JP2011167713A - Connection material, method for producing the same, and semiconductor device - Google Patents

Connection material, method for producing the same, and semiconductor device Download PDF

Info

Publication number
JP2011167713A
JP2011167713A JP2010032840A JP2010032840A JP2011167713A JP 2011167713 A JP2011167713 A JP 2011167713A JP 2010032840 A JP2010032840 A JP 2010032840A JP 2010032840 A JP2010032840 A JP 2010032840A JP 2011167713 A JP2011167713 A JP 2011167713A
Authority
JP
Japan
Prior art keywords
based alloy
alloy layer
layer
semiconductor device
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010032840A
Other languages
Japanese (ja)
Inventor
Kazuma Kuroki
一真 黒木
Hiromitsu Kuroda
洋光 黒田
慶平 ▲とん▼
Chingping Tong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010032840A priority Critical patent/JP2011167713A/en
Publication of JP2011167713A publication Critical patent/JP2011167713A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connection material in which the joining temperature of a Zn/Al clad material is reduced, thus residual thermal stress in a using temperature region is reduced, and reliability of the joint can be improved. <P>SOLUTION: The connection material is composed of: an Mg-containing Al-based alloy layer 2; and Zn layers 3, 4 adjacent to both the sides of the Al based alloy layer 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、接続材料の技術に係り、特に、この接続材料の構造及び製造方法、さらにこの接続材料を用いた半導体装置、パワー半導体装置、パワーモジュールなどに適用して有効な技術に関するものである。   The present invention relates to a connection material technique, and more particularly to a structure and manufacturing method of the connection material, and a technique effective when applied to a semiconductor device, a power semiconductor device, a power module, and the like using the connection material. .

本発明者らが検討した技術として、接続材料を用いた半導体装置について、図3及び図4を用いて説明する。図3は、従来の半導体装置の構造を示す図である。図4は、再溶融したはんだによるフラッシュを説明する図である。   As a technique studied by the present inventors, a semiconductor device using a connection material will be described with reference to FIGS. FIG. 3 is a diagram showing a structure of a conventional semiconductor device. FIG. 4 is a diagram for explaining flashing by remelted solder.

図3に示すように、半導体装置30は、半導体素子31がフレーム(ダイ)32上にはんだ33により接続され、ワイヤ34によりリード35のインナーリード36と半導体素子31の電極がワイヤボンディングされた後、封止用レジン37或いは不活性ガスにより封止されて製造される。   As shown in FIG. 3, in the semiconductor device 30, a semiconductor element 31 is connected to a frame (die) 32 by solder 33, and an inner lead 36 of a lead 35 and an electrode of the semiconductor element 31 are wire-bonded by a wire 34. It is manufactured by being sealed with a sealing resin 37 or an inert gas.

この半導体装置30は、Sn−Ag−Cu系の中温の鉛フリーはんだによりプリント基板にリフローはんだ付けされる。Sn−Ag−Cu系の鉛フリーはんだの融点は約220℃と高く、リフロー接続の際に接続部が最高260℃まで加熱されることが想定される。そのため、温度階層を目的として半導体装置30内部の半導体素子31のダイボンディングには、290℃以上の融点を有する高鉛はんだが使用される。高鉛はんだは、構成成分として85mass%以上の鉛を含有しており、2006年7月より施行されているRoHS指令で禁止されているSn−Pb共晶はんだに比べて環境への負荷が大きい。よって、高鉛はんだに替わる代替接続材料の開発が切望されている。   The semiconductor device 30 is reflow soldered to the printed circuit board with Sn-Ag-Cu-based medium temperature lead-free solder. The melting point of Sn-Ag-Cu-based lead-free solder is as high as about 220 ° C., and it is assumed that the connection portion is heated up to 260 ° C. during reflow connection. Therefore, high lead solder having a melting point of 290 ° C. or higher is used for die bonding of the semiconductor element 31 inside the semiconductor device 30 for the purpose of the temperature hierarchy. High-lead solder contains 85 mass% or more of lead as a constituent component and has a greater environmental impact than Sn-Pb eutectic solder prohibited by the RoHS Directive enforced in July 2006 . Therefore, development of an alternative connection material to replace high lead solder is eagerly desired.

現在、既に開発されているSn−Ag−Cu系等のはんだは融点が260℃以下であるため、半導体素子のダイボンディングに使用した場合、2次実装時(最高温度260℃)にはんだが溶融してしまう。接続部周りがレジンでモールド(樹脂封止)されている場合、内部のはんだが溶融すると、溶融時の体積膨張により、図4に示すように、フラッシュと言って封止用レジン37とフレーム32の界面からはんだ33が漏れ出すことがある。或いは、漏れ出さないまでも、漏れだそうと作用し、その結果、凝固後にはんだの中に大きなボイド38が形成されて不良品となる。代替材料の候補としては、融点の面からAu−Sn、Au−Si、Au−Ge等のAu系のはんだ、Zn、Zn−Al系のはんだ及びBi−Cu、Bi−Ag等のはんだが報告されており、世界中で検討が進められている。   Currently developed Sn-Ag-Cu solders have a melting point of 260 ° C or lower, so when used for die bonding of semiconductor elements, the solder melts during secondary mounting (maximum temperature 260 ° C). Resulting in. When the periphery of the connecting portion is molded with resin (resin sealing), when the internal solder is melted, due to volume expansion at the time of melting, as shown in FIG. 4, the sealing resin 37 and the frame 32 are called flash. Solder 33 may leak from the interface. Alternatively, even if it does not leak, it acts to leak, and as a result, a large void 38 is formed in the solder after solidification, resulting in a defective product. As alternative material candidates, Au solder such as Au-Sn, Au-Si, Au-Ge, Zn, Zn-Al solder, and solder such as Bi-Cu, Bi-Ag are reported in terms of melting point. Is being studied all over the world.

