WO2009090794A1 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
WO2009090794A1
WO2009090794A1 PCT/JP2008/070916 JP2008070916W WO2009090794A1 WO 2009090794 A1 WO2009090794 A1 WO 2009090794A1 JP 2008070916 W JP2008070916 W JP 2008070916W WO 2009090794 A1 WO2009090794 A1 WO 2009090794A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
hole
fixed core
nonmagnetic
armature
Prior art date
Application number
PCT/JP2008/070916
Other languages
French (fr)
Japanese (ja)
Inventor
Hikaru Kikuta
Hiroshi Kawazoe
Yuhei Miura
Original Assignee
Aisan Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Kogyo Kabushiki Kaisha filed Critical Aisan Kogyo Kabushiki Kaisha
Publication of WO2009090794A1 publication Critical patent/WO2009090794A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure

Definitions

  • the present invention relates to a fuel injection valve that injects fuel.
  • JP 2002-81356 describes a fuel injection valve for injecting fuel into a combustion engine (internal combustion engine).
  • the fuel injection valve includes a valve seat member having a fuel injection hole (fuel outlet hole), a magnetic body (valve housing) provided with the valve seat member, and a fuel injection hole in contact with the valve seat member.
  • a coil provided around the fixed core, and a non-magnetic annular nonmagnetic member (spacer) interposed between the body and the fixed core.
  • the non-magnetic member liquid-tightly connects the body and the fixed core.
  • the body and the fixed core are abutted against both end surfaces of the nonmagnetic member, respectively, and are welded all around the liquid.
  • this structure when assembling the body and the nonmagnetic member at the time of manufacturing, it is necessary to weld both the body and the nonmagnetic member while keeping both the body and the nonmagnetic member with high accuracy. Further, when assembling the body and the nonmagnetic member, it is necessary to weld both the nonmagnetic member and the fixed core over the entire circumference while accurately holding both the nonmagnetic member and the fixed core. Therefore, the work of assembling the body and the fixed core is troublesome, and it can be said that the assembling accuracy of these parts is likely to fluctuate.
  • the present invention solves the above problems.
  • the present invention provides a fuel injection valve capable of easily and accurately assembling a body and a fixed core via a nonmagnetic member.
  • the fuel injection valve includes a valve seat member, a body, a valve body, an armature, a fixed core, a coil, and an annular nonmagnetic member.
  • the valve seat member has a fuel injection hole.
  • the body is made of a magnetic material, and has a through-hole through which fuel flows, and a valve seat member is provided in the through-hole.
  • the valve body contacts the valve seat member and closes the fuel injection hole.
  • the armature is made of a magnetic material, is movably accommodated in a through hole of the body, and has a valve body fixed thereto.
  • the fixed core is made of a magnetic material, has a through hole through which fuel flows, and is positioned on the side opposite to the fuel injection hole with respect to the valve body.
  • the coil is provided around the fixed core.
  • the nonmagnetic member is formed of a nonmagnetic material, and is interposed between the body and the fixed core, and liquid-tightly connects the through hole of the body and the through hole of the fixed core.
  • the nonmagnetic member is press-fitted into the through hole of the body, and the fixed core is press-fitted into the inner peripheral surface of the nonmagnetic member.
  • the body and the nonmagnetic member can be easily positioned by press-fitting the nonmagnetic member into the through hole of the body.
  • the nonmagnetic member and the fixed core can be easily positioned by press-fitting the fixed core into the inner peripheral surface of the nonmagnetic member.
  • the body, the non-magnetic member, and the fixed core are press-fitted into each other, and the body and the fixed core can be liquid-tightly connected via the non-magnetic member, for example, by welding the entire circumference in a state where their relative positions are fixed. .
  • the body and the fixed core can be assembled easily and accurately via the nonmagnetic member.
  • the body is preferably provided with a support surface that slidably supports the armature.
  • a clearance (clearance) is provided between the inner peripheral surface of the nonmagnetic member and the armature.
  • the nonmagnetic member may be slightly deformed when the nonmagnetic member and the fixed core are pressed into the body. Therefore, when the armature is supported by the body and a clearance is provided between the nonmagnetic member and the armature, it is possible to prevent the armature from interfering even when the nonmagnetic member is deformed.
  • the nonmagnetic member when one end of the nonmagnetic member has a shear surface formed on the inner peripheral surface thereof and the other end of the nonmagnetic member has a shear surface formed on the outer peripheral surface thereof, It is preferable that one end of the nonmagnetic member on the inner peripheral surface is press-fitted into the through hole of the body, and a fixed core is press-fitted on the other end of the nonmagnetic member having a shear surface on the outer peripheral surface.
  • the nonmagnetic member can be easily and accurately manufactured by pressing.
  • a shear surface may be formed on the inner peripheral surface at one end and a shear surface may be formed on the outer peripheral surface at the other end.
  • the nonmagnetic member is preferably a cylindrical member having a substantially constant thickness.
  • the nonmagnetic member is pressed into the body and the fixed core, so that the nonmagnetic member is held from the entire circumferential direction by the body and the fixed core. Therefore, the thickness of the nonmagnetic member can be made relatively thin, and it is not always necessary to provide a reinforcing rib or flange. Therefore, the nonmagnetic member can be a cylindrical member having a substantially constant thickness. In this case, the distance between the fixed core and the coil can be designed to be relatively narrow, and a strong magnetic field can be generated in the fixed core.
  • a fuel injection valve capable of easily and accurately assembling the body and the fixed core via a nonmagnetic member is realized, and the fuel injection valve can be manufactured with high manufacturing quality.
  • Sectional drawing which shows the structure of a fuel injection valve.
  • the figure which shows the principal part of a fuel injection valve.
  • the figure which expands and shows a nonmagnetic ring.
  • the figure explaining the manufacturing method of a nonmagnetic ring.
  • the fuel injection valve includes an urging member that urges the armature together with the valve body toward the fuel injection hole.
  • the armature is formed with a through hole.
  • the through-hole of the armature communicates with the through-hole of the fixed core, and constitutes a fuel flow path through which fuel passes together with the through-hole of the fixed core.
  • the non-magnetic member is provided at a position surrounding the opposing ends of the armature and the fixed core from the periphery.
  • FIG. 1 is a cross-sectional view showing a configuration of a fuel injection valve 10 embodying the present invention.
  • the fuel injection valve 10 is a valve device that injects fuel pumped by a fuel pump or the like into an internal combustion engine.
  • the fuel injection valve 10 includes a valve seat member 24, a body 26, a valve body 40, an armature 44, a fixed core 32, a nonmagnetic ring 30, a coil 50, a compression spring 46, and a spring pin 36. Yes.
  • the valve seat member 24 is made of a metal material.
  • a fuel injection hole 22 is formed in the valve seat member 24.
  • the valve seat member 24 is provided with an orifice plate 20 for adjusting the opening area of the fuel injection hole 22.
  • the valve seat member 24 is formed with a plurality of support portions 24e that slidably support the valve body 40 from its periphery.
  • the body 26 is made of a magnetic material, and more specifically is made of electromagnetic stainless steel.
  • the body 26 has a generally cylindrical shape, and has a through hole 26a through which fuel passes.
  • a valve seat member 24 is fixed to the through hole 26 a of the body 26.
  • the valve seat member 24 is press-fitted into the through hole 26 a of the body 26.
  • an annular support surface 26e that supports the armature 44 so as to be slidable from the periphery thereof is formed.
  • the valve body 40 has a spherical shape and is made of a metal material.
  • the valve body 40 is accommodated in the through hole 26 a of the body 26.
  • the valve body 40 is slidably supported by the support portion 24 e of the valve seat member 24, and can advance and retreat with respect to the fuel injection hole 22.
  • the valve body 40 is in liquid-tight contact with the valve seat member 24 to close the fuel injection hole 22.
  • the armature 44 is made of a magnetic material, and more specifically is made of electromagnetic stainless steel.
  • the armature 44 is accommodated in the through hole 26 a of the body 26.
  • the armature 44 is slidably supported by the support surface 26 e of the body 26, and can advance and retreat with respect to the fuel injection hole 22.
  • a valve body 40 is fixed to the armature 44 via a cylindrical connecting portion 42.
  • the armature 44 has a generally cylindrical shape and has a through hole 44a through which fuel passes.
  • the through hole 44 a of the armature 44 is connected to the fuel injection hole 22 through the inner hole 42 a of the connection portion 42 and the side wall hole 42 b of the connection portion 42.
  • the fixed core 32 is made of a magnetic material, and more specifically is made of electromagnetic stainless steel.
  • the fixed core 32 is located on the side opposite to the fuel injection hole 22 (on the side opposite to the fuel injection hole) with respect to the armature 44.
  • the fixed core 32 has a generally cylindrical shape, and has a through hole 32a through which fuel passes.
