WO2024042746A1 - Thermal overload relay - Google Patents

Thermal overload relay Download PDF

Info

Publication number
WO2024042746A1
WO2024042746A1 PCT/JP2023/007915 JP2023007915W WO2024042746A1 WO 2024042746 A1 WO2024042746 A1 WO 2024042746A1 JP 2023007915 W JP2023007915 W JP 2023007915W WO 2024042746 A1 WO2024042746 A1 WO 2024042746A1
Authority
WO
WIPO (PCT)
Prior art keywords
shifter
bimetal
pull
displacement
push
Prior art date
Application number
PCT/JP2023/007915
Other languages
French (fr)
Japanese (ja)
Inventor
守連 李
悠真 小野木
颯斗 三浦
Original Assignee
富士電機機器制御株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機機器制御株式会社 filed Critical 富士電機機器制御株式会社
Publication of WO2024042746A1 publication Critical patent/WO2024042746A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H61/00Electrothermal relays
    • H01H61/01Details

Definitions

  • the present invention relates to a thermal overload relay.
  • thermal overload relays when overcurrent continues to flow, the heat causes the bimetal to bend, tripping the relay and shutting off the electromagnetic contactor or molded circuit breaker, thereby protecting the main circuit from overload. .
  • the thermal overload relay of Patent Document 1 when the bimetal placed between the plurality of partition walls provided inside the case is heated by the heater and curved, the push shifter and the pull shifter are displaced and the differential lever is moved. The displacement of the differential lever is transmitted to the compensating bimetal of the reversing mechanism, resulting in a trip state.
  • the bimetal may curve and come into contact with the partition wall provided inside the case before starting the tripping operation.
  • the bimetal in an overloaded state (a state in which overcurrent continues to flow) is at a high temperature, and there is a risk that the partition wall that the high-temperature bimetal comes into contact with may burn out.
  • An object of the present invention is to provide a thermal overload relay that can reduce the risk of damage caused by contact of a high-temperature bimetal with a partition wall of a case by early starting a trip operation in an overload state.
  • a thermal overload relay includes a plurality of partition walls provided inside a case, a plurality of bimetals individually housed between the plurality of partition walls, and a plurality of bimetals that cover ends of the plurality of partition walls. a push shifter and a pull shifter that are arranged as shown in FIG. This is a thermal overload relay equipped with a reversing mechanism that reverses the contacts and performs a trip operation by transmitting the lever driven action to a compensating bimetal.
  • the differential lever rotates by being pushed from the outside in the radial direction by the push shifter, with the position where it engages with the pull shifter as the center of rotation, and the compensation bimetal contact surface provided on the differential lever displaces the compensation bimetal.
  • the reversing mechanism is tripped. Then, in an overload state where an overcurrent is flowing, the displacement of the pull shifter stops first, and then the push shifter continues to displace, rotating the differential lever and amplifying the displacement of the compensation bimetal.
  • Compensation bimetal displacement Amplification means are provided.
  • thermal overload relay of the present invention by performing a tripping operation in an overload state early, it is possible to reduce the risk of damage caused by the high temperature bimetal contacting the partition wall of the case.
  • FIG. 1 is a diagram showing the inside of a thermal overload relay according to an embodiment of the present invention with a cover removed;
  • FIG. FIG. 2 is a perspective view showing the inside of the thermal overload relay from the side where an adjustment dial is provided. It is a perspective view showing the inside of a thermal overload relay from the side where a push shifter, a pull shifter, and a differential lever are arranged.
  • FIG. 3 is a diagram showing the positions of a push shifter, a pull shifter, and a differential lever in a normal state in a thermal overload relay. It is a perspective view showing a differential lever of one embodiment.
  • FIG. 2 is a side view and a sectional view showing a differential lever of one embodiment. It is a figure which shows the state in which a push shifter and a pull shifter are displaced in an overload state in a thermal type overload relay, and a differential lever is driven.
  • FIG. 1 are views showing the inside of a case 12 of a thermal overload relay 11 according to an embodiment of the present invention with a cover (not shown) removed.
  • a case 12 of the thermal overload relay 11 inside the case 12 of the thermal overload relay 11, three-phase U, V, and W bimetals 21U, 21V, and 21W, a shifter 22, a differential lever 23, and an inverted It includes a mechanism 24 and a reset rod 25.
  • the three-phase bimetals 21U, 21V, and 21W extend in the depth direction and are formed in a plate shape along the vertical and depth directions, with the front side in the depth direction being a fixed end and the back side being a free end.
  • Each bimetal 21 is connected to the main terminal on the front side in the depth direction, and is joined to one end of the heater 26 on the back side in the depth direction.
  • the heater 26 is wound around three-phase bimetals 21U, 21V, and 21W, and the other end is joined to the connection terminal 27 on the front side in the depth direction.
  • the connection terminal 27 is connected to an electromagnetic contactor (not shown).
  • the three-phase bimetals 21U, 21V, and 21W are straight in a normal state, but in an overload state (a state in which overcurrent continues to flow), the free ends 21Ua, 21Va, and 21Wa curve toward the other side in the width direction. and press shifter 22.
