a. It is press-fitted into the outer peripheral surface 120c. As a result, the first cylindrical portion 662 responds to energization of the electromagnetic coil 61 with a magnetic circuit C for generating a magnetic attractive force that drives the valve member 40 as schematically shown in FIG. It forms with the 1st magnetic part 120.

図2に示すように円筒状の第二筒状部664は、第一筒状部662に対して軸方向の支持面1d側に隣接することで、電磁コイル61から第一筒状部662よりも当該支持面1d側へ離れて位置している。第二筒状部664には、第一筒状部662の内周面662aよりも径方向の外周側へ向かって凹むように、凹部665が設けられている。この凹部665は、周方向及び軸方向のそれぞれの全域に亘って延伸するように、本実施形態では円環溝状に形成されている。これにより、図3に示すように第二筒状部664の径方向厚さT2は、第一筒状部662における最小の径方向厚さT1に対して薄く設定されている。   As shown in FIG. 2, the cylindrical second cylindrical portion 664 is adjacent to the first cylindrical portion 662 on the side of the support surface 1d in the axial direction, so that the electromagnetic coil 61 and the first cylindrical portion 662 are adjacent to each other. Is also located away from the support surface 1d. The second tubular portion 664 is provided with a recessed portion 665 so as to be recessed toward the outer peripheral side in the radial direction with respect to the inner peripheral surface 662a of the first tubular portion 662. In the present embodiment, the recess 665 is formed in an annular groove shape so as to extend over the entire region in the circumferential direction and the axial direction. Thereby, as shown in FIG. 3, the radial thickness T2 of the second cylindrical portion 664 is set to be thinner than the minimum radial thickness T1 of the first cylindrical portion 662.

図2に示すように、弁ハウジング11のパイプ部材12のうち第二筒状部664に対して径方向の内周側に位置する第一磁性部120は、第一筒状部662への圧入箇所120bから縮径部120aに到るまでの間にて、実質的に一定径の外周面120cを有している。これにより、第二筒状部664の凹部665の開口665aを塞ぐ第一磁性部120の外周面120cと、当該凹部665との間には、例えば数十μm等に適宜設定可能な幅の径方向隙間Grが周方向に連続して形成されている。そして、かかる径方向隙間Grを通じて第二筒状部664は、内周側の第一磁性部120に周方向の全域にて溶接されている。   As shown in FIG. 2, the first magnetic part 120 located on the radially inner side of the pipe member 12 of the valve housing 11 with respect to the second cylindrical part 664 is press-fitted into the first cylindrical part 662. The outer peripheral surface 120c having a substantially constant diameter is provided from the location 120b to the reduced diameter portion 120a. Thereby, a diameter having a width that can be appropriately set to, for example, several tens of μm between the outer peripheral surface 120c of the first magnetic part 120 that closes the opening 665a of the concave part 665 of the second cylindrical part 664 and the concave part 665. The direction gap Gr is formed continuously in the circumferential direction. And the 2nd cylindrical part 664 is welded to the inner peripheral side 1st magnetic part 120 in the whole area of the circumferential direction through this radial direction clearance gap Gr.

ここで、図3に示すように径方向隙間Grの間隔Δrは、上述した第二筒状部664の径方向厚さT2に対して、半分以下の間隔に設定されている。これにより、第一磁性部120に対する溶接を第二筒状部664の外周側から径方向隙間Grを通じて行なっても、当該隙間Grの間隔Δrよりも厚い第二筒状部664の溶融物を第一磁性部120に確実に接触させることができるので、溶接界面Wにおける溶接不良が回避され得る。また、第一磁性部120において第二筒状部664が溶接される箇所120dについては、最小の径方向厚さTvhが第二筒状部664の径方向厚さT2よりも厚く設定されることで、剛性が確保されている。   Here, as shown in FIG. 3, the interval Δr of the radial gap Gr is set to be equal to or less than half of the radial thickness T2 of the second cylindrical portion 664 described above. As a result, even if welding to the first magnetic part 120 is performed from the outer peripheral side of the second cylindrical part 664 through the radial gap Gr, the melt of the second cylindrical part 664 that is thicker than the interval Δr of the gap Gr is removed. Since the single magnetic part 120 can be reliably brought into contact with, it is possible to avoid poor welding at the welding interface W. In addition, for the portion 120d where the second cylindrical portion 664 is welded in the first magnetic portion 120, the minimum radial thickness Tvh is set to be thicker than the radial thickness T2 of the second cylindrical portion 664. Therefore, rigidity is ensured.