しかしながら、Au系のはんだは、構成成分としてAuを80mass%以上含有しており、コストの面で汎用性に難がある。Bi系のはんだは、熱伝導率が約9W/mKと現行の高鉛はんだより低く、高放熱性が要求されるパワー半導体装置及びパワーモジュール等への適用は難しいと推定できる。また、Zn及びZn−Al系のはんだは、約100W/mKと高い熱伝導率を有するが、濡れにくく(特にZn−Al系のはんだ)、はんだが硬く、接続後の冷却時に熱応力によって半導体素子が破壊しやすい等の問題がある。   However, Au-based solder contains 80 mass% or more of Au as a constituent component, and is difficult to be versatile in terms of cost. Bi-based solder has a thermal conductivity of about 9 W / mK, which is lower than that of current high lead solder, and it can be estimated that application to power semiconductor devices and power modules that require high heat dissipation is difficult. In addition, Zn and Zn-Al solder have high thermal conductivity of about 100 W / mK, but they are difficult to wet (especially Zn-Al solder), the solder is hard, and the semiconductor is subjected to thermal stress during cooling after connection. There is a problem that the element is easily destroyed.

特許文献1や特許文献2では、Al:1〜7mass%、Mg:0.5〜6mass%、Ga:0.1〜20mass%、P:0.001〜0.5mass%、残部をZn、Ge:2〜9mass%、Al:2〜9mass%、P:0.001〜0.5mass%、残部をZn或いはGe:2〜9mass%、Al:2〜9mass%、Mg:0.01〜0.5mass%、P:0.001〜0.5mass%、残部をZnとすることにより、Zn系のはんだ合金のCuやNiに対する濡れ性の向上及び融点低下をさせている。しかしながら、AlやMgを成分とするため、接続時の加熱によりAl酸化物及びMg酸化物が溶融部表面に膜を生成する。これらの膜が濡れを阻害するため、スクラブ等により機械的に膜を破らない限り、十分に濡れが得られない虞がある。また、はんだの硬さに関して、改善がなされていないため、接続後の冷却時或いは温度サイクル時の熱応力による半導体素子の破壊に対する改善が期待できない。   In Patent Literature 1 and Patent Literature 2, Al: 1 to 7 mass%, Mg: 0.5 to 6 mass%, Ga: 0.1 to 20 mass%, P: 0.001 to 0.5 mass%, and the balance is Zn, Ge : 2-9 mass%, Al: 2-9 mass%, P: 0.001-0.5 mass%, the balance is Zn or Ge: 2-9 mass%, Al: 2-9 mass%, Mg: 0.01-0. By using 5 mass%, P: 0.001 to 0.5 mass%, and the balance being Zn, the wettability of the Zn-based solder alloy to Cu and Ni is improved and the melting point is lowered. However, since Al or Mg is used as a component, Al oxide and Mg oxide generate a film on the surface of the melted portion by heating during connection. Since these films inhibit wetting, there is a possibility that sufficient wetting may not be obtained unless the film is mechanically broken by scrubbing or the like. In addition, since no improvement has been made with respect to the hardness of the solder, it cannot be expected to improve the destruction of the semiconductor element due to the thermal stress during cooling after connection or during temperature cycling.

特許文献3では、Zn−Al系合金の最表面にIn、Ag、Au層を設けることにより、Zn−Al系合金表面の酸化を抑制し、濡れ性の向上を図っている。しかしながら、In、Ag及びAu層を設けるためには、Zn−Al系合金の表面にめっき及び蒸着等の処理が不可欠であり、材料製造のプロセス増加に繋がる。また、上述したように、Inを添加した場合に硬さを低下させることが可能であるが、接続後の冷却時の熱応力による半導体素子の破壊を抑制するほどの効果は期待できない。   In Patent Document 3, an In, Ag, and Au layer is provided on the outermost surface of a Zn—Al alloy, thereby suppressing oxidation of the Zn—Al alloy surface and improving wettability. However, in order to provide the In, Ag, and Au layers, it is indispensable to treat the surface of the Zn—Al-based alloy such as plating and vapor deposition, which leads to an increase in the process of manufacturing the material. Further, as described above, when In is added, the hardness can be reduced, but an effect that suppresses the destruction of the semiconductor element due to the thermal stress during cooling after connection cannot be expected.

一方、特許文献4では、従来のZn−Al系のはんだの応力緩和性能を改善する、Zn/Al/Znクラッド構造のはんだ代替材が提案されている。   On the other hand, Patent Document 4 proposes a Zn / Al / Zn clad solder substitute material that improves the stress relaxation performance of a conventional Zn-Al solder.

特開2002−358539号公報JP 2002-358539 A 特開2004−358540号公報JP 2004-358540 A 特開2002−261104号公報JP 2002-261104 A 特開2008−126272号公報JP 2008-126272 A

しかしながら、Zn/Al/Znクラッド材は、合金化した際の融点(液相線温度)が382℃であり、Pb−Sn高温はんだ、Au−Sn系のはんだなどの他の高温はんだと比べて、著しく高温である。接合温度が高いと、凝固後、室温まで冷却した際の、接合部の熱収縮量がより大きくなるため、接合物と被接合物の熱膨張率差によって生じる熱応力が大きくなり、仮に接合部にクラックの起点が形成されたとき、その進展が促進される。クラックが進展すると、接合部の接合強度が低下し、接合部自体が破壊される虞がある。また、同時に熱抵抗も増大するため、隣接している被接合物の温度上昇を招き、システムが機能しなくなる虞がある。   However, the Zn / Al / Zn clad material has a melting point (liquidus temperature) of 382 ° C. when alloyed, compared with other high-temperature solders such as Pb—Sn high-temperature solder and Au—Sn solder. It is extremely hot. If the bonding temperature is high, the amount of thermal shrinkage of the bonded portion when it is cooled to room temperature after solidification becomes larger, so the thermal stress caused by the difference in thermal expansion coefficient between the bonded object and the bonded object increases, When the starting point of a crack is formed, the progress is promoted. When the crack progresses, the joint strength of the joint portion decreases, and the joint portion itself may be destroyed. At the same time, since the thermal resistance increases, the temperature of adjacent objects to be joined increases, and the system may not function.