  • a fuel pipe (not shown) is connected to the end 32d of the fixed core 32 on the side opposite to the fuel injection hole, and fuel is pumped from a fuel pump (not shown) or the like.
  • a filter member 38 for removing foreign matter from the pumped fuel is provided at the end 32d on the side opposite to the fuel injection hole.
  • the nonmagnetic ring 30 is an annular member made of a nonmagnetic material, and is specifically formed of austenitic stainless steel (for example, SUS304 in Japanese Industrial Standard).
  • the nonmagnetic ring 30 is interposed between the body 26 and the fixed core 32, and fluidly connects the through hole 26 a of the body 26 and the through hole 32 a of the fixed core 32.
  • the nonmagnetic ring 30 is provided at a position surrounding the opposite ends of the armature 44 and the fixed core 32 from the periphery.
  • the coil 50 is provided so as to go around the fixed core 32.
  • the coil 50 is embedded in a case 48 formed of a resin material.
  • the coil 50 is electrically connected to a plurality of terminal pins 52 in the connector 54.
  • the connector 54 is formed by insert molding together with the case 48.
  • the connector 54 is connected to an external control unit (not shown) via a wire harness (not shown).
  • the coil 50 is energized at a timing at which fuel should be injected by the control unit.
  • the compression spring 46 is accommodated in the through hole 44 a of the armature 44 and the through hole 32 a of the fixed core 32. One end of the compression spring 46 is in contact with the armature 44, and the other end of the compression spring 46 is in contact with the spring pin 36.
  • the compression spring 46 is in a sufficiently compressed state, and urges the armature 44 together with the valve body 40 toward the fuel injection hole 22.
  • the spring pin 36 has a cylindrical shape in which a slit extending in the axial direction is formed, and is formed of phosphor bronze.
  • the spring pin 36 is press-fitted into the through hole 32a of the fixed core 32, and is fixed to the fixed core 32 by its own elastic force. The biasing force with which the compression spring 46 biases the armature 44 is adjusted by the position where the spring pin 36 is press-fitted.
  • the through hole 36a of the spring pin 36 becomes a fuel flow path through which fuel passes.
  • the pressurized fuel flows into the fuel injection valve 10 from the one end 32d of the fixed core 32 on the side opposite to the fuel injection hole.
  • the inflowed fuel includes a filter member 38, a through hole 36 a of the spring pin 36, a through hole 32 a of the fixed core 32, a through hole 44 a of the armature 44, an inner hole 42 a of the connecting portion 42, and The valve portion including the valve seat member 24 and the valve body 40 is reached through the side wall hole 42b.
  • the coil 50 is not energized, the valve body 40 is in liquid-tight contact with the valve seat member 24 by the urging force of the compression spring 46.
  • the fuel injection hole 22 is closed by the valve body 40, and fuel is not injected from the fuel injection hole 22.
  • the fixed core 32 and the armature 44 become magnetized. Accordingly, the fixed core 32 and the armature 44 are attracted to each other, and the armature 44 moves together with the valve body 40 toward the fixed core 32 against the urging force of the compression spring 46. That is, the armature 44 moves together with the valve body 40 to the anti-fuel injection hole side.
  • the fuel injection hole 22 is opened, and fuel is injected from the fuel injection hole 22.
  • the body 26 and the nonmagnetic ring 30 are coupled to each other by press-fitting one end of the nonmagnetic ring 30 into the end portion 26 b of the through hole 26 a of the body 26. That is, the outer peripheral diameter of the nonmagnetic ring 30 is slightly larger than the inner peripheral diameter at the end portion 26b of the through hole 26a of the body 26, and the nonmagnetic ring 30 is compressed in the radial direction. The end portion 26b of the through hole 26a is fitted (that is, a tight fit state).
  • the nonmagnetic ring 30 and the fixed core 32 are also coupled to each other by press-fitting the fixed core 32 into the inner peripheral surface 30 a of the nonmagnetic ring 30. That is, the inner peripheral diameter of the nonmagnetic ring 30 is slightly smaller than the outer peripheral diameter of the fixed core 32, and the nonmagnetic ring 30 is fitted to the outer peripheral surface 32b of the fixed core 32 in a state of being radially extended. (I.e., a tight fit).
  • the coupling between the body 26 and the nonmagnetic ring 30 and the coupling between the nonmagnetic ring 30 and the fixed core 32 are performed by press-fitting.
  • the assembly of the body 26 and the fixed core 32 via the nonmagnetic ring 30 can be performed easily and accurately.
  • the outer peripheral surface 30b of the nonmagnetic ring 30 and the end portion 26b of the through hole 26a of the body 26 are welded in a liquid-tight manner over the entire circumference after press-fitting.
  • the inner peripheral surface 30a of the nonmagnetic ring 30 and the outer peripheral surface 32b of the fixed core 32 are also liquid-tightly welded over the entire periphery after press-fitting.
  • the dimensional difference between the outer peripheral diameter of the nonmagnetic ring 30 and the inner peripheral diameter at the end portion 26b of the through hole 26a of the body 26 into which the nonmagnetic ring 30 is press-fitted is appropriately set according to the dimensions, shape, and material (rigidity). Good.
  • the outer peripheral diameter of the nonmagnetic ring 30 and the inner peripheral diameter at the end portion 26b of the through hole 26a of the body 26 are about 5 mm to 10 mm
  • the dimensional difference between the two can be 5 ⁇ m to 20 ⁇ m.
  • the inner peripheral diameter of the nonmagnetic ring 30 and the outer peripheral diameter of the fixed core 32 when the dimensions are about 5 mm to 10 mm, the dimensional difference between the two can be 5 ⁇ m to 20 ⁇ m.
  • the armature 44 is supported by a support surface 26e formed on the body 26.
  • a clearance (gap) is provided between the outer peripheral surface 44 b of the armature 44 and the inner peripheral surface 30 a of the nonmagnetic ring 30.
  • the inner peripheral diameter D2 of the inner peripheral surface 30a of the nonmagnetic ring 30 is designed to be larger than the inner peripheral diameter D1 of the annular support surface 26e formed on the body 26. According to this structure, even when the nonmagnetic ring 30 is slightly deformed by press fitting or welding during manufacturing as described above, the nonmagnetic ring 30 is prevented from interfering with the armature 44 and the operation of the armature 44 is hindered. There is nothing.
  • the deformation of the nonmagnetic ring 30 can be tolerated to some extent at the time of manufacture, so that the nonmagnetic ring 30 can be made relatively thin and simple. That is, it is not necessary to form reinforcing ribs or flanges on the nonmagnetic ring 30. Therefore, the nonmagnetic ring 30 of the present embodiment is formed in a simple cylindrical shape with a substantially constant thickness (approximately 0.4 mm).
  • the nonmagnetic ring 30 is further enlarged and shown.
  • a shear surface 30g is formed on the inner peripheral surface 30a.
  • a shear surface 30h is formed on the outer peripheral surface 30b.
  • the shear surfaces 30g and 30h mean cross sections generated by shearing, and indicate uneven surfaces having a relatively large surface roughness. The reason why the shear surfaces 30 g and 30 h are formed on the nonmagnetic ring 30 is due to the manufacturing method of the nonmagnetic ring 30.
  • the manufacturing method of the nonmagnetic ring 30 is demonstrated.
  • the nonmagnetic ring 30 is manufactured from a sheet-like base material 130 by pressing.
  • a nonmagnetic ring 30 is formed on a base material 130 using a forming die 101.
  • the first punching die 102 is used to punch out the bottom 31 of the nonmagnetic ring 30 formed on the base material 130.
  • a shear surface 30g is formed on the inner peripheral surface 30a.
  • the nonmagnetic ring 30 is punched from the base material 130 using the second punching die 103.
  • a shear surface 30h is formed on the outer peripheral surface 30b. The shear surfaces 30g and 30h are not removed by post-processing. The nonmagnetic ring 30 is completed with the shear surfaces 30g and 30h remaining.
  • the nonmagnetic ring 30 is efficiently manufactured by pressing, but on the other hand, shear surfaces 30g and 30h are formed at both ends of the nonmagnetic ring 30.
  • one shear surface 30g is formed on the inner peripheral surface 30a
  • the other shear surface 30h is formed on the outer peripheral surface 30a. Therefore, as shown in FIG. 3, in the fuel injection valve 10 of this embodiment, one end 30c of the nonmagnetic ring 30 having the shearing surface 30g on the inner peripheral surface 30a is press-fitted into the body 26, and the shearing surface 30h is provided.
  • the fixed core 32 is press-fitted into the other end 30d of the nonmagnetic ring 30 provided on the outer peripheral surface 30b.
  • FIG. 5 schematically shows a magnetic circuit M generated when the coil 50 is energized.
  • the nonmagnetic ring 30 does not have a rib, a flange, or the like (the wall thickness is constant), and is formed relatively thin. Therefore, as shown in FIG. 5, the magnetic circuit M that passes through the body 26, the armature 44, and the fixed core 32 is formed at a position relatively close to the coil 50. That is, a magnetic field having a high magnetic flux density can be generated between the armature 44 and the fixed core 32. Therefore, according to the structure of the present embodiment, the armature 44 can be operated at high speed, and the fuel injection amount can be finely adjusted.
  • the support surface 26e that slidably supports the armature 44 is provided on the body 26, but another support surface that slidably supports the armature 44 is provided on the nonmagnetic ring 30. You can also. However, if the support surface is provided on the nonmagnetic ring 30, the shape of the nonmagnetic ring 30 tends to be complicated as compared with the above-described embodiment. On the other hand, since it is not always necessary to provide the support surface 26e on the body 26, the shape of the body 26 can be simplified.