さて、図2に示すように円形鍔状の突出部666は、第二筒状部664に対して軸方向の支持面1d側に隣接する箇所から、第二筒状部664よりも径方向の内周側へ突出している。これにより突出部666は、第一筒状部662との間に第二筒状部664を挟んで位置し、第一磁性部120の縮径部120aと支持面1dとの間に介装されている。突出部666は、第一筒状部662とは反対側の軸方向端面666aを支持面1dに接触させることで、当該支持面1dに全周にて支持されている。それと共に突出部666は、支持面1dとは反対側の軸方向端面666bを第一磁性部120の縮径部120aに接触させることで、当該縮径部120aに全周にて係合している。   Now, as shown in FIG. 2, the circular hook-shaped protruding portion 666 is located more radially than the second cylindrical portion 664 from a position adjacent to the second cylindrical portion 664 on the support surface 1d side in the axial direction. Projects to the inner periphery. Thus, the protruding portion 666 is positioned with the second cylindrical portion 664 sandwiched between it and the first cylindrical portion 662, and is interposed between the reduced diameter portion 120a of the first magnetic portion 120 and the support surface 1d. ing. The protruding portion 666 is supported on the entire support surface 1d by bringing the axial end surface 666a opposite to the first cylindrical portion 662 into contact with the support surface 1d. At the same time, the protruding portion 666 is engaged with the reduced diameter portion 120a on the entire circumference by bringing the axial end surface 666b opposite to the support surface 1d into contact with the reduced diameter portion 120a of the first magnetic portion 120. Yes.

このような特徴的構成の第一実施形態において、弁ハウジング11のパイプ部材12にコイルハウジング66を固定する際には、まず、パイプ部材12の第一磁性部120をコイル収容部660側からコイルハウジング66の第一筒状部662の内周側に圧入する。かかる圧入により、コイルハウジング66の突出部666を第一磁性部120の縮径部120aに係合させた後、コイルハウジング66の第二筒状部664を、第一磁性部120のうち当該筒状部664の内周側箇所120dに径方向隙間Grを介して溶接する。   In the first embodiment having such a characteristic configuration, when the coil housing 66 is fixed to the pipe member 12 of the valve housing 11, first, the first magnetic portion 120 of the pipe member 12 is coiled from the coil housing portion 660 side. It press-fits into the inner peripheral side of the first tubular portion 662 of the housing 66. With this press fitting, the projecting portion 666 of the coil housing 66 is engaged with the reduced diameter portion 120 a of the first magnetic portion 120, and then the second cylindrical portion 664 of the coil housing 66 is moved into the tube of the first magnetic portion 120. It welds to the inner peripheral side location 120d of the shape part 664 via the radial direction gap Gr.

ここで、例えば本実施形態では、第二筒状部664の外周側からレーザ光を径方向に照射して、その光エネルギーにより第二筒状部664を溶融させる。このとき第二筒状部664の溶融物は、径方向隙間Grを通じて第一磁性部120の上記内周側箇所120dに接触して当該箇所120dを溶融させるので、その後の冷却固化によって溶接が完了することになる。尚、例えば、磁性材としてのステンレス鋼よりなる第一磁性部120及びコイルハウジング66を、径方向隙間Grを通して溶接する場合には、YAGレーザ等を用いた溶接方法が採用される。   Here, for example, in the present embodiment, laser light is irradiated in the radial direction from the outer peripheral side of the second cylindrical portion 664, and the second cylindrical portion 664 is melted by the light energy. At this time, the melt of the second cylindrical portion 664 comes into contact with the inner peripheral side portion 120d of the first magnetic portion 120 through the radial gap Gr and melts the portion 120d, so that welding is completed by subsequent cooling and solidification. Will do. For example, when the first magnetic part 120 and the coil housing 66 made of stainless steel as a magnetic material are welded through the radial gap Gr, a welding method using a YAG laser or the like is employed.

