JP2011165492A - Thermal overload relay - Google Patents

Thermal overload relay Download PDF

Info

Publication number
JP2011165492A
JP2011165492A JP2010027388A JP2010027388A JP2011165492A JP 2011165492 A JP2011165492 A JP 2011165492A JP 2010027388 A JP2010027388 A JP 2010027388A JP 2010027388 A JP2010027388 A JP 2010027388A JP 2011165492 A JP2011165492 A JP 2011165492A
Authority
JP
Japan
Prior art keywords
shifter
pull
storage space
push
bimetal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010027388A
Other languages
Japanese (ja)
Inventor
Taku Uchiyama
拓 内山
Osamu Kashimura
修 鹿志村
Fumihiro Morishita
文浩 森下
Yukio Furuhata
幸生 古畑
Takeo Kamosaki
武雄 鴨崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2010027388A priority Critical patent/JP2011165492A/en
Publication of JP2011165492A publication Critical patent/JP2011165492A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Breakers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal overload relay capable of stabilizing operation characteristics of a pushing shifter, a pull shifter, and a differential lever on the occurrence of an overload current or occurrence of phase interruption and transmitting bending displacement of a bimetal efficiently to a contact mechanism. <P>SOLUTION: Slits for shifter sliding 10a, 15a, 16a are formed in a housing space partition 10 and bimetal partitions 15, 16, and the pushing shifter 7 and the pull shifter 8 are inserted into these slits for shifter sliding. Guiding long holes 22, 23, 30, 31 which extend in straight line shape along the bending displacement direction X are formed respectively in the pushing shifter and the pull shifter. Engaging protrusions 24, 25, 32, 33 which are engaged with the inner wall in major axis direction of guiding long holes 22, 23, 30, 31 are formed on the slit face of the slits for shifter sliding 15a, 16a of the bimetal partitions. These guiding long holes and engaging protrusions are used as a shifter displacement guide to displace the pushing shifter and the pull shifter. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電動機などの過電流保護及び欠相保護を行う熱動形過負荷継電器に関する。   The present invention relates to a thermal overload relay that performs overcurrent protection and phase loss protection for an electric motor or the like.

例えば配線用遮断器、電磁接触器などとともに用いられ、電動機などの過電流保護及び欠相保護を行う熱動形過負荷継電器として、例えば特許文献1の装置が知られている。
この特許文献1の熱動形過負荷継電器は、ケース内に、昇温時における湾曲変位方向を一致させて列状に配置した複数のバイメタル及び各バイメタルに巻装したヒータエレメントからなるヒータと、差動シフタ機構と、接点が開閉する接点機構と、差動シフタ機構に連動して接点機構の開閉動作を行なう接点開閉機構とが収納されている。
差動シフタ機構は、バイメタルの湾曲変位に従動する平板状の押しシフタ及び引きシフタと、押しシフタ及び引きシフタに係合し、接点開閉機構を連動させる差動レバーとを備えている。
For example, the apparatus of Patent Document 1 is known as a thermal overload relay that is used together with a circuit breaker for wiring, an electromagnetic contactor, and the like and performs overcurrent protection and phase loss protection for an electric motor or the like.
The thermal overload relay of Patent Document 1 includes a heater composed of a plurality of bimetals arranged in a line in the case with the curved displacement directions coincided with each other at the time of temperature rise, and a heater element wound around each bimetal, A differential shifter mechanism, a contact mechanism that opens and closes a contact, and a contact opening and closing mechanism that opens and closes the contact mechanism in conjunction with the differential shifter mechanism are housed.
The differential shifter mechanism includes a flat plate-like push shifter and pull shifter that follow the bimetal bending displacement, and a differential lever that engages with the push shifter and pull shifter and interlocks the contact opening / closing mechanism.

押しシフタは、バイメタルが延在する方向に対して直交する方向に面方向が延在し、各バイメタルの湾曲変位方向の一方の面に係合し、湾曲変位方向に略沿って変位可能に配置されている。また、引きシフタは、押しシフタと同一平面に配置され(厚み方向が押しシフタと同一平面となるように配置され)、複数のバイメタルの湾曲変位方向の他方の面に係合して湾曲変位方向に略沿って変位可能とされている。
そして、ヒータは、ケースに設けた第1収納空間に収納され、接点開閉機構は、第1収納空間に隣接してケースに設けた第2収納空間に収納され、差動シフタ機構の押しシフタ、引きシフタ及び差動レバーが第1及び第2収納空間に跨がった位置に収納され、差動レバーが接点開閉機構を直接に連動させる構造としている。
The push shifter has a surface direction extending in a direction perpendicular to the direction in which the bimetal extends, and engages with one surface of the bending displacement direction of each bimetal, and is arranged so as to be displaced substantially along the bending displacement direction. Has been. The pull shifter is disposed in the same plane as the push shifter (the thickness direction is disposed in the same plane as the push shifter) and engages with the other surface of the plurality of bimetals in the bending displacement direction. It is possible to displace substantially along.
The heater is housed in a first housing space provided in the case, and the contact opening / closing mechanism is housed in a second housing space provided in the case adjacent to the first housing space, and a push shifter of the differential shifter mechanism, The pulling shifter and the differential lever are housed in a position straddling the first and second housing spaces, and the differential lever directly interlocks the contact opening / closing mechanism.

上記構成の熱動形過負荷継電器は、主回路に過負荷電流が流れると、ヒータエレメントの発熱による複数のバイメタルの湾曲変位で押しシフタが押されて変位し、それにより差動レバーが変位し、押しシフタ及び差動レバーとともに引きシフタも変位する。差動レバーが変位すると、接点開閉機構が連動して接点機構の接点を切替え動作させる。また、欠相発生時には、欠相の生じた相の湾曲変位しないバイメタルが引きシフタの変位を規制し、押しシフタは過負荷電流が流れたときと同様に変位する。このように、押しシフタ及び引きシフタの変位量に差が生じることで差動レバーが大きく変位し、過負荷電流が流れたときより早く接点開閉機構が連動し、接点機構の接点を切替え動作させる。   When an overload current flows through the main circuit, the thermal overload relay with the above configuration is displaced by the displacement of the push shifter due to the bending displacement of multiple bimetals due to the heat generated by the heater element, and thereby the differential lever is displaced. The pull shifter is displaced together with the push shifter and the differential lever. When the differential lever is displaced, the contact opening / closing mechanism interlocks to switch the contact of the contact mechanism. In addition, when a phase failure occurs, the bimetal that does not bend and bend in the phase where the phase failure occurs pulls to restrict the shift of the shifter, and the push shifter is displaced in the same manner as when an overload current flows. In this way, the difference between the displacement amounts of the push shifter and the pull shifter causes the differential lever to be greatly displaced, and the contact opening / closing mechanism is linked earlier than when the overload current flows, and the contact of the contact mechanism is switched. .

特公昭59−21134号公報Japanese Patent Publication No.59-21134

ところで、押しシフタ及び引きシフタは厚み方向が同一平面となるように配置されているが、これら押しシフタ及び引きシフタが、前記平面上においてバイメタルの湾曲変位方向に沿う方向に直交する方向は、バイメタルに係合せず変位が規制されていない(以下、湾曲変位方向に沿う方向に直交する方向を非規制方向と称する)。すなわち、押しシフタ及び引きシフタは、非規制方向の周縁部がケースの内壁との接触のみで支持されていることから、非規制方向へのガタが大きく、バイメタルが湾曲変形して押圧された押しシフタ及び引きシフタは、非規制方向に変位する場合がある。したがって、過負荷電流発生時、欠相発生時の押しシフタ及び引きシフタの湾曲変位方向への変位量が小さくなってしまい、差動シフタ機構の動作特性が安定しないという問題がある。
そこで、本発明は、過負荷電流発生時、或いは欠相発生時における差動シフタ機構(押しシフタ、引きシフタ及び差動レバー)の動作特性を安定させ、バイメタルの湾曲変位を効率良く接点機構に伝達することができる熱動形過負荷継電器を提供することを目的としている。
By the way, the push shifter and the pull shifter are arranged so that the thickness direction is on the same plane, but the direction in which the push shifter and the pull shifter are orthogonal to the direction along the bending displacement direction of the bimetal on the plane is bimetal. And the displacement is not regulated (hereinafter, the direction orthogonal to the direction along the bending displacement direction is referred to as a non-regulated direction). In other words, the push shifter and the pull shifter are supported by the non-regulated direction peripheral edge only in contact with the inner wall of the case, so the backlash in the non-regulated direction is large and the bimetal is bent and deformed and pressed. The shifter and the pull shifter may be displaced in a non-regulating direction. Therefore, there is a problem that when the overload current is generated and the phase loss occurs, the displacement amount of the push shifter and the pull shifter in the bending displacement direction becomes small, and the operation characteristics of the differential shifter mechanism are not stable.
Therefore, the present invention stabilizes the operating characteristics of the differential shifter mechanism (push shifter, pulling shifter and differential lever) when an overload current occurs or when a phase loss occurs, and makes the bimetal bending displacement an efficient contact mechanism. It is intended to provide a thermal overload relay that can transmit.

