JP2011167715A - Continuous casting apparatus, method for manufacturing the same, and frequency setting standard table - Google Patents

Continuous casting apparatus, method for manufacturing the same, and frequency setting standard table Download PDF

Info

Publication number
JP2011167715A
JP2011167715A JP2010032983A JP2010032983A JP2011167715A JP 2011167715 A JP2011167715 A JP 2011167715A JP 2010032983 A JP2010032983 A JP 2010032983A JP 2010032983 A JP2010032983 A JP 2010032983A JP 2011167715 A JP2011167715 A JP 2011167715A
Authority
JP
Japan
Prior art keywords
value
magnetic
frequency
melting furnace
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010032983A
Other languages
Japanese (ja)
Other versions
JP5521617B2 (en
Inventor
Masanori Tsuda
正徳 津田
Yasuhiro Nakai
泰弘 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2010032983A priority Critical patent/JP5521617B2/en
Publication of JP2011167715A publication Critical patent/JP2011167715A/en
Application granted granted Critical
Publication of JP5521617B2 publication Critical patent/JP5521617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting device in which product quality and production efficiency are improved without increasing complication of the device structure nor increasing the number of components. <P>SOLUTION: Electric power Px to be fed to an induction heating coil 18 is set to a value including a heat removal amount and sufficient for stably melting the material 13 to be melted, further, the value D.&radic;f obtained by multiplying the square root &radic;f of the frequency of the current to be energized through the induction heating coil 18 by the inside diameter D of a melting furnace 10 is defined as a magnetic Womersley corresponding value, and the magnetic Womersley corresponding value D.&radic;f is set so as to exceed the first value which is the smallest value in the range where the molten metal 14 can be stably melted through the frequency f. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、連続鋳造に係る鋳造品の製品品質と生産効率を有効に向上させた連続鋳造装置、連続鋳造装置の製造方法およびこれに利用される周波数設定基準表に関するものである。   The present invention relates to a continuous casting apparatus that effectively improves the product quality and production efficiency of a cast product related to continuous casting, a method for manufacturing the continuous casting apparatus, and a frequency setting reference table used therefor.

連続鋳造法は、被溶解材料を固形または他の溶解装置で溶解し液状で供給しながら溶解が連続して行われ、その間に、溶解された溶湯の一部は徐々に溶解域から離されて冷却され、溶解と凝固とが連続して行われ、これらの作業が継続されて溶解域の断面形状とほぼ同じ断面形状の長い棒状や厚板状のインゴット等の鋳造品が連続して形成される方法である。この連続鋳造法を使用した連続鋳造装置にコールドクルーシブル誘導溶解連続鋳造装置がある(例えば、特許文献1を参照)。   In the continuous casting method, melting is continuously performed while the material to be melted is melted in a solid or other melting device and supplied in liquid form, and during that time, a part of the molten metal is gradually separated from the melting zone. After cooling, melting and solidification are continuously performed, and these operations are continued to continuously form a cast product such as a long rod-like or thick plate-like ingot having the same cross-sectional shape as the cross-sectional shape of the dissolution zone. It is a method. As a continuous casting apparatus using this continuous casting method, there is a cold crucible induction melting continuous casting apparatus (see, for example, Patent Document 1).

図5は、コールドクルーシブル誘導溶解連続鋳造装置の溶解炉(溶解炉)の部分の構成を示す断面図である。図中の符号10Aは誘導連続溶解鋳造装置の溶解炉(例えば、内周面の直径が80mm程度の筒状の溶解炉)であり、溶解炉10Aは円形断面の鋳造品を製造するため、内部に冷却水通路16aを有する複数のセグメント16が所定の寸法のスリット17を介して円周方向に分割状態で配列され、交互に隣接して形成された側壁20と、この側壁20の外周側の上部に、この側壁20の半径方向外周に所定の間隔を有して螺旋状に巻回され、内部が冷却水通路18aになっている中空銅管製の誘導加熱コイル18と、前記側壁20の内周面よりも水平方向の直径が僅かに小さく内周面に対し上下動可能に配置された水冷式の底板1と、この底板1を上下に移動する引抜シャフト12などにより構成されている。誘導加熱コイル18には図示しない電源部から適宜周波数の給電がなされ、その電力や周波数は、その場その場で被溶解材料13を安定溶解させるに足る値が経験値によって設定されている。   FIG. 5 is a cross-sectional view showing a configuration of a melting furnace (melting furnace) portion of the cold crucible induction melting continuous casting apparatus. Reference numeral 10A in the figure is a melting furnace of an induction continuous melting casting apparatus (for example, a cylindrical melting furnace having an inner peripheral surface diameter of about 80 mm), and the melting furnace 10A is used to manufacture a cast product having a circular cross section. A plurality of segments 16 having cooling water passages 16a are arranged in a circumferentially divided state through slits 17 of a predetermined size, and side walls 20 formed alternately adjacent to each other and on the outer peripheral side of the side walls 20 An induction heating coil 18 made of a hollow copper tube, spirally wound around the radial outer periphery of the side wall 20 with a predetermined interval, and having a cooling water passage 18a inside, and the side wall 20 It is composed of a water-cooled bottom plate 1 that is slightly smaller in diameter in the horizontal direction than the inner peripheral surface and arranged to be movable up and down with respect to the inner peripheral surface, and a drawing shaft 12 that moves the bottom plate 1 up and down. The induction heating coil 18 is appropriately supplied with a frequency from a power supply unit (not shown), and the power and frequency are set to empirical values that are sufficient to stably dissolve the material 13 to be dissolved on the spot.

また、底板1は、上部材2と下部材3とから成り、両部材は水平方向断面の外径が側壁20の内周面より僅かに小さい寸法で形成され、側壁20との間に溶湯14が漏れない程度の空間を有している。前記の上部材2は上下方向に短い底付きの中空円筒形であり、この中空円筒形の上部材2は倒立され、その底部2aが上方に、中空筒部(冷却水室)2dが下方になるように配置されている。上に配置される底部2aの半径方向中央部には、非貫通の凹部、この例では円錘台形の空間としての穴2bとして設けられているが、この穴を画定する側面2cはテーパ状、正確には逆テーパ状に形成されていて底板の上部材2の内部すなわち下方に行くほど広くなっている。一方、下部材3には、前記の上部材2の冷却水室2dに連通するように軸方向に延在する2つの貫通孔が設けられて、冷却水の流入口3aと流出口3bとになっている。また、下部材3の半径方向中央部には引抜シャフト12が固定されている。   The bottom plate 1 includes an upper member 2 and a lower member 3, and both members are formed so that the outer diameter of the horizontal cross section is slightly smaller than the inner peripheral surface of the side wall 20. Has enough space to prevent leakage. The upper member 2 has a hollow cylindrical shape with a bottom that is short in the vertical direction. The hollow cylindrical upper member 2 is turned upside down so that the bottom portion 2a is upward and the hollow cylinder portion (cooling water chamber) 2d is downward. It is arranged to be. In the central portion in the radial direction of the bottom portion 2a disposed above, a non-penetrating recess, in this example, a hole 2b as a frustum-shaped space is provided, but the side surface 2c that defines the hole is tapered. Precisely, it is formed in a reverse taper shape and becomes wider as it goes inside the upper member 2 of the bottom plate, that is, downward. On the other hand, the lower member 3 is provided with two through-holes extending in the axial direction so as to communicate with the cooling water chamber 2d of the upper member 2 so that the cooling water inlet 3a and the outlet 3b are connected to each other. It has become. In addition, a drawing shaft 12 is fixed to the central portion of the lower member 3 in the radial direction.