Abstract

A fuel injection valve comprises a valve seat member having a fuel injection hole, a magnetic body provided with the valve seat member, a valve element in contact with the valve seat member to close the fuel injection hole, a magnetic armature contained in the body to which armature the valve element is fixed, a magnetic fixed core located opposite to the fuel injection hole with respect to the valve element, a coil provided around the fixed core, and a nonmagnetic member arranged between the body and the fixed core for connecting them liquid tightly. In this type of fuel injection valve, the nonmagnetic member is preferably press fitted in the through hole of the body and the fixed core is press fitted to the inner circumferential surface of the nonmagnetic member. Consequently, the body and the fixed core can be attached through the nonmagnetic member with high precision.

Description

燃料噴射弁Fuel injection valve
 本出願は、2008年1月16日に出願された日本国特許出願第2008-6564号に基づく優先権を主張する。その出願の全ての内容は、この明細書中に参照により援用されている。
 本発明は、燃料を噴射する燃料噴射弁に関する。
This application claims priority based on Japanese Patent Application No. 2008-6564 filed on Jan. 16, 2008. The entire contents of that application are incorporated herein by reference.
The present invention relates to a fuel injection valve that injects fuel.
 特開2002-81356に、燃焼機関(内燃機関)に燃料を噴射する燃料噴射弁が記載されている。この燃料噴射弁は、燃料噴射孔(燃料出口孔)を有する弁座部材と、弁座部材が設けられている磁性体のボディ(弁ハウジング)と、弁座部材に当接して燃料噴射孔を閉塞する弁体と、ボディ内に収容されているとともに弁体が固定されている磁性体のアーマチャ(可動コア)と、弁体に対して反燃料噴射孔側に位置する磁性体の固定コアと、固定コアの周囲に設けられているコイルと、ボディと固定コアの間に介装されている非磁性体の環状の非磁性部材(スペーサ)を備えている。非磁性部材は、ボディと固定コアを互いに液密に接続している。 JP 2002-81356 describes a fuel injection valve for injecting fuel into a combustion engine (internal combustion engine). The fuel injection valve includes a valve seat member having a fuel injection hole (fuel outlet hole), a magnetic body (valve housing) provided with the valve seat member, and a fuel injection hole in contact with the valve seat member. A closing valve body, a magnetic armature (movable core) housed in the body and fixed to the valve body, and a magnetic fixed core positioned on the side opposite to the fuel injection hole with respect to the valve body; And a coil provided around the fixed core, and a non-magnetic annular nonmagnetic member (spacer) interposed between the body and the fixed core. The non-magnetic member liquid-tightly connects the body and the fixed core.
 従来の燃料噴射弁では、ボディ及び固定コアが、非磁性部材の両端面にそれぞれ突き当てられ、液密に全周溶接されている。この構造によると、製造時においてボディと非磁性部材を組付ける際には、ボディと非磁性部材の両者を精度よく保持しながら、両者を全周に亘って溶接する必要がある。また、ボディと非磁性部材を組付ける際には、非磁性部材と固定コアの両者を精度よく保持しながら、両者を全周に亘って溶接する必要がある。そのことから、ボディと固定コアを組付ける作業が面倒であるとともに、それらの組付け精度が変動しやすい構造といえる。即ち、従来の燃料噴射弁は、その製造品質を維持することが難しい構造を有している。
 本発明は、上記の問題を解決する。本発明は、非磁性部材を介してボディと固定コアを容易に精度よく組付け可能な燃料噴射弁を提供する。
In the conventional fuel injection valve, the body and the fixed core are abutted against both end surfaces of the nonmagnetic member, respectively, and are welded all around the liquid. According to this structure, when assembling the body and the nonmagnetic member at the time of manufacturing, it is necessary to weld both the body and the nonmagnetic member while keeping both the body and the nonmagnetic member with high accuracy. Further, when assembling the body and the nonmagnetic member, it is necessary to weld both the nonmagnetic member and the fixed core over the entire circumference while accurately holding both the nonmagnetic member and the fixed core. Therefore, the work of assembling the body and the fixed core is troublesome, and it can be said that the assembling accuracy of these parts is likely to fluctuate. That is, the conventional fuel injection valve has a structure in which it is difficult to maintain the manufacturing quality.
The present invention solves the above problems. The present invention provides a fuel injection valve capable of easily and accurately assembling a body and a fixed core via a nonmagnetic member.
 本発明に係る燃料噴射弁は、弁座部材と、ボディと、弁体と、アーマチャと、固定コアと、コイルと、環状の非磁性部材を備えている。弁座部材は、燃料噴射孔を有している。ボディは、磁性材料によって形成されており、内部に燃料が流れる貫通孔を有しており、その貫通孔に弁座部材が設けられている。弁体は、弁座部材に当接して燃料噴射孔を閉塞する。アーマチャは、磁性材料によって形成されており、ボディの貫通孔内に移動可能に収容されており、弁体が固定されている。固定コアは、磁性材料によって形成されており、内部に燃料が流れる貫通孔を有しており、弁体に対して反燃料噴射孔側に位置している。コイルは、固定コアの周囲に設けられている。非磁性部材は、非磁性材料によって形成されており、ボディと固定コアの間に介装されており、ボディの貫通孔と固定コアの貫通孔を液密に接続している。非磁性部材は、ボディの貫通孔に圧入されており、非磁性部材の内周面に、固定コアが圧入されている。 The fuel injection valve according to the present invention includes a valve seat member, a body, a valve body, an armature, a fixed core, a coil, and an annular nonmagnetic member. The valve seat member has a fuel injection hole. The body is made of a magnetic material, and has a through-hole through which fuel flows, and a valve seat member is provided in the through-hole. The valve body contacts the valve seat member and closes the fuel injection hole. The armature is made of a magnetic material, is movably accommodated in a through hole of the body, and has a valve body fixed thereto. The fixed core is made of a magnetic material, has a through hole through which fuel flows, and is positioned on the side opposite to the fuel injection hole with respect to the valve body. The coil is provided around the fixed core. The nonmagnetic member is formed of a nonmagnetic material, and is interposed between the body and the fixed core, and liquid-tightly connects the through hole of the body and the through hole of the fixed core. The nonmagnetic member is press-fitted into the through hole of the body, and the fixed core is press-fitted into the inner peripheral surface of the nonmagnetic member.
 この燃料噴射弁では、非磁性部材をボディの貫通孔に圧入することによって、ボディと非磁性部材の位置決めを容易に行うことができる。また、非磁性部材の内周面に固定コアを圧入することによって、非磁性部材と固定コアの位置決めを容易に行うことができる。ボディと非磁性部材と固定コアを互いに圧入し、それらの相対位置が定まった状態で例えば全周を溶接することにより、非磁性部材を介してボディと固定コアを液密に接続することができる。
 この燃料噴射弁によると、非磁性部材を介してボディと固定コアを容易に精度よく組付けることができる。
In this fuel injection valve, the body and the nonmagnetic member can be easily positioned by press-fitting the nonmagnetic member into the through hole of the body. Moreover, the nonmagnetic member and the fixed core can be easily positioned by press-fitting the fixed core into the inner peripheral surface of the nonmagnetic member. The body, the non-magnetic member, and the fixed core are press-fitted into each other, and the body and the fixed core can be liquid-tightly connected via the non-magnetic member, for example, by welding the entire circumference in a state where their relative positions are fixed. .
According to this fuel injection valve, the body and the fixed core can be assembled easily and accurately via the nonmagnetic member.
 上記した燃料噴射弁において、ボディには、アーマチャを摺動可能に支持する支持面が設けられていることが好ましい。この場合、非磁性部材の内周面とアーマチャとの間には、隙間(クリアランス)が設けられていることが好ましい。
 上記した燃料噴射弁では、ボディに非磁性部材と固定コアを互いに圧入したときに、非磁性部材が僅かに変形することがある。そのことから、アーマチャをボディによって支持する構造とし、非磁性部材とアーマチャとの間にクリアランスを設けておくと、非磁性部材が変形した場合でもアーマチャに干渉することを防止することができる。
In the fuel injection valve described above, the body is preferably provided with a support surface that slidably supports the armature. In this case, it is preferable that a clearance (clearance) is provided between the inner peripheral surface of the nonmagnetic member and the armature.
In the fuel injection valve described above, the nonmagnetic member may be slightly deformed when the nonmagnetic member and the fixed core are pressed into the body. Therefore, when the armature is supported by the body and a clearance is provided between the nonmagnetic member and the armature, it is possible to prevent the armature from interfering even when the nonmagnetic member is deformed.
 上記した燃料噴射弁において、非磁性部材の一端ではその内周面にせん断面が形成されているとともに、非磁性部材の他端ではその外周面にせん断面が形成されている場合、せん断面を内周面に有する非磁性部材の一端がボディの貫通孔に圧入されているとともに、せん断面を外周面に有する非磁性部材の他端に固定コアが圧入されていることが好ましい。
 非磁性部材は、プレス加工によって容易かつ精度よく製造することができる。環状の非磁性部材をプレス加工によって製造した場合、その一端では内周面にせん断面が形成され、その他端では外周面にせん断面が形成されることがある。この場合、せん断面を内周面に有する非磁性部材の一端をボディの貫通孔に圧入し、せん断面を外周面に有する非磁性部材の他端に固定コアを圧入する構成とすると、せん断面を除去することなくボディと非磁性部材と固定コアを精度よく組付けることができる。
In the above-described fuel injection valve, when one end of the nonmagnetic member has a shear surface formed on the inner peripheral surface thereof and the other end of the nonmagnetic member has a shear surface formed on the outer peripheral surface thereof, It is preferable that one end of the nonmagnetic member on the inner peripheral surface is press-fitted into the through hole of the body, and a fixed core is press-fitted on the other end of the nonmagnetic member having a shear surface on the outer peripheral surface.