上記目的を達成するために、本発明に係る熱動形過負荷継電器は、ケース内に収納空間仕切り壁を間に設けて隣接して設けた第1収納空間及び第2収納空間と、昇温時の湾曲変位方向が前記第2収納空間を向くように一致させて前記第1収納空間に列状に配置した複数のバイメタルと、前記収納空間仕切り壁と平行に前記第1収納空間に設けられ、前記複数のバイメタルを個別に収納する複数のバイメタル仕切り壁と、前記第2収納空間に配置されて接点機構の開閉動作を行なう接点開閉機構と、厚み方向が同一平面となるように配置され、前記複数のバイメタルの自由端部に係合して前記第1収納空間及び前記第2収納空間に跨がりながら延在している平板状の押しシフタ及び引きシフタと、前記押しシフタ及び前記引きシフタの前記第2収納空間に位置する部位に係合した差動レバーと、を備え、前記複数のバイメタルの湾曲変位により前記押しシフタ及び前記引きシフタが変位して前記差動レバーが従動すると、当該差動レバーの変位が前記接点開閉機構の伝達部材に直接伝達されるようにした熱動形過負荷継電器において、前記押しシフタ及び前記引きシフタが直線状に変位するように支持するシフタ変位ガイド部を設けたことを特徴とする熱動形過負荷継電器である。   In order to achieve the above object, a thermal overload relay according to the present invention includes a first storage space and a second storage space that are provided adjacent to each other with a storage space partition wall in the case, and a temperature rise. A plurality of bimetals arranged in a row in the first storage space in such a manner that the bending displacement direction at the time coincides with the second storage space, and provided in the first storage space in parallel with the storage space partition wall A plurality of bimetal partition walls that individually store the plurality of bimetals, a contact opening / closing mechanism that is disposed in the second storage space and performs an opening / closing operation of the contact mechanism, and is disposed so that the thickness direction is on the same plane, A flat push shifter and pull shifter that engage with the free ends of the plurality of bimetals and extend over the first storage space and the second storage space, and the push shifter and the pull shifter The second of A differential lever engaged with a portion located in the storage space, and when the push shifter and the pull shifter are displaced by the bending displacement of the plurality of bimetals and the differential lever is driven, In the thermal overload relay in which the displacement is directly transmitted to the transmission member of the contact opening / closing mechanism, a shifter displacement guide portion for supporting the push shifter and the pull shifter so as to be linearly displaced is provided. This is a thermal overload relay characterized by

この発明によると、押しシフタ及び引きシフタは、シフタ変位ガイド部により湾曲変位方向に沿う方向以外の変位が規制され、押しシフタ、引きシフタ及び差動レバーの動作特性を安定させることができるので、過負荷電流発生時、或いは欠相発生時のバイメタルの湾曲変位を効率良く接点機構に伝達させることが可能となる。   According to the present invention, the displacement of the push shifter and the pull shifter other than the direction along the bending displacement direction is regulated by the shifter displacement guide portion, and the operation characteristics of the push shifter, the pull shifter, and the differential lever can be stabilized. It becomes possible to efficiently transmit the bending displacement of the bimetal when an overload current is generated or when a phase failure occurs to the contact mechanism.

また、請求項2記載の発明は、請求項1記載の熱動形過負荷継電器において、前記収納空間仕切り壁及び前記複数のバイメタル仕切り壁のそれぞれにシフタ摺動用スリットを形成し、これらシフタ摺動用スリットに前記押しシフタ及び前記引きシフタを挿入し、前記シフタ変位ガイド部として、前記押しシフタ及び前記引きシフタのそれぞれに形成され、前記湾曲変位方向に沿って直線状に延在する少なくとも2箇所のガイド長穴と、前記複数のバイメタル仕切り壁に形成した前記シフタ摺動用スリットのスリット面に形成され、前記押しシフタ及び前記引きシフタの前記ガイド長穴の長軸方向の内壁に係合して入り込む係合突起と、を設け、前記係合突起の周面及び前記ガイド長穴の長軸方向の内壁が摺動しながら前記押しシフタ及び前記引きシフタが変位するようにした。   According to a second aspect of the present invention, in the thermal overload relay according to the first aspect, a shifter sliding slit is formed in each of the storage space partition wall and the plurality of bimetal partition walls, and the shifter sliding The push shifter and the pull shifter are inserted into the slit, and the shifter displacement guide portion is formed in each of the push shifter and the pull shifter and extends in a straight line along the curved displacement direction. It is formed on the slit surface of the slit for sliding the shifter formed in the guide long hole and the plurality of bimetal partition walls, and engages and enters the inner wall in the long axis direction of the guide long hole of the push shifter and the pull shifter. An engaging protrusion, and the push shifter and the inner surface of the engaging protrusion and the inner wall in the long axis direction of the guide elongated hole slide while sliding. Can shifter has to be displaced.

この発明によると、シフタ変位ガイド部として、押しシフタ及び引きシフタのそれぞれに形成したガイド長穴と、複数のバイメタル仕切り壁のシフタ摺動用スリットのスリット面に形成した係合突起とが互いに摺動するようにしたので、過負荷電流発生時、或いは欠相発生時に、押しシフタ及び引きシフタが回動して湾曲変位方向への変位量が小さくなることが確実に解消される。   According to this invention, as the shifter displacement guide portion, the guide elongated holes formed in each of the push shifter and the pull shifter and the engagement protrusions formed on the slit surfaces of the shifter sliding slits of the plurality of bimetal partition walls slide relative to each other. As a result, when the overload current is generated or when the phase loss occurs, the push shifter and the pull shifter are rotated and the displacement amount in the bending displacement direction is reliably reduced.

また、請求項3記載の発明は、請求項1記載の熱動形過負荷継電器において、前記収納空間仕切り壁及び前記複数のバイメタル仕切り壁のそれぞれにシフタ摺動用スリットを形成し、これらシフタ摺動用スリットに前記押しシフタ及び前記引きシフタを挿入し、前記シフタ変位ガイド部として、前記押しシフタ及び前記引きシフタのそれぞれに形成され、前記湾曲変位方向に沿って直線状に延在する2箇所のガイド長穴と、前記収納空間仕切り壁に形成した前記シフタ摺動用スリット及び前記収納空間仕切り壁に対して最も離間した前記バイメタル仕切り壁に形成した前記シフタ摺動用スリットのスリット面に形成され、前記押しシフタ及び前記引きシフタの前記ガイド長穴の長軸方向の内壁に係合して入り込む係合突起と、を設け、前記係合突起の周面及び前記ガイド長穴の長軸方向の内壁が摺動しながら前記押しシフタ及び前記引きシフタが変位するようにした。   According to a third aspect of the present invention, in the thermal overload relay according to the first aspect, a shifter sliding slit is formed in each of the storage space partition wall and the plurality of bimetal partition walls, and the shifter sliding The push shifter and the pull shifter are inserted into the slit, and the shifter displacement guide portion is formed in each of the push shifter and the pull shifter and extends in a straight line along the bending displacement direction. Formed on the slit surface of the shifter sliding slit formed on the bimetal partition wall that is the farthest apart from the elongated hole, the slit for sliding the storage space formed on the partition wall and the storage space partition wall, and An engagement protrusion that engages and enters the inner wall in the long axis direction of the guide elongated hole of the shifter and the pulling shifter, and The push shifter and the pull shifter is so displaced peripheral surface and the long axis direction of the inner wall of the guide slot of the projection while sliding.

この発明によると、シフタ変位ガイド部として、押しシフタ及び引きシフタのそれぞれに形成したガイド長穴と、収納空間仕切り壁に形成したシフタ摺動用スリット及び収納空間仕切り壁に対して最も離間したバイメタル仕切り壁に形成した前記シフタ摺動用スリットのスリット面に形成した係合突起とが互いに摺動するようにしており、収納空間仕切り壁のスリット面及び収納空間仕切り壁に対して最も離間したバイメタル仕切り壁のスリット面を使用することで、請求項2の発明と比較して、押しシフタ及び引きシフタを支持するピッチが長く設定されることになり、押しシフタ及び引きシフタをさらに直線状に変位させることができる。   According to the present invention, as the shifter displacement guide portion, the guide long hole formed in each of the push shifter and the pull shifter, the shifter sliding slit formed in the storage space partition wall, and the bimetal partition farthest from the storage space partition wall A bimetal partition wall that is spaced apart from the slit surface of the storage space partition wall and the storage space partition wall so that the engagement protrusions formed on the slit surface of the slit for sliding the shifter formed on the wall slide with each other By using this slit surface, the pitch for supporting the push shifter and the pull shifter is set longer than in the invention of claim 2, and the push shifter and the pull shifter are further displaced linearly. Can do.