前記の底板の上部材2と下部材3とは、この例では外周側からシール溶接されて一体にされている。このシール溶接により前記中空円筒部は、冷却水の流入口3a、流出口3bと連通された冷却水室2dとなり、底板1全体を冷却する。底板1は水冷されているため溶解されずに被溶解材料(溶解対象物)13の凝固相15との境界が明瞭に残るが、溶解の当初には溶湯14は非貫通の穴2bに流れ込んで、この穴2bを埋めて溶湯下部の凝固相と一体に凝固する。この状態で引抜シャフト12を下方に下げると逆テーパの側面2cを介して凝固相15に引張り力が伝達され、凝固相15と溶湯14とは徐々に下降して、溶湯14の下部は時間の経過とともに凝固相15に変化し、鋳造品の長さは逐次大きくなってゆく。   In this example, the upper member 2 and the lower member 3 of the bottom plate are integrated by seal welding from the outer peripheral side. By this seal welding, the hollow cylindrical portion becomes a cooling water chamber 2d communicating with the cooling water inlet 3a and the outlet 3b, and cools the entire bottom plate 1. Since the bottom plate 1 is cooled by water, it is not melted and the boundary between the material to be melted (dissolved object) 13 and the solidified phase 15 remains clearly. At the beginning of melting, the molten metal 14 flows into the non-through hole 2b. The hole 2b is filled to solidify integrally with the solidified phase at the bottom of the melt. When the pulling shaft 12 is lowered downward in this state, a tensile force is transmitted to the solidified phase 15 via the reverse tapered side surface 2c, and the solidified phase 15 and the molten metal 14 are gradually lowered. It changes to the solidification phase 15 with progress, and the length of a casting becomes large sequentially.

底板1は更に下降されて、このような溶解と凝固とが継続して行われ、凝固相15はその長さが下方に延長され棒状の鋳造品が形成される(例えば、300mm〜400mm程度の長さのインゴット)。この誘導加熱による溶解炉10Aで、溶解炉10Aの初期溶融過程で炉床となる底板1が、側壁20とは相互に隙間を有して独立して上下に移動可能に設けられ、被溶解材料13の供給に合わせて溶湯14の量を一定に保持したまま徐々に下降し、溶湯14の下部が下降するにつれて誘導加熱コイル18が巻回された溶解域から離れて、セグメント16に誘導加熱コイル18が巻回されていない鋳造域に移動して冷却され、外周側から徐々に凝固され、更に下降すると中央部までが凝固して金属あるいは合金などの丸棒が形成される。   The bottom plate 1 is further lowered, and such melting and solidification are continuously performed, and the solidification phase 15 is extended downward to form a rod-shaped casting (for example, about 300 mm to 400 mm). Length ingot). In this melting furnace 10A by induction heating, a bottom plate 1 that becomes a hearth in the initial melting process of the melting furnace 10A is provided so as to be movable up and down independently from the side wall 20 with a gap therebetween. 13 is gradually lowered while keeping the amount of the molten metal 14 constant, and the induction heating coil 18 moves away from the wound melting zone as the lower part of the molten metal 14 is lowered. When 18 is moved to the casting area where it is not wound and cooled, it is gradually solidified from the outer peripheral side, and further descends to the central part to form a round bar of metal or alloy.

特開平8−141705号公報JP-A-8-141705

ところで、図5に示す従来のコールドクルーシブル誘導溶解連続鋳造装置の溶解炉10Aにおいては、誘導加熱コイル18の電磁力により、溶湯内では矢印A、Bで示される溶湯の流れが固液界面(溶湯と凝固相との境界面)15zの上方に生じ、溶湯が攪拌し、溶湯内の温度分布を均一にしようと働く。この場合に、溶湯内中央部でぶつかった流れの内、矢印Bで示す下方へ向かう流れにより、中央部の固液界面15zが下方へ掘り下げられる。このため、引抜凝固塊(凝固相)15が誘導加熱コイル18の加熱領域をはずれても、凝固塊15の内部は引抜き方向の深い部分まで溶融し、固液界面15zは凹面状となる。   By the way, in the melting furnace 10A of the conventional cold crucible induction melting continuous casting apparatus shown in FIG. 5, the flow of the melt indicated by arrows A and B in the molten metal is caused by the electromagnetic force of the induction heating coil 18 at the solid-liquid interface (molten metal). The boundary between the solidified phase and the solidified phase) is generated above 15z, and the molten metal is stirred to work to make the temperature distribution in the molten metal uniform. In this case, the solid-liquid interface 15z in the central portion is dug down by the downward flow indicated by the arrow B in the flow that hits the central portion in the molten metal. For this reason, even if the drawn solidified mass (solidified phase) 15 deviates from the heating region of the induction heating coil 18, the inside of the solidified mass 15 melts to a deep portion in the drawing direction, and the solid-liquid interface 15z becomes concave.

凹面状となっていると、図6に示すように、凝固界面15zに存する凝固塊15の薄い部分15aが鋳造方向に延びているため、当該薄い部分15aに引抜シャフト12から引き下げ力が作用し、他方、凝固開始点Xにおける焼き付き部分(固着部15b)から引き止める方向の力が作用すると、中間の脆弱な薄い部分15aが両側から引っ張られる形になって裂けてしまい、亀裂15cや断裂を生じ易くなる。その結果、溶湯の漏れ出し、そして再凝固などを招来し易いものとなる。また、スリット17には図示しない耐火物が充填してあるため、これがとれて凝固塊15の薄い部分15aに生じた亀裂15c等に付着することもある。さらに、凝固界面15zが凹面状のため、側面からの初晶が生じて一方向への結晶成長もできづらく、流速が速いことによっても、一方向性の高い結晶成長ができづらい。   If the surface is concave, as shown in FIG. 6, since the thin portion 15a of the solidified mass 15 existing at the solidification interface 15z extends in the casting direction, a pulling force acts on the thin portion 15a from the extraction shaft 12. On the other hand, when a force in the direction of retaining from the seizing portion (fixed portion 15b) at the solidification start point X is applied, the middle fragile thin portion 15a is torn from both sides, resulting in cracks 15c and tearing. It becomes easy. As a result, the molten metal leaks out and re-solidifies easily. In addition, since the slit 17 is filled with a refractory material (not shown), the slit 17 may come off and adhere to a crack 15c or the like generated in the thin portion 15a of the solidified mass 15. Furthermore, since the solidification interface 15z is concave, primary crystals are generated from the side surfaces, making it difficult to grow crystals in one direction, and it is difficult to grow crystals with high unidirectionality due to a high flow rate.

このため、図7に示すように、引き抜かれたインゴット等の鋳造品Gの表面に亀裂や傷等の欠陥部g1が生じたり、異物g2が混入したり、亀裂が溶湯で埋め戻されるなどして結晶組織の不連続点g3が発生するなどして、製品品質の低下を招き、後工程の切削加工を施しても十分な品質を回復することが難しく、さらに結晶成長が遅いために引き抜きが遅くなる結果、後工程を必要とすることと相まって生産効率の低下を招くこととなっている。   For this reason, as shown in FIG. 7, a defect part g1 such as a crack or a flaw is generated on the surface of a cast product G such as an ingot drawn out, a foreign matter g2 is mixed, or the crack is backfilled with molten metal. As a result, a discontinuous point g3 of the crystal structure is generated, resulting in a decrease in product quality, and it is difficult to recover sufficient quality even if a subsequent cutting process is performed. As a result, the production efficiency is lowered in combination with the need for a post process.