The nonmagnetic member can be easily and accurately manufactured by pressing. When an annular nonmagnetic member is manufactured by pressing, a shear surface may be formed on the inner peripheral surface at one end and a shear surface may be formed on the outer peripheral surface at the other end. In this case, if one end of the nonmagnetic member having the shear surface on the inner peripheral surface is press-fitted into the through hole of the body and the fixed core is press-fitted to the other end of the nonmagnetic member having the shear surface on the outer peripheral surface, the shear surface The body, the nonmagnetic member, and the fixed core can be assembled with high accuracy without removing the.
 上記した燃料噴射弁では、非磁性部材が略一定の肉厚を有する筒状部材あることが好ましい。
 上記した燃料噴射弁では、非磁性部材がボディ及び固定コアに圧入されることより、非磁性部材がボディ及び固定コアによって周方向の全体から保持される。そのことから、非磁性部材の肉厚を比較的に薄くできるとともに、補強用のリブやフランジを必ずしも設ける必要がない。従って、非磁性部材を略一定の肉厚を有する筒状部材とすることができる。この場合、固定コアとコイルとの距離を比較的に狭く設計することができ、固定コアに強い磁界を発生させることが可能となる。
In the fuel injection valve described above, the nonmagnetic member is preferably a cylindrical member having a substantially constant thickness.
In the fuel injection valve described above, the nonmagnetic member is pressed into the body and the fixed core, so that the nonmagnetic member is held from the entire circumferential direction by the body and the fixed core. Therefore, the thickness of the nonmagnetic member can be made relatively thin, and it is not always necessary to provide a reinforcing rib or flange. Therefore, the nonmagnetic member can be a cylindrical member having a substantially constant thickness. In this case, the distance between the fixed core and the coil can be designed to be relatively narrow, and a strong magnetic field can be generated in the fixed core.
 本発明により、非磁性部材を介してボディと固定コアを容易に精度よく組付け可能な燃料噴射弁が実現され、燃料噴射弁を高い製造品質で製造することが可能なる。 According to the present invention, a fuel injection valve capable of easily and accurately assembling the body and the fixed core via a nonmagnetic member is realized, and the fuel injection valve can be manufactured with high manufacturing quality.
燃料噴射弁の構成を示す断面図。Sectional drawing which shows the structure of a fuel injection valve. 燃料噴射弁の要部を示す図。The figure which shows the principal part of a fuel injection valve. 非磁性リングを拡大して示す図。The figure which expands and shows a nonmagnetic ring. 非磁性リングの製造方法を説明する図。The figure explaining the manufacturing method of a nonmagnetic ring. コイルが発生する磁気回路を模式的に示す図。The figure which shows typically the magnetic circuit which a coil generate | occur | produces.
 本発明の好適な実施形態を列記する。
(形態1) 燃料噴射弁は、アーマチャを弁体とともに燃料噴射孔に向けて付勢する付勢部材を備えている。
(形態2) アーマチャには、貫通孔が形成されている。アーマチャの貫通孔は、固定コアの貫通孔と連通しており、固定コアの貫通孔と共に燃料が通過する燃料流路を構成している。
(形態3) 非磁性部材は、アーマチャと固定コアの互いに対向する端部を周囲から囲繞する位置に設けられている。
Preferred embodiments of the present invention will be listed.
(Mode 1) The fuel injection valve includes an urging member that urges the armature together with the valve body toward the fuel injection hole.
(Form 2) The armature is formed with a through hole. The through-hole of the armature communicates with the through-hole of the fixed core, and constitutes a fuel flow path through which fuel passes together with the through-hole of the fixed core.
(Mode 3) The non-magnetic member is provided at a position surrounding the opposing ends of the armature and the fixed core from the periphery.
 図1は、本発明を実施した燃料噴射弁10の構成を示す断面図である。燃料噴射弁10は、燃料ポンプ等によって圧送される燃料を内燃機関に噴射する弁装置である。図1に示すように、燃料噴射弁10は、弁座部材24、ボディ26、弁体40、アーマチャ44、固定コア32、非磁性リング30、コイル50、圧縮ばね46、スプリングピン36を備えている。 FIG. 1 is a cross-sectional view showing a configuration of a fuel injection valve 10 embodying the present invention. The fuel injection valve 10 is a valve device that injects fuel pumped by a fuel pump or the like into an internal combustion engine. As shown in FIG. 1, the fuel injection valve 10 includes a valve seat member 24, a body 26, a valve body 40, an armature 44, a fixed core 32, a nonmagnetic ring 30, a coil 50, a compression spring 46, and a spring pin 36. Yes.
 弁座部材24は、金属材料によって形成されている。弁座部材24には、燃料噴射孔22が形成されている。弁座部材24には、燃料噴射孔22の開口面積を調整するためのオリフィスプレート20が設けられている。弁座部材24には、弁体40をその周囲から摺動可能に支持する複数の支持部24eが形成されている。
 ボディ26は、磁性材料によって形成されており、詳しくは電磁ステンレス鋼によって形成されている。ボディ26は概して筒状形状を有しており、その内部に燃料が通過する貫通孔26aを有している。ボディ26の貫通孔26aには、弁座部材24が固定されている。弁座部材24は、ボディ26の貫通孔26aに圧入されている。ボディ26の貫通孔26aには、アーマチャ44をその周囲から摺動可能に支持する環状の支持面26eが形成されている。
The valve seat member 24 is made of a metal material. A fuel injection hole 22 is formed in the valve seat member 24. The valve seat member 24 is provided with an orifice plate 20 for adjusting the opening area of the fuel injection hole 22. The valve seat member 24 is formed with a plurality of support portions 24e that slidably support the valve body 40 from its periphery.
The body 26 is made of a magnetic material, and more specifically is made of electromagnetic stainless steel. The body 26 has a generally cylindrical shape, and has a through hole 26a through which fuel passes. A valve seat member 24 is fixed to the through hole 26 a of the body 26. The valve seat member 24 is press-fitted into the through hole 26 a of the body 26. In the through hole 26a of the body 26, an annular support surface 26e that supports the armature 44 so as to be slidable from the periphery thereof is formed.
 弁体40は、球形状を有しており、金属材料によって形成されている。弁体40は、ボディ26の貫通孔26a内に収容されている。弁体40は、弁座部材24の支持部24eによって摺動可能に支持されており、燃料噴射孔22に対して進退可能となっている。弁体40は、弁座部材24に液密に当接して燃料噴射孔22を閉塞する。
 アーマチャ44は、磁性材料によって形成されており、詳しくは電磁ステンレス鋼によって形成されている。アーマチャ44は、ボディ26の貫通孔26a内に収容されている。アーマチャ44は、ボディ26の支持面26eによって摺動可能に支持されており、燃料噴射孔22に対して進退可能となっている。アーマチャ44には、筒状の接続部42を介して弁体40が固定されている。アーマチャ44は、概して筒状形状を有しており、その内部に燃料が通過する貫通孔44aを有している。アーマチャ44の貫通孔44aは、接続部42の内孔42a及び接続部42の側壁孔42bを通じて、燃料噴射孔22へと繋がっている。
The valve body 40 has a spherical shape and is made of a metal material. The valve body 40 is accommodated in the through hole 26 a of the body 26. The valve body 40 is slidably supported by the support portion 24 e of the valve seat member 24, and can advance and retreat with respect to the fuel injection hole 22. The valve body 40 is in liquid-tight contact with the valve seat member 24 to close the fuel injection hole 22.
The armature 44 is made of a magnetic material, and more specifically is made of electromagnetic stainless steel. The armature 44 is accommodated in the through hole 26 a of the body 26. The armature 44 is slidably supported by the support surface 26 e of the body 26, and can advance and retreat with respect to the fuel injection hole 22. A valve body 40 is fixed to the armature 44 via a cylindrical connecting portion 42. The armature 44 has a generally cylindrical shape and has a through hole 44a through which fuel passes. The through hole 44 a of the armature 44 is connected to the fuel injection hole 22 through the inner hole 42 a of the connection portion 42 and the side wall hole 42 b of the connection portion 42.
 固定コア32は、磁性材料によって形成されており、詳しくは電磁ステンレス鋼によって形成されている。固定コア32は、アーマチャ44に対して燃料噴射孔22とは反対側(反燃料噴射孔側)に位置している。固定コア32は概して筒状形状を有しており、その内部に燃料が通過する貫通孔32aを有している。固定コア32の反燃料噴射孔側の端部32dには燃料配管(図示省略)が接続され、燃料ポンプ(図示省略)等から燃料が圧送される。固定コア32の貫通孔32a内には、圧送された燃料から異物を除去するためのフィルタ部材38が、反燃料噴射孔側の端部32dに設けられている。
 非磁性リング30は、非磁性材料によって形成された環状の部材であり、詳しくはオーステナイト系ステンレス鋼(例えば日本工業規格におけるSUS304)によって形成されている。非磁性リング30は、ボディ26と固定コア32の間に介装されており、ボディ26の貫通孔26aと固定コア32の貫通孔32aを液密に接続している。非磁性リング30は、アーマチャ44と固定コア32の互いに対向する端部を周囲から囲繞する位置に設けられている。非磁性材料からなる非磁性リング30をボディ26と固定コア32の間に介装することにより、コイル50を励磁したときに、固定コア32とアーマチャ44との間に強い磁界を発生させることができる。それにより、固定コア32とアーマチャ44との間に生じる吸引力を大きくし、アーマチャ44の高速な動作が可能となる。非磁性リング30については、後段においてさらに詳細に説明する。
The fixed core 32 is made of a magnetic material, and more specifically is made of electromagnetic stainless steel. The fixed core 32 is located on the side opposite to the fuel injection hole 22 (on the side opposite to the fuel injection hole) with respect to the armature 44. The fixed core 32 has a generally cylindrical shape, and has a through hole 32a through which fuel passes. A fuel pipe (not shown) is connected to the end 32d of the fixed core 32 on the side opposite to the fuel injection hole, and fuel is pumped from a fuel pump (not shown) or the like. In the through hole 32a of the fixed core 32, a filter member 38 for removing foreign matter from the pumped fuel is provided at the end 32d on the side opposite to the fuel injection hole.