本発明に係る熱動形過負荷継電器によれば、押しシフタ及び引きシフタは、シフタ変位ガイド部により湾曲変位方向に沿う方向以外の変位が規制され、過負荷電流発生時、或いは欠相発生時に押しシフタ及び引きシフタが回動して湾曲変位方向への変位量が小さくなることが解消されるので、押しシフタ、引きシフタ及び差動レバーの動作特性を安定させることができ、過負荷電流発生時、或いは欠相発生時のバイメタルの湾曲変位を効率良く接点機構に伝達させることができる。   According to the thermal overload relay according to the present invention, the displacement of the push shifter and the pull shifter other than the direction along the bending displacement direction is regulated by the shifter displacement guide portion, and when an overload current is generated or an open phase is generated. Since the push shifter and pull shifter rotate and the displacement in the bending displacement direction is reduced, the operating characteristics of the push shifter, pull shifter and differential lever can be stabilized, and overload current is generated. It is possible to efficiently transmit the bending displacement of the bimetal at the time of occurrence of phase failure or phase failure to the contact mechanism.

本発明に係る熱動形過負荷継電器の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of the thermal overload relay which concerns on this invention. 本発明に係る第1実施形態の押しシフタ及び引きシフタとこれらを支持する構造を取付け側から示した図である。It is the figure which showed the push shifter and pulling shifter of 1st Embodiment which concern on this invention, and the structure which supports these from the attachment side. 本発明に係る第2実施形態の押しシフタ及び引きシフタとこれらを支持する構造を取付け側から示した図である。It is the figure which showed from the attachment side the structure which supports the push shifter and pulling shifter of 2nd Embodiment which concern on this invention, and these. 図3のA−A矢視断面図である。It is AA arrow sectional drawing of FIG.

以下、本発明を実施するための形態(以下、実施形態という。)を、図面を参照しながら詳細に説明する。
図1に示す熱動形過負荷継電器1は、三相交流の主回路を制御対象とし、過負荷電流が発生した場合、及び、欠相が生じた場合に接点を開閉し、電磁接触器等の回路遮断手段を動作させる装置である。
本実施形態の熱動形過負荷継電器1は、図1に示すように、ケース2内に、ヒータ3、差動シフタ機構4、接点機構5及び接点開閉機構6が収納されており、差動シフタ機構4は、平板状の押しシフタ7、引きシフタ8及び差動レバー9で構成されている。
DESCRIPTION OF EMBODIMENTS Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described in detail with reference to the drawings.
The thermal overload relay 1 shown in FIG. 1 controls a three-phase AC main circuit, opens and closes contacts when an overload current is generated and when a phase loss occurs, and an electromagnetic contactor, etc. Is a device for operating the circuit breaking means.
As shown in FIG. 1, the thermal overload relay 1 of this embodiment includes a heater 3, a differential shifter mechanism 4, a contact mechanism 5, and a contact opening / closing mechanism 6 in a case 2. The shifter mechanism 4 includes a flat push shifter 7, a pull shifter 8, and a differential lever 9.

ケース2は、例えば樹脂製のインジェクション成型品であり、このケース2の図1における上部に接点機構5が収納されている。
接点機構5は、過負荷保護時、又は欠相保護時に接点が開閉されるものであって、図示しない電磁接触器等の回路遮断器に接続される。
ケース2には、接点機構5と図1の下端の取付け板2aとの間の内部空間を図1の左右の空間に仕切る仕切り壁10が設けられており、図1の右側の空間が第1収納空間11とされ、図1の左側の空間が第2収納空間12とされている。なお、取付け板2a近傍の仕切り壁10にはスリット10aが形成されている。
The case 2 is, for example, a resin injection molded product, and a contact mechanism 5 is accommodated in an upper portion of the case 2 in FIG.
The contact mechanism 5 opens and closes a contact during overload protection or phase loss protection, and is connected to a circuit breaker such as an electromagnetic contactor (not shown).
The case 2 is provided with a partition wall 10 that partitions the internal space between the contact mechanism 5 and the lower mounting plate 2a in FIG. 1 into the left and right spaces in FIG. 1, and the right space in FIG. A storage space 11 is provided, and a space on the left side in FIG. 1 is a second storage space 12. A slit 10a is formed in the partition wall 10 in the vicinity of the mounting plate 2a.

第1収納空間11にはヒータ3が収納されており、第2収納空間12には接点開閉機構6が収納されている。
ヒータ3は、三相交流のR,S,Tの各相に対応して設けられ、熱膨張率の異なった1対の金属板を層状に接合した帯板状の部材である3本のバイメタル12R,12S,12Tと、これらバイメタル12R,12S,12Tにそれぞれ巻き付けられた抵抗線であるヒータエレメント13R,13S,13Tとで構成されており、ヒータエレメント13R,13S,13Tに加熱されるとバイメタル12R,12S,12Tが湾曲変位する。
The first storage space 11 stores the heater 3, and the second storage space 12 stores the contact opening / closing mechanism 6.
The heater 3 is provided corresponding to each phase of three-phase alternating currents R, S, and T, and is composed of three bimetals that are strip-shaped members in which a pair of metal plates having different thermal expansion coefficients are joined in layers. 12R, 12S, and 12T and heater elements 13R, 13S, and 13T that are resistance wires wound around the bimetals 12R, 12S, and 12T, respectively, and when heated to the heater elements 13R, 13S, and 13T, the bimetal 12R, 12S, and 12T are curvedly displaced.

第1収納空間11には、3本のバイメタル12R,12S,12Tを図1の左右方向に個別に収納するため、図1の上下方向に延在し、互いに平行な2箇所のバイメタル仕切り壁15,16が形成されており、これらバイメタル仕切り壁15,16の取付け板2a近傍にはスリット15a,16aが形成されている。これらバイメタル仕切り壁15,16、仕切り壁10及びケース2の側壁の間の空間に、各バイメタル12R,12S,12Tが略平行かつ等間隔に配列され、一方の端部(図1の上端部)が、支持金具17を介してケース2に固定されているとともに、他方の自由端部(図1の下端部)が、差動シフタ機構4の押しシフタ7及び引きシフタ8と係合している。   In the first storage space 11, in order to store the three bimetals 12R, 12S, and 12T individually in the left-right direction in FIG. 1, two bimetal partition walls 15 that extend in the vertical direction in FIG. , 16 are formed, and slits 15a, 16a are formed in the vicinity of the mounting plate 2a of these bimetal partition walls 15, 16. The bimetals 12R, 12S, and 12T are arranged substantially in parallel and at equal intervals in a space between the bimetal partition walls 15 and 16, the partition wall 10, and the side wall of the case 2, and one end portion (the upper end portion in FIG. 1). Is fixed to the case 2 via the support bracket 17, and the other free end (the lower end in FIG. 1) is engaged with the push shifter 7 and the pull shifter 8 of the differential shifter mechanism 4. .

各バイメタル12R,12S,12Tの配列方向は、それらの厚み方向と略一致する図1の左右方向であり、各バイメタル12R,12S,12Tの湾曲変位方向は配列方向に一致している。
そして、差動シフタ機構4の押しシフタ7及び引きシフタ8を、バイメタル仕切り壁15,16に設けたスリット15a,16a、仕切り壁10に設けたスリット10aにスライド自在に配置し、差動シフタ機構4の差動レバー9を、第2収納空間12に位置する押しシフタ7及び引きシフタ8に係合することで、差動シフタ機構4は、第1収納空間11及び第2収納空間12に跨がりながら、取付け板2aに沿ってケース2内に収納されている。
The arrangement direction of the bimetals 12R, 12S, and 12T is the left-right direction in FIG. 1 that substantially matches the thickness direction thereof, and the bending displacement direction of the bimetals 12R, 12S, and 12T coincides with the arrangement direction.
The push shifter 7 and the pull shifter 8 of the differential shifter mechanism 4 are slidably disposed in the slits 15a and 16a provided in the bimetal partition walls 15 and 16 and the slit 10a provided in the partition wall 10 so as to be slidable. The differential shifter mechanism 4 straddles the first storage space 11 and the second storage space 12 by engaging the four differential levers 9 with the push shifter 7 and the pull shifter 8 positioned in the second storage space 12. It is housed in the case 2 along the mounting plate 2a while being bent.