こうした本実施形態の溶接は、第一磁性部120の圧入による緊迫力が第一筒状部662に作用した状態下、径方向隙間Grにより緊迫力の作用が軽減されている第二筒状部664と第一磁性部120との間にて、行なわれる。その結果、図4,5に示すようにコイルハウジング66の熱変形は、緊迫力の作用が軽減されているのみならず、第一筒状部662及び第一磁性部120の溶接箇所120dよりも薄肉となっている第二筒状部664に、集中し易くなる。即ち、第一磁性部120の圧入から逃がされている低剛性の第二筒状部664によれば、溶接熱による歪みを吸収することができるのである。ここで図4は、第二筒状部664が内周側の径方向隙間Grへ向かって熱変形する場合の例を示し、また図5は、第二筒状部664が径方向隙間Grとは反対側の外周側へ向かって熱変形する場合の例を示している。   In the welding according to the present embodiment, the second cylindrical portion in which the action of the pressing force is reduced by the radial gap Gr in a state where the pressing force due to the press-fitting of the first magnetic portion 120 is applied to the first cylindrical portion 662. It is performed between 664 and the first magnetic part 120. As a result, as shown in FIGS. 4 and 5, the thermal deformation of the coil housing 66 not only reduces the action of the tightening force, but also more than the welded portion 120 d of the first cylindrical portion 662 and the first magnetic portion 120. It becomes easy to concentrate on the thin second tubular portion 664. In other words, according to the low-rigidity second tubular portion 664 that is released from the press-fitting of the first magnetic portion 120, it is possible to absorb distortion due to welding heat. Here, FIG. 4 shows an example of the case where the second cylindrical portion 664 is thermally deformed toward the radial gap Gr on the inner peripheral side, and FIG. 5 shows the second cylindrical portion 664 and the radial gap Gr. Shows an example in the case of thermal deformation toward the opposite outer peripheral side.

これら図4,5のいずれの場合でも、緊迫力の作用側となる第一筒状部662と第一磁性部120の圧入箇所120bとにおいては、周面662a,120c同士を離間させるような熱変形は抑制され得るので、それら周面662a,120cの密着性が維持され得る。したがって、周面662a,120c同士の離間に起因した磁気回路Cの磁束密度低下を回避して、当該回路Cが発生する磁気吸引力により弁部材40の安定した駆動特性を実現することが可能となる。   4 and 5, in the first cylindrical portion 662 on the working side of the tightening force and the press-fitted portion 120b of the first magnetic portion 120, heat that separates the peripheral surfaces 662a and 120c from each other. Since the deformation can be suppressed, the adhesion of the peripheral surfaces 662a and 120c can be maintained. Therefore, it is possible to avoid a decrease in the magnetic flux density of the magnetic circuit C due to the separation between the peripheral surfaces 662a and 120c, and to realize a stable driving characteristic of the valve member 40 by the magnetic attractive force generated by the circuit C. Become.

