JP4703492B2 - Lead-free solder material - Google Patents

Lead-free solder material Download PDF

Info

Publication number
JP4703492B2
JP4703492B2 JP2006160824A JP2006160824A JP4703492B2 JP 4703492 B2 JP4703492 B2 JP 4703492B2 JP 2006160824 A JP2006160824 A JP 2006160824A JP 2006160824 A JP2006160824 A JP 2006160824A JP 4703492 B2 JP4703492 B2 JP 4703492B2
Authority
JP
Japan
Prior art keywords
alloy
lead
solder material
free solder
eutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006160824A
Other languages
Japanese (ja)
Other versions
JP2007326137A (en
Inventor
茂樹 坂口
憲一郎 末次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006160824A priority Critical patent/JP4703492B2/en
Publication of JP2007326137A publication Critical patent/JP2007326137A/en
Application granted granted Critical
Publication of JP4703492B2 publication Critical patent/JP4703492B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-free solder material capable of reducing the probability that a semi-conductor element is cracked without considerably raising the working temperature. <P>SOLUTION: The lead-free solder material consists of an alloy material containing a first eutectic alloy and a second eutectic alloy. The first eutectic alloy consists of a Zn-Al alloy, the second eutectic alloy consists of a Ge-Ni alloy, and the alloy material further contains Sn. In the lead-free solder material, the amount of Sn contained in the alloy material is 0.05-2 pts.wt. to the total 100 pts.wt. of the first and second eutectic alloys. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、電子機器、電気機器、機械部品などの組立で用いられる鉛フリーはんだ材料に関する。 The present invention, electronic equipment, electrical equipment, relates to lead-free solder material that is used in the assembly of machine parts.

半導体装置は、一般に半導体素子(半導体チップ)と基材とを具備し、半導体素子は、はんだ材料などにより基材に接合されている。パワーデバイス製品のような半導体装置は、放熱特性を必要とするため、基材となるリードフレームには放熱部が設けられており、半導体素子は放熱部に接合されている。   A semiconductor device generally includes a semiconductor element (semiconductor chip) and a base material, and the semiconductor element is bonded to the base material with a solder material or the like. Since a semiconductor device such as a power device product requires heat dissipation characteristics, a lead frame serving as a base is provided with a heat dissipation portion, and the semiconductor element is bonded to the heat dissipation portion.

半導体素子とリードフレームの放熱部とを接合する工程は、ダイボンド工程と呼ばれる。ダイボンド工程の後、半導体素子とリードフレームとの接合体は、ワイヤーボンド工程やリフロー工程を経て、最終製品となる。   The process of joining the semiconductor element and the heat dissipation part of the lead frame is called a die bonding process. After the die bonding process, the joined body of the semiconductor element and the lead frame is a final product through a wire bonding process and a reflow process.

従来のパワーデバイス製品は、ダイボンド工程において、一般的にPbとSnとを含む合金(Pb−Sn合金)からなる高温はんだ材料を用いている(特許文献1参照)。Pb−Sn合金の融点は、300℃近傍であるため、ワイヤーボンド工程やリフロー工程による加熱では、Pb−Sn合金の再溶融は起こりにくい。よって、作業工程において、半導体素子とリードフレームの放熱部との間で、ボイドの発生が防止され、良好な放熱特性が確保される。   Conventional power device products use a high-temperature solder material generally made of an alloy containing Pb and Sn (Pb—Sn alloy) in a die bonding process (see Patent Document 1). Since the melting point of the Pb—Sn alloy is around 300 ° C., remelting of the Pb—Sn alloy hardly occurs by heating in the wire bonding process or the reflow process. Therefore, in the work process, generation of voids is prevented between the semiconductor element and the heat dissipation portion of the lead frame, and good heat dissipation characteristics are ensured.

Pb−Sn合金は、熱伝導性にも優れており、更に、硬度が25Hv程度と低いため、均一なワイヤー形状に容易に加工できる。よって、はんだ材料を半導体素子やリードフレームの接合面に供給する際、はんだ材料の供給量のバラツキが抑制され、効率的に作業を行うことができる。   The Pb—Sn alloy is excellent in thermal conductivity and has a hardness as low as about 25 Hv, so that it can be easily processed into a uniform wire shape. Therefore, when supplying the solder material to the bonding surface of the semiconductor element or the lead frame, the variation in the supply amount of the solder material is suppressed, and the work can be performed efficiently.

更に、Pb−Sn合金は、半導体素子を構成するSiなどの線膨張係数と、一般的に使用されているリードフレーム(主に銅製)の線膨張係数との差を緩和する機能を有するため、半導体素子にクラック等が発生するのを防止できる。
特開平4−286133号公報
Furthermore, since the Pb-Sn alloy has a function of relaxing the difference between the linear expansion coefficient of Si or the like constituting the semiconductor element and the linear expansion coefficient of a lead frame (mainly made of copper) that is generally used, It is possible to prevent cracks and the like from occurring in the semiconductor element.
JP-A-4-286133

近年、環境規制の観点から、鉛を含まないはんだ材料(鉛フリーはんだ材料)の開発が積極的に進められている。しかし、パワーデバイス製品には放熱特性が要求され、更に、リフロー工程の際には、はんだ材料が再溶融しないことが要求される In recent years, from the viewpoint of environmental regulations, development of solder materials that do not contain lead (lead-free solder materials) has been actively promoted. However, power device products are required to have heat dissipation characteristics, and further, it is required that the solder material does not remelt during the reflow process .