本発明は、このような課題を、装置構造の複雑化や部品点数の増加を招くことなく、有効に解決することを目的としている。   An object of the present invention is to effectively solve such a problem without causing the complexity of the device structure and the increase in the number of parts.

本発明は、かかる目的を達成するために、次のような手段を講じたものである。   In order to achieve this object, the present invention takes the following measures.

すなわち、本発明の連続鋳造装置は、内部に冷却水通路を有する複数のセグメントがスリットを介して円周方向に筒状に配列され上部より導電性の被溶解材料が投入される溶解炉と、この溶解炉の外周に巻回され前記被溶解材料を誘導加熱して溶湯を形成する誘導加熱コイルとを備えると共に、前記溶解炉の底板が昇降可能に構成され、前記底板を下降させることにより前記溶解炉内で溶解した金属を固液界面を境に凝固させながら下方に引き抜き、金属鋳塊を得る連続鋳造装置であって、前記誘導加熱コイルに供給すべき電力を抜熱分を含み被溶解材料を安定溶解させるに足る値に設定するとともに、前記溶解炉の内径に前記誘導加熱コイルに通電すべき電流の周波数の平方根を乗じた値若しくはその値に比例する値を磁気ウォマスレイ対応値と定義した場合に、この磁気ウォマスレイ対応値を前記周波数を通じて、溶湯を安定溶解可能とする範囲で最も小さい値である第1の値を上回るように設定したことを特徴とする。   That is, the continuous casting apparatus of the present invention includes a melting furnace in which a plurality of segments having a cooling water passage therein are arranged in a cylindrical shape in the circumferential direction through slits, and a conductive material to be melted is introduced from above. An induction heating coil wound around an outer periphery of the melting furnace to form the molten metal by induction heating the material to be melted, and a bottom plate of the melting furnace is configured to be movable up and down, and by lowering the bottom plate, It is a continuous casting device that obtains a metal ingot by solidifying the metal melted in the melting furnace while solidifying it at the solid-liquid interface, and the power to be supplied to the induction heating coil includes the heat extracted and melted. The value is set to a value sufficient to stably melt the material, and the value obtained by multiplying the inner diameter of the melting furnace by the square root of the frequency of the current to be passed through the induction heating coil or a value proportional to the value is set to If you define a value, through the frequency the magnetic Womasurei corresponding value, and wherein the set to exceed the first value is the smallest value in the range of the molten metal enabling stable dissolution.

この場合の磁気ウォマスレイ対応値は、溶解炉の内径が決まれば、周波数を高くするほど溶湯の流れが緩やかになって凝固界面の掘り込みが小さくなることを表す。このため、磁気ウォマスレイ対応値として安定溶解可能な第1の値を割り出し、これを上回るような磁気ウォマスレイ対応値を与える周波数に設定すれば、安定溶解可能であって掘り込み量の小さい、滑らかな凹面状の固液界面を実現することができる。   The value corresponding to the magnetic womasley in this case indicates that if the inner diameter of the melting furnace is determined, the flow of the molten metal becomes gentler and the digging of the solidification interface becomes smaller as the frequency is increased. Therefore, if the first value that can be stably dissolved is determined as the value corresponding to the magnetic womasley and set to a frequency that gives a value corresponding to the magnetic womasley that exceeds this value, it can be stably dissolved and the digging amount is small and smooth. A concave solid-liquid interface can be realized.

掘り込み減少率を確実にある値以上に設定するための具体的な一態様としては、磁気ウォマスレイ対応値が前記第1の値をとるときの固液界面の掘り込み深さを基準にして、掘り込み減少率が所定%となる磁気ウォマスレイ対応値を第2の値とした場合に、磁気ウォマスレイ対応値がその第2の値以上となるように周波数を設定しているものが挙げられる。   As a specific aspect for reliably setting the digging reduction rate above a certain value, the digging depth of the solid-liquid interface when the magnetic womasley-corresponding value takes the first value as a reference, In the case where the value corresponding to the magnetic womaslay where the digging reduction rate is a predetermined percentage is the second value, the frequency is set so that the value corresponding to the magnetic womasley is equal to or higher than the second value.

また、掘り込み減少率を確実にある値以上に設定するための具体的な他の一態様としては、固液界面の中心部での掘り込み深さが溶解炉の内径に対して100%よりも小さい所定%となるときの磁気ウォマスレイ対応値を第3の値とした場合に、磁気ウォマスレイ対応値がその第3の値以上となるように周波数を設定しているものが挙げられる。   Further, as another specific aspect for reliably setting the digging reduction rate to a certain value or more, the digging depth at the center of the solid-liquid interface is more than 100% with respect to the inner diameter of the melting furnace. In this case, the frequency is set so that the value corresponding to the magnetic worsley when the predetermined value is smaller than the third value is the third value.

上記何れかの連続鋳造装置を適切に製造するためには、誘導加熱コイルに供給すべき電力を抜熱分を含み被溶解材料を安定溶解させるに足る値に設定した後、磁気ウォマスレイ対応値のパラメータである周波数を設定することが望ましい。   In order to appropriately manufacture any one of the above continuous casting apparatuses, the power to be supplied to the induction heating coil is set to a value sufficient to stably dissolve the material to be melted including the extracted heat, and then the value corresponding to the magnetic womasley is set. It is desirable to set a frequency that is a parameter.

上記一態様に係る連続鋳造装置を製造する際に利用できるものとしては、縦軸又は横軸の一方を溶解炉の内径とし、他方を周波数として、磁気ウォマスレイ対応値が第1の値をとる点を連ねた安定溶解ラインと、磁気ウォマスレイ対応値が第2の値をとる点を連ねた掘り込み減少ラインとを並記した周波数設定基準表が便利である。   As one that can be used when manufacturing the continuous casting apparatus according to the above aspect, one of the vertical axis and the horizontal axis is the inner diameter of the melting furnace, the other is the frequency, and the value corresponding to the magnetic womasley takes the first value. A frequency setting reference table in which a stable melting line in which the values are combined and a digging reduction line in which the values corresponding to the magnetic womasley take the second value are shown in parallel is convenient.

或いは、上記他の一態様に係る連続鋳造装置を製造する際に利用できるものとしては、縦軸又は横軸の一方を溶解炉の内径とし、他方を周波数として、磁気ウォマスレイ対応値が第1の値をとる点を連ねた安定溶解ラインと、磁気ウォマスレイ対応値が第3の値をとる点を連ねた掘り込み減少ラインとを並記した周波数設定基準表が便利である。   Alternatively, as one that can be used when manufacturing the continuous casting apparatus according to the other aspect described above, one of the vertical axis and the horizontal axis is the inner diameter of the melting furnace, the other is the frequency, and the value corresponding to the magnetic womasley is the first. A frequency setting reference table in which a stable dissolution line in which points that take values are connected and a digging down line in which points corresponding to magnetic womasley take a third value are written together is convenient.