接点開閉機構6は、差動シフタ機構4に連動して、接点機構5の接点を開閉駆動する伝達機構であり、差動シフタ機構4の差動レバー9に直接押圧される補償バイメタル6aを備えている。
図2は、本発明に係る第1実施形態の差動シフタ機構4を構成する押しシフタ7、引きシフタ8及び差動レバー9を示すものである。なお、この図2では、破線で囲まれた四角形状の空間を第1収納空間11とし、1点鎖線で囲まれた四角形状の空間を第2収納空間12としている。
The contact opening / closing mechanism 6 is a transmission mechanism that opens and closes the contact of the contact mechanism 5 in conjunction with the differential shifter mechanism 4, and includes a compensation bimetal 6 a that is directly pressed by the differential lever 9 of the differential shifter mechanism 4. ing.
FIG. 2 shows a push shifter 7, a pull shifter 8 and a differential lever 9 constituting the differential shifter mechanism 4 according to the first embodiment of the present invention. In FIG. 2, a rectangular space surrounded by a broken line is a first storage space 11, and a rectangular space surrounded by a one-dot chain line is a second storage space 12.

本実施形態の押しシフタ7及び引きシフタ8は、各相のバイメタル12R,12S,12Tの延在方向に直交する方向に面方向が延在し、厚み方向が同一平面となるように配置された板状部材である。また、図2の矢印X方向及び矢印Y方向は、押しシフタ7及び引きシフタ8を配置した同一平面上で延在する方向であり、矢印X方向は、各相のバイメタル12R,12S,12Tが湾曲変位する方向(以下、湾曲変位方向Xと称する)。   The push shifter 7 and the pull shifter 8 of this embodiment are arranged so that the surface direction extends in a direction orthogonal to the extending direction of the bimetals 12R, 12S, and 12T of each phase, and the thickness direction is the same plane. It is a plate-like member. Further, the arrow X direction and the arrow Y direction in FIG. 2 are directions extending on the same plane where the push shifter 7 and the pull shifter 8 are arranged, and the arrow X direction indicates that the bimetals 12R, 12S, and 12T of each phase are Direction of bending displacement (hereinafter referred to as bending displacement direction X).

押しシフタ7は、第1収納空間11から第2収納空間12まで延在して配置され、バイメタル仕切り壁15,16のスリット15a,16a及び仕切り壁10のスリット10aに摺動する帯状部18と、この帯状部18の側縁部から突出して形成された3つの腕部19R、19S、19Tと、これら腕部19R、19S、19Tにそれぞれ形成され、各相のバイメタル12R,12S,12Tが加熱されて湾曲変位した際に押圧される当接部20R、20S、20Tと、接点開閉機構6の補償バイメタル6a側に設けた腕部19Tに形成され、湾曲変位方向Xに向けて突出している押圧部21とを備えた部材である。   The push shifter 7 is arranged to extend from the first storage space 11 to the second storage space 12, and has a belt-like portion 18 that slides on the slits 15 a and 16 a of the bimetal partition walls 15 and 16 and the slit 10 a of the partition wall 10. The arm portions 19R, 19S, and 19T formed from the side edge portions of the belt-shaped portion 18 are formed on the arm portions 19R, 19S, and 19T, and the bimetals 12R, 12S, and 12T of each phase are heated. The contact portions 20R, 20S, and 20T that are pressed when bent and displaced, and the arm portion 19T that is provided on the compensation bimetal 6a side of the contact opening / closing mechanism 6 and that protrudes in the bending displacement direction X This is a member provided with a portion 21.

また、帯状部18には、バイメタル仕切り壁15,16のスリット15a,16aに摺動する部位に2箇所のガイド長穴22,23が形成されている。これらガイド長穴22,23は、湾曲変位方向Xに沿って直線状に延在する長穴である。そして、これら2箇所のガイド長穴22,23に、バイメタル仕切り壁15,16に形成したスリット15a,16aのスリット面から突出する係合突起24,25がそれぞれ入り込んでいる。これら係合突起24,25は、これら係合突起24,25の周面がガイド長穴22,23の長軸方向の内壁に摺動自在となるように、ガイド長穴22,23の短軸方向の幅と略同一外径寸法の円筒形状に形成されている。   In addition, two guide long holes 22 and 23 are formed in the belt-like portion 18 at portions that slide on the slits 15 a and 16 a of the bimetal partition walls 15 and 16. These guide elongated holes 22 and 23 are elongated holes extending linearly along the bending displacement direction X. And the engagement protrusions 24 and 25 which protrude from the slit surface of the slits 15a and 16a formed in the bimetal partition walls 15 and 16 enter into these two guide long holes 22 and 23, respectively. The engagement protrusions 24 and 25 are arranged so that the peripheral surfaces of the engagement protrusions 24 and 25 are slidable on the inner walls of the guide long holes 22 and 23 in the long axis direction. It is formed in a cylindrical shape having an outer diameter dimension substantially the same as the width in the direction.

また、引きシフタ8は、第1収納空間11から第2収納空間12まで延在して配置され、スリット15a,16a及びスリット10aに摺動する帯状部26と、この帯状部26の側縁部から突出して形成された3つの腕部27R、27S、27Tと、各相のバイメタル12R,12S,12Tが加熱されて湾曲変位する方向に対して反対側の部位に当接する当接部28R、28S、28Tと、帯状部26の第2収納空間12に位置する部位に形成されたピン挿入穴29とを備えた部材である。   The pull shifter 8 extends from the first storage space 11 to the second storage space 12, and is arranged in a strip-like portion 26 that slides in the slits 15a, 16a and the slit 10a, and a side edge portion of the strip-like portion 26. Abutting portions 28R, 28S that abut against the opposite sides of the three arm portions 27R, 27S, 27T formed by protruding from the direction of bending and displacement of the bimetals 12R, 12S, 12T of each phase by heating. , 28T and a pin insertion hole 29 formed in a portion of the belt-like portion 26 located in the second storage space 12.

そして、帯状部26には、スリット15a,16aに摺動する部位に2箇所のガイド長穴30,31が形成されている。これらガイド長穴30,31は、湾曲変位方向Xに沿って直線状に延在する長穴である。そして、これら2箇所のガイド長穴30,31に、スリット15a,16aのスリット面から突出する係合突起32,33がそれぞれ入り込んでいる。これら係合突起32,33は、これら係合突起32,33の周面がガイド長穴30,31の長軸方向の内壁に摺動自在となるように、ガイド長穴30,31の短軸方向の幅と略同一外径寸法の円筒形状に形成されている。   In the belt-like portion 26, two guide long holes 30 and 31 are formed at portions that slide in the slits 15a and 16a. These guide elongated holes 30 and 31 are elongated holes extending linearly along the bending displacement direction X. And the engagement protrusions 32 and 33 which protrude from the slit surface of the slits 15a and 16a have entered into these two guide long holes 30 and 31, respectively. The engagement protrusions 32 and 33 are arranged so that the peripheral surfaces of the engagement protrusions 32 and 33 are slidable on the inner walls of the guide long holes 30 and 31 in the long axis direction. It is formed in a cylindrical shape having an outer diameter dimension substantially the same as the width in the direction.

一方、差動レバー9は、湾曲変位方向Xに直交する方向Yに沿って配置した板状部材であり、一端側に回転ピン34が形成され、他端側に、接点開閉機構6の補償バイメタル6aに当接する押圧部35が形成され、回転ピン34及び押圧部35の間に、押しシフタ7の押圧部21が当接する当接壁9aが形成されている。
この差動レバー9は、引きシフタ8のピン挿入穴29に回転ピン34を挿入することで、引きシフタ8に対して回転ピン34を回転中心として回動可能となるように連結されている。
On the other hand, the differential lever 9 is a plate-like member arranged along a direction Y orthogonal to the bending displacement direction X, a rotation pin 34 is formed on one end side, and a compensation bimetal of the contact opening / closing mechanism 6 on the other end side. A pressing portion 35 that contacts 6 a is formed, and a contact wall 9 a that contacts the pressing portion 21 of the push shifter 7 is formed between the rotating pin 34 and the pressing portion 35.
The differential lever 9 is connected to the pull shifter 8 so as to be rotatable about the rotation pin 34 by inserting the rotation pin 34 into the pin insertion hole 29 of the pull shifter 8.