一方、鉛フリーはんだ材料の多くは、融点が高い。融点の高い鉛フリーはんだ材料を溶融させるためには、製造設備の作業温度を上昇させる必要があり、設備投資のコストが高くなる。また、入手可能な鉛フリーはんだ材料は、Pb−Sn合金からなるはんだ材料と比較して硬度が高いため、リードフレームとの接合面において半導体素子に応力が発生しやすい。そのため、半導体素子にクラックが発生する場合があり、パワーデバイス製品の信頼性が低くなる。 On the other hand, many of the lead-free solder material, the melting point is not high. In order to melt a lead-free solder material having a high melting point, it is necessary to raise the operating temperature of the production facility, which increases the cost of capital investment. Moreover, since the available lead-free solder material has a higher hardness than a solder material made of a Pb—Sn alloy, stress is likely to be generated in the semiconductor element at the joint surface with the lead frame. Therefore, a crack may occur in the semiconductor element, and the reliability of the power device product is lowered.

本発明は、上記を鑑み、従来の作業温度を大幅に上昇させることがなく、半導体素子にクラックが発生する確率を低減することができる鉛フリーはんだ材料を提供することを目的の1つとする。   In view of the above, it is an object of the present invention to provide a lead-free solder material that can reduce the probability of occurrence of cracks in a semiconductor element without significantly increasing the conventional working temperature.

本発明は、Zn−Al−Ge−Ni合金100質量部と、0.05〜2質量部の残部Snとで構成される鉛フリーはんだ材料であり、Zn−Al−Ge−Ni合金は、第1共晶合金であるZn−Al合金と第2共晶合金であるGe−Ni合金とからなり、Zn、Al、GeおよびNiの含有量がそれぞれ94.3質量%、5質量%、0.5質量%および0.2質量%である、鉛フリーはんだ材料(鉛フリーはんだ材料A)に関する。 The present invention is a lead-free solder material composed of 100 parts by mass of a Zn-Al-Ge-Ni alloy and 0.05 to 2 parts by mass of the remaining Sn, and the Zn-Al-Ge-Ni alloy It consists of a Zn—Al alloy that is a 1 eutectic alloy and a Ge—Ni alloy that is a second eutectic alloy , and the contents of Zn, Al, Ge, and Ni are 94.3 mass%, 5 mass%, and 0. 5 wt% and Ru 0.2% by mass, related to lead-free solder material (lead-free solder material A).

本発明によれば、Zn−Al合金からなる第1共晶合金とGe−Ni合金からなる第2共晶合金とを含む合金(Zn−Al−Ge−Ni合金)からなる鉛フリーはんだ材料の融点を低下させると共に、その硬度を低減できる。よって、例えば250〜350℃の融点を有し、加工性に優れ、かつ、半導体素子と基材との線膨張係数の差による応力を緩和できる鉛フリーはんだ材料を提供できる。   According to the present invention, a lead-free solder material made of an alloy (Zn—Al—Ge—Ni alloy) containing a first eutectic alloy made of a Zn—Al alloy and a second eutectic alloy made of a Ge—Ni alloy. The melting point can be lowered and the hardness can be reduced. Therefore, it is possible to provide a lead-free solder material having a melting point of, for example, 250 to 350 ° C., excellent workability, and capable of relieving stress due to a difference in linear expansion coefficient between the semiconductor element and the base material.

本発明によれば、電子部品、電子機器などの鉛フリー化が可能となるだけでなく、パワーデバイス製品のような半導体装置の製造工程において、作業温度を低くすることができる。よって、信頼性の高い製品を供給することができる。本発明の鉛フリーはんだは、ワイヤーや金属箔への加工が容易であり、作業効率も向上する。   According to the present invention, not only lead-free electronic parts and electronic equipment can be made, but also the working temperature can be lowered in the manufacturing process of a semiconductor device such as a power device product. Therefore, a highly reliable product can be supplied. The lead-free solder of the present invention can be easily processed into a wire or metal foil, and the working efficiency is improved.

実施の形態1
本実施形態は、第1共晶合金と第2共晶合金とを含む合金材料からなり、第1共晶合金は、Zn−Al合金からなり、第2共晶合金は、Ge−Ni合金からなり、合金材料は、更に、Snを含み、合金材料に含まれるSnの量が、第1共晶合金と第2共晶合金との合計100質量部あたり、0.05〜2質量部である、鉛フリーはんだ材料に関する。
Embodiment 1
The present embodiment is made of an alloy material including a first eutectic alloy and a second eutectic alloy, the first eutectic alloy is made of a Zn—Al alloy, and the second eutectic alloy is made of a Ge—Ni alloy. The alloy material further includes Sn, and the amount of Sn contained in the alloy material is 0.05 to 2 parts by mass per 100 parts by mass in total of the first eutectic alloy and the second eutectic alloy. , Relating to lead-free solder materials.