そこで、本発明の目的は、Zn/Alクラッド材の接合温度を低下させることによって、使用温度域における残留熱応力を低減し、接合部の信頼性を向上させた接続材料、接続材料の製造方法及び半導体装置を提供することにある。   Accordingly, an object of the present invention is to reduce the residual thermal stress in the operating temperature range by lowering the bonding temperature of the Zn / Al clad material, and to improve the reliability of the joint, and a method for manufacturing the connection material And providing a semiconductor device.

本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、Mgを含有するAl系合金層と、前記Al系合金層の両面に隣接するZn層とからなる接続材料である。   The present invention was devised to achieve the above object, and the invention of claim 1 is a connection comprising an Al-based alloy layer containing Mg and a Zn layer adjacent to both sides of the Al-based alloy layer. Material.

請求項2の発明は、前記Al系合金層に含有されるMgが、2.0質量%以上5.6質量%以下である請求項1に記載の接続材料である。   Invention of Claim 2 is a connection material of Claim 1 whose Mg contained in the said Al type alloy layer is 2.0 mass% or more and 5.6 mass% or less.

請求項3の発明は、第1のZn層の上にMgを含有するAl系合金層を重ね、前記Al系合金層の上に第2のZn層を重ねて、クラッド圧延により製造する接続材料の製造方法である。   According to a third aspect of the present invention, there is provided a connection material manufactured by clad rolling, wherein an Al-based alloy layer containing Mg is stacked on a first Zn layer, and a second Zn layer is stacked on the Al-based alloy layer. It is a manufacturing method.

請求項4の発明は、第1のZn層の上にMgを含有するAl系合金層を重ね、前記Al系合金層の上に第2のZn層を重ねて、加圧成形により製造する接続材料の製造方法である。   The invention according to claim 4 is a connection manufactured by pressure forming by stacking an Al-based alloy layer containing Mg on the first Zn layer, and stacking a second Zn layer on the Al-based alloy layer. It is a manufacturing method of material.

請求項5の発明は、半導体素子を接続材料を介してフレーム上に実装し、前記半導体素子の電極をインナーリードにワイヤボンディングで接続した後、これらをレジンで樹脂封止した半導体装置において、前記接続材料は、Mgを含有するAl系合金層と、前記Al系合金層の両面に設けられたZn層とからなる半導体装置である。   According to a fifth aspect of the present invention, there is provided a semiconductor device in which a semiconductor element is mounted on a frame via a connecting material, and electrodes of the semiconductor element are connected to inner leads by wire bonding, and then these are resin-sealed with a resin. The connecting material is a semiconductor device including an Al-based alloy layer containing Mg and Zn layers provided on both surfaces of the Al-based alloy layer.

請求項6の発明は、半導体素子を基板上に実装し、前記半導体素子の電極をインナーリードにワイヤボンディングで接続した後、前記基板上にキャップ用接続材料を介して金属キャップを被せて気密封止した半導体装置において、前記キャップ用接続材料は、Mgを含有するAl系合金層と、前記Al系合金層の最表面に設けられたZn層とからなる半導体装置である。   According to a sixth aspect of the present invention, a semiconductor element is mounted on a substrate, an electrode of the semiconductor element is connected to an inner lead by wire bonding, and then a metal cap is placed on the substrate via a cap connecting material to be hermetically sealed. In the stopped semiconductor device, the cap connection material is a semiconductor device including an Al-based alloy layer containing Mg and a Zn layer provided on the outermost surface of the Al-based alloy layer.

請求項7の発明は、前記半導体素子は、素子用接続材料を介して前記基板上に実装され、前記素子用接続材料は、Mgを含有するAl系合金層と、前記Al系合金層の両面に設けられたZn層とからなる請求項6に記載の半導体装置である。   According to a seventh aspect of the present invention, the semiconductor element is mounted on the substrate via an element connecting material, and the element connecting material includes an Al-based alloy layer containing Mg and both surfaces of the Al-based alloy layer. The semiconductor device according to claim 6, comprising a Zn layer provided on the semiconductor layer.

請求項8の発明は、半導体素子を接続材料を介して下面にバンプを有する基板上に実装した半導体装置において、前記接続材料は、Mgを含有するAl系合金層と、前記Al系合金層の最表面に設けられたZn層とからなる半導体装置である。   The invention according to claim 8 is a semiconductor device in which a semiconductor element is mounted on a substrate having a bump on the lower surface through a connecting material, the connecting material comprising an Al-based alloy layer containing Mg and the Al-based alloy layer. This is a semiconductor device comprising a Zn layer provided on the outermost surface.

本発明によれば、Zn/Alクラッド材の接合温度を低下させることによって、使用温度域における残留熱応力を低減し、接合部の信頼性を向上させることができる。   According to the present invention, by reducing the bonding temperature of the Zn / Al clad material, the residual thermal stress in the operating temperature range can be reduced, and the reliability of the bonded portion can be improved.

本発明の一実施の形態に係る接続材料を示す断面図である。It is sectional drawing which shows the connection material which concerns on one embodiment of this invention. 図1の接続材料を用いた評価用接合体を示す断面図である。It is sectional drawing which shows the joined body for evaluation using the connection material of FIG. 従来の半導体装置を示す構造図である。It is a structural diagram showing a conventional semiconductor device. 図3の半導体装置において、再溶融したはんだによるフラッシュを説明する図である。FIG. 4 is a diagram illustrating flashing by remelted solder in the semiconductor device of FIG. 3.