次に、本実施形態の差動シフタ機構4の動作について説明する。
先ず、欠相が生じていない状態においては、主回路電流が通流されるヒータエレメント13R,13S,13Tによって、各相のバイメタル12R,12S,12Tは実質的に均等に加熱される。この加熱によってバイメタル12R,12S,12Tは湾曲変位が生じ、それらの自由端部が、図2で示す湾曲変位方向Xに変位する。これによって、押しシフタ7の各当接部20R,20S,20Tがバイメタル12R,12S,12Tの自由端部に押され、押しシフタ7は補償バイメタル6a側に変位する。この変位量は、バイメタル12R,12S,12Tの湾曲変位量とほぼ一致する。また、このとき引きシフタ8は、押しシフタ7に追従して補償バイメタル6a側に変位する。その結果、差動レバー9も補償バイメタル6a側へ平行移動する。
Next, the operation of the differential shifter mechanism 4 of this embodiment will be described.
First, in a state where no phase failure occurs, the bimetals 12R, 12S, and 12T of each phase are heated substantially evenly by the heater elements 13R, 13S, and 13T through which the main circuit current flows. This heating causes bending displacement of the bimetals 12R, 12S, and 12T, and their free ends are displaced in the bending displacement direction X shown in FIG. As a result, the contact portions 20R, 20S, 20T of the push shifter 7 are pushed by the free ends of the bimetals 12R, 12S, 12T, and the push shifter 7 is displaced toward the compensating bimetal 6a. This displacement amount substantially coincides with the bending displacement amount of the bimetal 12R, 12S, 12T. At this time, the pull shifter 8 follows the push shifter 7 and is displaced toward the compensation bimetal 6a. As a result, the differential lever 9 also translates toward the compensation bimetal 6a.

そして、欠相が生じていない状態において、主回路に過負荷電流が流されると、バイメタル12R,12S,12Tの温度は通常使用時よりも上昇し、湾曲変位が大きくなる。これによって、押しシフタ7、引きシフタ8、差動レバー9の補償バイメタル6a側への変位量が大きくなり、差動レバー9の押圧部35が補償バイメタル6aを押圧し、この押圧力は接点開閉機構6を介して接点機構5に伝達され、接点の開閉が行われて回路保護が働く。   When an overload current is passed through the main circuit in a state where no phase loss has occurred, the temperatures of the bimetals 12R, 12S, and 12T are higher than those during normal use, and the bending displacement increases. As a result, the displacement amount of the push shifter 7, the pull shifter 8, and the differential lever 9 toward the compensation bimetal 6a increases, and the pressing portion 35 of the differential lever 9 presses the compensation bimetal 6a. The signal is transmitted to the contact mechanism 5 through the mechanism 6, and the contact is opened and closed to protect the circuit.

次に、欠相が生じた場合の動作について説明する。ここでは、例として、R相が欠相した場合について説明する。R相が欠相すると、対応するバイメタル12Rは他のバイメタル12S,12Tに対して加熱されず低温となるので、湾曲変位は発生しないか、湾曲変位が発生したとしても他のバイメタル12S,12Tに対して小さくなる。このようにバイメタル12R,12S,12Tの湾曲変位量が相ごとに変化すると、押しシフタ7は、最も湾曲変位が大きいバイメタル12S,12Tの変位量だけ補償バイメタル6a側に変位するが、引きシフタ8は最も湾曲変位が小さいバイメタル12Rの変位量しか変位せず、押しシフタ7と引きシフタ8の変位量に差が生じる。このような差動が生じると、差動レバー9は、回転ピン34回りに、図2における反時計回りに回動する。この回動によって、差動レバー9の押圧部35の変位量は、押しシフタ7の変位量よりも大きくなり、欠相が生じた場合には、過負荷電流が流れたときより早く接点開閉機構6が動作し、欠相が生じていない場合に対して比較的小さい電流であっても回路保護が働く。   Next, the operation when a phase failure occurs will be described. Here, as an example, a case where the R phase is lost will be described. When the R phase is lost, the corresponding bimetal 12R is not heated with respect to the other bimetals 12S and 12T and becomes a low temperature, so that no bending displacement occurs or even if a bending displacement occurs, the other bimetals 12S and 12T On the other hand, it becomes smaller. When the bending displacement amounts of the bimetals 12R, 12S, and 12T change for each phase in this way, the push shifter 7 is displaced toward the compensation bimetal 6a by the displacement amount of the bimetals 12S and 12T having the largest bending displacement, but the pulling shifter 8 Only the displacement amount of the bimetal 12R having the smallest bending displacement is displaced, and the displacement amount of the push shifter 7 and the pull shifter 8 is different. When such a differential occurs, the differential lever 9 rotates about the rotation pin 34 counterclockwise in FIG. Due to this rotation, the displacement amount of the pressing portion 35 of the differential lever 9 becomes larger than the displacement amount of the push shifter 7, and when a phase failure occurs, the contact opening / closing mechanism is earlier than when an overload current flows. 6 operates, and circuit protection works even when the current is relatively small as compared with the case where no phase loss occurs.

ここで、本実施形態では、押しシフタ7の帯状部18には、湾曲変位方向Xに沿って直線状に延在する2箇所のガイド長穴22,23が形成されており、押しシフタ7が補償バイメタル6a側に変位する際には、2箇所のガイド長穴22,23が、バイメタル仕切り壁15,16のスリット15a,16aから突出する係合突起24,25に係合し続ける。また、引きシフタ8の帯状部26にも、湾曲変位方向Xに沿って直線状に延在する2箇所のガイド長穴30,31が形成されており、引きシフタ8が補償バイメタル6a側に変位する際には、2箇所のガイド長穴30,31が、バイメタル仕切り壁15,16のスリット15a,16aから突出する係合突起32,33に係合し続ける。   Here, in the present embodiment, two elongated guide holes 22 and 23 extending linearly along the bending displacement direction X are formed in the belt-like portion 18 of the push shifter 7. When displacing to the compensation bimetal 6a side, the two guide elongated holes 22 and 23 continue to engage with the engagement protrusions 24 and 25 protruding from the slits 15a and 16a of the bimetal partition walls 15 and 16. The strip-like portion 26 of the pull shifter 8 is also formed with two guide slots 30 and 31 extending linearly along the bending displacement direction X, and the pull shifter 8 is displaced toward the compensation bimetal 6a. In doing so, the two guide slots 30 and 31 continue to engage with the engaging protrusions 32 and 33 protruding from the slits 15a and 16a of the bimetal partition walls 15 and 16, respectively.

このように、押しシフタ7は、ガイド長穴22,23及び係合突起24,25が係合することで、湾曲変位方向Xに直交する方向Yへの変位が規制される(湾曲変位方向X以外の変位が規制される)。また、引きシフタ8も、ガイド長穴30,31及び係合突起32,33が係合することで、湾曲変位方向Xに直交する方向Yへの変位が規制される(湾曲変位方向X以外の変位が規制される)。したがって、過負荷電流発生時、或いは欠相発生時には、押しシフタ7及び引きシフタ8が回動して湾曲変位方向Xへの変位量が小さくなることが解消されるので、差動シフタ機構4の動作特性を安定させることができる。
したがって、本実施形態は、差動シフタ機構4の動作特性を安定させることができるので、過負荷電流発生時、或いは欠相発生時のバイメタル12R,12S,12Tの湾曲変位を効率良く接点機構5に伝達させることができる熱動形過負荷継電器1を提供することができる。
As described above, the push shifter 7 is restricted from being displaced in the direction Y perpendicular to the bending displacement direction X (the bending displacement direction X) by the engagement of the guide slots 22 and 23 and the engagement protrusions 24 and 25. Other displacements are regulated). In addition, the displacement of the pull shifter 8 in the direction Y perpendicular to the bending displacement direction X is regulated by engaging the guide elongated holes 30 and 31 and the engaging protrusions 32 and 33 (other than the bending displacement direction X). Displacement is regulated). Accordingly, when the overload current is generated or when the phase loss occurs, the push shifter 7 and the pull shifter 8 are prevented from rotating and the displacement amount in the bending displacement direction X is reduced. The operating characteristics can be stabilized.
Therefore, the present embodiment can stabilize the operation characteristics of the differential shifter mechanism 4, so that the bending displacement of the bimetals 12R, 12S, and 12T when an overload current occurs or when a phase loss occurs can be efficiently performed. It is possible to provide a thermal overload relay 1 that can be transmitted to

次に、図3及び図4は、本発明に係る第2実施形態の差動シフタ機構4を示すものである。なお、図2に示す構成と同一構成部分には、同一符号を付してその説明を省略する。
本実施形態の差動シフタ機構4は、図2で示したものと略同形状の押しシフタ7及び引きシフタ8と、差動レバー36とで構成されており、押しシフタ7及び引きシフタ8は、各相のバイメタル12R,12S,12Tの延在方向に直交する方向に面方向が延在し、互いに同一平面上に配置されている。
Next, FIGS. 3 and 4 show a differential shifter mechanism 4 according to a second embodiment of the present invention. Note that the same components as those shown in FIG. 2 are denoted by the same reference numerals and description thereof is omitted.
The differential shifter mechanism 4 of this embodiment is composed of a push shifter 7 and a pull shifter 8 and a differential lever 36 having substantially the same shape as that shown in FIG. 2, and the push shifter 7 and the pull shifter 8 are The surface directions extend in the direction orthogonal to the extending direction of the bimetals 12R, 12S, and 12T of the respective phases, and are arranged on the same plane.