Zn−Al合金からなる第1共晶合金とGe−Ni合金からなる第2共晶合金とを含む合金(Zn−Al−Ge−Ni合金)は、本実施形態の鉛フリーはんだ材料の母材(ベース)となる。   An alloy (Zn-Al-Ge-Ni alloy) including a first eutectic alloy made of a Zn-Al alloy and a second eutectic alloy made of a Ge-Ni alloy is a base material of the lead-free solder material of the present embodiment. (Base).

第1共晶合金と第2共晶合金とを溶融状態で混合し、その後、凝固させると、均一な合金が得られる。しかし、合金を微視的に見ると、第1共晶合金と第2共晶合金とを区別できる。例えば、はんだ材料の断面を電子顕微鏡などで観察することにより、第1共晶合金と第2共晶合金の存在を観察することができる。   When the first eutectic alloy and the second eutectic alloy are mixed in a molten state and then solidified, a uniform alloy is obtained. However, when the alloy is viewed microscopically, the first eutectic alloy and the second eutectic alloy can be distinguished. For example, the presence of the first eutectic alloy and the second eutectic alloy can be observed by observing a cross section of the solder material with an electron microscope or the like.

ここで、Zn−Al合金とは、2〜7質量%(好ましくは約5質量%)のAlを含み、残部がZnからなる2元共晶合金を示す。Zn−Al合金は、約385℃の共晶点を有する。Ge−Ni合金とは、20〜38質量%(好ましくは約28質量%)のNiを含み、残部がGeからなる2元共晶合金を示す。Ge−Ni合金は、約775℃の共晶点を有する。 Here, the Zn—Al alloy refers to a binary eutectic alloy containing 2 to 7 mass % (preferably about 5 mass %) of Al and the balance being Zn. The Zn—Al alloy has an eutectic point of about 385 ° C. The Ge—Ni alloy refers to a binary eutectic alloy containing 20 to 38 mass % (preferably about 28 mass %) of Ni and the balance being Ge. The Ge—Ni alloy has a eutectic point of about 775 ° C.

第1共晶合金と第2共晶合金との合計に占める第2共晶合金の含有量は、0.05〜2質量%が好ましく、0.1〜1.5質量%が更に好ましく、0.3〜1質量%が特に好ましい。 The content of the second eutectic alloy in the total of the first eutectic alloy and the second eutectic alloy is preferably 0.05 to 2% by mass, more preferably 0.1 to 1.5% by mass , 3 to 1% by mass is particularly preferable.

母材、すなわちZn−Al−Ge−Ni合金の融点は、385〜420℃であり、現行品であるPb−Sn合金の融点(290〜330℃)よりも高くなっている。よって、Zn−Al−Ge−Ni合金を溶融させ、半導体素子と基材とを接続するためには、製造設備の作業温度を、少なくとも現行より約60℃程度上昇させる必要がある。しかし、作業温度を上昇させると、製造設備の熱劣化が起こりやすくなる。   The melting point of the base material, that is, the Zn—Al—Ge—Ni alloy is 385 to 420 ° C., which is higher than the melting point (290 to 330 ° C.) of the current Pb—Sn alloy. Therefore, in order to melt the Zn—Al—Ge—Ni alloy and connect the semiconductor element and the base material, it is necessary to raise the working temperature of the manufacturing facility at least about 60 ° C. from the current level. However, when the working temperature is raised, thermal deterioration of the production equipment is likely to occur.

Zn−Al−Ge−Ni合金の硬度は、ビッカース硬度で、約90Hvであり、現行品であるPb−Sn合金の硬度(約25Hv)よりも高くなっている。よって、Zn−Al−Ge−Ni合金を、例えばワイヤー状に均一に加工することは困難である。このことは、半導体素子や基材の接合面に、鉛フリーはんだ材料を供給する際に、はんだ材料の供給量にバラツキが生じることを意味する。   The hardness of the Zn—Al—Ge—Ni alloy is about 90 Hv in terms of Vickers hardness, which is higher than the hardness (about 25 Hv) of the current Pb—Sn alloy. Therefore, it is difficult to uniformly process a Zn—Al—Ge—Ni alloy into, for example, a wire shape. This means that the supply amount of the solder material varies when the lead-free solder material is supplied to the bonding surface of the semiconductor element or the base material.

鉛フリーはんだ材料の硬度を下げることは、融点を下げることと同様に、半導体装置の製造においては重要である。   Reducing the hardness of the lead-free solder material is important in the manufacture of semiconductor devices, as is reducing the melting point.

表1は、Zn−Al−Ge−Ni合金にSnを添加した場合の融点と硬度を示している。ただし、Zn−Al−Ge−Ni合金におけるZn、Al、GeおよびNiの含有量は、それぞれ94.3質量%、5質量%、0.5質量%および0.2質量%である。表1中に示したSnの添加量(質量部)は、母材であるZn−Al−Ge−Ni合金100質量部あたりの量である。硬度比率は、Zn−Al−Ge−Ni合金のビッカース硬度に対する、Snを添加した合金材料のビッカース硬度の割合を、百分率で示している。 Table 1 shows the melting point and hardness when Sn is added to the Zn—Al—Ge—Ni alloy. However, the contents of Zn, Al, Ge, and Ni in the Zn—Al—Ge—Ni alloy are 94.3 mass %, 5 mass %, 0.5 mass %, and 0.2 mass %, respectively. The addition amount (parts by mass ) of Sn shown in Table 1 is an amount per 100 parts by mass of the Zn—Al—Ge—Ni alloy as the base material. The hardness ratio indicates the percentage of the Vickers hardness of the alloy material added with Sn to the Vickers hardness of the Zn—Al—Ge—Ni alloy.