  • the reversing mechanism 24 is a mechanism that reverses the contacts when an overcurrent is detected, that is, closes the A contact and opens the B contact, and as shown in FIGS. 1 and 2, it includes a compensation bimetal 31, a release lever 32, , a tension spring 33, a movable plate 34, a leaf spring 35, an interlocking plate 36, and an adjustment dial 37.
  • the compensating bimetal 31 extends in the depth direction and is formed in a flat plate shape along the depth direction and the longitudinal direction, the front side in the depth direction is fixed to the release lever 32, the back side in the depth direction is a free end, and the compensation bimetal 31 is attached to the differential lever 23. engaged.
  • the release lever 32 extends in the depth direction, is formed in a plate shape along the depth direction and the vertical direction, is rotatably supported by a support shaft along the vertical direction, and the back side in the depth direction is connected to the tension spring 33. are in contact.
  • the tension spring 33 pulls the movable plate 34 toward the back side in the depth direction.
  • the case 12 is provided with an adjustment dial 37 for setting a setting current, and an eccentric cam 37a is provided on the circumferential surface of an eccentric cam 37a that is integrally provided on the back side of the adjustment dial 37 in the depth direction. The side ends are engaged. Then, when the adjustment dial 37 is turned, the free end of the compensation bimetal 31 is displaced in the width direction via the release lever 32 that engages with the circumferential surface of the eccentric cam 37a.
  • the movable plate 34 has a flat plate shape along the depth direction and the vertical direction, and the front side in the depth direction can be displaced in the width direction using the back side in the depth direction as a fulcrum.
  • the upright position of the movable plate 34 serves as a fulcrum, and when a force is applied to one side or the other side in the width direction, the movable plate 34 tilts to one side or the other side in the width direction due to the tensile force of the tension spring 33.
  • the movable plate 34 is normally tilted to one side in the width direction, but when an overload condition occurs, the movable plate 34 is pushed by the release lever 32 via the compensating bimetal 31 and tilted to the other side in the width direction.
  • the movable plate 34 is connected to one of the auxiliary terminals on the back side in the depth direction, and has a movable contact formed on the front side in the depth direction.
  • the leaf spring 35 extends in the depth direction and has a flat plate shape along the depth direction and the vertical direction, and the back side in the depth direction is connected to the other auxiliary terminal, and the front side in the depth direction facing the movable plate 34 is fixed. A contact is formed. Normally, the movable contacts of the movable plate 34 are separated from the fixed contacts of the leaf spring 35, but when overloaded, the movable plate 34 tilts to the other side in the width direction, causing the fixed contacts of the leaf spring 35 to The movable contact of the movable plate 34 comes into contact with. These fixed contacts and movable contacts constitute an a contact, and when the a contact closes, it is in a trip state.
  • the interlocking plate 36 is formed into a plate shape along the width direction and the depth direction, is rotatably supported by a support shaft along the vertical direction, and the back side in the depth direction engages with the movable plate 34. .
  • the interlocking plate 36 opens and closes the contacts on the back side of the interlocking plate 36, which is not shown in FIG. That is, in normal times, the movable contact is in contact with the fixed contact, but when an overload occurs, the interlocking plate 36 rotates, thereby separating the movable contact from the fixed contact.
  • These fixed contacts and movable contacts constitute a b contact, and when the b contact opens, it is in a trip state.
  • the reset rod 25 is an operator for recovering from a tripped state, and is formed in a substantially cylindrical shape with the depth direction as the axis direction, and is arranged on the other side of the case 12 in the vertical direction and on the other side in the width direction. has been done.
  • the reset rod 25 is supported by the case 12 in a state in which it can be displaced in the depth direction and rotated around an axis, and is further urged toward the front side in the depth direction by a leaf spring (not shown) extending in the vertical direction. ing.
  • the reset rod 25 has an initial position, a manual reset position, and an automatic reset position. The initial position is a position where the front side in the depth direction protrudes beyond the case 12.
  • the manual reset position is a position that is simply pushed back in the depth direction from the initial position.
  • the automatic reset position is a position where the position in the depth direction is maintained by being pushed to the back side in the depth direction from the initial position and turned clockwise by about 90 degrees when viewed from the front side in the depth direction.
  • the shifter 22 is composed of an insulating push shifter 22a and a pull shifter 22b that are supported by the case 12 so that their thickness directions are on the same plane.
  • the three-phase bimetals 21U, 21V, and 21W curve and the free ends 21Ua, 21Va, and 21Wa move to the other side in the width direction, thereby displacing the push shifter 22a to the other side in the width direction.
  • the pull shifter 22b and the differential lever 23 are displaced along with the displacement of the push shifter 22a.
  • the non-curving bimetal of the phase where the open phase occurs restricts the displacement of the pull shifter 22b, so that the push shifter 22a is displaced in the same way as when overloaded.
  • the case 12 is formed with partition walls 41 to 43 arranged at predetermined intervals in the width direction inside the case 12, and a girder plate 44.
  • protrusions 45a1 and 45a2 are arranged along the width direction and protrude in a columnar shape.
  • protrusions 45b1 and 45b2 are arranged along the width direction and protrude in a columnar shape.
  • the push shifter 22a has an elongated hole 51 formed on one side in the width direction into which the projection 45a1 of the partition wall 41 fits, and a long hole 51 into which the projection 45b2 of the partition wall 42 fits into the other side in the width direction.