また、緊迫力の作用する第一筒状部662との間に第二筒状部664を挟んで突出部666を有するコイルハウジング66では、第二筒状部664への熱変形集中により、第一磁性部120の縮径部120aから当該突出部666を離間させるような変形は抑制され得る。これにより、鍔状突出部666が縮径部120aに全周係合して弁ハウジング11を軸方向に支持する状態は、第二筒状部664の変形に拘らずに確保される。このように弁ハウジング11が支持面1d側の突出部666によって軸方向支持されることによれば、弁ハウジング11に作用する支持面1d側への押付軸力Nを当該突出部666によって確実に受け止めることができる。したがって、第二筒状部664と第一磁性部120との溶接界面Wにおいては、押付軸力Nに起因してせん断応力による疲労破壊が発生することを抑制して、高い耐久性を確保することが可能となる。   Further, in the coil housing 66 having the protruding portion 666 with the second cylindrical portion 664 sandwiched between the first cylindrical portion 662 on which the tightening force acts, the first cylindrical portion 662 has the first cylindrical portion 664 so that the first cylindrical portion 664 has a heat deformation concentration on the second cylindrical portion 664. Such deformation that separates the protruding portion 666 from the reduced diameter portion 120a of the one magnetic portion 120 can be suppressed. As a result, the state in which the flange-like protruding portion 666 engages with the reduced diameter portion 120a all around and supports the valve housing 11 in the axial direction is ensured regardless of the deformation of the second cylindrical portion 664. As described above, when the valve housing 11 is axially supported by the protruding portion 666 on the support surface 1d side, the pressing axial force N acting on the support surface 1d acting on the valve housing 11 is reliably ensured by the protruding portion 666. I can take it. Therefore, at the welding interface W between the second cylindrical portion 664 and the first magnetic portion 120, fatigue failure due to shear stress due to the pressing axial force N is suppressed, and high durability is ensured. It becomes possible.

以上の他、図3の如く第一筒状部662が圧入箇所120bと共に形成する磁気回路Cは、当該筒状部662よりも電磁コイル61から離れた第二筒状部664が溶接箇所120dと共に形成する溶接界面Wから、溶接ばらつきの影響を受け難い。また、第二筒状部664において第一筒状部662の内周面662aよりも凹んだ凹部665を、第一磁性部120の外周面120cにより塞いで径方向隙間Grを形成することから、第一筒状部662への圧入面でもある当該外周面120cにつき面精度の確保が容易となる。さらにまた、溶接箇所120dが第二筒状部664よりも厚肉に形成されて剛性を確保されている第一磁性部120によれば、溶接熱によっては変形し難い。これらによれば、溶接界面Wの溶接ばらつきや外周面120cの面粗さに起因する磁気回路Cの磁束密度低下と、第一磁性部120の変形に起因する弁部材40の駆動阻害とを、いずれも抑制し得る。したがって、このことによっても、弁部材40の駆動特性を安定させることが可能となるのである。   In addition to the above, in the magnetic circuit C formed by the first cylindrical portion 662 together with the press-fit location 120b as shown in FIG. 3, the second cylindrical portion 664 that is further away from the electromagnetic coil 61 than the cylindrical portion 662 has the weld location 120d. It is difficult to be affected by welding variations from the weld interface W to be formed. In addition, since the concave portion 665 recessed from the inner peripheral surface 662a of the first cylindrical portion 662 in the second cylindrical portion 664 is closed by the outer peripheral surface 120c of the first magnetic portion 120, the radial gap Gr is formed. It is easy to ensure the surface accuracy of the outer peripheral surface 120c, which is also the press-fitting surface to the first cylindrical portion 662. Furthermore, according to the 1st magnetic part 120 in which the welding location 120d is formed thicker than the 2nd cylindrical part 664, and rigidity is ensured, it is hard to deform | transform with welding heat. According to these, the magnetic flux density reduction of the magnetic circuit C due to the welding variation of the welding interface W and the surface roughness of the outer peripheral surface 120c, and the drive inhibition of the valve member 40 due to the deformation of the first magnetic part 120, Either can be suppressed. Therefore, this also makes it possible to stabilize the drive characteristics of the valve member 40.

(第二実施形態)
図6,7に示すように本発明の第二実施形態は、第一実施形態の変形例である。図6に示す第二実施形態において、コイルハウジング66の第二筒状部664と弁ハウジング11の第一磁性部120との間の径方向隙間Grは、第二筒状部664側ではなく第一磁性部120側に設けた凹部125によって、形成されている。
(Second embodiment)
As shown in FIGS. 6 and 7, the second embodiment of the present invention is a modification of the first embodiment. In the second embodiment shown in FIG. 6, the radial gap Gr between the second cylindrical portion 664 of the coil housing 66 and the first magnetic portion 120 of the valve housing 11 is not the second cylindrical portion 664 side but the first cylindrical portion 664. It is formed by a recess 125 provided on the one magnetic part 120 side.