Figure 0004703492
Figure 0004703492

Snの添加量が2質量部を超えると、Zn中に固溶しないSnが遊離するため、Snの融点である232℃程度の低温で、合金材料の一部が溶融する。このような低融点成分がはんだ材料に含まれると、半導体装置を基板(マザーボード)に実装する際に、リフロー装置による加熱により、はんだ材料が再溶融する可能性がある。その結果、パワーデバイス製品などでは、半導体素子と基材との間にボイドが発生し、放熱特性が劣化する。よって、Snの添加量は、Zn−Al−Ge−Ni合金100質量部あたり、2質量部以下とすることが必要である。 When the addition amount of Sn exceeds 2 parts by mass , Sn that does not dissolve in Zn is liberated, so that a part of the alloy material melts at a low temperature of about 232 ° C., which is the melting point of Sn. When such a low melting point component is contained in the solder material, the solder material may be re-melted by heating by the reflow device when the semiconductor device is mounted on the substrate (motherboard). As a result, in power device products and the like, voids are generated between the semiconductor element and the base material, and the heat dissipation characteristics are deteriorated. Therefore, the addition amount of Sn needs to be 2 parts by mass or less per 100 parts by mass of the Zn—Al—Ge—Ni alloy.

表1から、Zn−Al−Ge−Ni合金に、Snを添加することにより、合金材料の硬度が顕著に低下することがわかる。合金材料の硬度が低下すると、はんだ材料が供給される接合面における応力が緩和されやすい。   From Table 1, it can be seen that the hardness of the alloy material is significantly reduced by adding Sn to the Zn-Al-Ge-Ni alloy. When the hardness of the alloy material decreases, the stress at the joint surface to which the solder material is supplied is likely to be relaxed.

本実施形態の鉛フリーはんだ材料は、従来と同様に、ワイヤー、金属箔、インゴットなどの状態で、半導体素子や基材の接合面に供給することができる。鉛フリーはんだ材料の溶融を伴う接合は、水素ガスまたは窒素ガスを含む雰囲気中で行うことが好ましい。   The lead-free solder material of this embodiment can be supplied to the joining surface of a semiconductor element or a base material in the state of a wire, a metal foil, an ingot, or the like, as in the past. The joining involving melting of the lead-free solder material is preferably performed in an atmosphere containing hydrogen gas or nitrogen gas.

参考形態1
参考形態は、第1共晶合金と第2共晶合金とを含む合金材料からなり、第1共晶合金は、Zn−Al合金からなり、第2共晶合金は、Ge−Ni合金からなり、合金材料は、更に、SnおよびInを含み、合金材料に含まれるSnの量が、第1共晶合金と第2共晶合金との合計100質量部あたり、0.05〜2質量部であり、合金材料に含まれるInの量が、第1共晶合金と第2共晶合金との合計100質量部あたり、0.05〜3質量部である、鉛フリーはんだ材料に関する。
Reference form 1
This reference form is made of an alloy material including a first eutectic alloy and a second eutectic alloy, the first eutectic alloy is made of a Zn—Al alloy, and the second eutectic alloy is made of a Ge—Ni alloy. becomes, the alloy material further comprises Sn and in, the amount of Sn contained in the alloy material, the total weight per 100 parts by weight of the first eutectic alloy and a second eutectic alloy, 0.05-2 parts by weight , and the amount of in contained in the alloy material, the total weight per 100 parts by weight of the first eutectic alloy and a second eutectic alloy is 0.05 to 3 parts by weight, about lead-free solder material.

Zn−Al−Ge−Ni合金に、Snと共に、Inを添加することにより、合金材料の融点と硬度を、更に低下させることができる。例えば、Zn−5Al−0.2Ni−0.5Ge(5質量%のAlと、0.2質量%のNiと、0.5質量%のGeを含み、残部がZnである合金)100質量部に対し、2質量部のSnを添加すると、融点は約7.5℃程度低下し、硬度は約14%程度低下する。このはんだ材料に、更に3質量部のInを添加すると、融点は更に約7℃低下し、硬度は約10%程度低下する。 By adding In together with Sn to the Zn—Al—Ge—Ni alloy, the melting point and hardness of the alloy material can be further reduced. For example, Zn-5Al-0.2Ni-0.5Ge (an alloy containing 5% by mass of Al, 0.2% by mass of Ni, 0.5% by mass of Ge and the balance being Zn) 100 parts by mass On the other hand, when 2 parts by mass of Sn is added, the melting point decreases by about 7.5 ° C., and the hardness decreases by about 14%. When 3 parts by mass of In is further added to this solder material, the melting point further decreases by about 7 ° C., and the hardness decreases by about 10%.