  • a matching long hole 52 is formed.
  • the push shifter 22a has engaging pieces 53 to 55 formed on one side in the vertical direction, and a tip 56 that projects toward the other side in the width direction opposite to the engaging piece 55. There is. As shown in FIG.
  • the pull shifter 22b has an elongated hole 58 formed on one side in the width direction into which the projection 45b1 of the partition wall 41 fits, and a long hole 58 into which the projection 45b2 of the partition wall 43 fits into the other side in the width direction.
  • a long hole 59 is formed to fit into each other.
  • the pull shifter 22b is formed with engagement pieces 60 to 62 on the other side in the vertical direction, and the engagement pieces 60 to 62 are formed on the other side in the width direction of the pull shifter 22b.
  • An engagement groove 65 is formed that extends into the groove.
  • FIG. 5 is a perspective view showing the differential lever 23
  • FIG. 6(a) is a view of the differential lever 23 seen from the other side in the width direction
  • FIG. 6(b) is a perspective view of the differential lever 23.
  • -A cross section is shown.
  • the differential lever 23 has a pair of opposing plates 70 and 71 formed on one side in the vertical direction.
  • the pair of opposing plates 70 and 71 are formed in a flat plate shape extending in the vertical direction and the width direction, facing each other while being spaced apart in the depth direction, and are connected by a cylindrical support shaft 72 extending in the depth direction.
  • the distance between the pair of opposing plates 70 and 71 is slightly larger than the thickness of the digit plate 44 of the case 12, and the diameter of the support shaft 72 is slightly smaller than the groove width of the engagement groove 65 of the pull shifter 22b.
  • an end face 73 is formed that faces one side in the width direction and is a flat plane along the vertical direction and the depth direction.
  • a compensating bimetallic contact surface 74 is formed, which is a curved surface along the depth direction that is convex toward the other side in the width direction.
  • the push shifter 22a is configured such that the elongated hole 51 is fitted into the protrusion 45a1 of the partition wall 41 of the case 12, and the elongated hole 52 is fitted into the protrusion 45a2 of the partition wall 43, so that the push shifter 22a can be moved along the width direction. It is arranged so that it can be displaced. Further, the engagement piece 53 of the push shifter 22a engages with the free end 21Ua of the U-phase bimetal 21U from the other side in the width direction, and the engagement piece 54 engages with the free end 21Va of the V-phase bimetal 21V in the width direction. engage from the other side.
  • the engagement piece 55 engages with the free end 21Wa of the W-phase bimetal 21W from the other side in the width direction.
  • the pull shifter 22b is configured such that the elongated hole 58 is fitted into the protrusion 45b1 of the partition wall 41 of the case 12, and the elongated hole 59 is fitted into the protrusion 45b2 of the partition wall 43, so that the pull shifter 22b can be moved along the width direction. It is arranged so that it can be displaced.
  • the engagement piece 60 of the pull shifter 22b engages with the free end 21Ua of the U-phase bimetal 21U from one side in the width direction
  • the engagement piece 61 engages with the free end 21Va of the V-phase bimetal 21V in the width direction. engage from one side.
  • the engagement piece 62 engages with the free end 21Wa of the W-phase bimetal 21W from one side in the width direction.
  • the differential lever 23 has a pair of opposing plates 70 and 71 sandwiching the girder plate 44 of the case 12, and the support shaft 72 fits into the engagement groove 65, so that the support shaft 72 is attached to the case 12. It is rotatably supported around the center.
  • An end surface 73 facing one side in the width direction of the differential lever 23 engages with the tip 56 of the engagement piece 55 of the push shifter 22a.
  • the free end of the compensating bimetal 31 of the reversing mechanism 24 engages the compensating bimetallic contact surface 74 facing the other widthwise side of the differential lever 23 .
  • the push shifter 22a is connected to the protrusion 45a1 of the partition wall 41 fitted in the elongated hole 51 and the elongated hole 51.
  • a gap of dimension D1 is provided between the opening edge 51a on one side in the width direction.
  • the pull shifter 22b has a gap of dimension D2 between the protrusion 45b1 of the partition wall 41 fitted into the elongated hole 58 and the opening edge 58a on one side in the width direction of the elongated hole 58. .
  • the pull shifter 22b also has an elongated hole 59 formed on the other side in the width direction into which the protrusion 45b2 of the partition wall 43 fits, and the relationship between the elongated hole 58 and the protrusion 45b1 described above is similar to that of the elongated hole 59.
  • a gap of dimension D2 is provided between the protrusion 45b2 and the opening edge on one side in the width direction of the elongated hole 59, but since they have the same function, in the following description, the elongated hole 58 and the protrusion will be referred to as the elongated hole 58 and the protrusion. Only the engaged state of 45b1 will be explained.
  • overload bimetal displacement amount the amount of displacement of the free ends 21Ua, 21Va, 21Wa when the three-phase bimetals 21U, 21V, 21W curve to the maximum in an overload state
  • the bimetal displacement amount D3 in this overload state is set smaller than the gap D1 of the push shifter 22a in the normal state (D3 ⁇ D1).
  • the bimetal displacement amount D3 in the overcurrent state is set to be larger than the gap D2 of the pull shifter 22b in the normal state (D3 ⁇ D2).