本発明者らは、Al系合金層とZn層とで構成されるクラッド材について鋭意検討した結果、Mgを含有するAl系合金層を用いることで、従来のクラッド材より接合温度を低下させることができることを見出した。   As a result of intensive studies on a clad material composed of an Al-based alloy layer and a Zn layer, the inventors of the present invention can lower the bonding temperature than a conventional clad material by using an Al-based alloy layer containing Mg. I found out that I can.

以下、この知見に基づいて完成した本発明の好適な実施の形態を添付図面にしたがって説明する。   Hereinafter, preferred embodiments of the present invention completed based on this finding will be described with reference to the accompanying drawings.

図1は、本実施の形態に係る接続材料を示す断面図である。   FIG. 1 is a cross-sectional view showing a connection material according to the present embodiment.

図1に示すように、本実施の形態に係る接続材料1は、フレーム又は基板上に半導体素子を実装、或いは半導体素子を気密封止する際に用いるものであり、Mgを含有するAl系合金層2と、Al系合金層2の両面に隣接するZn層3,4とからなる。   As shown in FIG. 1, the connection material 1 according to the present embodiment is used when a semiconductor element is mounted on a frame or a substrate or when the semiconductor element is hermetically sealed, and an Al-based alloy containing Mg. It consists of the layer 2 and Zn layers 3 and 4 adjacent to both surfaces of the Al-based alloy layer 2.

接続材料1は、第1のZn層3の上にMgを含有するAl系合金層2を重ね、Al系合金層2の上に第2のZn層4を重ねて、クラッド圧延又は加圧成形により製造する。   The connecting material 1 is formed by laminating an Al-based alloy layer 2 containing Mg on the first Zn layer 3 and laminating the second Zn layer 4 on the Al-based alloy layer 2, and performing clad rolling or pressure forming. Manufactured by.

クラッド圧延又は加圧成形を行うと、Al系合金層2とZn層3,4とが接触すると同時に圧力によって大きな変形が生じ、Al系合金層2及びZn層3,4の表面に形成されていた酸化物膜が破れ、新生面により金属接合される。また、クラッド圧延又は加圧成形では、AlとZnの拡散が顕著になる温度まで熱負荷がかからない。よって、Alが表面のZn層3,4に拡散し最表面まで達することはなく、接続時に良好な濡れを得ることができる。   When clad rolling or pressure forming is performed, the Al-based alloy layer 2 and the Zn layers 3 and 4 come into contact with each other, and at the same time, large deformation occurs due to the pressure, and the Al-based alloy layer 2 and the Zn layers 3 and 4 are formed on the surfaces. The oxide film is broken and metal is bonded to the new surface. In addition, in the clad rolling or pressure forming, no heat load is applied to a temperature at which Al and Zn diffusion becomes significant. Therefore, Al does not diffuse into the Zn layers 3 and 4 on the surface and reach the outermost surface, and good wetting can be obtained at the time of connection.

この接続材料1の作用を従来のクラッド材の作用と共に述べる。   The operation of the connecting material 1 will be described together with the operation of the conventional clad material.

従来の純Al系合金層とZn層とで構成されるクラッド材の場合、材料を加熱昇温する際、Zn−Al2元系合金の共晶温度である382℃で初めて液相となる部分が生じる。液相が生じると隣接する固相は液相に高速に溶融拡散し、ろう材層全体が溶融する。さらに残留するAl系合金層からの拡散が継続し、液相点が上昇する。Al系合金層が存在する限り、液相点が上昇し、液相が減少、固相となる。   In the case of a clad material composed of a conventional pure Al-based alloy layer and a Zn layer, when the material is heated and heated, the portion that becomes a liquid phase for the first time at 382 ° C., which is the eutectic temperature of the Zn—Al binary alloy, Arise. When the liquid phase occurs, the adjacent solid phase melts and diffuses at high speed into the liquid phase, and the entire brazing material layer melts. Furthermore, diffusion from the remaining Al-based alloy layer continues, and the liquidus point rises. As long as the Al-based alloy layer exists, the liquid phase point increases, the liquid phase decreases, and the solid phase is obtained.

これに対して、本実施の形態に係る接続材料1の場合、Al系合金層2としてMgを含有した合金を用いるので、Al系合金層2とZn層3,4の界面での拡散反応では、Zn−Al−Mg3元系合金を形成する。Mgが、Zn及びAlと合金化することで、液相線温度が低下する。このとき、Mgの含有濃度によって低下温度域が上下する。   On the other hand, in the case of the connection material 1 according to the present embodiment, since an alloy containing Mg is used as the Al-based alloy layer 2, the diffusion reaction at the interface between the Al-based alloy layer 2 and the Zn layers 3 and 4 is performed. A Zn—Al—Mg ternary alloy is formed. As Mg is alloyed with Zn and Al, the liquidus temperature is lowered. At this time, the temperature drop range varies depending on the Mg concentration.

Al系合金層2に含有されるMgは、2.0質量%以上5.6質量%以下であるとよい。これは、Mgの含有量が2.0質量%未満だと、接続材料1の融点低下が3℃以下となり、液相線温度の低下が十分でなく、5.6質量%を超えると、汎用Al合金展進材のうちもっともMg成分を含有するA5056(5.6質量%)を超えることになり、別途Al合金を特別に鋳造、作製する必要があるためである。クラッド材の構成材として特殊な合金を用いることは、コストアップに繋がり、製品への適用効果が著しく低下する。   Mg contained in the Al-based alloy layer 2 is preferably 2.0 mass% or more and 5.6 mass% or less. This is because when the Mg content is less than 2.0% by mass, the melting point of the connecting material 1 is 3 ° C. or less, and the liquidus temperature is not sufficiently lowered. This is because A5056 (5.6% by mass) containing the most Mg component in the Al alloy spreading material is exceeded, and it is necessary to separately cast and produce an Al alloy. The use of a special alloy as a constituent material of the clad material leads to an increase in cost, and the effect applied to the product is significantly reduced.