The nonmagnetic ring 30 is an annular member made of a nonmagnetic material, and is specifically formed of austenitic stainless steel (for example, SUS304 in Japanese Industrial Standard). The nonmagnetic ring 30 is interposed between the body 26 and the fixed core 32, and fluidly connects the through hole 26 a of the body 26 and the through hole 32 a of the fixed core 32. The nonmagnetic ring 30 is provided at a position surrounding the opposite ends of the armature 44 and the fixed core 32 from the periphery. By interposing the nonmagnetic ring 30 made of a nonmagnetic material between the body 26 and the fixed core 32, a strong magnetic field can be generated between the fixed core 32 and the armature 44 when the coil 50 is excited. it can. Thereby, the suction force generated between the fixed core 32 and the armature 44 is increased, and the armature 44 can operate at high speed. The nonmagnetic ring 30 will be described in more detail later.
 コイル50は、固定コア32の周囲を周回するように設けられている。コイル50は、樹脂材料によって形成されたケース48内に埋設されている。コイル50は、コネクタ54内の複数の端子ピン52に電気的に接続されている。なお、コネクタ54は、ケース48と共にインサート成形によって形成されている。コネクタ54は、外部の制御ユニット(図示省略)にワイヤハーネス(図示省略)を介して接続される。コイル50には、制御ユニットによって燃料を噴射すべきタイミングで電流が通電される。
 圧縮ばね46は、アーマチャ44の貫通孔44a及び固定コア32の貫通孔32aに収容されている。圧縮ばね46の一端はアーマチャ44に当接しており、圧縮ばね46の他端はスプリングピン36に当接している。圧縮ばね46は、十分に圧縮された状態となっており、アーマチャ44を弁体40と共に燃料噴射孔22に向けて付勢している。
 スプリングピン36は、軸方向に伸びるスリットが形成された円筒形状を有しており、リン青銅によって形成されている。スプリングピン36は、固定コア32の貫通孔32aに圧入されており、自身の弾性力によって固定コア32に固定されている。圧縮ばね46がアーマチャ44を付勢する付勢力は、スプリングピン36を圧入する位置によって調整される。スプリングピン36の貫通孔36aは、燃料が通過する燃料流路となる。
The coil 50 is provided so as to go around the fixed core 32. The coil 50 is embedded in a case 48 formed of a resin material. The coil 50 is electrically connected to a plurality of terminal pins 52 in the connector 54. The connector 54 is formed by insert molding together with the case 48. The connector 54 is connected to an external control unit (not shown) via a wire harness (not shown). The coil 50 is energized at a timing at which fuel should be injected by the control unit.
The compression spring 46 is accommodated in the through hole 44 a of the armature 44 and the through hole 32 a of the fixed core 32. One end of the compression spring 46 is in contact with the armature 44, and the other end of the compression spring 46 is in contact with the spring pin 36. The compression spring 46 is in a sufficiently compressed state, and urges the armature 44 together with the valve body 40 toward the fuel injection hole 22.
The spring pin 36 has a cylindrical shape in which a slit extending in the axial direction is formed, and is formed of phosphor bronze. The spring pin 36 is press-fitted into the through hole 32a of the fixed core 32, and is fixed to the fixed core 32 by its own elastic force. The biasing force with which the compression spring 46 biases the armature 44 is adjusted by the position where the spring pin 36 is press-fitted. The through hole 36a of the spring pin 36 becomes a fuel flow path through which fuel passes.
 次に、燃料噴射弁10の動作について説明する。先にも説明したように、燃料噴射弁10には、固定コア32の反燃料噴射孔側の一端32dから昇圧された燃料が流入する。流入した燃料は、図1の矢印Fに示すように、フィルタ部材38、スプリングピン36の貫通孔36a、固定コア32の貫通孔32a、アーマチャ44の貫通孔44a、接続部42の内孔42a及び側壁孔42bを通って、弁座部材24及び弁体40からなる弁部に到る。コイル50に電流が通電されていない場合、弁体40は圧縮ばね46の付勢力によって弁座部材24に液密に当接している。この場合、燃料噴射孔22は弁体40によって閉塞され、燃料噴射孔22から燃料は噴射されない。
 それに対して、コイル50に電流が通電され、コイル50が磁界を発生すると、固定コア32及びアーマチャ44が磁気を帯びる。それにより、固定コア32とアーマチャ44は互いに引き合い、圧縮ばね46の付勢力に抗して、アーマチャ44が弁体40と共に固定コア32側へ移動する。即ち、アーマチャ44が弁体40と共に、反燃料噴射孔側へ移動する。このとき、燃料噴射孔22が開放され、燃料噴射孔22から燃料が噴射される。
Next, the operation of the fuel injection valve 10 will be described. As described above, the pressurized fuel flows into the fuel injection valve 10 from the one end 32d of the fixed core 32 on the side opposite to the fuel injection hole. As shown by an arrow F in FIG. 1, the inflowed fuel includes a filter member 38, a through hole 36 a of the spring pin 36, a through hole 32 a of the fixed core 32, a through hole 44 a of the armature 44, an inner hole 42 a of the connecting portion 42, and The valve portion including the valve seat member 24 and the valve body 40 is reached through the side wall hole 42b. When the coil 50 is not energized, the valve body 40 is in liquid-tight contact with the valve seat member 24 by the urging force of the compression spring 46. In this case, the fuel injection hole 22 is closed by the valve body 40, and fuel is not injected from the fuel injection hole 22.
On the other hand, when a current is passed through the coil 50 and the coil 50 generates a magnetic field, the fixed core 32 and the armature 44 become magnetized. Accordingly, the fixed core 32 and the armature 44 are attracted to each other, and the armature 44 moves together with the valve body 40 toward the fixed core 32 against the urging force of the compression spring 46. That is, the armature 44 moves together with the valve body 40 to the anti-fuel injection hole side. At this time, the fuel injection hole 22 is opened, and fuel is injected from the fuel injection hole 22.
 以上、本実施例の燃料噴射弁10の全体の構造及び動作について説明した。次に、非磁性リング30の構成について詳細な説明を加える。
 図2に示すように、ボディ26と非磁性リング30は、非磁性リング30の一端をボディ26の貫通孔26aの端部26bに圧入することによって、互いに結合されている。即ち、非磁性リング30の外周径は、ボディ26の貫通孔26aの端部26bにおける内周径よりも僅かに大きくなっており、非磁性リング30は径方向に圧縮された状態でボディ26の貫通孔26aの端部26bに嵌合している(即ち、しまり嵌めの状態である)。また、非磁性リング30と固定コア32についても、非磁性リング30の内周面30aに固定コア32を圧入することによって、互いに結合されている。即ち、非磁性リング30の内周径は、固定コア32の外周径よりも僅かに小さくなっており、非磁性リング30は径方向に伸展された状態で固定コア32の外周面32bに嵌合している(即ち、しまり嵌めの状態である)。
 本実施例では、ボディ26と非磁性リング30の結合、及び非磁性リング30と固定コア32の結合が、圧入によって行われている。それにより、非磁性リング30を介したボディ26と固定コア32の組付けを、容易に精度よく行うことができる構造となっている。ここで、非磁性リング30の外周面30bとボディ26の貫通孔26aの端部26bは、圧入後に全周に亘って液密に溶接されている。また、非磁性リング30の内周面30aと固定コア32の外周面32bも、圧入後に全周に亘って液密に溶接されている。
 ここで、非磁性リング30の外周径とそれを圧入するボディ26の貫通孔26aの端部26bにおける内周径との寸法差は、それらの寸法、形状、材質(剛性)に応じて適宜設定するとよい。本実施例の構造では、非磁性リング30の外周径及びボディ26の貫通孔26aの端部26bにおける内周径が5mm~10mm程度の場合、両者の寸法差を5μm~20μmとすることができる。同様に、非磁性リング30の内周径と固定コア32の外周径についても、それらの寸法が5mm~10mm程度の場合は、両者の寸法差を5μm~20μmとすることができる。
The overall structure and operation of the fuel injection valve 10 of this embodiment have been described above. Next, a detailed description of the configuration of the nonmagnetic ring 30 will be given.
As shown in FIG. 2, the body 26 and the nonmagnetic ring 30 are coupled to each other by press-fitting one end of the nonmagnetic ring 30 into the end portion 26 b of the through hole 26 a of the body 26. That is, the outer peripheral diameter of the nonmagnetic ring 30 is slightly larger than the inner peripheral diameter at the end portion 26b of the through hole 26a of the body 26, and the nonmagnetic ring 30 is compressed in the radial direction. The end portion 26b of the through hole 26a is fitted (that is, a tight fit state). The nonmagnetic ring 30 and the fixed core 32 are also coupled to each other by press-fitting the fixed core 32 into the inner peripheral surface 30 a of the nonmagnetic ring 30. That is, the inner peripheral diameter of the nonmagnetic ring 30 is slightly smaller than the outer peripheral diameter of the fixed core 32, and the nonmagnetic ring 30 is fitted to the outer peripheral surface 32b of the fixed core 32 in a state of being radially extended. (I.e., a tight fit).
In the present embodiment, the coupling between the body 26 and the nonmagnetic ring 30 and the coupling between the nonmagnetic ring 30 and the fixed core 32 are performed by press-fitting. As a result, the assembly of the body 26 and the fixed core 32 via the nonmagnetic ring 30 can be performed easily and accurately. Here, the outer peripheral surface 30b of the nonmagnetic ring 30 and the end portion 26b of the through hole 26a of the body 26 are welded in a liquid-tight manner over the entire circumference after press-fitting. Further, the inner peripheral surface 30a of the nonmagnetic ring 30 and the outer peripheral surface 32b of the fixed core 32 are also liquid-tightly welded over the entire periphery after press-fitting.
Here, the dimensional difference between the outer peripheral diameter of the nonmagnetic ring 30 and the inner peripheral diameter at the end portion 26b of the through hole 26a of the body 26 into which the nonmagnetic ring 30 is press-fitted is appropriately set according to the dimensions, shape, and material (rigidity). Good. In the structure of the present embodiment, when the outer peripheral diameter of the nonmagnetic ring 30 and the inner peripheral diameter at the end portion 26b of the through hole 26a of the body 26 are about 5 mm to 10 mm, the dimensional difference between the two can be 5 μm to 20 μm. . Similarly, regarding the inner peripheral diameter of the nonmagnetic ring 30 and the outer peripheral diameter of the fixed core 32, when the dimensions are about 5 mm to 10 mm, the dimensional difference between the two can be 5 μm to 20 μm.