  • the adjustment dial 37 when the adjustment dial 37 is turned in the direction of a larger scale (increasing the setting current), the release lever 32 that engages with the circumferential surface of the eccentric cam 37a is rotated clockwise, and the compensation bimetal that is connected to the release lever 32 is rotated clockwise.
  • the free end of 31 moves to the other side in the width direction.
  • the compensation bimetal 31 shown by the broken line in FIG. 4 is such that when the adjustment dial 37 is turned to the maximum scale (the scale that sets the setting current to the largest value), the compensation bimetal 31 is maximally displaced to the other side in the width direction. It's the location.
  • the compensation bimetal 31 When the adjustment dial 37 is turned to the maximum scale, the compensation bimetal 31 is displaced by a dimension D4 from the reference position of the compensation bimetal 31 shown by the solid line to the other side in the width direction.
  • This dimension D4 is referred to as the compensation bimetal maximum displacement amount.
  • the relationship between the compensation bimetal maximum displacement amount D4 and the gap D2 of the pull shifter 22b in the normal state is set as shown in equation (2) below. D4 ⁇ D2...Formula (2)
  • the push shifter 22a and the pull shifter 22b are located on one side in the width direction, and the compensation bimetal 31 is arranged to extend in the vertical direction.
  • the push shifter 22a provides a gap D1 between the protrusion 45a1 of the partition wall 41 fitted in the elongated hole 51 and the opening edge 51a on one side in the width direction of the elongated hole 51, and the pull shifter 22b
  • a gap D2 is provided between the projection 45b1 of the partition wall 41 fitted into the hole 58 and the opening edge 58a on one side in the width direction of the elongated hole 58.
  • the three-phase bimetals 21U, 21V, and 21W are bent by the heating of the heater 26, and the free ends 21Ua, 21Va, and 21Wa move toward the other side in the width direction.
  • the engagement pieces 53 to 55 of the push shifter 22a are pushed and displaced toward the other side in the width direction. Due to this displacement of the push shifter 22a, the protrusion 45a1 approaches the opening edge 51a on one side of the elongated hole 51 in the width direction, and the protrusion 45a2 approaches one side of the elongated hole 52 in the width direction.
  • the pull shifter 22b is also displaced to the other side in the width direction. Due to the displacement of the pull shifter 22b, the protrusion 45b1 approaches the opening edge 58a on one side of the elongated hole 58 in the width direction. Further, the differential lever 23 is also displaced to the other side in the width direction together with the push shifter 22a and the pull shifter 22b. Due to this displacement of the differential lever 23, the free end of the compensation bimetal 31 that is engaged with the compensation bimetal contact surface 74 of the differential lever 23 is also displaced toward the other side in the width direction.
  • the push shifter 22a and the pull shifter 22b which continue to be simultaneously displaced to the other side in the width direction, are pushed by the gap D2 of the pull shifter 22b. Since the gap D1 is smaller than the gap D1 of the shifter 22a (D2 ⁇ D1), the protrusion 45b1 engages with the opening edge 58a on one side in the width direction of the elongated hole 58 of the pull shifter 22b, and the projection 45b1 engages with the opening edge 58a on the other side in the width direction of the elongated hole 58 of the pull shifter 22b. Displacement to stops.
  • the push shifter 22a continues to be displaced toward the other side in the width direction due to the movement of the free ends 21Ua, 21Va, and 21Wa toward the other side in the width direction. Then, the tip 56 of the push shifter 22a pushes the end surface 73 of the differential lever 23 toward the other side in the width direction.
  • the differential lever 23 rotates counterclockwise around the support shaft 72 that is engaged with the engagement groove 65 of the pull shifter 22b whose displacement has stopped, and the compensation bimetal contact surface 74 moves freely against the compensation bimetal 31. The end is displaced to the other side in the width direction.
  • the reversing mechanism 24 enters a trip state in which the free end side of the compensation bimetal 31 is displaced to the other side in the width direction, thereby closing the a contact and opening the b contact.
  • the differential lever 23 Due to this pressing operation of the push shifter 22a, the differential lever 23, whose support shaft 72 is engaged with the engagement groove 65 of the pull shifter 22b, rotates counterclockwise around the support shaft 72, thereby causing compensation bimetal contact.
  • the surface 74 largely displaces the free end of the compensation bimetal 31 toward the other side in the width direction.
  • the displacement of the pull shifter 22b stops first, and by rotating the differential lever 23 by the displacement of the push shifter 22a, the displacement of the free end of the compensation bimetal 31 is amplified, and the reversing mechanism 24
  • the trip operation can be started early.
  • the tripping operation can be started early before the high-temperature bimetals 21U, 21V, and 21W curve and come into contact with the partition walls 41-43, so the risk of damage to the partition walls 41-43 can be reduced. Furthermore, as is clear from the relationship D2 ⁇ D3 in equation (1) above, the gap D2 in the normal state between the elongated hole 58 provided in the pull shifter 22b and the protrusion 45b1 of the partition wall 41 is Since the value is set to be smaller than the overload bimetal displacement amount D3 of 21U, 21V, 21W, the pull shifter is 22b stops, the differential lever 23 starts rotating, and the tripping operation of the reversing mechanism 24 can be reliably started.