ここで、上述の条件を満たす汎用Al合金として、A5052(平均Mg含有率2.5質量%)、A5154(平均Mg含有率3.5質量%)、A5082(平均Mg含有率4.5質量%)、A5056(平均Mg含有率5.0質量%)などが挙げられる。   Here, as a general-purpose Al alloy satisfying the above-mentioned conditions, A5052 (average Mg content 2.5 mass%), A5154 (average Mg content 3.5 mass%), A5082 (average Mg content 4.5 mass%) ), A5056 (average Mg content: 5.0% by mass), and the like.

本実施の形態に係る接続材料1は、Mgを含有するAl系合金層2と、Al系合金層2の両面に隣接するZn層3,4とからなるため、純Al系合金層とZn層とで構成された従来のクラッド材に比べて液相線温度を低く、すなわち接合温度を低くすることができる。そのため、接合部に生じる熱応力を低減させることが可能となる。   Since the connecting material 1 according to the present embodiment includes the Al-based alloy layer 2 containing Mg and the Zn layers 3 and 4 adjacent to both surfaces of the Al-based alloy layer 2, the pure Al-based alloy layer and the Zn layer The liquidus temperature can be lowered, that is, the bonding temperature can be lowered as compared with the conventional clad material composed of Therefore, it becomes possible to reduce the thermal stress which arises in a junction part.

また、接続材料1では、Al系合金層2に含有されるMgが、2.0質量%以上5.6質量%以下であるため、低コストで、液相線温度を十分に低下させることができる。   Moreover, in the connection material 1, since Mg contained in the Al-based alloy layer 2 is 2.0 mass% or more and 5.6 mass% or less, the liquidus temperature can be sufficiently lowered at low cost. it can.

以上要するに、本発明によれば、Zn/Alクラッド材の接合温度を低下させることによって、使用温度域における残留熱応力を低減し、接合部の信頼性を向上させることができる。   In short, according to the present invention, by reducing the bonding temperature of the Zn / Al clad material, the residual thermal stress in the operating temperature range can be reduced, and the reliability of the bonded portion can be improved.

なお、本実施の形態では、Al系合金層2の両面にZn層3,4を設けたが、Al系合金層2の最表面にZn層3を設けるようにしても良い。   In this embodiment, the Zn layers 3 and 4 are provided on both surfaces of the Al-based alloy layer 2, but the Zn layer 3 may be provided on the outermost surface of the Al-based alloy layer 2.

この接続材料1は、半導体装置、パワー半導体装置、パワーモジュール等の半導体装置のダイボンディングや、気密封止の封止材、フリップチップボンディングなどに有効に活用することができる。   The connection material 1 can be effectively used for die bonding of semiconductor devices such as semiconductor devices, power semiconductor devices, and power modules, hermetic sealing materials, flip chip bonding, and the like.

一例として、接続材料1の半導体装置への適用例について説明する。   As an example, an application example of the connection material 1 to a semiconductor device will be described.

ここでは、半導体素子をフレーム上に実装する半導体装置(ダイボンディング構造)、金属キャップを基板上に被せる半導体装置(気密封止構造)、バンプにより接続する半導体装置(フリップチップ実装構造)を説明する。   Here, a semiconductor device (die bonding structure) for mounting a semiconductor element on a frame, a semiconductor device (hermetic sealing structure) for covering a metal cap on a substrate, and a semiconductor device (flip chip mounting structure) connected by bumps will be described. .

<適用例1>
半導体素子を接続材料を介してフレーム(ダイ)上に実装し、半導体素子の電極をインナーリードにワイヤボンディングで接続した後、これら半導体素子、フレーム、インナーリード、ワイヤをレジンで樹脂封止したダイボンディング構造の半導体装置において、半導体素子をフレーム上に実装する際に用いる接続材料として本発明の接続材料1を用いることができる。
<Application example 1>
A die in which a semiconductor element is mounted on a frame (die) through a connecting material, electrodes of the semiconductor element are connected to inner leads by wire bonding, and then these semiconductor elements, frame, inner leads, and wires are resin-sealed with resin. In a semiconductor device having a bonding structure, the connection material 1 of the present invention can be used as a connection material used when a semiconductor element is mounted on a frame.

<適用例2>
半導体素子を基板(モジュール基板)上に実装し、半導体素子の電極をインナーリードにワイヤボンディングで接続した後、基板上にキャップ用接続材料を介して金属キャップを被せて半導体素子、インナーリード、ワイヤを気密封止した気密封止構造の半導体装置において、金属キャップを基板上に接続するキャップ用接続材料として、Al系合金層2の最表面にZn層3を設けた本発明の接続材料を用いることができる。さらに、半導体素子を基板上に実装する際に用いる接続材料として本発明の接続材料1を用いることもできる。
<Application example 2>
After mounting the semiconductor element on the substrate (module substrate) and connecting the electrode of the semiconductor element to the inner lead by wire bonding, the semiconductor element, the inner lead, and the wire are covered with a metal cap on the substrate via a connecting material for cap. In the hermetically sealed semiconductor device in which the metal cap is hermetically sealed, the connection material of the present invention in which the Zn layer 3 is provided on the outermost surface of the Al-based alloy layer 2 is used as the cap connection material for connecting the metal cap onto the substrate. be able to. Furthermore, the connection material 1 of the present invention can be used as a connection material used when the semiconductor element is mounted on the substrate.

<適用例3>
半導体素子を接続材料を介して下面にバンプを有する基板上に実装した半導体装置において、半導体素子を基板上に実装する際に用いる接続材料として、Al系合金層2の最表面にZn層3を設けた本発明の接続材料を用いることができる。
<Application example 3>
In a semiconductor device in which a semiconductor element is mounted on a substrate having a bump on the lower surface via a connection material, a Zn layer 3 is formed on the outermost surface of the Al-based alloy layer 2 as a connection material used when the semiconductor element is mounted on the substrate. The provided connection material of the present invention can be used.