本実施形態の押しシフタ7は、図2で示した帯状部18のバイメタル仕切り壁16のスリット16aに摺動する部位にガイド長穴23を形成しておらず、代わりに、図3に示すように、仕切り壁10のスリット10aに摺動する部位に、湾曲変位方向Xに沿って直線状に延在するガイド長穴37が形成されている。そして、ガイド長穴37には、仕切り壁10のスリット10aのスリット面から突出する係合突起38が入り込んでおり、この係合突起38は、突起周面がガイド長穴37の長軸方向の内壁に摺動自在となるように、ガイド長穴37の短軸方向の幅と略同一外径寸法の円筒形状に形成されている。   The push shifter 7 of the present embodiment does not have the guide elongated hole 23 formed in the portion that slides on the slit 16a of the bimetal partition wall 16 of the belt-like portion 18 shown in FIG. 2, and instead, as shown in FIG. In addition, a guide slot 37 extending linearly along the bending displacement direction X is formed in a portion that slides on the slit 10 a of the partition wall 10. An engagement protrusion 38 protruding from the slit surface of the slit 10 a of the partition wall 10 enters the guide long hole 37, and the protrusion peripheral surface of the engagement protrusion 38 is in the long axis direction of the guide long hole 37. In order to be slidable on the inner wall, the guide elongated hole 37 is formed in a cylindrical shape having substantially the same outer diameter as the width in the minor axis direction.

また、引きシフタ8は、図2で示した帯状部26のバイメタル仕切り壁16のスリット16aに摺動する部位にガイド長穴23を形成しておらず、代わりに、図3に示すように、仕切り壁10のスリット10aに摺動する部位に、湾曲変位方向Xに沿って直線状に延在するガイド長穴39が形成されている。そして、ガイド長穴39には、仕切り壁10のスリット10aのスリット面から突出する係合突起40が入り込んでおり、この係合突起40は、突起周面がガイド長穴39の長軸方向の内壁に摺動自在となるように、ガイド長穴39の短軸方向の幅と略同一外径寸法の円筒形状に形成されている。   Further, the pull shifter 8 does not have the guide long hole 23 formed in the portion that slides on the slit 16a of the bimetal partition wall 16 of the strip-like portion 26 shown in FIG. 2, and instead, as shown in FIG. A guide elongated hole 39 extending linearly along the bending displacement direction X is formed in a portion that slides on the slit 10 a of the partition wall 10. An engagement protrusion 40 protruding from the slit surface of the slit 10 a of the partition wall 10 enters the guide long hole 39, and the protrusion peripheral surface of the engagement protrusion 40 has a long axis direction of the guide long hole 39. In order to be slidable on the inner wall, the guide elongated hole 39 is formed in a cylindrical shape having substantially the same outer diameter as the width in the minor axis direction.

本実施形態の差動レバー36は、湾曲変位方向Xに直交する方向Yに沿って配置した部材であり、一端側に、一対の挟持板部41,42が形成され(図4参照)、一方の挟持板部41から回転ピン43が突出して形成され、他端側に、接点開閉機構6の補償バイメタル6aに当接する押圧部44が形成され、一対の挟持板部41,42と押圧部44の間に、押しシフタ7の押圧部21が当接する当接壁45が形成されている。   The differential lever 36 of the present embodiment is a member arranged along a direction Y orthogonal to the bending displacement direction X, and a pair of clamping plate portions 41 and 42 are formed on one end side (see FIG. 4). The pin 43 is formed so as to protrude from the holding plate 41, and a pressing portion 44 that contacts the compensation bimetal 6 a of the contact opening / closing mechanism 6 is formed on the other end side. A pair of the holding plate portions 41, 42 and the pressing portion 44 are formed. In between, the contact wall 45 with which the press part 21 of the push shifter 7 contacts is formed.

一対の挟持板部41,42は、第2収納空間に位置する引きシフタ8の帯状部26の一端側の表裏面を挟持する部材であり、図4に示すように、一方の挟持板部41から突出した回転ピン43に引きシフタ8のピン挿入穴29に回転ピン43を挿入することで、差動レバー36が、引きシフタ8に対して回転ピン43を回転中心として回動可能となるように連結されている。   The pair of sandwiching plate portions 41 and 42 is a member for sandwiching the front and back surfaces on one end side of the belt-like portion 26 of the pulling shifter 8 located in the second storage space. As shown in FIG. By inserting the rotating pin 43 into the pin insertion hole 29 of the pulling shifter 8 into the rotating pin 43 protruding from the differential lever 36, the differential lever 36 can be rotated around the rotating pin 43 as the rotation center. It is connected to.

ここで、回転ピン43をピン挿入穴29に挿入するには、先ず、他方の挟持板部42が引きシフタ8の表面に当接しない位置、すなわち、図3において差動レバー36を引きシフタ8の一端側の下方位置に配置し、その状態で回転ピン43を引きシフタ8のピン挿入穴29に挿入した後、回転ピン43を回転中心として差動レバー36を時計回りに略180°回転させる動作を行なう。   Here, in order to insert the rotary pin 43 into the pin insertion hole 29, first, the position where the other clamping plate portion 42 does not contact the surface of the pull shifter 8, that is, the differential lever 36 in FIG. In this state, the rotary pin 43 is pulled and inserted into the pin insertion hole 29 of the shifter 8, and then the differential lever 36 is rotated approximately 180 ° clockwise around the rotary pin 43. Perform the action.

次に、本実施形態の差動シフタ機構4の動作について説明する。
欠相が生じていない状態において、主回路に過負荷電流が流されると、バイメタル12R,12S,12Tの温度は通常使用時よりも上昇し、湾曲変位が大きくなり、押しシフタ7、引きシフタ8、差動レバー36の補償バイメタル6a側への変位量が大きくなり、差動レバー36の押圧部44が補償バイメタル6aを押圧し、この押圧力が接点開閉機構6を介して接点機構5に伝達され、接点の開閉が行われて回路保護が働く。
Next, the operation of the differential shifter mechanism 4 of this embodiment will be described.
If an overload current is passed through the main circuit in a state where no phase failure occurs, the temperatures of the bimetals 12R, 12S, and 12T rise higher than in normal use, and the bending displacement increases, and the push shifter 7 and the pull shifter 8 The amount of displacement of the differential lever 36 toward the compensation bimetal 6a increases, the pressing portion 44 of the differential lever 36 presses the compensation bimetal 6a, and this pressing force is transmitted to the contact mechanism 5 via the contact opening / closing mechanism 6. The contacts are opened and closed to protect the circuit.

また、欠相が生じた場合(例えば、R相が欠相した場合)には、押しシフタ7は、最も湾曲変位が大きいバイメタル12S,12Tの変位量だけ補償バイメタル6a側に変位するが、引きシフタ8は最も湾曲変位が小さいバイメタル12Rの変位量しか変位せず、押しシフタ7と引きシフタ8の変位量に差が生じる。このような差動が生じることにより、差動レバー36は、回転ピン43回りに、図3における反時計回りに回動する。この回動によって、差動レバー36の押圧部44の変位量は、押しシフタ7の変位量よりも大きくなり、欠相が生じた場合には、過負荷電流が流れたときより早く接点開閉機構6が動作し、欠相が生じていない場合に対して比較的小さい電流であっても回路保護が働く。   Further, when an open phase occurs (for example, when the R phase is lost), the push shifter 7 is displaced toward the compensating bimetal 6a by the displacement amount of the bimetals 12S and 12T having the largest bending displacement. The shifter 8 is displaced only by the displacement amount of the bimetal 12R having the smallest bending displacement, and there is a difference between the displacement amounts of the push shifter 7 and the pull shifter 8. Due to such a differential, the differential lever 36 rotates about the rotation pin 43 counterclockwise in FIG. Due to this rotation, the displacement amount of the pressing portion 44 of the differential lever 36 becomes larger than the displacement amount of the push shifter 7, and when a phase failure occurs, the contact opening / closing mechanism is earlier than when an overload current flows. 6 operates, and circuit protection works even when the current is relatively small as compared with the case where no phase loss occurs.