  • the compensation bimetal 31 will be smaller than the gap D2 in the normal state of the pull shifter 22b, as is clear from the relationship D4 ⁇ D2 in equation (2) above.
  • the small compensating bimetal is displaced only up to the maximum displacement amount D4. Therefore, in an overload state, the displacement of the free end of the compensation bimetal 31 is amplified as described above. Therefore, even if the adjustment dial 37 is turned to the maximum scale, the tripping operation of the reversing mechanism 24 can be started early to prevent damage to the electrical equipment.

Landscapes

  • Breakers (AREA)

Abstract

In the present invention, a trip operation of a reversal mechanism (24) is performed by a differential lever (23) being pivoted by being pushed against a push shifter (22a) from the outside in the radial direction with a position at which the differential lever engages with a pull shifter (22b) as the pivot center, and a compensation bimetal contact surface (74) that is provided to the differential lever displacing a compensation bimetal (31). In addition, there is provided a compensation bimetal displacement amplifying means that amplifies the displacement of the compensation bimetal by, in an overloaded state in which an overcurrent flows, stopping of the displacement of the pull shifter and a subsequent displacement of the push shifter, whereby the differential lever is pivoted.

Description

熱動形過負荷継電器Thermal overload relay
 本発明は、熱動形過負荷継電器に関するものである。 The present invention relates to a thermal overload relay.
 熱動形過負荷継電器は、過電流が流れ続けるときに、熱によってバイメタルが湾曲することでトリップ動作を行い、電磁接触器や配線用遮断器を遮断させることで主回路を過負荷から保護する。特許文献1の熱動形過負荷継電器は、ケースの内側に設けた複数の隔壁の間に配置されたバイメタルがヒータに加熱されて湾曲すると、押しシフタ及び引きシフタが変位して差動レバーが従動し、差動レバーの変位が反転機構の補償バイメタルに伝達されてトリップ状態となる。 In thermal overload relays, when overcurrent continues to flow, the heat causes the bimetal to bend, tripping the relay and shutting off the electromagnetic contactor or molded circuit breaker, thereby protecting the main circuit from overload. . In the thermal overload relay of Patent Document 1, when the bimetal placed between the plurality of partition walls provided inside the case is heated by the heater and curved, the push shifter and the pull shifter are displaced and the differential lever is moved. The displacement of the differential lever is transmitted to the compensating bimetal of the reversing mechanism, resulting in a trip state.
特開2011-165492号公報Japanese Patent Application Publication No. 2011-165492
 ところで、特許文献1の熱動形過負荷継電器は、トリップ動作を開始する前に、バイメタルが湾曲してケースの内側に設けた隔壁に接触する場合がある。過負荷状態(過電流が流れ続けている状態)のバイメタルは高温であり、高温のバイメタルが接触した隔壁が焼損するおそれがある。
 本発明の目的は、過負荷状態のトリップ動作を早期に開始することで、高温のバイメタルがケースの隔壁に接触することによる損傷リスクを低減することができる熱動形過負荷継電器を提供する。
By the way, in the thermal overload relay of Patent Document 1, the bimetal may curve and come into contact with the partition wall provided inside the case before starting the tripping operation. The bimetal in an overloaded state (a state in which overcurrent continues to flow) is at a high temperature, and there is a risk that the partition wall that the high-temperature bimetal comes into contact with may burn out.
An object of the present invention is to provide a thermal overload relay that can reduce the risk of damage caused by contact of a high-temperature bimetal with a partition wall of a case by early starting a trip operation in an overload state.
 本発明の一態様に係る熱動形過負荷継電器は、ケースの内部に設けた複数の隔壁と、複数の隔壁の間に個別に収納された複数のバイメタルと、複数の隔壁の端部を覆うように配置され、バイメタルが湾曲したときに、バイメタルの自由端に係合して変位する押しシフタ及び引きシフタと、押しシフタ及び引きシフタの変位に押されて従動する差動レバーと、差動レバーの従動を補償バイメタルに伝達することで接点を反転させてトリップ動作を行う反転機構と、を備えた熱動形過負荷継電器である。差動レバーは、引きシフタに係合する位置を回動中心として押しシフタに径方向外側から押されることで回動し、差動レバーに設けた補償バイメタル接触面が補償バイメタルを変位させることで反転機構のトリップ動作を行うようにしている。そして、過電流が流れている過負荷状態において、先に引きシフタの変位が停止するとともに、引き続き押しシフタが変位することで差動レバーを回動させて補償バイメタルの変位を増幅させる補償バイメタル変位増幅手段を設けている。 A thermal overload relay according to one aspect of the present invention includes a plurality of partition walls provided inside a case, a plurality of bimetals individually housed between the plurality of partition walls, and a plurality of bimetals that cover ends of the plurality of partition walls. a push shifter and a pull shifter that are arranged as shown in FIG. This is a thermal overload relay equipped with a reversing mechanism that reverses the contacts and performs a trip operation by transmitting the lever driven action to a compensating bimetal. The differential lever rotates by being pushed from the outside in the radial direction by the push shifter, with the position where it engages with the pull shifter as the center of rotation, and the compensation bimetal contact surface provided on the differential lever displaces the compensation bimetal. The reversing mechanism is tripped. Then, in an overload state where an overcurrent is flowing, the displacement of the pull shifter stops first, and then the push shifter continues to displace, rotating the differential lever and amplifying the displacement of the compensation bimetal.Compensation bimetal displacement Amplification means are provided.