本発明によれば、磁気ウォマスレイ対応値を基準にして、安定溶解可能であって固液界面の掘り下げ量を適切に緩和できる設定が可能となるので、凝固界面を緩やかな凹面状にして、凝固塊に亀裂や割れが生じたり、不連続な組織が発生するなどの不具合を解消して、切削等の後工程を軽減ないし不要にし、インゴット等の鋳造品の製品品質も確実に向上させることができる。また、固液界面が緩やかな凹面状となり、大粒径の結晶組織が成長しやすくなるので、後工程が軽減ないし不要にできることと相まって、インゴット等の鋳造品の生産効率も有効に向上させることが可能となる。   According to the present invention, it is possible to make a setting that can be stably dissolved and the amount of digging down of the solid-liquid interface can be appropriately relaxed based on the value corresponding to the magnetic womasley. It is possible to eliminate defects such as cracks and cracks in the lump and to generate discontinuous structures, reduce or eliminate post-processing such as cutting, and reliably improve the product quality of castings such as ingots. it can. In addition, the solid-liquid interface has a gentle concave shape, and a crystal structure with a large grain size is likely to grow. Therefore, coupled with the fact that subsequent processes can be reduced or eliminated, the production efficiency of castings such as ingots can be effectively improved. Is possible.

本発明の一実施形態に係る溶解炉の構成を示す図。The figure which shows the structure of the melting furnace which concerns on one Embodiment of this invention. 溶解炉において抜熱される部分を示す図。The figure which shows the part heat-extracted in a melting furnace. 同実施形態の作用説明図。Action | operation explanatory drawing of the same embodiment. 同実施形態の周波数設定基準表を実験例とともに示すグラフ。The graph which shows the frequency setting reference | standard table of the embodiment with an experiment example. 従来のコールドクルーシブル誘導溶解連続鋳造装置の溶解炉の構成を示す図。The figure which shows the structure of the melting furnace of the conventional cold crucible induction melting continuous casting apparatus. 従来の不具合が発生する原因を説明するための図。The figure for demonstrating the cause which the conventional malfunction generate | occur | produces. 従来の不具合が発生したインゴットの表面状態を示す図。The figure which shows the surface state of the ingot in which the conventional malfunction generate | occur | produced.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態に係る溶解炉の構成を示す図である。図1に示す溶解炉10は、図5に示す従来技術の溶解炉10Aと基本的に同様の構成からなるものであるが、ここでは、先ず抜熱に必要な電力Pxを設定した後、交流電源部4で発生する発振周波数fを、所定の基準に基づいて従来とは異なる値に設定している。以下、その手法を理由とともに順を追って説明する。   FIG. 1 is a diagram illustrating a configuration of a melting furnace according to the present embodiment. The melting furnace 10 shown in FIG. 1 has basically the same configuration as the conventional melting furnace 10A shown in FIG. 5, but here, after first setting the power Px necessary for heat removal, AC The oscillation frequency f generated in the power supply unit 4 is set to a value different from the conventional value based on a predetermined standard. Hereinafter, the method will be described step by step along with the reason.

先ず、溶解炉10の被溶解材料(溶解対象物)13が溶融状態を保持するためには、構造上、抜熱に勝る電力を投入し続けなければ、ならない。   First, in order for the material to be melted (melting target) 13 of the melting furnace 10 to be kept in a molten state, it is necessary to continue to apply electric power superior to heat removal due to the structure.

抜熱される部分は、図2に示すように、
(1)鋳型内面との接触による抜熱(矢印C1)
(2)鋳型内面との空隙間の熱移動(気体、輻射)による抜熱(矢印C2)
(3)溶湯面からの熱移動(気体、輻射)による抜熱(矢印C3)
である。ここで、抜熱の電力による影響と周波数による影響を考える。(1)、(2)の抜熱は、周波数が変化しても、抜熱が行われる面の形状の変化はないとみなせるので、一定と推定できる。一方、3)項に関しては、周波数の変化により、抜熱が行われる溶湯面14zの形状が変化するので、抜熱は変化する。
As shown in FIG.
(1) Heat removal by contact with mold inner surface (arrow C1)
(2) Heat removal (arrow C2) by heat transfer (gas, radiation) between the gaps with the mold inner surface
(3) Heat removal (arrow C3) by heat transfer (gas, radiation) from the molten metal surface
It is. Here, the influence of heat removal power and the influence of frequency are considered. The heat removal of (1) and (2) can be assumed to be constant because it can be considered that there is no change in the shape of the surface where heat removal is performed even if the frequency changes. On the other hand, regarding the item 3), the shape of the molten metal surface 14z on which heat removal is performed changes due to the change in the frequency, and thus the heat removal changes.

しかし、抜熱の多くは、上記(1)、(2)項、特に(1)項であるとみなせるので、全体として周波数が変化しても抜熱への影響はほとんどないものとして取り扱うことができる。抜熱に変化がなければ周波数fを投入電力Pxと無関係に変化させることができる。   However, since most of the heat removal can be regarded as the above items (1) and (2), especially the item (1), it can be treated as having almost no influence on the heat removal even if the frequency changes as a whole. it can. If there is no change in heat removal, the frequency f can be changed regardless of the input power Px.

さて、溶湯14の流れBは凹面状の固液界面15zを形成し、流速が速いほど固液界面すなわち凝固面15zは掘り下げられた状態になって、図6等に示したような亀裂の発生や結晶成長の低下等の不具合を招く点は既に述べたところである。そこで、溶湯14の流速を抑えるために、図1に示した加熱用誘導コイル18へ通電する電流Iを変化させることを考える。交流電源部4側から操作できるのは、電力P(コイル電流値I)と周波数fであるが、電力Pは、抜熱との関係より最適値Pxが存在するので、流速の制御のために変化させることがかなわない。一方、周波数fは抜熱に影響を与えず、しかも、電力Pxを一定として周波数fを増大させると、溶湯14の流速は減少することがわかっている。そこで、電力Pxを決定した上で、周波数fを変化させる。ただし、周波数fが極端に低いと、誘導が効果的に行われないため、一定の下限が存する点に注意を要する。周波数fを変化させるには、LC共振回路を構成する加熱溶誘導コイル18のL(リアクタンス)およびコンデンサ30のキャパシタンスCのうち、キャパシタンスCを変化させる。簡単な手法はコンデンサ30の数を増減させたり、コンデンサ30を可変容量型にしてその容量を調整する。図では並列共振回路によっているが、直列共振回路であっても勿論構わない。   Now, the flow B of the molten metal 14 forms a concave solid-liquid interface 15z, and the higher the flow rate, the more the solid-liquid interface, that is, the solidified surface 15z is dug down, and the generation of cracks as shown in FIG. As described above, it causes problems such as lowering of crystal growth and crystal growth. Therefore, in order to suppress the flow rate of the molten metal 14, it is considered to change the current I applied to the heating induction coil 18 shown in FIG. The power supply P (coil current value I) and the frequency f can be operated from the AC power supply unit 4 side, but the power P has an optimum value Px because of the relationship with heat removal. I can't change it. On the other hand, it is known that the frequency f does not affect the heat removal, and if the frequency f is increased while the power Px is constant, the flow rate of the molten metal 14 decreases. Therefore, after determining the power Px, the frequency f is changed. However, if the frequency f is extremely low, the induction is not effectively performed, so that a certain lower limit exists. In order to change the frequency f, the capacitance C is changed among L (reactance) of the heating induction coil 18 constituting the LC resonance circuit and the capacitance C of the capacitor 30. In a simple method, the number of capacitors 30 is increased or decreased, or the capacitance is adjusted by making the capacitors 30 variable. Although a parallel resonance circuit is used in the figure, it is of course possible to use a series resonance circuit.