ここで、本実施形態では、押しシフタ7の帯状部18には、第1実施形態で示した2箇所のガイド長穴22,23と比較して互いの距離が長い、2箇所のガイド長穴22、37が形成されており、押しシフタ7が補償バイメタル6a側に変位する際には、2箇所のガイド長穴22,37が、バイメタル仕切り壁15のスリット15aから突出する係合突起24と、仕切り壁10のスリット10aから突出する係合突起38に係合し続ける。   Here, in this embodiment, in the strip-like portion 18 of the push shifter 7, two guide elongated holes having a longer distance from each other than the two guide elongated holes 22 and 23 shown in the first embodiment. 22 and 37 are formed, and when the push shifter 7 is displaced toward the compensating bimetal 6a, the two guide elongated holes 22 and 37 are engaged with the engaging protrusions 24 protruding from the slits 15a of the bimetal partition wall 15. The engagement with the engagement protrusion 38 protruding from the slit 10a of the partition wall 10 is continued.

また、本実施形態の引きシフタ8の帯状部26にも、第1実施形態で示した2箇所のガイド長穴30,31と比較して互いの距離が長い、2箇所のガイド長穴30、39が形成されており、引きシフタ8が補償バイメタル6a側に変位する際には、2箇所のガイド長穴30,39が、バイメタル仕切り壁15のスリット15aから突出する係合突起32と、仕切り壁10のスリット10aから突出する係合突起40に係合し続ける。   In addition, the strip-like portion 26 of the pull shifter 8 of the present embodiment also has two guide slots 30 that are longer in distance from each other than the two guide slots 30 and 31 shown in the first embodiment. When the pull shifter 8 is displaced to the compensation bimetal 6a side, the two guide slots 30 and 39 are provided with the engagement protrusion 32 protruding from the slit 15a of the bimetal partition wall 15 and the partition. It continues to engage with the engaging protrusion 40 protruding from the slit 10a of the wall 10.

このように、本実施形態の押しシフタ7は、第1実施形態と比較して、ガイド長穴22,37及び係合突起24,38によって湾曲変位方向Xに直交する方向Yへの変位を規制する(湾曲変位方向X以外の変位を規制する)ための規制ピッチが長く設定されており、引きシフタ8も、第1実施形態と比較して、ガイド長穴30,39及び係合突起32,40によって湾曲変位方向Xに直交する方向Yへの変位を規制する(湾曲変位方向X以外の変位を規制する)ための規制ピッチが長く設定されているので、押しシフタ7及び引きシフタ8の変位方向は、ほとんど湾曲変位方向Xに沿った直線方向となる。   As described above, the push shifter 7 of this embodiment restricts displacement in the direction Y perpendicular to the bending displacement direction X by the guide elongated holes 22 and 37 and the engagement protrusions 24 and 38, as compared with the first embodiment. The regulation pitch for regulating (regulating the displacement other than the bending displacement direction X) is set longer, and the pull shifter 8 is also provided with the guide elongated holes 30, 39 and the engagement projections 32, compared with the first embodiment. Since the restriction pitch for restricting the displacement in the direction Y orthogonal to the bending displacement direction X by 40 is set long (displacement other than the bending displacement direction X), the displacement of the push shifter 7 and the pulling shifter 8 The direction is almost a linear direction along the bending displacement direction X.

したがって、本実施形態では、過負荷電流発生時、或いは欠相発生時には、押しシフタ7及び引きシフタ8の変位方向が湾曲変位方向Xに沿った直線方向となるので、差動シフタ機構4の動作特性をさらに安定させることができる。
また、本実施形態は差動シフタ機構4の動作特性をさらに安定させることができるので、過負荷電流発生時、或いは欠相発生時のバイメタル12R,12S,12Tの湾曲変位を、さらに効率良く接点機構5に伝達させることができる熱動形過負荷継電器1を提供することができる。
Therefore, in this embodiment, when the overload current is generated or when the phase loss occurs, the displacement direction of the push shifter 7 and the pull shifter 8 is a linear direction along the bending displacement direction X. The characteristics can be further stabilized.
In addition, since the operation characteristics of the differential shifter mechanism 4 can be further stabilized in this embodiment, the bending displacement of the bimetals 12R, 12S, and 12T when an overload current is generated or when a phase loss occurs can be more efficiently contacted. A thermal overload relay 1 that can be transmitted to the mechanism 5 can be provided.

1…熱動形過負荷継電器、2…ケース、2a…取付け板、3…ヒータ、4…差動シフタ機構、5…接点機構、6…接点開閉機構、6a…補償バイメタル(伝達部材)、7…押しシフタ、8…引きシフタ、9…差動レバー、9a…当接壁、10…仕切り壁(収納空間仕切り壁)、10a…スリット(シフタ摺動用スリット)、11…第1収納空間、12…第2収納空間、12R,12S,12T…バイメタル、13R,13S,13T…ヒータエレメント、15,16…バイメタル仕切り壁、15a,16a…スリット(シフタ摺動用スリット)、17…支持金具、18…押しシフタの帯状部、19R,19S,19T…押しシフタの腕部、20R,20S,20T…押しシフタの当接部、21…押しシフタの押圧部、22,23…押しシフタのガイド長穴、24,25…係合突起、26…引きシフタの帯状部、27R,27S,27T…引きシフタの腕部、28R,28S,28T…引きシフタの当接部、29…ピン挿入穴、30…ガイド長穴、30,31…引きシフタのガイド長穴、32,33…係合突起、34…回転ピン、35…引きシフタの押圧部、36…差動レバー、37…押しシフタのガイド長穴、38…係合突起、39…引きシフタのガイド長穴、40…係合突起、41,42…挟持板部、43…回転ピン、44…押圧部、45…当接壁、X…湾曲変位方向、Y…湾曲変位方向に直交する方向   DESCRIPTION OF SYMBOLS 1 ... Thermal overload relay, 2 ... Case, 2a ... Mounting plate, 3 ... Heater, 4 ... Differential shifter mechanism, 5 ... Contact mechanism, 6 ... Contact switching mechanism, 6a ... Compensation bimetal (transmission member), 7 DESCRIPTION OF SYMBOLS ... Push shifter, 8 ... Pull shifter, 9 ... Differential lever, 9a ... Contact wall, 10 ... Partition wall (storage space partition wall), 10a ... Slit (shifter sliding slit), 11 ... First storage space, 12 ... 2nd storage space, 12R, 12S, 12T ... Bimetal, 13R, 13S, 13T ... Heater element, 15, 16 ... Bimetal partition wall, 15a, 16a ... Slit (shifter sliding slit), 17 ... Support bracket, 18 ... Push-shifter strips, 19R, 19S, 19T ... push-shifter arms, 20R, 20S, 20T ... push-shifter contact parts, 21 ... push-shifter press parts, 22, 23 ... push-shifter Guide long holes, 24, 25 ... engaging projections, 26 ... strip-like portions of the pull shifter, 27R, 27S, 27T ... arm portions of the pull shifter, 28R, 28S, 28T ... contact portions of the pull shifter, 29 ... pin insertion holes , 30 ... guide slot, 30, 31 ... guide slot in the pull shifter, 32, 33 ... engagement projection, 34 ... rotating pin, 35 ... pressing part of the pull shifter, 36 ... differential lever, 37 ... push shifter Guide slot 38, engagement projection 39, guide shift hole of pull shifter 40, engagement projection 41, 42 pinching plate portion 43 rotation pin 44 pressing portion 45 contact wall X ... curvature displacement direction, Y ... direction perpendicular to the curvature displacement direction

Claims (3)