表2は、Zn−Al−Ge−Ni合金にSnとInとを添加した場合の融点と硬度を示している。ただし、Zn−Al−Ge−Ni合金におけるZn、Al、GeおよびNiの含有量は、それぞれ94.3質量%、5質量%、0.5質量%および0.2質量%である。表1中に示したSnおよびInの添加量(質量部)は、母材であるZn−Al−Ge−Ni合金100質量部あたりの量である。硬度比率は、Zn−Al−Ge−Ni合金のビッカース硬度に対する、SnおよびInを添加した合金材料のビッカース硬度の割合を、百分率で示している。
なお、Inの添加量が4質量%になると、Sn−In共晶合金(融点約120℃)の生成量が多くなる。
Table 2 shows the melting point and hardness when Sn and In are added to the Zn—Al—Ge—Ni alloy. However, the contents of Zn, Al, Ge, and Ni in the Zn—Al—Ge—Ni alloy are 94.3 mass %, 5 mass %, 0.5 mass %, and 0.2 mass %, respectively. The addition amount (parts by mass ) of Sn and In shown in Table 1 is an amount per 100 parts by mass of the Zn—Al—Ge—Ni alloy as the base material. The hardness ratio indicates the percentage of the Vickers hardness of the alloy material to which Sn and In are added with respect to the Vickers hardness of the Zn—Al—Ge—Ni alloy.
Note that when the amount of In added is 4% by mass, the amount of Sn—In eutectic alloy (melting point: about 120 ° C.) increases.

Figure 0004703492
Figure 0004703492

参考形態2
参考形態は、第1共晶合金と第2共晶合金とを含む合金材料と、合金材料の表面を被覆する金属層とを含み、第1共晶合金は、Zn−Al合金からなり、第2共晶合金は、Ge−Ni合金からなり、金属層は、SnまたはSn−In合金からなる、鉛フリーはんだ材料に関する。Snの融点は232℃であり、Sn−In合金の融点は120℃である。これらの融点は、かなり低いため、本参考形態の鉛フリーはんだ材料は、半導体素子や基材の接合面との濡れ性に優れている。また、接合が完了した後には、金属層が合金材料に溶け込んでいるため、実施の形態1および参考形態1の鉛フリーはんだ材料を用いた場合と同様に、接続不良が生じにくく、半導体素子のクラックも生じにくい。
Reference form 2
This reference form includes an alloy material containing a first eutectic alloy and a second eutectic alloy, and a metal layer covering the surface of the alloy material, and the first eutectic alloy is made of a Zn-Al alloy, The second eutectic alloy is made of a Ge—Ni alloy, and the metal layer is related to a lead-free solder material made of Sn or a Sn—In alloy. The melting point of Sn is 232 ° C., and the melting point of the Sn—In alloy is 120 ° C. These melting points, since much lower, lead-free solder material of this preferred embodiment is excellent in wettability between the bonding surfaces of the semiconductor elements and the substrate. In addition, since the metal layer is dissolved in the alloy material after the joining is completed, connection failure is unlikely to occur as in the case of using the lead-free solder material of Embodiment 1 and Reference Embodiment 1 , and the semiconductor element Cracks are less likely to occur.

金属層は、第1共晶合金と第2共晶合金とを含む合金材料の表面の少なくとも一部、または、表面全体を被覆している。第1共晶合金と第2共晶合金とを含む合金材料の形状は、特に限定されず、例えばワイヤー、シート(箔)、粒状物などの形状を有する。例えば、第1共晶合金と第2共晶合金とを含む合金材料がシート状である場合、金属層は、シートの少なくとも一方の面に形成されていればよいが、両面に形成されていることが好ましい。この場合、一方の面にSnからなる層を形成し、他方の面にSn−In合金からなる層を形成してもよく、両面にSnからなる層またはSn−In合金からなる層を形成してもよい。   The metal layer covers at least a part of the surface of the alloy material including the first eutectic alloy and the second eutectic alloy or the entire surface. The shape of the alloy material including the first eutectic alloy and the second eutectic alloy is not particularly limited, and for example, has a shape such as a wire, a sheet (foil), and a granular material. For example, when the alloy material including the first eutectic alloy and the second eutectic alloy is in the form of a sheet, the metal layer may be formed on at least one surface of the sheet, but is formed on both surfaces. It is preferable. In this case, a layer made of Sn may be formed on one side and a layer made of Sn—In alloy may be formed on the other side, and a layer made of Sn or a layer made of Sn—In alloy may be formed on both sides. May be.

図1は、本参考形態に係るシート(箔)状の鉛フリーはんだ材料の一例の断面を概念的に示している。シート状の鉛フリーはんだ材料10は、第1共晶合金と第2共晶合金とを含む合金材料からなる内層11と、上層金属層12と、下層金属層13とを具備する。上層金属層12および下層金属層13は、SnまたはSn−In合金からなり、例えばメッキ法により、合金材料からなる内層11の表面に形成されている。 Figure 1 is an example of a cross section of a sheet (foil) shaped lead-free solder material according to this reference embodiment conceptually shown. The sheet-like lead-free solder material 10 includes an inner layer 11 made of an alloy material including a first eutectic alloy and a second eutectic alloy, an upper metal layer 12 and a lower metal layer 13. The upper metal layer 12 and the lower metal layer 13 are made of Sn or an Sn—In alloy, and are formed on the surface of the inner layer 11 made of an alloy material, for example, by plating.