周波数fを大きくすることにより、溶湯14の流速を減少すると、図1及び図2で示す溶湯14の流れBの凝固界面15zへ向かう速度を減少でき、凝固界面15zへ向かう熱を減少でき、凝固界面15zの固相部15を浸食する力も減少できて、凝固界面15zを底上げることができる。この結果、図3に示すように凝固界面15zの掘り込み深さが溶湯14の表面14zの高さとともに図中白抜きの矢印で示す方向に減少して、凝固界面15zを従来周波数fで用いた場合の図1に示す位置(すなわち図3に想像線で示す位置)よりも緩やかな凹面形状とすることが実現できる。この場合の掘り込み量dを一定値以下にするための条件は、被溶解材料(溶解対象物)13が安定溶解可能な条件ともども、溶解炉の内径Dと周波数fとの間に   When the flow velocity of the molten metal 14 is decreased by increasing the frequency f, the speed of the flow B of the molten metal 14 shown in FIGS. 1 and 2 toward the solidification interface 15z can be decreased, the heat toward the solidification interface 15z can be decreased, and solidification can be achieved. The force of eroding the solid phase portion 15 of the interface 15z can also be reduced, and the solidification interface 15z can be raised. As a result, as shown in FIG. 3, the digging depth of the solidification interface 15z decreases with the height of the surface 14z of the molten metal 14 in the direction indicated by the white arrow in the figure, and the solidification interface 15z is used at the conventional frequency f. It is possible to realize a concave surface shape that is gentler than the position shown in FIG. 1 (ie, the position indicated by the imaginary line in FIG. 3). In this case, the condition for making the digging amount d equal to or less than a predetermined value is a condition between the inner diameter D of the melting furnace and the frequency f.

D・√f>K …(i) (K:電力条件を含んだ経験値)
なる関係が存する。
D · √f> K (i) (K: Empirical value including power condition)
There is a relationship.

上記(i)式は、次(ii)式の磁気ウォマスレイ数Wmから求められるものである。   The above equation (i) is obtained from the magnetic Womaley number Wm of the following equation (ii).

Wm=L√(ω/ν)>K’ …(ii)
(L:代表長さ→内径、ω:角周波数、ν=1/(σμ)→σ:導電率、μ:透磁率)
Wm = L√ (ω / ν m )> K ′ (ii)
(L: representative length → inner diameter, ω: angular frequency, ν m = 1 / (σμ) → σ: conductivity, μ: permeability)

すなわち、磁気ウォマスレイ数Wmは、代表長さ(溶解炉の内径Dがこれに対応)に、角周波数の平方根√ω(交流電源部の周波数√fがこれに対応)を乗じた値に比例する。この意味で、D・√fを、本実施形態において「磁気ウォマスレイ対応値」と称する。この磁気ウォマスレイ対応値D・√fは、値Kで安定溶解可能となり、値Kよりも大きくなるほど固液界面15zを掘り下げる電磁熱流体たる溶湯15の流れBの流速が緩やかになって掘り込み量dが小さくなることを表わす。したがって、溶解炉の内径Dが一定の下では、周波数fをパラメータとして増減させることができる。   In other words, the magnetic Womaley number Wm is proportional to the value obtained by multiplying the representative length (the inner diameter D of the melting furnace corresponds to this) by the square root of the angular frequency √ω (the frequency √f of the AC power supply corresponds to this). . In this sense, D · √f is referred to as a “magnetic woma sley corresponding value” in the present embodiment. The value corresponding to the magnetic womasley D · √f can be stably melted at the value K, and the larger the value K, the slower the flow velocity of the flow B of the molten metal 15 that digs the solid-liquid interface 15z and the amount of digging. It represents that d becomes small. Therefore, when the inner diameter D of the melting furnace is constant, the frequency f can be increased or decreased as a parameter.

一実験例を図4に紹介すると、内径φ80mmの溶解炉(ルツボ)10で、10kHzの周波数を印加した場合(図中A点)の堀れ込み深さdは溶湯高さ程度(一般に溶解炉の内径D程度)であるが、周波数を35kHzに上げると(図中B点)、掘り込み深さが10kHz時の半分程度(すなわち、溶解炉の内径の半分程度)に低減し、凝固組織およびインゴット等の鋳造品の表面粗さも改善されることが確認できた。同様に、他の条件で得たデータである溶解不可の点「▲」、溶解可の点「●」を、掘り込み実績(50%)の点「■」とともに同図中にプロットする。   FIG. 4 shows an experimental example. When a frequency of 10 kHz is applied in a melting furnace (crucible) 10 with an inner diameter of 80 mm (point A in the figure), the digging depth d is about the height of the molten metal (generally a melting furnace). However, when the frequency is increased to 35 kHz (point B in the figure), the digging depth is reduced to about half of 10 kHz (that is, about half the inner diameter of the melting furnace), and the solidified structure and It was confirmed that the surface roughness of castings such as ingots was also improved. Similarly, the insoluble point “▲” and the dissolvable point “●”, which are data obtained under other conditions, are plotted in the same figure together with the digging performance (50%) point “■”.

また、同図において、(i)式から得られた溶解炉の内径Dと周波数fとの関係をラインL1,L2,L3で並記する。   Further, in the same figure, the relationship between the inner diameter D of the melting furnace obtained from the equation (i) and the frequency f is shown along lines L1, L2, and L3.

図中L1は、上記A点を含み、D・√f=80mm×√10000=8000(第1の値)の下での「安定溶解可能ライン」であり、図中L2は、上記B点を含み、D・√f=80mm×√35000=15000(第2の値または第3の値)の下での「掘り込み半減ライン」である。また、図中L3は、D・√f=4500(第1の値)の下での「溶解可能ライン」である。ここに、安定溶解可能なラインL1とは、被溶解材料13が溶解不良を起こさずに安定して溶解される範囲のうち最も低い周波数値を採用したラインであり、掘り込み半減ラインL2とは、安定溶解可能ラインL1での掘り込み深さを基準として掘り込み深さdがその50%になるようなD・√fの値(第2の値)を採用したライン、或いは、溶解炉の内径Dと同じ深さの掘り込みに対してそれが50%になるようなD・√fの値(第3の値)を採用したラインであり、本実施形態において第2の値と第3の値はほぼ合致している。また、溶解可能なラインL3とは、被溶解材料13が溶解し始めるときの周波数値を採用した不安定な溶解ラインである。同図では、上にいくほど(すなわち周波数が高くなるほど)、溶解が進み、掘り込み量dが減少することを表わす。但し、周波数fが高くなりすぎると放電を起こすため、一定の限度に止どめる必要がある。   L1 in the figure is the “stable dissolution possible line” including the above point A and D · √f = 80 mm × √10000 = 8000 (first value). In the figure, L2 is the above point B. It is a “digging half line” under the condition of D · √f = 80 mm × √35000 = 15000 (second value or third value). In the figure, L3 is a “dissolvable line” under D · √f = 4500 (first value). Here, the line L1 that can be stably dissolved is a line that employs the lowest frequency value in the range in which the material to be dissolved 13 is stably dissolved without causing poor dissolution, and the digging half line L2 is The line adopting the value of D · √f (second value) such that the digging depth d is 50% of the digging depth in the stable melting possible line L1, or the melting furnace This is a line that adopts a value of D · √f (third value) such that it becomes 50% for a digging of the same depth as the inner diameter D. In this embodiment, the second value and the third value The values of are almost consistent. The meltable line L3 is an unstable melt line that employs a frequency value when the material 13 to be melted starts to melt. In the figure, as it goes up (that is, as the frequency becomes higher), melting progresses and the digging amount d decreases. However, since discharge occurs when the frequency f becomes too high, it is necessary to stop at a certain limit.