 本発明の熱動形過負荷継電器によれば、過負荷状態のトリップ動作を早期に行うことで、高温のバイメタルがケースの隔壁に接触することによる損傷リスクを低減することができる。 According to the thermal overload relay of the present invention, by performing a tripping operation in an overload state early, it is possible to reduce the risk of damage caused by the high temperature bimetal contacting the partition wall of the case.
本発明に係る一実施形態の熱動形過負荷継電器の内部を、カバーを外した状態で示した図である。1 is a diagram showing the inside of a thermal overload relay according to an embodiment of the present invention with a cover removed; FIG. 熱動形過負荷継電器の内部を、調整ダイヤルを設けた側から示した斜視図である。FIG. 2 is a perspective view showing the inside of the thermal overload relay from the side where an adjustment dial is provided. 熱動形過負荷継電器の内部を、押しシフタ、引きシフタ及び差動レバーを配置した側から示した斜視図である。It is a perspective view showing the inside of a thermal overload relay from the side where a push shifter, a pull shifter, and a differential lever are arranged. 熱動形過負荷継電器において通常状態の押しシフタ、引きシフタ及び差動レバーの位置を示す図である。FIG. 3 is a diagram showing the positions of a push shifter, a pull shifter, and a differential lever in a normal state in a thermal overload relay. 一実施形態の差動レバーを示す斜視図である。It is a perspective view showing a differential lever of one embodiment. 一実施形態の差動レバーを示す側面図及び断面図である。FIG. 2 is a side view and a sectional view showing a differential lever of one embodiment. 熱動形過負荷継電器において過負荷状態に押しシフタ、引きシフタが変位し、差動レバーが従動した状態を示す図である。It is a figure which shows the state in which a push shifter and a pull shifter are displaced in an overload state in a thermal type overload relay, and a differential lever is driven.
 次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。
 また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 以下の説明では、互いに直交する三方向を、便宜的に、縦方向、幅方向、及び奥行方向とする。
Next, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar symbols. However, it should be noted that the drawings are schematic and the relationship between thickness and planar dimensions, the ratio of the thickness of each layer, etc. are different from reality. Therefore, the specific thickness and dimensions should be determined with reference to the following explanation. Furthermore, it goes without saying that the drawings include portions with different dimensional relationships and ratios.
In addition, the embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention. etc. are not specified as those listed below. The technical idea of the present invention can be modified in various ways within the technical scope defined by the claims.
In the following description, for convenience, three mutually orthogonal directions are referred to as a vertical direction, a width direction, and a depth direction.
[熱動形過負荷継電器の構成]
 図1から図3は、本発明に係る一実施形態の熱動形過負荷継電器11のケース12の内部を、カバー(不図示)を外して示した図である。
 図1に示すように、熱動形過負荷継電器11のケース12の内部には、U・V・Wの三相のバイメタル21U,21V,21Wと、シフタ22と、差動レバー23と、反転機構24と、リセット棒25と、を備えている。
 三相のバイメタル21U,21V,21Wは、奥行方向に延び、縦方向及び奥行方向に沿った板状に形成されており、奥行方向の手前側が固定端となり、奥側が自由端である。各バイメタル21は、奥行方向の手前側が主端子に接続され、奥行方向の奥側がヒータ26の一端に接合されている。ヒータ26は、三相のバイメタル21U,21V,21Wに巻き付けられ、他端が奥行方向の手前側で接続端子27に接合されている。接続端子27は、図示しない電磁接触器に接続される。三相のバイメタル21U,21V,21Wは、通常状態では直線状であるが、過負荷状態(過電流が流れ続けている状態)になると自由端21Ua,21Va,21Waが幅方向の他方側へ湾曲してシフタ22を押す。
[Configuration of thermal overload relay]
1 to 3 are views showing the inside of a case 12 of a thermal overload relay 11 according to an embodiment of the present invention with a cover (not shown) removed.
As shown in FIG. 1, inside the case 12 of the thermal overload relay 11, three-phase U, V, and W bimetals 21U, 21V, and 21W, a shifter 22, a differential lever 23, and an inverted It includes a mechanism 24 and a reset rod 25.
The three- phase bimetals 21U, 21V, and 21W extend in the depth direction and are formed in a plate shape along the vertical and depth directions, with the front side in the depth direction being a fixed end and the back side being a free end. Each bimetal 21 is connected to the main terminal on the front side in the depth direction, and is joined to one end of the heater 26 on the back side in the depth direction. The heater 26 is wound around three- phase bimetals 21U, 21V, and 21W, and the other end is joined to the connection terminal 27 on the front side in the depth direction. The connection terminal 27 is connected to an electromagnetic contactor (not shown). The three- phase bimetals 21U, 21V, and 21W are straight in a normal state, but in an overload state (a state in which overcurrent continues to flow), the free ends 21Ua, 21Va, and 21Wa curve toward the other side in the width direction. and press shifter 22.