具体的に凹部125は、第一磁性部120の外周面120cから径方向の内周側へ向かって凹んでいる。本実施形態において凹部125は、周方向の全域に亘って延伸し且つ軸方向では第二筒状部664の内周側箇所120dの全域に亘って延伸する円環溝状に、形成されている。これに対して第二筒状部664の内周面664aは、軸方向の全域で実質的に一定径の円筒孔状に、形成されている。こうした構成により本実施形態では、第一磁性部120の凹部125の開口125aを塞ぐ第二筒状部664の内周面664aと、当該凹部125との間に、周方向に連続する径方向隙間Grが形成されている。そして、かかる径方向隙間Grを通じて第二筒状部664は、本実施形態においても、内周側の第一磁性部120に周方向の全域にて溶接されているのである。   Specifically, the recess 125 is recessed from the outer peripheral surface 120 c of the first magnetic unit 120 toward the inner peripheral side in the radial direction. In the present embodiment, the concave portion 125 is formed in an annular groove shape that extends over the entire region in the circumferential direction and extends over the entire region of the inner peripheral side portion 120d of the second cylindrical portion 664 in the axial direction. . On the other hand, the inner peripheral surface 664a of the second cylindrical portion 664 is formed in a cylindrical hole shape having a substantially constant diameter throughout the entire axial direction. With this configuration, in the present embodiment, a radial gap continuous in the circumferential direction between the inner peripheral surface 664a of the second cylindrical portion 664 that closes the opening 125a of the concave portion 125 of the first magnetic portion 120 and the concave portion 125. Gr is formed. And the 2nd cylindrical part 664 is welded to the 1st magnetic part 120 of the inner peripheral side in the whole area of the circumferential direction through this radial direction clearance gap Gr.

尚、図7に示すように本実施形態では、第二筒状部664の外周面664bが第一筒状部662の外周面662bよりも凹んで形成されていることにより、第二筒状部664の径方向厚さT2が第一筒状部662の最小の径方向厚さT1よりも薄く設定されている。また、かかる第二筒状部664の径方向厚さT2に対しては、径方向隙間Grの間隔Δrが半分以下の間隔となるように且つ第一磁性部120の溶接箇所120dの径方向厚さTvhが薄くなるように、設定されている。   As shown in FIG. 7, in the present embodiment, the outer peripheral surface 664 b of the second cylindrical portion 664 is formed to be recessed from the outer peripheral surface 662 b of the first cylindrical portion 662. The radial thickness T2 of 664 is set to be thinner than the minimum radial thickness T1 of the first cylindrical portion 662. Further, with respect to the radial thickness T2 of the second cylindrical portion 664, the radial thickness of the welded portion 120d of the first magnetic portion 120 is set such that the interval Δr of the radial gap Gr is less than half. The length Tvh is set to be thin.

以上説明した第二実施形態によると、第一実施形態に準じて、弁部材40の安定した駆動特性と高い耐久性との獲得が可能になると共に、第一磁性部120の外周面120cの加工により凹部125の形成作業を容易化して、生産性を高めることも可能となる。   According to the second embodiment described above, according to the first embodiment, stable driving characteristics and high durability of the valve member 40 can be obtained, and the outer peripheral surface 120c of the first magnetic part 120 is processed. This facilitates the forming operation of the recess 125 and increases the productivity.

(他の実施形態)
以上、本発明の複数の実施形態について説明したが、本発明はそれらの実施形態に限定して解釈されるものではなく、その要旨を逸脱しない範囲内において種々の実施形態に適用することができる。
(Other embodiments)
Although a plurality of embodiments of the present invention have been described above, the present invention is not construed as being limited to these embodiments, and can be applied to various embodiments without departing from the scope of the present invention. .