このような周波数設定基準表を手掛かりにして、実際に溶解炉10を稼働させる際には、磁気ウォマスレイ対応値D・√fが溶湯14を安定溶解可能とする範囲で最も小さい値である第1の値Kを上回るように(すなわちラインL1を上回るように)、より好ましくは、磁気ウォマスレイ対応値D・√fが第2の値または第3の値以上となるように(すなわちラインL2以上となるように)、周波数fを設定する。   When the melting furnace 10 is actually operated using such a frequency setting reference table as a clue, the first value corresponding to the magnetic womasley corresponding value D · √f is the smallest value in the range in which the molten metal 14 can be stably melted. More than the value K (ie, exceeding the line L 1), and more preferably, the magnetic womasley corresponding value D · √f is equal to or greater than the second value or the third value (ie, equal to or greater than the line L 2). The frequency f is set.

以上の周波数fと掘り込み深さdとの関係は、攪拌力の観点からも考察することができる。攪拌力をF(kg/cm2)、溶湯の吸収電力をP(kW)、溶解炉直径をD(cm)、コイル巻高さをL(cm)、溶解金属の比抵抗をρ(Ω・cm)、周波数をf(Hz)とすると、攪拌力Fは、 The relationship between the frequency f and the digging depth d can be considered from the viewpoint of stirring force. The stirring power is F (kg / cm 2 ), the absorbed power of the molten metal is P (kW), the melting furnace diameter is D (cm), the coil winding height is L (cm), and the specific resistance of the molten metal is ρ (Ω · cm) and the frequency is f (Hz), the stirring force F is

F=316P/(π・D・L√ρ・√f) …(iii)
で示される。攪拌力Fが大きいことはすなわち溶湯14の流れの流速が速いことを意味し、攪拌が大きいと固液界面15zの堀り込みや溶湯14の表面14zの山の高さが大きくなり、攪拌が小さいと上記堀り込みや山の高さが小さくなる。掘り込みや山の高さをある程度抑えるためには、(iii)式において先に適切な投入電力を設定した上で、周波数を大きくすればよいことがわかる。
F = 316P / (π · D · L√ρ · √f) (iii)
Indicated by A large stirring force F means that the flow rate of the molten metal 14 is fast. If the stirring is large, the solid-liquid interface 15z is dug and the height of the surface 14z of the molten metal 14 is increased. If it is small, the above digging and the height of the mountain will be small. It can be seen that in order to suppress the excavation and the height of the mountain to some extent, the frequency should be increased after setting the appropriate input power in the equation (iii) first.

以上のように、本実施形態は、前記誘導加熱コイル18に供給すべき電力Pを抜熱分を含み被溶解材料13を安定溶解させるに足る値Pxに設定するとともに、前記溶解炉10の内径Dに前記誘導加熱コイル18に通電すべき電流の周波数の平方根√fを乗じた値D・√fを磁気ウォマスレイ対応値と定義して、この磁気ウォマスレイ対応値D・√fを周波数fを通じて、溶湯14を安定溶解可能とする範囲で最も小さい値である第1の値を上回るように設定するので、溶解炉10内において、固液界面15zを掘り下げる溶湯14の流れが周波数fを高くすることにより制限され、掘り込み量dが少なくなり、緩やかな凹面状の凝固界面15zを実現して、図6に示した凝固塊15の薄い部分15aを、図3に示すように肉厚な凝固塊15Aにすることができる。このため、図6に示したように凝固塊の薄い部分15aに割れや亀裂15cが生じたりそこから溶湯14が漏れ出すことが防止され、スリット17の耐火物が亀裂15c等に付着することも防止される。   As described above, in the present embodiment, the electric power P to be supplied to the induction heating coil 18 is set to a value Px that includes the heat removal and is sufficient to stably dissolve the material 13 to be melted, and the inner diameter of the melting furnace 10. A value D · √f obtained by multiplying D by the square root √f of the frequency of the current to be passed through the induction heating coil 18 is defined as a value corresponding to the magnetic womasley. Since it is set so as to exceed the first value which is the smallest value within the range in which the molten metal 14 can be stably melted, the flow of the molten metal 14 digging the solid-liquid interface 15z in the melting furnace 10 increases the frequency f. 6, the digging amount d is reduced, and a gentle concave solidification interface 15 z is realized, so that the thin portion 15 a of the solidified mass 15 shown in FIG. 6 is replaced with a thick solidified mass as shown in FIG. 15 It can be. For this reason, as shown in FIG. 6, cracks and cracks 15c are prevented from occurring in the thin portion 15a of the solidified mass and the molten metal 14 is prevented from leaking therefrom, and the refractory material in the slit 17 may adhere to the cracks 15c and the like. Is prevented.

また、一方向への結晶成長もでき易く、流速が遅いことも相まって、一方向性の高い結晶成長が可能になる。この結果、図7に示したように、引き抜かれたインゴット等の鋳造品Gの表面に亀裂や傷等の欠陥部g1が生じたり、異物g2が混入したり、亀裂が溶湯で埋め戻されるなどして結晶組織の不連続点g3が発生するなどして、製品品質の低下を招いていた問題が解消され、後工程の切削加工も低減ないし不要にして十分な品質も確保することができる。   In addition, crystal growth in one direction can be easily performed, and combined with the slow flow rate, crystal growth with high unidirectionality becomes possible. As a result, as shown in FIG. 7, a defective part g1 such as a crack or a flaw is generated on the surface of the cast product G such as an extracted ingot, a foreign matter g2 is mixed, or the crack is backfilled with a molten metal. As a result, the problem of reducing the quality of the product due to the occurrence of the discontinuous point g3 of the crystal structure is solved, and sufficient quality can be ensured by reducing or eliminating the subsequent cutting process.

さらに、組織制御まで話を進めると、固液界面15zが図3に示すような緩やかな凹面状となり、大粒径の結晶組織が成長しやすくなる。これは、固液界面15zの掘り込み深さdが内径Dと同等ないしそれよりも大きいような凹面状であったのが、内径Dの半分以下の凹面状となることにより、側面からの初晶を減少できて、大粒径の結晶となり易くなるためである。すなわち、小粒径の結晶から大粒径の結晶となるためには、ある程度の結晶成長距離が必要であり、固液界面をなるべく水平面状にして結晶成長距離を確保することにより、一方向性の大粒径の結晶成長が可能となる。よって、引き抜き速度を高めて、後工程が低減ないし不要になることとも相まって、生産効率を一層有効に向上させることが可能となる。   Furthermore, when the talk is advanced to the structure control, the solid-liquid interface 15z becomes a gentle concave surface as shown in FIG. 3, and a crystal structure with a large grain size is likely to grow. This is a concave surface in which the digging depth d of the solid-liquid interface 15z is equal to or larger than the inner diameter D, but it becomes a concave surface less than half of the inner diameter D. This is because the number of crystals can be reduced, and crystals with a large particle size are easily formed. In other words, a certain crystal growth distance is required in order to change from a crystal having a small particle size to a crystal having a large particle size, and the unidirectionality is ensured by securing the crystal growth distance by making the solid-liquid interface as horizontal as possible. It is possible to grow a crystal having a large grain size. Therefore, it is possible to improve the production efficiency more effectively in combination with increasing the drawing speed and reducing or eliminating the post-process.

具体的にこの実施形態では、磁気ウォマスレイ対応値D・√fが前記第1の値(8000)をとるときの固液界面15zの掘り込み深さdを基準にして、掘り込み減少率が50%となる磁気ウォマスレイ対応値D・√fの値(15000)を第2の値とした場合に、磁気ウォマスレイ対応値D・√fがその第2の値(15000)以上となるように周波数fを設定することにより、掘り込み減少率を確実に上記50%以上とすることができる。   Specifically, in this embodiment, the digging reduction rate is 50 with reference to the digging depth d of the solid-liquid interface 15z when the magnetic womasley correspondence value D · √f takes the first value (8000). When the value (15000) of the magnetic woma sley corresponding value D that is% is set to the second value, the frequency f so that the magnetic woma sley corresponding value D · √f is equal to or greater than the second value (15000). By setting this, the digging reduction rate can be surely made 50% or more.