 反転機構24は、過電流を検出したときに接点を反転させる、つまりa接点を閉じ、b接点を開く機構であり、図1及び図2に示すように、補償バイメタル31と、釈放レバー32と、引張りばね33と、可動板34と、板ばね35と、連動板36と、調整ダイヤル37と、を備えている。
 補償バイメタル31は、奥行方向に延び、奥行方向及び縦方向に沿った平板状に形成され、奥行方向の手前側が釈放レバー32に固定され、奥行方向の奥側が自由端となり、差動レバー23に係合している。
 釈放レバー32は、奥行方向に延び、奥行方向及び縦方向に沿った板状に形成され、縦方向に沿った支軸によって回動可能に支持されており、奥行方向の奥側が引張りばね33に接触している。引張りばね33は、可動板34を奥行方向の奥側へと引っ張っている。
 ケース12には、整定電流を設定する調整ダイヤル37が設けられており、調整ダイヤル37に対して奥行方向の奥側に一体に設けた偏心カム37aの周面に釈放レバー32の奥行き方向の手前側の端部が係合している。そして、調整ダイヤル37を回すと、偏心カム37aの周面に係合する釈放レバー32を介して補償バイメタル31の自由端が幅方向に変位する。
The reversing mechanism 24 is a mechanism that reverses the contacts when an overcurrent is detected, that is, closes the A contact and opens the B contact, and as shown in FIGS. 1 and 2, it includes a compensation bimetal 31, a release lever 32, , a tension spring 33, a movable plate 34, a leaf spring 35, an interlocking plate 36, and an adjustment dial 37.
The compensating bimetal 31 extends in the depth direction and is formed in a flat plate shape along the depth direction and the longitudinal direction, the front side in the depth direction is fixed to the release lever 32, the back side in the depth direction is a free end, and the compensation bimetal 31 is attached to the differential lever 23. engaged.
The release lever 32 extends in the depth direction, is formed in a plate shape along the depth direction and the vertical direction, is rotatably supported by a support shaft along the vertical direction, and the back side in the depth direction is connected to the tension spring 33. are in contact. The tension spring 33 pulls the movable plate 34 toward the back side in the depth direction.
The case 12 is provided with an adjustment dial 37 for setting a setting current, and an eccentric cam 37a is provided on the circumferential surface of an eccentric cam 37a that is integrally provided on the back side of the adjustment dial 37 in the depth direction. The side ends are engaged. Then, when the adjustment dial 37 is turned, the free end of the compensation bimetal 31 is displaced in the width direction via the release lever 32 that engages with the circumferential surface of the eccentric cam 37a.
 可動板34は、奥行方向及び縦方向に沿った平板状であり、奥行方向の奥側を支点にして奥行方向の手前側が幅方向に変位可能である。可動板34は、直立している位置が支点となり、幅方向の一方側又は他方側への力が作用するときに、引張りばね33の引張力によって幅方向の一方側又は他方側へ傾く。そして、可動板34は、通常時には、幅方向の一方側に傾いているが、過負荷状態になると補償バイメタル31を介して釈放レバー32によって押されることで、幅方向の他方側に傾く。可動板34は、奥行方向の奥側が補助端子の一方に接続されており、奥行方向の手前側に可動接点が形成されている。 The movable plate 34 has a flat plate shape along the depth direction and the vertical direction, and the front side in the depth direction can be displaced in the width direction using the back side in the depth direction as a fulcrum. The upright position of the movable plate 34 serves as a fulcrum, and when a force is applied to one side or the other side in the width direction, the movable plate 34 tilts to one side or the other side in the width direction due to the tensile force of the tension spring 33. The movable plate 34 is normally tilted to one side in the width direction, but when an overload condition occurs, the movable plate 34 is pushed by the release lever 32 via the compensating bimetal 31 and tilted to the other side in the width direction. The movable plate 34 is connected to one of the auxiliary terminals on the back side in the depth direction, and has a movable contact formed on the front side in the depth direction.
 板ばね35は、奥行方向に延び、奥行方向及び縦方向に沿った平板状であり、奥行方向の奥側が補助端子の他方に接続され、可動板34に対向した奥行方向の手前側には固定接点が形成されている。通常時には、板ばね35の固定接点に対して可動板34の可動接点が離間しているが、過負荷時になると、可動板34が幅方向の他方側に傾くことで、板ばね35の固定接点に可動板34の可動接点が接触する。これら固定接点及び可動接点がa接点を構成し、a接点が閉じるときにトリップ状態となる。 The leaf spring 35 extends in the depth direction and has a flat plate shape along the depth direction and the vertical direction, and the back side in the depth direction is connected to the other auxiliary terminal, and the front side in the depth direction facing the movable plate 34 is fixed. A contact is formed. Normally, the movable contacts of the movable plate 34 are separated from the fixed contacts of the leaf spring 35, but when overloaded, the movable plate 34 tilts to the other side in the width direction, causing the fixed contacts of the leaf spring 35 to The movable contact of the movable plate 34 comes into contact with. These fixed contacts and movable contacts constitute an a contact, and when the a contact closes, it is in a trip state.