 図2に示すように、アーマチャ44は、ボディ26に形成された支持面26eによって支持されている。そして、アーマチャ44の外周面44bと非磁性リング30の内周面30aの間には、クリアランス(隙間)が設けられている。このクリアラスを確保するために、ボディ26に形成された環状の支持面26eの内周径D1よりも、非磁性リング30の内周面30aの内周径D2は大きく設計されている。この構造によると、先に説明した製造時における圧入や溶接によって非磁性リング30が僅かに変形した場合でも、非磁性リング30がアーマチャ44に干渉することが防止され、アーマチャ44の動作が妨げられることがない。さらに、この構造によると、製造時に非磁性リング30の変形がある程度は許容することができるため、非磁性リング30を比較的に薄肉で単純な形状とすることができる。即ち、非磁性リング30に、補強用のリブやフランジ等を形成する必要がない。そのことから、本実施例の非磁性リング30は、肉厚が略一定(略0.4mm)の単純な円筒形状に形成されている。 2, the armature 44 is supported by a support surface 26e formed on the body 26. A clearance (gap) is provided between the outer peripheral surface 44 b of the armature 44 and the inner peripheral surface 30 a of the nonmagnetic ring 30. In order to secure the clear lath, the inner peripheral diameter D2 of the inner peripheral surface 30a of the nonmagnetic ring 30 is designed to be larger than the inner peripheral diameter D1 of the annular support surface 26e formed on the body 26. According to this structure, even when the nonmagnetic ring 30 is slightly deformed by press fitting or welding during manufacturing as described above, the nonmagnetic ring 30 is prevented from interfering with the armature 44 and the operation of the armature 44 is hindered. There is nothing. Furthermore, according to this structure, the deformation of the nonmagnetic ring 30 can be tolerated to some extent at the time of manufacture, so that the nonmagnetic ring 30 can be made relatively thin and simple. That is, it is not necessary to form reinforcing ribs or flanges on the nonmagnetic ring 30. Therefore, the nonmagnetic ring 30 of the present embodiment is formed in a simple cylindrical shape with a substantially constant thickness (approximately 0.4 mm).
 図3に、非磁性リング30をさらに拡大して示す。図3に示すように、ボディ26の貫通孔26aに圧入された非磁性リング30の一端30cには、その内周面30aにせん断面30gが形成されている。また、固定コア32が圧入された非磁性リング30の他端30dでは、その外周面30bにせん断面30hが形成されている。ここで、せん断面30g、30hとは、せん断加工によって生成された断面を意味し、表面粗さが比較的に大きい凹凸面を示す。非磁性リング30にせん断面30g、30hが形成されているのは、非磁性リング30の製造方法に起因する。
 図4を参照して、非磁性リング30の製造方法を説明する。図4に示すように、非磁性リング30は、シート状の母材130からプレス加工によって製造される。先ず、図4(a)に示すように、成形型101を用い、母材130に非磁性リング30を成形する。なお、図4(a)では一組の成形型101のみを示すが、実際には複数組の成形型101によって多数回の深絞り加工が行われる。次いで、図4(b)に示すように、第1の打ち抜き型102を用い、母材130に成形した非磁性リング30の底部31を打ち抜く。このとき、非磁性リング30の一端30cでは、その内周面30aにせん断面30gが形成される。次いで、図4(c)に示すように、第2の打ち抜き型103を用い、母材130から非磁性リング30を打ち抜く。このとき、非磁性リング30の他端30dでは、その外周面30bにせん断面30hが形成される。せん断面30g、30hは、後加工によって除去されない。非磁性リング30は、せん断面30g、30hが残る状態で完成となる。
In FIG. 3, the nonmagnetic ring 30 is further enlarged and shown. As shown in FIG. 3, at one end 30c of the nonmagnetic ring 30 press-fitted into the through hole 26a of the body 26, a shear surface 30g is formed on the inner peripheral surface 30a. In addition, at the other end 30d of the nonmagnetic ring 30 into which the fixed core 32 is press-fitted, a shear surface 30h is formed on the outer peripheral surface 30b. Here, the shear surfaces 30g and 30h mean cross sections generated by shearing, and indicate uneven surfaces having a relatively large surface roughness. The reason why the shear surfaces 30 g and 30 h are formed on the nonmagnetic ring 30 is due to the manufacturing method of the nonmagnetic ring 30.
With reference to FIG. 4, the manufacturing method of the nonmagnetic ring 30 is demonstrated. As shown in FIG. 4, the nonmagnetic ring 30 is manufactured from a sheet-like base material 130 by pressing. First, as shown in FIG. 4A, a nonmagnetic ring 30 is formed on a base material 130 using a forming die 101. Although only one set of molds 101 is shown in FIG. 4A, in practice, deep drawing is performed many times by a plurality of sets of molds 101. Next, as shown in FIG. 4B, the first punching die 102 is used to punch out the bottom 31 of the nonmagnetic ring 30 formed on the base material 130. At this time, at one end 30c of the nonmagnetic ring 30, a shear surface 30g is formed on the inner peripheral surface 30a. Next, as shown in FIG. 4C, the nonmagnetic ring 30 is punched from the base material 130 using the second punching die 103. At this time, at the other end 30d of the nonmagnetic ring 30, a shear surface 30h is formed on the outer peripheral surface 30b. The shear surfaces 30g and 30h are not removed by post-processing. The nonmagnetic ring 30 is completed with the shear surfaces 30g and 30h remaining.
 上記のように、非磁性リング30はプレス加工によって効率よく製造されるが、その反面、せん断面30g、30hが非磁性リング30の両端に形成されてしまう。ただし、上記した製造方法によれば、一方のせん断面30gは内周面30aに形成され、他方のせん断面30hは外周面30aに形成される。そのことから、図3に示すように、本実施例の燃料噴射弁10では、せん断面30gを内周面30aに有する非磁性リング30の一端30cをボディ26に圧入するとともに、せん断面30hを外周面30bに有する非磁性リング30の他端30dに固定コア32を圧入している。ボディ26と非磁性リング30の間の圧入では、非磁性リング30の内周面30aにせん断面30gが形成されていても、そのことが特に問題とはならない。また、非磁性リング30と固定コア32の間の圧入では、非磁性リング30の外周面30bにせん断面30hが形成されていても、そのことは特に問題とはならない。従って、本実施例の構造によると、非磁性リング30をプレス加工によって製造した場合に、非磁性リング30に形成されるせん断面30g、30hを除去する必要がない。本実施例の構造によると、それに用いる非磁性リング30をプレス加工によって効率よく製造することができる。 As described above, the nonmagnetic ring 30 is efficiently manufactured by pressing, but on the other hand, shear surfaces 30g and 30h are formed at both ends of the nonmagnetic ring 30. However, according to the manufacturing method described above, one shear surface 30g is formed on the inner peripheral surface 30a, and the other shear surface 30h is formed on the outer peripheral surface 30a. Therefore, as shown in FIG. 3, in the fuel injection valve 10 of this embodiment, one end 30c of the nonmagnetic ring 30 having the shearing surface 30g on the inner peripheral surface 30a is press-fitted into the body 26, and the shearing surface 30h is provided. The fixed core 32 is press-fitted into the other end 30d of the nonmagnetic ring 30 provided on the outer peripheral surface 30b. In press-fitting between the body 26 and the nonmagnetic ring 30, even if the shear surface 30 g is formed on the inner peripheral surface 30 a of the nonmagnetic ring 30, this is not a problem. Further, in the press-fitting between the nonmagnetic ring 30 and the fixed core 32, even if the shear surface 30h is formed on the outer peripheral surface 30b of the nonmagnetic ring 30, this is not a problem. Therefore, according to the structure of the present embodiment, when the nonmagnetic ring 30 is manufactured by pressing, it is not necessary to remove the shear surfaces 30g and 30h formed on the nonmagnetic ring 30. According to the structure of the present embodiment, the nonmagnetic ring 30 used therefor can be efficiently manufactured by pressing.
 図5は、コイル50が通電時に発生する磁気回路Mを模式的に示している。非磁性リング30は、リブやフランジ等を有しておらず(肉厚が一定)、比較的に薄肉に形成されている。従って、図5に示すように、ボディ26とアーマチャ44と固定コア32を通過する磁気回路Mが、コイル50に対して比較的に近い位置に形成される。即ち、アーマチャ44と固定コア32との間に、磁束密度の高い磁界を発生させることが可能となる。そのことから、本実施例の構造によると、アーマチャ44を高速に動作させることが可能となり、燃料噴射量をより細かに調整することが可能となる。 FIG. 5 schematically shows a magnetic circuit M generated when the coil 50 is energized. The nonmagnetic ring 30 does not have a rib, a flange, or the like (the wall thickness is constant), and is formed relatively thin. Therefore, as shown in FIG. 5, the magnetic circuit M that passes through the body 26, the armature 44, and the fixed core 32 is formed at a position relatively close to the coil 50. That is, a magnetic field having a high magnetic flux density can be generated between the armature 44 and the fixed core 32. Therefore, according to the structure of the present embodiment, the armature 44 can be operated at high speed, and the fuel injection amount can be finely adjusted.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 例えば、上記した実施例では、アーマチャ44を摺動可能に支持する支持面26eをボディ26に設けているが、アーマチャ44を摺動可能に支持する別の支持面を非磁性リング30に設けることもできる。ただし、非磁性リング30に支持面を設ける構成であると、上記した実施例と比較して、非磁性リング30の形状が複雑となりやすい。その反面、ボディ26に支持面26eを設ける必要が必ずしもなくなるので、ボディ26の形状を単純化することができる。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
For example, in the above-described embodiment, the support surface 26e that slidably supports the armature 44 is provided on the body 26, but another support surface that slidably supports the armature 44 is provided on the nonmagnetic ring 30. You can also. However, if the support surface is provided on the nonmagnetic ring 30, the shape of the nonmagnetic ring 30 tends to be complicated as compared with the above-described embodiment. On the other hand, since it is not always necessary to provide the support surface 26e on the body 26, the shape of the body 26 can be simplified.
 本明細書又は図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載された組合せに限定されるものではない。本明細書又は図面に例示した技術は、複数の目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. The technology illustrated in this specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.