或いは、固液界面15zの中心部での掘り込み深さdが溶解炉10の内径Dに対して100%よりも小さい50%となるときの磁気ウォマスレイ対応値D・√fの値(15000)を第3の値(この実施形態では第2の値とほぼ同じ)とした場合に、磁気ウォマスレイ対応値D・√fがその第3の値(15000)以上となるように周波数fを設定することにより、掘り込み深さdを確実に内径Dの半分程度若しくはそれ以上にまで減少させることができる。   Alternatively, the value of the magnetic womasley corresponding value D · √f when the digging depth d at the center of the solid-liquid interface 15z is 50% smaller than 100% with respect to the inner diameter D of the melting furnace 10 (15000). Is set to the third value (substantially the same as the second value in this embodiment), the frequency f is set so that the magnetic womasley correspondence value D · √f is equal to or greater than the third value (15000). As a result, the digging depth d can be reliably reduced to about half of the inner diameter D or more.

そして、誘導加熱コイル18に供給すべき電力Pxを抜熱分を含み被溶解材料13を安定溶解させるに足る値に設定した後、磁気ウォマスレイ対応値D・√fのパラメータである周波数fを設定する手順を踏んでいるので、上記の連続鋳造装置を適切に製造(設定)して利用に供することができる。   Then, after setting the electric power Px to be supplied to the induction heating coil 18 to a value sufficient to stably dissolve the material to be melted 13 including the extracted heat, the frequency f which is a parameter of the magnetic womasley correspondence value D · √f is set. Therefore, the above continuous casting apparatus can be appropriately manufactured (set) and used.

この場合、図4に示したように横軸(縦軸でもよい)を溶解炉の内径Dとし、縦軸(横軸でもよい)を周波数fとして、磁気ウォマスレイ対応値D・√fが上記第1の値をとる点を連ねた安定溶解ラインL1と、磁気ウォマスレイ対応値D・√fが上記第2の値をとる点を連ねた掘り込み減少ラインL2とを並記した周波数設定基準表を利用しているため、掘り込み減少率が所定%以上となる設定を内径Dに応じて簡単、確実に実現することができる。   In this case, as shown in FIG. 4, the horizontal axis (may be the vertical axis) is the inner diameter D of the melting furnace, the vertical axis (may be the horizontal axis) is the frequency f, and the magnetic womasley corresponding value D · √f is A frequency setting reference table in which a stable melting line L1 connecting points having a value of 1 and a digging reduction line L2 connecting points where the magnetic womasley corresponding value D · √f takes the second value is shown side by side. Since it is used, the setting at which the digging reduction rate is equal to or greater than a predetermined% can be easily and reliably realized according to the inner diameter D.

或いは、同図には、磁気ウォマスレイ対応値D・√fが上記第1の値をとる点を連ねた安定溶解ラインL1と、磁気ウォマスレイ対応値Dが上記第3の値をとる点を連ねた掘り込み減少ラインL3とを並記したものでもあるので、掘り込み深さdを溶解炉10の内径の50%以下にする等といった観点からの設定も簡単、確実に実現することができる。   Alternatively, in the figure, the stable melting line L1 in which the magnetic womasley corresponding value D · √f takes the first value is connected to the stable melting line L1 where the magnetic womaslay corresponding value D takes the third value. Since the digging reduction line L3 is also shown in parallel, the setting from the viewpoint of making the digging depth d 50% or less of the inner diameter of the melting furnace 10 can be easily and reliably realized.

なお、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The specific configuration of each part is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

例えば、前記実施形態では、溶解炉の内径Dに前記誘導加熱コイルに通電すべき電流の周波数fの平方根を乗じた値を磁気ウォマスレイ対応値と定義したが、溶解炉の内径Dに前記誘導加熱コイルに通電すべき電流の周波数fの平方根を乗じた値に更に係数を掛けたような比例値を磁気ウォマスレイ対応値と定義することもできる。   For example, in the embodiment, the value obtained by multiplying the inner diameter D of the melting furnace by the square root of the frequency f of the current to be passed through the induction heating coil is defined as the value corresponding to the magnetic womasley. A proportional value obtained by multiplying a value obtained by multiplying the square root of the frequency f of the current to be passed through the coil by a coefficient can also be defined as a value corresponding to the magnetic womasley.

また、上記実施形態では掘り込み減少率や掘り込み深さが50%となるような設定を例示したが、目的・用途に応じて種々の値を設定することができるのは言うまでもない。   In the above embodiment, the digging reduction rate and the digging depth are set to 50%, but it goes without saying that various values can be set according to the purpose and application.

1…底板
10…溶解炉
13…被溶解材料
15…凝固相
15z…固液界面
16…セグメント
16a…冷却水通路
17…スリット
18…誘導加熱コイル
d…掘り込み深さ
D…内径
D・√f…磁気ウォマスレイ対応値
f…周波数
L1…安定溶解可能ライン
L2…掘り込み半減ライン
L3…溶解可能ライン
Px…電力
DESCRIPTION OF SYMBOLS 1 ... Bottom plate 10 ... Melting furnace 13 ... Material 15 ... Solidification phase 15z ... Solid-liquid interface 16 ... Segment 16a ... Cooling water passage 17 ... Slit 18 ... Induction heating coil d ... Depth of digging D ... Inner diameter D * √f ... Value corresponding to magnetic womasley f ... Frequency L1 ... Stable dissolution possible line L2 ... Digging half line L3 ... Dissolvable line Px ... Power

Claims (6)