以上、本発明者らによってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。   Although the invention made by the present inventors has been specifically described based on the embodiment, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.

すなわち、前記説明では、本発明の適用について、半導体装置のダイボンディングを一例に挙げて説明したが、ダイボンディングさせる半導体装置であれば、多様な半導体装置に適用できる。これらには、例えば、オルタネータ用ダイオード、IGBTモジュール、RFモジュール等のフロントエンドモジュール、自動車用パワーモジュール等が挙げられる。   That is, in the above description, the application of the present invention has been described by taking die bonding of a semiconductor device as an example. However, any semiconductor device that is die bonded can be applied to various semiconductor devices. These include, for example, alternator diodes, IGBT modules, front-end modules such as RF modules, automobile power modules, and the like.

また、前記説明では、半導体装置をモジュール基板にリフロー実装する場合を一例に挙げて説明したが、例えば、MCM(Multi Chip Module)構成に使用する場合にも当然に適用できるものである。   In the above description, the case where the semiconductor device is reflow-mounted on the module substrate has been described as an example. However, the present invention is naturally applicable to, for example, an MCM (Multi Chip Module) configuration.

以下、本発明の数値的根拠を述べる。   The numerical basis of the present invention will be described below.

実施例1〜12及び比較例1〜6で用いる各接続材料は、Al系合金層の両面にZn層を重ねて得られた元板を、それぞれクラッド圧延(加工度80%)し、その後仕上圧延を数回行い、所定の製品厚さに加工して作製した。この作製した各接続材料の板厚構成を表1に示す。   Each connection material used in Examples 1 to 12 and Comparative Examples 1 to 6 is clad rolled (working degree 80%) to the base plate obtained by stacking the Zn layers on both sides of the Al-based alloy layer, and then finished. Rolling was performed several times and processed to a predetermined product thickness. Table 1 shows the thickness structure of each of the produced connection materials.

Figure 2011167713
Figure 2011167713

表1の各パターンにおける元板厚、クラッド圧延後の板厚、最終板厚は以下の通りである。
・パターン1
元板厚=Zn:0.2mm、Al:0.7mm、Zn:0.2mm
クラッド圧延後の板厚=Zn:0.04mm、Al:0.14mm、Zn:0.04mm最終板厚=Zn:0.02mm、Al:0.07mm、Zn:0.02mm
・パターン2
元板厚=Zn:0.2mm、Al:1.1mm、Zn:0.2mm
クラッド圧延後の板厚=Zn:0.04mm、Al:0.22mm、Zn:0.04mm最終板厚=Zn:0.02mm、Al:0.11mm、Zn:0.02mm
・パターン3
元板厚=Zn:0.45mm、Al:0.15mm、Zn:0.45mm
クラッド圧延後の板厚=Zn:0.09mm、Al:0.03mm、Zn:0.09mm最終板厚=Zn:0.045mm、Al:0.015mm、Zn:0.045mm
The original plate thickness, the plate thickness after clad rolling, and the final plate thickness in each pattern of Table 1 are as follows.
・ Pattern 1
Original plate thickness = Zn: 0.2 mm, Al: 0.7 mm, Zn: 0.2 mm
Plate thickness after clad rolling = Zn: 0.04 mm, Al: 0.14 mm, Zn: 0.04 mm Final plate thickness = Zn: 0.02 mm, Al: 0.07 mm, Zn: 0.02 mm
Pattern 2
Original plate thickness = Zn: 0.2 mm, Al: 1.1 mm, Zn: 0.2 mm
Plate thickness after clad rolling = Zn: 0.04 mm, Al: 0.22 mm, Zn: 0.04 mm Final plate thickness = Zn: 0.02 mm, Al: 0.11 mm, Zn: 0.02 mm
・ Pattern 3
Original plate thickness = Zn: 0.45 mm, Al: 0.15 mm, Zn: 0.45 mm
Plate thickness after clad rolling = Zn: 0.09 mm, Al: 0.03 mm, Zn: 0.09 mm Final plate thickness = Zn: 0.045 mm, Al: 0.015 mm, Zn: 0.045 mm

実施例1〜12及び比較例1〜6では、図2に示すように、半導体装置を模擬した評価用接合体に、接合用クラッド材21を用いたものである。この評価用接合体は、半導体素子22と、この半導体素子22を実装するベース板23で構成され、半導体素子22とベース板23は接合用クラッド材21で接合されて構成される。   In Examples 1 to 12 and Comparative Examples 1 to 6, as shown in FIG. 2, a bonding clad material 21 is used for an evaluation bonded body that simulates a semiconductor device. The evaluation bonded body includes a semiconductor element 22 and a base plate 23 on which the semiconductor element 22 is mounted. The semiconductor element 22 and the base plate 23 are bonded with a bonding clad material 21.

この評価用接合体の作製においては、半導体素子22の接合面にはNi/Auめっきを施し、またベース板23の接合面にはNiめっきを施した。接合は半導体素子22とベース板23との間に、半導体素子22の接合面と同面積の接合用クラッド材21を介して配置し、窒素雰囲気中で熱処理を行い接合させた。半導体素子22の大きさは、板厚0.5mm×5mm角、ベース板23の大きさは、板厚3mm×30mm角とした。接合熱処理の際には、半導体素子22の上にステンレス製の重し50gを載せ、窒素雰囲気中で加熱した。   In the production of the evaluation bonded body, the bonding surface of the semiconductor element 22 was subjected to Ni / Au plating, and the bonding surface of the base plate 23 was subjected to Ni plating. The bonding was arranged between the semiconductor element 22 and the base plate 23 via a bonding clad material 21 having the same area as the bonding surface of the semiconductor element 22 and bonded by heat treatment in a nitrogen atmosphere. The size of the semiconductor element 22 was 0.5 mm × 5 mm square, and the size of the base plate 23 was 3 mm × 30 mm square. During the bonding heat treatment, 50 g of a stainless steel weight was placed on the semiconductor element 22 and heated in a nitrogen atmosphere.