上層金属層12および下層金属層13は、それぞれ独立に、Sn単体からなる層でもよく、Sn−In合金からなる層でもよい。内層11の厚みをTとするとき、上層金属層12および下層金属層13の厚みtは、それぞれ0.005≦t/T≦0.3を満たすことが好ましく、0.01≦t/T≦0.15を満たすことが更に好ましい。ただし、第1共晶合金と第2共晶合金とを含む合金材料からなる内層100質量部あたり、Snが0.05〜2質量部、Inが0.05〜3質量部となるように、各層の厚みを制御することが望ましい。 The upper metal layer 12 and the lower metal layer 13 may each independently be a layer made of Sn alone or a layer made of a Sn—In alloy. When the thickness of the inner layer 11 is T, the thickness t of the upper metal layer 12 and the lower metal layer 13 preferably satisfies 0.005 ≦ t / T ≦ 0.3, and 0.01 ≦ t / T ≦ It is more preferable to satisfy 0.15. However, as the inner layer weight per 100 parts by weight of an alloy material containing a first eutectic alloy and a second eutectic alloy, Sn is 0.05 to 2 parts by weight, In is 0.05 to 3 parts by weight, It is desirable to control the thickness of each layer.

Sn−In合金に含まれるInの量は、特に限定されないが、例えば40〜70質量%であることが好ましい。参考形態3においても同様である。 The amount of In contained in the Sn—In alloy is not particularly limited, but is preferably 40 to 70% by mass , for example. The same applies to the reference form 3 .

実施の形態
本実施形態は、第1接合面を有する半導体素子と、第2接合面を有する基材と、第1接合面と第2接合面とを接合する鉛フリーはんだ材料とを含む半導体装置に関する。ここで、鉛フリーはんだ材料には、実施の形態1の鉛フリーはんだ材料を用いることができる。
Embodiment 2
The present embodiment relates to a semiconductor device including a semiconductor element having a first joint surface, a base material having a second joint surface, and a lead-free solder material that joins the first joint surface and the second joint surface. Here, the lead-free solder material of Embodiment 1 can be used as the lead-free solder material.

図2Aは、本実施形態に係る半導体装置の一例を概念的に示す上面図である。図2Bは図2Aのb−b線断面図である。
半導体装置(例えばパワートランジスタ)20は、下面に第1接合面を有する半導体素
子21と、上面に第2接合面を有する放熱部22aを含む基材(リードフレーム)22と、第1接合面と第2接合面とを接合する鉛フリーはんだ材料23とを具備する。基材22は、第1リード24と一体となっている。半導体素子21は、金属線26を介して、2つの第2リード25と接続されている。半導体素子21、第2リード25の一端および金属線26は、破線で示した封止樹脂27により封止されている。
FIG. 2A is a top view conceptually showing an example of the semiconductor device according to the present embodiment. 2B is a cross-sectional view taken along the line bb of FIG. 2A.
A semiconductor device (for example, a power transistor) 20 includes a semiconductor element 21 having a first bonding surface on the lower surface, a base material (lead frame) 22 including a heat radiation portion 22a having a second bonding surface on the upper surface, a first bonding surface, And a lead-free solder material 23 for joining the second joint surface. The base material 22 is integrated with the first lead 24. The semiconductor element 21 is connected to the two second leads 25 via the metal wire 26. The semiconductor element 21, one end of the second lead 25, and the metal wire 26 are sealed with a sealing resin 27 indicated by a broken line.

半導体素子や基材の接合面における応力を十分に緩和し、半導体装置の信頼性を十分に向上させる観点から、接合面における鉛フリーはんだ材料の厚み(半導体素子の第1接合面と、基材の放熱部の第2接合面との間の距離)は、40μm以上とすることが好ましい。   The thickness of the lead-free solder material on the joint surface (the first joint surface of the semiconductor element and the base material) from the viewpoint of sufficiently relaxing the stress on the joint surface of the semiconductor element and the base material and sufficiently improving the reliability of the semiconductor device. The distance between the second heat sink and the second joint surface is preferably 40 μm or more.

参考形態3
参考形態は、第1接合面を有する半導体素子と、第2接合面を有する基材と、第1接合面および第2接合面の少なくとも一方に存在する金属層と、第1接合面と第2接合面との間に付与される鉛フリーはんだ材料とを含み、鉛フリーはんだ材料は、第1共晶合金と第2共晶合金とを含む合金材料からなり、第1共晶合金は、Zn−Al合金からなり、第2共晶合金は、Ge−Ni合金からなり、金属層は、SnまたはSn−In合金からなる半導体装置部品の組み合わせに関する。
Reference form 3
This reference form includes a semiconductor element having a first bonding surface, a base material having a second bonding surface, a metal layer present on at least one of the first bonding surface and the second bonding surface, the first bonding surface, A lead-free solder material applied between the two joint surfaces, the lead-free solder material is made of an alloy material containing a first eutectic alloy and a second eutectic alloy, and the first eutectic alloy is: It is made of a Zn—Al alloy, the second eutectic alloy is made of a Ge—Ni alloy, and the metal layer is related to a combination of semiconductor device parts made of Sn or Sn—In alloy.