内部に冷却水通路を有する複数のセグメントがスリットを介して円周方向に筒状に配列され上部より導電性の被溶解材料が投入される溶解炉と、この溶解炉の外周に巻回され前記被溶解材料を誘導加熱して溶湯を形成する誘導加熱コイルとを備えると共に、前記溶解炉の底板が昇降可能に構成され、前記底板を下降させることにより前記溶解炉内で溶解した金属を固液界面を境に凝固させながら下方に引き抜き、金属鋳塊を得る連続鋳造装置であって、
前記誘導加熱コイルに供給すべき電力を抜熱分を含み被溶解材料を安定溶解させるに足る値に設定するとともに、
前記溶解炉の内径に前記誘導加熱コイルに通電すべき電流の周波数の平方根を乗じた値若しくはその値に比例する値を磁気ウォマスレイ対応値と定義した場合に、この磁気ウォマスレイ対応値を前記周波数を通じて、溶湯を安定溶解可能とする範囲で最も小さい値である第1の値を上回るように設定したことを特徴とする連続鋳造装置。
A plurality of segments having cooling water passages inside are arranged in a cylindrical shape in the circumferential direction through slits, and a melting furnace in which a conductive material to be melted is introduced from above, and is wound around the outer periphery of the melting furnace. An induction heating coil for induction heating of the material to be melted to form a molten metal, and a bottom plate of the melting furnace is configured to be movable up and down, and the metal melted in the melting furnace by lowering the bottom plate is solid-liquid It is a continuous casting device that draws downward while solidifying at the interface and obtains a metal ingot,
While setting the electric power to be supplied to the induction heating coil to a value sufficient to stably dissolve the material to be melted including the extracted heat,
When a value obtained by multiplying the inner diameter of the melting furnace by the square root of the frequency of the current to be passed through the induction heating coil or a value proportional to the value is defined as a magnetic womalay corresponding value, the magnetic woma The continuous casting apparatus is set to exceed the first value which is the smallest value within a range in which the molten metal can be stably melted.
磁気ウォマスレイ対応値が前記第1の値をとるときの固液界面の掘り込み深さを基準にして、掘り込み減少率が所定%となる磁気ウォマスレイ対応値を第2の値とした場合に、磁気ウォマスレイ対応値がその第2の値以上となるように周波数を設定している請求項1記載の連続鋳造装置。 Based on the digging depth of the solid-liquid interface when the magnetic woma sley corresponding value takes the first value, when the magnetic woma sley corresponding value at which the digging reduction rate is a predetermined percentage is the second value, The continuous casting apparatus according to claim 1, wherein the frequency is set so that the value corresponding to the magnetic womasley is equal to or greater than the second value. 固液界面の中心部での掘り込み深さが溶解炉の内径に対して100%よりも小さい所定%となるときの磁気ウォマスレイ対応値を第3の値とした場合に、磁気ウォマスレイ対応値がその第3の値以上となるように周波数を設定している請求項1記載の連続鋳造装置。 When the digging depth at the center of the solid-liquid interface is a predetermined value smaller than 100% with respect to the inner diameter of the melting furnace, the value corresponding to the magnetic wathlay is the third value, The continuous casting apparatus according to claim 1, wherein the frequency is set to be equal to or greater than the third value. 請求項1〜3何れかに記載の連続鋳造装置を製造するための方法であって、誘導加熱コイルに供給すべき電力を抜熱分を含み被溶解材料を安定溶解させるに足る値に設定した後、磁気ウォマスレイ対応値のパラメータである周波数を設定することを特徴とする連続鋳造装置の製造方法。 It is a method for manufacturing the continuous casting apparatus in any one of Claims 1-3, Comprising: The electric power which should be supplied to an induction heating coil was set to the value sufficient to melt | dissolve a to-be-dissolved material stably including a heat removal part. Then, the frequency which is a parameter of a value corresponding to a magnetic womasley is set. 請求項3記載の連続鋳造装置を製造する際に利用されるものであって、縦軸又は横軸の一方を溶解炉の内径とし、他方を周波数として、磁気ウォマスレイ対応値が第1の値をとる点を連ねた安定溶解ラインと、磁気ウォマスレイ対応値が第2の値をとる点を連ねた掘り込み減少ラインとを並記してなることを特徴とする周波数設定基準表。 It is used when manufacturing the continuous casting apparatus according to claim 3, wherein one of the vertical axis and the horizontal axis is the inner diameter of the melting furnace, the other is the frequency, and the value corresponding to the magnetic womasley is the first value. The frequency setting reference | standard table | surface characterized by writing together the stable melt | dissolution line which connected the point to take, and the digging reduction line which connected the point where a magnetic womasley corresponding value takes the 2nd value. 請求項4記載の連続鋳造装置を製造する際に利用されるものであって、縦軸又は横軸の一方を溶解炉の内径とし、他方を周波数として、磁気ウォマスレイ対応値が第1の値をとる点を連ねた安定溶解ラインと、磁気ウォマスレイ対応値が第3の値をとる点を連ねた掘り込み減少ラインとを並記してなることを特徴とする周波数設定基準表。
It is used when manufacturing the continuous casting apparatus according to claim 4, wherein one of the vertical axis and the horizontal axis is the inner diameter of the melting furnace, the other is the frequency, and the value corresponding to the magnetic womasley is the first value. The frequency setting reference | standard table | surface characterized by writing together the stable melt | dissolution line which connected the point to take, and the digging reduction line which connected the point where a magnetic womasley corresponding value takes the 3rd value.
JP2010032983A 2010-02-17 2010-02-17 Continuous casting apparatus and method for producing metal ingot Active JP5521617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010032983A JP5521617B2 (en) 2010-02-17 2010-02-17 Continuous casting apparatus and method for producing metal ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010032983A JP5521617B2 (en) 2010-02-17 2010-02-17 Continuous casting apparatus and method for producing metal ingot

Publications (2)

Publication Number Publication Date
JP2011167715A true JP2011167715A (en) 2011-09-01
JP5521617B2 JP5521617B2 (en) 2014-06-18

Family

ID=44682378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010032983A Active JP5521617B2 (en) 2010-02-17 2010-02-17 Continuous casting apparatus and method for producing metal ingot

Country Status (1)

Country Link
JP (1) JP5521617B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262640A (en) * 1996-03-28 1997-10-07 Sumitomo Metal Ind Ltd Equipment and method for melting and solidifying material
JP2008188632A (en) * 2007-02-05 2008-08-21 Shinko Electric Co Ltd Melting furnace, continuous casting apparatus, and casting method for continuous casting apparatus
JP2010017749A (en) * 2008-07-11 2010-01-28 Sinfonia Technology Co Ltd Melting furnace, continuous casting apparatus, and casting method for continuous casting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262640A (en) * 1996-03-28 1997-10-07 Sumitomo Metal Ind Ltd Equipment and method for melting and solidifying material
JP2008188632A (en) * 2007-02-05 2008-08-21 Shinko Electric Co Ltd Melting furnace, continuous casting apparatus, and casting method for continuous casting apparatus
JP2010017749A (en) * 2008-07-11 2010-01-28 Sinfonia Technology Co Ltd Melting furnace, continuous casting apparatus, and casting method for continuous casting apparatus

Also Published As

Publication number Publication date
JP5521617B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
CN105598402B (en) A kind of steel continuous casting crystallizer feeds core-spun yarn and the dynamic control method of line feeding process
JP6161533B2 (en) Titanium continuous casting machine
CN103406520B (en) Device and method for producing large homogeneous electro-slag re-melting steel ingots added with consumable stirrer
CN101934367A (en) Thermal-insulation baffle plate for liquid metal cooling and oriented solidification casting equipment
JP5027682B2 (en) Method for producing refractory metal ingot
CN108393450A (en) Device and method for feeding steel strip to tundish
JP5788691B2 (en) Melting furnace for melting metal and method for melting metal using the same
JP5521617B2 (en) Continuous casting apparatus and method for producing metal ingot
JP5730738B2 (en) Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy
JP5774438B2 (en) Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy
JP5896811B2 (en) Mold for continuous casting of ingot made of titanium or titanium alloy and continuous casting apparatus provided with the same
JP2011173172A (en) Method for producing long cast block of active high melting point metal alloy
JP6662180B2 (en) Manufacturing method of thin cast slab
JP4640349B2 (en) Continuous casting apparatus and casting method in continuous casting apparatus
CN104903024A (en) Continuous casting method for ingot produced from titanium or titanium alloy
JP5822519B2 (en) Melting furnace for metal melting
JP3381426B2 (en) Cold wall induction melting continuous casting equipment
JP5627015B2 (en) Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy
JP2010017749A (en) Melting furnace, continuous casting apparatus, and casting method for continuous casting apparatus
JP5444109B2 (en) Method for melting long ingots
JP2000274951A (en) Cold crucible induction melting system and tapping method
JP2016043377A (en) Continuous casting method of Cu-Ga alloy
JP7406073B2 (en) Manufacturing method for titanium ingots
JP2555768B2 (en) Continuous metal casting apparatus and casting method
JP5701720B2 (en) Mold for continuous casting of ingot made of titanium or titanium alloy and continuous casting apparatus provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5521617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250