ケース内に収納空間仕切り壁を間に設けて隣接して設けた第1収納空間及び第2収納空間と、昇温時の湾曲変位方向が前記第2収納空間を向くように一致させて前記第1収納空間に列状に配置した複数のバイメタルと、前記収納空間仕切り壁と平行に前記第1収納空間に設けられ、前記複数のバイメタルを個別に収納する複数のバイメタル仕切り壁と、前記第2収納空間に配置されて接点機構の開閉動作を行なう接点開閉機構と、厚み方向が同一平面となるように配置され、前記複数のバイメタルの自由端部に係合して前記第1収納空間及び前記第2収納空間に跨がりながら延在している平板状の押しシフタ及び引きシフタと、前記押しシフタ及び前記引きシフタの前記第2収納空間に位置する部位に係合した差動レバーと、を備え、前記複数のバイメタルの湾曲変位により前記押しシフタ及び前記引きシフタが変位して前記差動レバーが従動すると、当該差動レバーの変位が前記接点開閉機構の伝達部材に直接伝達されるようにした熱動形過負荷継電器において、
前記押しシフタ及び前記引きシフタが直線状に変位するように支持するシフタ変位ガイド部を設けたことを特徴とする熱動形過負荷継電器。
The first storage space and the second storage space that are provided adjacent to each other with a storage space partition wall in the case are aligned with the second storage space so that the bending displacement direction at the time of temperature rise faces the second storage space. A plurality of bimetals arranged in a row in one storage space; a plurality of bimetal partition walls provided in the first storage space in parallel with the storage space partition wall; and storing the plurality of bimetals individually; The contact opening / closing mechanism disposed in the storage space and opening / closing operation of the contact mechanism is disposed so that the thickness direction is on the same plane, and is engaged with the free ends of the plurality of bimetals, and the first storage space and the A flat push shifter and a pull shifter extending while straddling the second storage space, and a differential lever engaged with a portion of the push shifter and the pull shifter located in the second storage space. Comprising When the push shifter and the pull shifter are displaced by the bending displacement of the bimetal and the differential lever is driven, the displacement of the differential lever is directly transmitted to the transmission member of the contact opening / closing mechanism. In overload relay,
A thermal overload relay comprising a shifter displacement guide portion for supporting the push shifter and the pull shifter so as to be displaced linearly.
前記収納空間仕切り壁及び前記複数のバイメタル仕切り壁のそれぞれにシフタ摺動用スリットを形成し、これらシフタ摺動用スリットに前記押しシフタ及び前記引きシフタを挿入し、
前記シフタ変位ガイド部として、前記押しシフタ及び前記引きシフタのそれぞれに形成され、前記湾曲変位方向に沿って直線状に延在する少なくとも2箇所のガイド長穴と、
前記複数のバイメタル仕切り壁に形成した前記シフタ摺動用スリットのスリット面に形成され、前記押しシフタ及び前記引きシフタの前記ガイド長穴の長軸方向の内壁に係合して入り込む係合突起と、を設け、
前記係合突起の周面及び前記ガイド長穴の長軸方向の内壁が摺動しながら前記押しシフタ及び前記引きシフタが変位することを特徴とする請求項1記載の熱動形過負荷継電器。
A shifter sliding slit is formed in each of the storage space partition wall and the plurality of bimetal partition walls, and the push shifter and the pull shifter are inserted into these shifter sliding slits,
As the shifter displacement guide portion, at least two guide slots formed in each of the push shifter and the pull shifter and extending linearly along the curved displacement direction,
An engagement protrusion formed on a slit surface of the shifter sliding slit formed on the plurality of bimetal partition walls, and engaging with and entering an inner wall in a long axis direction of the guide elongated hole of the push shifter and the pull shifter; Provided,
2. The thermal overload relay according to claim 1, wherein the push shifter and the pull shifter are displaced while the peripheral surface of the engagement protrusion and the inner wall in the long axis direction of the guide elongated hole slide.
前記収納空間仕切り壁及び前記複数のバイメタル仕切り壁のそれぞれにシフタ摺動用スリットを形成し、これらシフタ摺動用スリットに前記押しシフタ及び前記引きシフタを挿入し、
前記シフタ変位ガイド部として、前記押しシフタ及び前記引きシフタのそれぞれに形成され、前記湾曲変位方向に沿って直線状に延在する2箇所のガイド長穴と、
前記収納空間仕切り壁に形成した前記シフタ摺動用スリット及び前記収納空間仕切り壁に対して最も離間した前記バイメタル仕切り壁に形成した前記シフタ摺動用スリットのスリット面に形成され、前記押しシフタ及び前記引きシフタの前記ガイド長穴の長軸方向の内壁に係合して入り込む係合突起と、を設け、
前記係合突起の周面及び前記ガイド長穴の長軸方向の内壁が摺動しながら前記押しシフタ及び前記引きシフタが変位することを特徴とする請求項1記載の熱動形過負荷継電器。
A shifter sliding slit is formed in each of the storage space partition wall and the plurality of bimetal partition walls, and the push shifter and the pull shifter are inserted into these shifter sliding slits,
As the shifter displacement guide portion, two guide elongated holes formed in each of the push shifter and the pull shifter and extending linearly along the curved displacement direction,
The shifter sliding slit formed in the storage space partition wall and the slit surface of the shifter sliding slit formed in the bimetal partition wall farthest from the storage space partition wall, the push shifter and the pull An engagement protrusion that engages and enters the inner wall in the long axis direction of the guide elongated hole of the shifter, and
2. The thermal overload relay according to claim 1, wherein the push shifter and the pull shifter are displaced while the peripheral surface of the engagement protrusion and the inner wall in the long axis direction of the guide elongated hole slide.
JP2010027388A 2010-02-10 2010-02-10 Thermal overload relay Pending JP2011165492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027388A JP2011165492A (en) 2010-02-10 2010-02-10 Thermal overload relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027388A JP2011165492A (en) 2010-02-10 2010-02-10 Thermal overload relay

Publications (1)

Publication Number Publication Date
JP2011165492A true JP2011165492A (en) 2011-08-25

Family

ID=44595930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027388A Pending JP2011165492A (en) 2010-02-10 2010-02-10 Thermal overload relay

Country Status (1)

Country Link
JP (1) JP2011165492A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929572A (en) * 2019-12-20 2020-11-13 南京南瑞继保电气有限公司 Circuit breaker opening and closing time estimation device and method
WO2023277191A1 (en) * 2021-07-02 2023-01-05 富士電機機器制御株式会社 Thermomotive overload relay
WO2024042746A1 (en) * 2022-08-26 2024-02-29 富士電機機器制御株式会社 Thermal overload relay

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4117472Y1 (en) * 1965-11-26 1966-08-13
JPS5251587A (en) * 1975-10-23 1977-04-25 Matsushita Electric Works Ltd Heat sensing overrcurrent relay
JP2002298723A (en) * 2001-03-30 2002-10-11 Fuji Electric Co Ltd Overload/phase interruption tripping device of circuit breaker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4117472Y1 (en) * 1965-11-26 1966-08-13
JPS5251587A (en) * 1975-10-23 1977-04-25 Matsushita Electric Works Ltd Heat sensing overrcurrent relay
JP2002298723A (en) * 2001-03-30 2002-10-11 Fuji Electric Co Ltd Overload/phase interruption tripping device of circuit breaker

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929572A (en) * 2019-12-20 2020-11-13 南京南瑞继保电气有限公司 Circuit breaker opening and closing time estimation device and method
WO2023277191A1 (en) * 2021-07-02 2023-01-05 富士電機機器制御株式会社 Thermomotive overload relay
WO2024042746A1 (en) * 2022-08-26 2024-02-29 富士電機機器制御株式会社 Thermal overload relay

Similar Documents

Publication Publication Date Title
JP5588337B2 (en) Circuit breaker
JP4621751B2 (en) Circuit breaker
JP2011165492A (en) Thermal overload relay
JP5967349B2 (en) Electric motor
US9378915B2 (en) Knob element and slide element of an adjusting apparatus and adjusting apparatus and method for adjusting a position of a thermal tripping shaft
WO2012039263A1 (en) Circuit breaker
KR20130064449A (en) Arc chute and a circuit braker having the same
JP2009076355A (en) Thermal relay
WO2014167605A1 (en) Circuit switchgear and circuit breaker
JP2007257960A (en) Circuit breaker
US20100253467A1 (en) Thermal overload relay device
JP4407380B2 (en) Circuit breaker
JP5324640B2 (en) Bimetal assembly of circuit breaker for wiring
JP2009230890A (en) Wiring circuit breaker
JP5152166B2 (en) thermal relay
JP7261500B2 (en) circuit breaker
JP6638759B2 (en) Connection structure of electrical equipment
KR101265015B1 (en) Moving contacting assembly and a circuit braker having the same
JP7446204B2 (en) circuit breaker
KR102271519B1 (en) Crossbar assembly and trip assembly include the same
JP7399276B2 (en) trip device
KR101314961B1 (en) Moving contacting assembly and a circuit braker having the same
JP3948212B2 (en) Bimetal fixing device for circuit breaker
WO2014167607A1 (en) Circuit switchgear and circuit breaker
JP4665952B2 (en) Circuit breaker

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Effective date: 20120214

Free format text: JAPANESE INTERMEDIATE CODE: A625

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120217

A975 Report on accelerated examination

Effective date: 20120301

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Effective date: 20121106

Free format text: JAPANESE INTERMEDIATE CODE: A02