実施例1〜12は、いずれも表1のパターン1,2,3において、心材であるAl系合金として、それぞれJIS規格のA5052、A5154、A5056、A5082を用いた例である。また、比較例1〜6は、心材であるAl系合金として、JIS規格のA1050及びA1100を用いた例である。   Examples 1 to 12 are examples in which JIS standards A5052, A5154, A5056, and A5082 were used as the Al-based alloys as the core material in the patterns 1, 2, and 3 of Table 1, respectively. Comparative Examples 1 to 6 are examples in which JIS standard A1050 and A1100 are used as the Al-based alloy as the core material.

これらについて、接合時の濡れ性について評価した結果を表2に示す。   About these, the result evaluated about the wettability at the time of joining is shown in Table 2.

Figure 2011167713
Figure 2011167713

接合温度は、400℃及び380℃、接合時間はいずれも5分間であった。濡れ性については、半導体素子22の面積に対して80%以上の濡れが得られた場合に○、80%未満の場合を×とした。   The bonding temperatures were 400 ° C. and 380 ° C., and the bonding time was 5 minutes. Regarding the wettability, the case where 80% or more of the wettability with respect to the area of the semiconductor element 22 was obtained was evaluated as ◯, and the case where it was less than 80% was evaluated as x.

この評価の結果、接合温度400℃については、実施例1〜12及び比較例1〜6のいずれの評価材も80%以上の濡れを得られた。   As a result of this evaluation, 80% or more of wetness was obtained for any of the evaluation materials of Examples 1 to 12 and Comparative Examples 1 to 6 for a bonding temperature of 400 ° C.

一方、接合温度を380℃とした場合、実施例1〜12いずれの評価材も80%以上の濡れを得られたが、Mgを含有しない純Al系の材料(A1050及びA1100)を使用した接合用クラッド材を用いた比較例1〜6の場合は、融点が382℃で変化がないため、いずれもベース板23に対して80%未満の濡れとなった。   On the other hand, when the bonding temperature was 380 ° C., 80% or more of the evaluation materials of Examples 1 to 12 were obtained, but bonding using pure Al-based materials (A1050 and A1100) not containing Mg. In Comparative Examples 1 to 6 using the clad material, the melting point was not changed at 382 ° C., so that the wetness was less than 80% with respect to the base plate 23.

ここで、実施例1〜12のうち、接合温度を380℃としたものについて、接合部の断面調査を行った結果、接合部に発生するクラック長さは、いずれも断面長に対して1%未満であったのに対し、比較例1〜6のうち、400℃で接合したものについて断面調査を行った結果、接合部に発生するクラック長さは、断面長に対して5%以上であった。クラック長さの測定方法は、接合用クラッド材の側辺と同じ方向の切断面の組織を観察し、クラックの長さを測定するものであり、複数箇所に発生した場合にはその合計長さを測定した。これらのクラックの発生は、接合後の冷却時に半導体素子22とベース板23との線膨張率差によって生じる熱応力を緩和できずに生じたものだが、実施例1〜12は接合温度を低下させ、室温との温度差を縮小できるため、比較例1〜6と比べて、接合後の使用環境におけるクラックの進展を著しく低減でき、接合部の剥離及び半導体素子22の破壊などの可能性を低減できる。   Here, as a result of conducting a cross-sectional investigation of the joint portion of Examples 1 to 12 having a joining temperature of 380 ° C., the crack length generated in the joint portion is 1% of the cross-sectional length. On the other hand, as a result of conducting a cross-sectional investigation on those bonded at 400 ° C. among Comparative Examples 1 to 6, the crack length generated in the bonded portion was 5% or more with respect to the cross-sectional length. It was. The crack length is measured by observing the structure of the cut surface in the same direction as the side of the bonding clad material, and measuring the length of the crack. Was measured. The occurrence of these cracks occurred because the thermal stress generated by the difference in linear expansion coefficient between the semiconductor element 22 and the base plate 23 during cooling after bonding could not be relaxed, but Examples 1 to 12 lowered the bonding temperature. Since the temperature difference from room temperature can be reduced, compared with Comparative Examples 1 to 6, the progress of cracks in the use environment after bonding can be remarkably reduced, and the possibility of peeling of the bonded portion and destruction of the semiconductor element 22 is reduced. it can.

以上により、実施例1〜12によれば、Mgを2.0質量%以上5.6質量%以下含有する汎用Al合金を使用した接合用クラッド材を、半導体装置のダイボンディング接合に用いることにより、より低温の接合温度で良好の濡れを得ることができる。また、その結果、接合後の室温における接合部に残留する熱応力が低減されるため、高い接続信頼性を得ることができる。   By the above, according to Examples 1-12, by using the clad material for joining which uses the general purpose Al alloy which contains Mg 2.0 mass% or more and 5.6 mass% or less for die bonding joining of a semiconductor device Good wetting can be obtained at a lower bonding temperature. As a result, since the thermal stress remaining in the bonded portion at room temperature after bonding is reduced, high connection reliability can be obtained.