具体的には、第一及び第二実施形態においてコイルハウジング66の第二筒状部664と弁ハウジング11の第一磁性部120との溶接は、レーザ溶接以外にも、例えばアーク溶接やプラズマ溶接等により行なってもよい。また、第一実施形態の凹部665と第二実施形態の凹部125とを組み合わせることで、コイルハウジング66の第二筒状部664と弁ハウジング11の第一磁性部120との間の径方向隙間Grを形成してもよい。さらにまた、第二実施形態において第二筒状部664の外周面664bと第一筒状部662の外周面662bとを、実質的に一定径の円筒面状に連続させて形成してもよい。   Specifically, in the first and second embodiments, welding of the second cylindrical portion 664 of the coil housing 66 and the first magnetic portion 120 of the valve housing 11 is, for example, arc welding or plasma welding in addition to laser welding. Etc. may be performed. Moreover, the radial clearance between the second cylindrical portion 664 of the coil housing 66 and the first magnetic portion 120 of the valve housing 11 is obtained by combining the recess 665 of the first embodiment and the recess 125 of the second embodiment. Gr may be formed. Furthermore, in the second embodiment, the outer peripheral surface 664b of the second cylindrical portion 664 and the outer peripheral surface 662b of the first cylindrical portion 662 may be formed so as to be substantially cylindrical with a constant diameter. .

1 内燃機関、1c 取付孔、1d 支持面、2 燃料配管、10 燃料噴射弁、11 弁ハウジング、12 パイプ部材、13 入口部材、14 ノズル部材、18 噴孔、20 固定コア、30 可動コア、40 弁部材、50 第一弾性部材、52 第二弾性部材、60 駆動部、61 電磁コイル、62 樹脂ボビン、64 コネクタ、66 コイルハウジング、120 第一磁性部、120a 縮径部、120b 圧入箇所、120c 外周面、120d 溶接箇所、121 非磁性部、122 第二磁性部、125,665 凹部、125a,665a 開口、660 コイル収容部、662 第一筒状部、662a 内周面、662b 外周面、664 第二筒状部、664a 内周面、664b 外周面、666 突出部、666a,666b 軸方向端面、C 磁気回路、Gr 径方向隙間、N 押付軸力、W 溶接界面、Δr 間隔 DESCRIPTION OF SYMBOLS 1 Internal combustion engine, 1c Mounting hole, 1d Support surface, 2 Fuel piping, 10 Fuel injection valve, 11 Valve housing, 12 Pipe member, 13 Inlet member, 14 Nozzle member, 18 Injection hole, 20 Fixed core, 30 Movable core, 40 Valve member, 50 First elastic member, 52 Second elastic member, 60 Drive portion, 61 Electromagnetic coil, 62 Resin bobbin, 64 Connector, 66 Coil housing, 120 First magnetic portion, 120a Reduced diameter portion, 120b Press-fit location, 120c Outer peripheral surface, 120d welding location, 121 non-magnetic portion, 122 second magnetic portion, 125, 665 recess, 125a, 665a opening, 660 coil housing portion, 662 first cylindrical portion, 662a inner peripheral surface, 662b outer peripheral surface, 664 Second cylindrical portion, 664a inner peripheral surface, 664b outer peripheral surface, 666 protruding portion, 666a, 666b Axial direction End face, C magnetic circuit, Gr radial clearance, N pressing axial force, W welding interface, Δr interval

Claims (7)