図3は、本参考形態に係る半導体装置部品の組み合わせの一例を概念的に示す断面図である。半導体装置部品の組み合わせ30は、以下の要領で得ることができる。
まず、第1接合部を有する半導体素子(例えばパワートランジスタ)31と、第2接合部である放熱部32a、第1リード34および第2リード35を有する基材(リードフレーム)32とを作製する。
Figure 3 is a cross-sectional view schematically showing an example of a combination of the semiconductor device parts according to this preferred embodiment. The semiconductor device component combination 30 can be obtained in the following manner.
First, a semiconductor element (for example, a power transistor) 31 having a first junction, and a base material (lead frame) 32 having a heat dissipation portion 32a, a first lead 34, and a second lead 35, which are second junctions, are produced. .

次に、第1接合部および第2接合部の少なくとも一方に、めっき法により、SnまたはSn−In合金からなる金属層33aを形成する。更に、第1接合部と第2接合部との間に、鉛フリーはんだ材料33を介在させる。ここで、鉛フリーはんだ材料には、実施の形態1〜3の鉛フリーはんだ材料を用いることができる。その後、鉛フリーはんだ材料と金属層とを、加熱し、冷却すると、第1接合部と第2接合部とが接合される。   Next, a metal layer 33a made of Sn or an Sn—In alloy is formed on at least one of the first joint and the second joint by plating. Furthermore, a lead-free solder material 33 is interposed between the first joint and the second joint. Here, the lead-free solder material of Embodiments 1 to 3 can be used as the lead-free solder material. Thereafter, when the lead-free solder material and the metal layer are heated and cooled, the first joint and the second joint are joined.

次に、半導体素子31と、第2リード35とを、金属線36を介して接続し、最後に、半導体素子31、第2リード35の一端および金属線36を封止樹脂37により封止することにより、実施の形態と同様の半導体装置が得られる。 Next, the semiconductor element 31 and the second lead 35 are connected via a metal wire 36, and finally, the semiconductor element 31, one end of the second lead 35 and the metal wire 36 are sealed with a sealing resin 37. Thus, a semiconductor device similar to that of the second embodiment can be obtained.

このように、半導体素子や基材の接合面に、予め、低融点であるSn層(融点232℃)またはSn−In合金層(融点120℃)を形成しておくことにより、鉛フリーはんだ材料と、半導体素子や基材の接合面との濡れ性が向上する。また、接合が完了した後には、金属層が鉛フリーはんだ材料に溶け込んでいるため、実施の形態1および参考形態1の鉛フリーはんだ材料を用いた場合と同様に、接続不良が生じにくく、半導体素子のクラックも生じにくい。 Thus, a lead-free solder material is formed by previously forming a Sn layer (melting point 232 ° C.) or a Sn—In alloy layer (melting point 120 ° C.) having a low melting point on the bonding surface of the semiconductor element or the base material. And the wettability with the joint surface of a semiconductor element or a base material improves. In addition, since the metal layer is dissolved in the lead-free solder material after the joining is completed, the connection failure is less likely to occur as in the case where the lead-free solder material of the first embodiment and the reference embodiment 1 is used. It is difficult for the device to crack.

本発明の鉛フリーはんだ材料は、特に、パワーデバイス装置のような半導体装置に好適である。本発明を適用することで、従来のPb−Sn合金からなるはんだ材料と同様の設備で半導体装置を生産することが可能となる。本発明は、フリップチップ、BGA(BallGrid Array)、モジュールなどの接続用途にも適用できる。   The lead-free solder material of the present invention is particularly suitable for a semiconductor device such as a power device device. By applying the present invention, it becomes possible to produce a semiconductor device with the same equipment as a solder material made of a conventional Pb—Sn alloy. The present invention can also be applied to connection applications such as flip chip, BGA (BallGrid Array), and modules.

参考形態2に係る鉛フリーはんだ材料の一例の縦断面図である。It is a longitudinal cross-sectional view of an example of the lead-free solder material which concerns on the reference form 2 . 本発明の実施の形態に係る半導体装置の一例を概念的に示す上面図である。It is a top view which shows notionally an example of the semiconductor device which concerns on Embodiment 2 of this invention. 図2Aのb−b線断面図である。It is the bb sectional view taken on the line of FIG. 2A. 参考形態3に係る半導体装置部品の一例を概念的に示す縦断面図である。It is a longitudinal cross-sectional view which shows notionally an example of the semiconductor device component which concerns on the reference form 3 .

10 鉛フリーはんだ材料
11 内層
12 上層金属層
13 下層金属層
20 半導体装置
30 半導体装置部品の組み合わせ
21、31 半導体素子
22、32 基材
22a、32a 放熱部
23、33 鉛フリーはんだ材料
24、34 第1リード
25、35 第2リード
26、36 金属線
27、37 封止樹脂
33a 金属層
DESCRIPTION OF SYMBOLS 10 Lead free solder material 11 Inner layer 12 Upper metal layer 13 Lower metal layer 20 Semiconductor device 30 Combination of semiconductor device parts 21, 31 Semiconductor element 22, 32 Base material 22a, 32a Heat radiation part 23, 33 Lead free solder material 24, 34 First 1 lead 25, 35 2nd lead 26, 36 Metal wire 27, 37 Sealing resin 33a Metal layer

Claims (1)