1 接続材料
2 Al系合金層
3,4 Zn層
1 Connecting material 2 Al-based alloy layer 3, 4 Zn layer

Claims (8)

Mgを含有するAl系合金層と、前記Al系合金層の両面に隣接するZn層とからなることを特徴とする接続材料。   A connection material comprising: an Al-based alloy layer containing Mg; and a Zn layer adjacent to both surfaces of the Al-based alloy layer. 前記Al系合金層に含有されるMgが、2.0質量%以上5.6質量%以下である請求項1に記載の接続材料。   The connection material according to claim 1, wherein Mg contained in the Al-based alloy layer is 2.0 mass% or more and 5.6 mass% or less. 第1のZn層の上にMgを含有するAl系合金層を重ね、前記Al系合金層の上に第2のZn層を重ねて、クラッド圧延により製造することを特徴とする接続材料の製造方法。   An Al-based alloy layer containing Mg is stacked on the first Zn layer, and a second Zn layer is stacked on the Al-based alloy layer, and manufacturing is performed by clad rolling. Method. 第1のZn層の上にMgを含有するAl系合金層を重ね、前記Al系合金層の上に第2のZn層を重ねて、加圧成形により製造することを特徴とする接続材料の製造方法。   A connection material characterized in that an Al-based alloy layer containing Mg is stacked on the first Zn layer, and a second Zn layer is stacked on the Al-based alloy layer, and is manufactured by pressure molding. Production method. 半導体素子を接続材料を介してフレーム上に実装し、前記半導体素子の電極をインナーリードにワイヤボンディングで接続した後、これらをレジンで樹脂封止した半導体装置において、前記接続材料は、Mgを含有するAl系合金層と、前記Al系合金層の両面に設けられたZn層とからなることを特徴とする半導体装置。   In a semiconductor device in which a semiconductor element is mounted on a frame via a connecting material, the electrodes of the semiconductor element are connected to inner leads by wire bonding, and then these are resin-sealed with a resin, the connecting material contains Mg A semiconductor device comprising: an Al-based alloy layer to be formed; and a Zn layer provided on both surfaces of the Al-based alloy layer. 半導体素子を基板上に実装し、前記半導体素子の電極をインナーリードにワイヤボンディングで接続した後、前記基板上にキャップ用接続材料を介して金属キャップを被せて気密封止した半導体装置において、前記キャップ用接続材料は、Mgを含有するAl系合金層と、前記Al系合金層の最表面に設けられたZn層とからなることを特徴とする半導体装置。   In a semiconductor device in which a semiconductor element is mounted on a substrate, the electrode of the semiconductor element is connected to an inner lead by wire bonding, and then the substrate is covered with a metal cap via a cap connecting material and hermetically sealed. The cap connection material is composed of an Al-based alloy layer containing Mg and a Zn layer provided on the outermost surface of the Al-based alloy layer. 前記半導体素子は、素子用接続材料を介して前記基板上に実装され、前記素子用接続材料は、Mgを含有するAl系合金層と、前記Al系合金層の両面に設けられたZn層とからなる請求項6に記載の半導体装置。   The semiconductor element is mounted on the substrate via an element connecting material, and the element connecting material includes an Al-based alloy layer containing Mg, and a Zn layer provided on both surfaces of the Al-based alloy layer. The semiconductor device according to claim 6, comprising: 半導体素子を接続材料を介して下面にバンプを有する基板上に実装した半導体装置において、前記接続材料は、Mgを含有するAl系合金層と、前記Al系合金層の最表面に設けられたZn層とからなることを特徴とする半導体装置。   In a semiconductor device in which a semiconductor element is mounted on a substrate having a bump on the lower surface via a connecting material, the connecting material includes an Al-based alloy layer containing Mg and Zn provided on the outermost surface of the Al-based alloy layer. A semiconductor device comprising a layer.
JP2010032840A 2010-02-17 2010-02-17 Connection material, method for producing the same, and semiconductor device Pending JP2011167713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010032840A JP2011167713A (en) 2010-02-17 2010-02-17 Connection material, method for producing the same, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010032840A JP2011167713A (en) 2010-02-17 2010-02-17 Connection material, method for producing the same, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2011167713A true JP2011167713A (en) 2011-09-01

Family

ID=44682376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010032840A Pending JP2011167713A (en) 2010-02-17 2010-02-17 Connection material, method for producing the same, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2011167713A (en)

Similar Documents

Publication Publication Date Title
JP4390799B2 (en) Connection material, method for manufacturing connection material, and semiconductor device
TWI523724B (en) A bonding material, a method for producing the same, and a method of manufacturing the bonding structure
US20080122050A1 (en) Semiconductor Device And Production Method For Semiconductor Device
JP5523680B2 (en) Bonded body, semiconductor device, and manufacturing method of bonded body
US9773721B2 (en) Lead-free solder alloy, connecting member and a method for its manufacture, and electronic part
JP5152125B2 (en) Connection material, method for manufacturing connection material, and semiconductor device
JP2013176780A (en) Junction material, method of manufacturing the same, and method of manufacturing junction structure
KR102454265B1 (en) Laminate bonding materials, semiconductor packages and power modules
JP2005340268A (en) Transistor package
JP6529632B1 (en) Semiconductor device using solder alloy, solder paste, molded solder, and solder alloy
JP4703492B2 (en) Lead-free solder material
JP2013146764A (en) Connecting material and soldered product using the same
JP5723523B2 (en) Connecting material, manufacturing method of connecting material, semiconductor device, manufacturing method of semiconductor device, power module
JP5738523B2 (en) Connection material, connection method, and manufacturing method of semiconductor device
US8525330B2 (en) Connecting member for connecting a semiconductor element and a frame, formed of an Al-based layer and first and second Zn-based layers provided on surfaces of the Al-based layer
JP5473388B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5533223B2 (en) Bonding material and manufacturing method thereof, semiconductor device and manufacturing method thereof
JP2011167713A (en) Connection material, method for producing the same, and semiconductor device
JP5251849B2 (en) Connection material and method for manufacturing semiconductor device
JP5821991B2 (en) Semiconductor module and bonding material
JP2012142320A (en) Semiconductor device manufacturing method
JP6299442B2 (en) Power module
TWI555125B (en) Method for manufacturing package of power module
JP2014184446A (en) Laminate joint material and joint body joined by using the same
JP2007222939A (en) Brazing filler metal sheet, its production method, and package for electronic parts