燃料配管から供給される燃料の圧力により内燃機関の支持面に押付けられる状態下、噴孔から前記内燃機関への燃料噴射を弁部材の往復移動により断続する燃料噴射弁であって、
前記弁部材を収容し、前記燃料配管からの供給燃料の圧力により前記支持面側へ向かって押付軸力が作用する筒状の弁ハウジングと、
前記弁ハウジングの外周側に配置され、前記弁部材を駆動する磁力を通電により発生する電磁コイルと、
前記電磁コイルを外周側から覆い、前記支持面に支持されるコイルハウジングと、
を備えた燃料噴射弁において、前記コイルハウジングは、
前記電磁コイルよりも支持面側にて前記弁ハウジングが内周側に圧入され、前記電磁コイルへの通電に応じて前記磁力を発生させるための磁気回路を前記弁ハウジングと共に形成する第一筒状部と、
前記第一筒状部に対して前記支持面側に隣接し、内周側の前記弁ハウジングとの間に形成する径方向隙間を通じて当該弁ハウジングと溶接される第二筒状部と、
前記第一筒状部との間に挟む前記第二筒状部よりも内周側へ突出して前記弁ハウジングに係合する突出部と、
を有し、
前記弁ハウジングにおいて前記径方向隙間を通じて前記第二筒状部が溶接される箇所の径方向厚さは、前記弁ハウジングにおいて前記第一筒状部が圧入される箇所の径方向厚さよりも厚いことを特徴とする燃料噴射弁。
A fuel injection valve for intermittently injecting fuel from an injection hole to the internal combustion engine by reciprocating movement of a valve member under a state of being pressed against a support surface of the internal combustion engine by the pressure of fuel supplied from a fuel pipe;
A cylindrical valve housing that houses the valve member, and a pressing axial force acts toward the support surface by the pressure of fuel supplied from the fuel pipe;
An electromagnetic coil that is disposed on the outer peripheral side of the valve housing and generates a magnetic force for driving the valve member by energization;
A coil housing that covers the electromagnetic coil from the outer peripheral side and is supported by the support surface;
In the fuel injection valve comprising: the coil housing,
A first cylindrical shape in which the valve housing is press-fitted on the inner peripheral side closer to the support surface than the electromagnetic coil, and forms a magnetic circuit with the valve housing for generating the magnetic force in response to energization of the electromagnetic coil. And
A second tubular portion which is adjacent to the support surface side with respect to the first tubular portion and is welded to the valve housing through a radial gap formed between the valve housing and the inner peripheral side;
A protrusion for engaging the second tubular portion Kiben front housing protrudes into the inner circumferential side than sandwiching between said first cylindrical portion,
Have
The radial thickness of the portion where the second cylindrical portion is welded through the radial gap in the valve housing is thicker than the radial thickness of the portion where the first cylindrical portion is press-fitted in the valve housing. A fuel injection valve characterized by.
前記弁ハウジングは、前記支持面側へ向かって縮径する縮径部を有し、当該縮径部に鍔状の前記突出部が係合することを特徴とする請求項1に記載の燃料噴射弁。   2. The fuel injection according to claim 1, wherein the valve housing has a reduced diameter portion that is reduced in diameter toward the support surface, and the flange-like protruding portion is engaged with the reduced diameter portion. valve. 前記第二筒状部の径方向厚さは、前記第一筒状部の径方向厚さよりも薄いことを特徴とする請求項1又は2に記載の燃料噴射弁。   3. The fuel injection valve according to claim 1, wherein a radial thickness of the second cylindrical portion is thinner than a radial thickness of the first cylindrical portion. 前記第二筒状部の径方向厚さは、前記弁ハウジングにおいて前記第二筒状部が溶接される箇所の径方向厚さよりも薄いことを特徴とする請求項1〜3のいずれか一項に記載の燃料噴射弁。   4. The radial thickness of the second cylindrical portion is thinner than a radial thickness of a portion where the second cylindrical portion is welded in the valve housing. The fuel injection valve described in 1. 前記第二筒状部と前記弁ハウジングとの間の前記径方向隙間は、前記第二筒状部の径方向厚さに対して半分以下の間隔に形成されることを特徴とする請求項1〜4のいずれか一項に記載の燃料噴射弁。   The radial gap between the second cylindrical portion and the valve housing is formed at an interval of less than half of the radial thickness of the second cylindrical portion. The fuel injection valve as described in any one of -4. 前記第二筒状部は、前記第一筒状部の内周面よりも外周側へ凹む凹部を有し、当該凹部の開口を塞ぐ前記弁ハウジングの外周面と、当該凹部との間に前記径方向隙間を形成することを特徴とする請求項1〜5のいずれか一項に記載の燃料噴射弁。   The second cylindrical portion has a concave portion that is recessed toward the outer peripheral side with respect to the inner peripheral surface of the first cylindrical portion, and between the outer peripheral surface of the valve housing that closes the opening of the concave portion and the concave portion. The fuel injection valve according to any one of claims 1 to 5, wherein a radial gap is formed. 前記弁ハウジングは、前記弁ハウジングの外周面から内周側へ凹む凹部を有し、当該凹部の開口を塞ぐ前記第二筒状部の内周面と、当該凹部との間に前記径方向隙間を形成すること特徴とする請求項1〜5のいずれか一項に記載の燃料噴射弁。   The valve housing has a recess that is recessed from the outer peripheral surface of the valve housing to the inner peripheral side, and the radial clearance between the inner peripheral surface of the second tubular portion that closes the opening of the recess and the recess. The fuel injection valve according to claim 1, wherein the fuel injection valve is formed.
JP2010029394A 2010-02-12 2010-02-12 Fuel injection valve Active JP5509901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010029394A JP5509901B2 (en) 2010-02-12 2010-02-12 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029394A JP5509901B2 (en) 2010-02-12 2010-02-12 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2011163292A JP2011163292A (en) 2011-08-25
JP5509901B2 true JP5509901B2 (en) 2014-06-04