Claims (4)

  1.  燃料噴射孔を有する弁座部材と、
     磁性材料によって形成されており、内部に燃料が流れる貫通孔を有しており、その貫通孔に前記弁座部材が設けられているボディと、
     前記弁座部材に当接して前記燃料噴射孔を閉塞する弁体と、
     磁性材料によって形成されており、前記ボディの貫通孔内に移動可能に収容されており、前記弁体が固定されているアーマチャと、
     磁性材料によって形成されており、内部に燃料が流れる貫通孔を有しており、前記弁体に対して反燃料噴射孔側に位置する固定コアと、
     前記固定コアの周囲に設けられているコイルと、
     非磁性材料によって形成されており、前記ボディと前記固定コアの間に介装されており、前記ボディの貫通孔と前記固定コアの貫通孔を液密に接続している環状の非磁性部材を備え、
     前記非磁性部材が前記ボディの貫通孔に圧入されているとともに、前記非磁性部材の内周面に前記固定コアが圧入されていることを特徴とする燃料噴射弁。
    A valve seat member having a fuel injection hole;
    A body that is formed of a magnetic material, has a through-hole through which fuel flows, and in which the valve seat member is provided;
    A valve body that contacts the valve seat member and closes the fuel injection hole;
    An armature formed of a magnetic material, movably accommodated in the through hole of the body, and to which the valve body is fixed;
    A fixed core that is formed of a magnetic material, has a through-hole through which fuel flows, and is located on the side opposite to the fuel injection hole with respect to the valve body;
    A coil provided around the fixed core;
    An annular nonmagnetic member formed of a nonmagnetic material, interposed between the body and the fixed core, and liquid-tightly connecting the through hole of the body and the through hole of the fixed core. Prepared,
    The fuel injection valve, wherein the nonmagnetic member is press-fitted into a through hole of the body, and the fixed core is press-fitted into an inner peripheral surface of the nonmagnetic member.
  2.  前記ボディには、前記アーマチャを摺動可能に支持する支持面が設けられており、
     前記非磁性部材の内周面と前記アーマチャとの間には、隙間が設けられていることを特徴とする請求項1に記載の燃料噴射弁。
    The body is provided with a support surface that slidably supports the armature,
    The fuel injection valve according to claim 1, wherein a gap is provided between an inner peripheral surface of the nonmagnetic member and the armature.
  3.  前記非磁性部材の一端ではその内周面にせん断面が形成されており、前記非磁性部材の他端ではその外周面にせん断面が形成されており、
     せん断面を内周面に有する前記非磁性部材の一端が前記ボディの貫通孔に圧入されており、せん断面を外周面に有する前記非磁性部材の他端に前記固定コアが圧入されていることを特徴とする請求項1又は2に記載の燃料噴射弁。
    At one end of the nonmagnetic member, a shear surface is formed on the inner peripheral surface thereof, and at the other end of the nonmagnetic member, a shear surface is formed on the outer peripheral surface thereof,
    One end of the non-magnetic member having a shear surface on the inner peripheral surface is press-fitted into the through hole of the body, and the fixed core is press-fitted to the other end of the non-magnetic member having a shear surface on the outer peripheral surface. The fuel injection valve according to claim 1 or 2.
  4.  前記非磁性部材は、肉厚が略一定の筒状部材であることを特徴とする請求項1から3のいずれか一項に記載の燃料噴射弁。 The fuel injection valve according to any one of claims 1 to 3, wherein the nonmagnetic member is a cylindrical member having a substantially constant thickness.
PCT/JP2008/070916 2008-01-16 2008-11-18 Fuel injection valve WO2009090794A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-006564 2008-01-16
JP2008006564A JP2009167901A (en) 2008-01-16 2008-01-16 Fuel injection valve