Zn−Al−Ge−Ni合金100質量部と、0.05〜2質量部の残部Snとで構成される鉛フリーはんだ材料であり、
前記Zn−Al−Ge−Ni合金は、第1共晶合金であるZn−Al合金と第2共晶合金であるGe−Ni合金とからなり、Zn、Al、GeおよびNiの含有量がそれぞれ94.3質量%、5質量%、0.5質量%および0.2質量%である、鉛フリーはんだ材料。
A lead-free solder material composed of 100 parts by mass of a Zn-Al-Ge-Ni alloy and the remaining Sn of 0.05 to 2 parts by mass;
The Zn-Al-Ge-Ni alloy is composed of a Zn-Al alloy which is a first eutectic alloy and a Ge-Ni alloy which is a second eutectic alloy , and the contents of Zn, Al, Ge and Ni are respectively 94.3 wt%, 5 wt%, Ru der 0.5 wt% and 0.2 wt%, lead-free solder material.
JP2006160824A 2006-06-09 2006-06-09 Lead-free solder material Expired - Fee Related JP4703492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006160824A JP4703492B2 (en) 2006-06-09 2006-06-09 Lead-free solder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006160824A JP4703492B2 (en) 2006-06-09 2006-06-09 Lead-free solder material

Publications (2)

Publication Number Publication Date
JP2007326137A JP2007326137A (en) 2007-12-20
JP4703492B2 true JP4703492B2 (en) 2011-06-15

Family

ID=38926987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006160824A Expired - Fee Related JP4703492B2 (en) 2006-06-09 2006-06-09 Lead-free solder material

Country Status (1)

Country Link
JP (1) JP4703492B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5723523B2 (en) * 2009-09-11 2015-05-27 株式会社日立製作所 Connecting material, manufacturing method of connecting material, semiconductor device, manufacturing method of semiconductor device, power module
CN102473650B (en) * 2009-09-09 2014-09-24 株式会社日立制作所 Connecting material, semiconductor device and method for manufacturing semiconductor device
US9217192B2 (en) 2010-03-01 2015-12-22 Osaka University Semiconductor device and bonding material for semiconductor device
JP6015571B2 (en) * 2013-06-18 2016-10-26 住友金属鉱山株式会社 Pb-free Zn-Al alloy fuse

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124150A (en) * 1977-04-05 1978-10-30 Nec Corp Alloy soldering material
JPS62173095A (en) * 1986-01-24 1987-07-29 Showa Alum Corp Sheet material for soldering
JPH04258397A (en) * 1991-02-05 1992-09-14 Furukawa Alum Co Ltd Brazing filler metal for low temperature brazing for aluminum member
JPH11288955A (en) * 1998-04-02 1999-10-19 Sumitomo Metal Mining Co Ltd High temperature soldering zn alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53124150A (en) * 1977-04-05 1978-10-30 Nec Corp Alloy soldering material
JPS62173095A (en) * 1986-01-24 1987-07-29 Showa Alum Corp Sheet material for soldering
JPH04258397A (en) * 1991-02-05 1992-09-14 Furukawa Alum Co Ltd Brazing filler metal for low temperature brazing for aluminum member
JPH11288955A (en) * 1998-04-02 1999-10-19 Sumitomo Metal Mining Co Ltd High temperature soldering zn alloy

Also Published As

Publication number Publication date
JP2007326137A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP4343117B2 (en) Semiconductor device and manufacturing method thereof
TWI304006B (en) Tin/indium lead-free solders for low stress chip attachment
KR102027615B1 (en) Power module substrate with heat sink, power module substrate with cooler, and power module
JP6111764B2 (en) Power module substrate manufacturing method
JP5186719B2 (en) Ceramic wiring board, manufacturing method thereof, and semiconductor module
US20020149114A1 (en) Product using Zn-Al alloy solder
JP2007123395A (en) Semiconductor device and method of manufacturing the same
WO2014148425A1 (en) Method for manufacturing bonded body and method for manufacturing power-module substrate
TWI273140B (en) Phase change lead-free super plastic solders
JP2010179336A (en) Joint product, semiconductor module, and method for manufacturing the joint product
JP2009060101A (en) Electronic device
TW200829361A (en) Connecting material, method for manufacturing connecting material, and semiconductor device
JP2011124585A (en) Ceramic wiring board and manufacturing method and semiconductor module of the same
JP6029756B2 (en) Semiconductor device and manufacturing method thereof
JP5578326B2 (en) Lead component, manufacturing method thereof, and semiconductor package
JP2009290007A (en) Jointed body, semiconductor device and method for manufacturing jointed body
JP6810915B2 (en) Solder material
JP4703492B2 (en) Lead-free solder material
JP2005340268A (en) Transistor package
JP5866075B2 (en) Bonding material manufacturing method, bonding method, and power semiconductor device
JP6529632B1 (en) Semiconductor device using solder alloy, solder paste, molded solder, and solder alloy
JP6819299B2 (en) Joined body, substrate for power module, manufacturing method of joined body and manufacturing method of substrate for power module
JP5723523B2 (en) Connecting material, manufacturing method of connecting material, semiconductor device, manufacturing method of semiconductor device, power module
JP2015057847A (en) Method for manufacturing substrate for power module
WO2017126653A1 (en) Bonded body, power module substrate, power module, bonded body manufacturing method, and power module substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

LAPS Cancellation because of no payment of annual fees