Family

ID=44594252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029394A Active JP5509901B2 (en) 2010-02-12 2010-02-12 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP5509901B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136353B2 (en) * 2013-02-22 2017-05-31 トヨタ自動車株式会社 High pressure fuel pump
JP5849975B2 (en) * 2013-02-25 2016-02-03 株式会社デンソー Fuel injection control device and fuel injection system
ITBO20150235A1 (en) * 2015-05-05 2016-11-05 Magneti Marelli Spa ELECTROMAGNETIC FUEL INJECTOR WITH WELDING OPTIMIZATION
JP6380323B2 (en) * 2015-10-02 2018-08-29 株式会社デンソー Fuel injection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3993594B2 (en) * 2004-09-27 2007-10-17 株式会社ケーヒン Electromagnetic fuel injection valve
US7617605B2 (en) * 2005-06-16 2009-11-17 Continental Automotive Systems Us, Inc. Component geometry and method for blowout resistant welds
DE102006040650A1 (en) * 2006-08-30 2008-03-13 Robert Bosch Gmbh Method for joining components with closed hollow cross section
JP4793434B2 (en) * 2008-03-14 2011-10-12 株式会社デンソー Fuel injection valve

Also Published As

Publication number Publication date
JP2011163292A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5039054B2 (en) Solenoid operated valve
JP2007218205A (en) Solenoid fuel injection valve and its assembling method
JPH10504627A (en) Fuel injection device with improved parallelism of the armature impact surface to the impacted stopper surface
JP6254701B2 (en) Fuel injection valve
JP5509901B2 (en) Fuel injection valve
US7063279B2 (en) Fuel injection valve
JP5063789B2 (en) Electromagnetic fuel injection valve and method of assembling the same
JP4793434B2 (en) Fuel injection valve
JP4453745B2 (en) Fuel injection valve
JP2009133208A (en) Electromagnetic type fuel injection valve
JP2008509334A (en) Fuel injector and component connection method
JP3899937B2 (en) Fuel injection valve
JP2014125972A (en) Fuel injection valve
JP5924764B2 (en) Fuel injection valve
US7775464B2 (en) Electromagnetic fuel injection valve
JP5402713B2 (en) Fuel injection valve
JP4669852B2 (en) Electromagnetic fuel injection valve
WO2009090794A1 (en) Fuel injection valve
JP4767795B2 (en) Electromagnetic fuel injection valve
JP3951956B2 (en) Fuel injection valve
JP3962951B2 (en) Fuel injection device
JP2004068600A (en) Electromagnetic fuel injection valve
JP2008063952A (en) Solenoid fuel injection valve
JP2002285938A (en) Fuel injection valve, and method of assembling the fuel injection valve
JP2009221879A (en) Manufacturing method of electromagnetic fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R151 Written notification of patent or utility model registration

Ref document number: 5509901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250