Publications (1)

Publication Number Publication Date
WO2009090794A1 true WO2009090794A1 (en) 2009-07-23

Family

ID=40885197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/070916 WO2009090794A1 (en) 2008-01-16 2008-11-18 Fuel injection valve

Country Status (2)

Country Link
JP (1) JP2009167901A (en)
WO (1) WO2009090794A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102822498A (en) * 2010-03-29 2012-12-12 株式会社京浜 Electromagnetic fuel injection valve and method for manufacturing same
JP2017053311A (en) * 2015-09-11 2017-03-16 日立オートモティブシステムズ株式会社 Fuel injection valve
JP2019210900A (en) * 2018-06-07 2019-12-12 愛三工業株式会社 Fuel injection valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298066A (en) * 2006-04-28 2007-11-15 Mitsubishi Electric Corp Solenoid fuel injection valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298066A (en) * 2006-04-28 2007-11-15 Mitsubishi Electric Corp Solenoid fuel injection valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102822498A (en) * 2010-03-29 2012-12-12 株式会社京浜 Electromagnetic fuel injection valve and method for manufacturing same
JP2017053311A (en) * 2015-09-11 2017-03-16 日立オートモティブシステムズ株式会社 Fuel injection valve
WO2017043220A1 (en) * 2015-09-11 2017-03-16 日立オートモティブシステムズ株式会社 Fuel injection valve
CN107850022A (en) * 2015-09-11 2018-03-27 日立汽车系统株式会社 Fuelinjection nozzle
US10704516B2 (en) 2015-09-11 2020-07-07 Hitachi Automotive Systems, Ltd. Fuel injection valve
CN107850022B (en) * 2015-09-11 2020-08-28 日立汽车系统株式会社 Fuel injection valve
JP2019210900A (en) * 2018-06-07 2019-12-12 愛三工業株式会社 Fuel injection valve

Also Published As

Publication number Publication date
JP2009167901A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
US6501359B2 (en) Electromagnetic actuator
EP2136068A1 (en) Electromagnetic fuel injector
US20110068286A1 (en) Solenoid on-off valve
JP2007016774A (en) Fuel injection valve and its manufacturing method
JP2011094632A (en) Solenoid fuel injection valve and method for assembling the same
WO2009090794A1 (en) Fuel injection valve
JP4453745B2 (en) Fuel injection valve
JP4577654B2 (en) Electromagnetic drive device and fuel injection valve using the same
TWI604128B (en) Fuel injection valve
US20090127354A1 (en) Fuel injection valve
WO2015072031A1 (en) Fuel injection valve and method for manufacturing fuel injection valve
JP2009108842A (en) Fuel injection valve
US6805310B2 (en) Fuel injection device having magnetic circuit to drive movable core
JP7019804B2 (en) Fuel injection valve
JP3951956B2 (en) Fuel injection valve
JP4134937B2 (en) Fuel injection valve
JP2005307750A (en) Fuel injection valve
JP4117487B2 (en) Fuel injection valve
JP4027363B2 (en) Fuel injection valve
JP7194663B2 (en) electromagnetic fuel injection valve
JP2004128317A (en) Electromagnetic equipment
JP2009174399A (en) Fuel injection valve
WO2019092875A1 (en) Fuel injection valve
JP5715841B2 (en) solenoid
JP2009243322A (en) Fuel injection valve and machining method of guide member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08871061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08871061

Country of ref document: EP

Kind code of ref document: A1