 連動板36は、幅方向及び奥行方向に沿った板状に形成され、縦方向に沿った支軸によって回動可能に支持されており、奥行方向の奥側が可動板34に係合している。連動板36は、可動板34に連動して回動することで、図1では示していない連動板36の裏側で、接点の開閉を行なう。すなわち、通常時には固定接点に可動接点が接触しているが、過負荷時になると、連動板36が回動することで固定接点に対して可動接点が離間する。これら固定接点及び可動接点がb接点を構成し、b接点が開くときにトリップ状態となる。 The interlocking plate 36 is formed into a plate shape along the width direction and the depth direction, is rotatably supported by a support shaft along the vertical direction, and the back side in the depth direction engages with the movable plate 34. . By rotating in conjunction with the movable plate 34, the interlocking plate 36 opens and closes the contacts on the back side of the interlocking plate 36, which is not shown in FIG. That is, in normal times, the movable contact is in contact with the fixed contact, but when an overload occurs, the interlocking plate 36 rotates, thereby separating the movable contact from the fixed contact. These fixed contacts and movable contacts constitute a b contact, and when the b contact opens, it is in a trip state.
 リセット棒25は、トリップ状態から復旧させるための操作子であり、奥行方向を軸方向とする略円柱状に形成され、ケース12のうち、縦方向の他方側で、幅方向の他方側に配置されている。リセット棒25は、奥行方向に変位可能で、且つ軸周りに回動可能な状態で、ケース12に支持され、さらに縦方向に延びる板ばね(不図示)によって奥行方向の手前側に付勢されている。リセット棒25には、初期位置と、手動リセット位置と、自動リセット位置と、がある。初期位置は、奥行方向の手前側がケース12よりも突出した位置である。手動リセット位置は、初期位置から奥行方向の奥側に押されただけの位置である。自動リセット位置は、初期位置から奥行方向の奥側に押され、且つ奥行方向の手前側から見て時計回りに約90度だけ回されることで奥行方向の位置が保持される位置である。 The reset rod 25 is an operator for recovering from a tripped state, and is formed in a substantially cylindrical shape with the depth direction as the axis direction, and is arranged on the other side of the case 12 in the vertical direction and on the other side in the width direction. has been done. The reset rod 25 is supported by the case 12 in a state in which it can be displaced in the depth direction and rotated around an axis, and is further urged toward the front side in the depth direction by a leaf spring (not shown) extending in the vertical direction. ing. The reset rod 25 has an initial position, a manual reset position, and an automatic reset position. The initial position is a position where the front side in the depth direction protrudes beyond the case 12. The manual reset position is a position that is simply pushed back in the depth direction from the initial position. The automatic reset position is a position where the position in the depth direction is maintained by being pushed to the back side in the depth direction from the initial position and turned clockwise by about 90 degrees when viewed from the front side in the depth direction.
 トリップ状態でリセット棒25が奥行方向の奥側に押されると、奥行方向における奥側の端部によって板ばね35及び可動板34が幅方向の一方側へ押されるので、過負荷時が解消されていれば、再びa接点を開き、b接点を閉じる。一方、トリップしている状態でリセット棒25が奥行方向の奥側に押され、且つ奥行方向の手前側から見て時計回りに約90度だけ回されると、リセット棒25は奥行方向の位置が保持される。そして、奥行方向における奥側の端部によって板ばね35及び可動板34が幅方向の一方側へ押されるので、過負荷時が解消されたとき、自動的に再びa接点を開き、b接点を閉じる。 When the reset bar 25 is pushed to the back in the depth direction in the tripped state, the leaf spring 35 and the movable plate 34 are pushed to one side in the width direction by the end on the back side in the depth direction, so the overload condition is resolved. If so, open the a contact again and close the b contact. On the other hand, if the reset rod 25 is pushed to the back side in the depth direction in the tripped state and is turned clockwise by about 90 degrees when viewed from the front side in the depth direction, the reset rod 25 will move to the position in the depth direction. is retained. Since the leaf spring 35 and the movable plate 34 are pushed to one side in the width direction by the end on the back side in the depth direction, when the overload condition is resolved, the a contact is automatically opened again and the b contact is opened. close.
 シフタ22は、図3に示すように、厚み方向が同一平面となるようにケース12に支持されている絶縁体の押しシフタ22a及び引きシフタ22bで構成されている。過負荷状態になると、三相のバイメタル21U,21V,21Wが湾曲して自由端21Ua,21Va,21Waが幅方向の他方側へ移動することで、押しシフタ22aが幅方向の他方側に変位し、押しシフタ22aの変位とともに引きシフタ22b及び差動レバー23が変位する。また、欠相発生時になると、欠相の生じた相の湾曲しないバイメタルが引きシフタ22bの変位を規制し、押しシフタ22aが過負荷時と同様に変位するようにしている。 As shown in FIG. 3, the shifter 22 is composed of an insulating push shifter 22a and a pull shifter 22b that are supported by the case 12 so that their thickness directions are on the same plane. When an overload condition occurs, the three- phase bimetals 21U, 21V, and 21W curve and the free ends 21Ua, 21Va, and 21Wa move to the other side in the width direction, thereby displacing the push shifter 22a to the other side in the width direction. , the pull shifter 22b and the differential lever 23 are displaced along with the displacement of the push shifter 22a. Furthermore, when an open phase occurs, the non-curving bimetal of the phase where the open phase occurs restricts the displacement of the pull shifter 22b, so that the push shifter 22a is displaced in the same way as when overloaded.
 ケース12には、図3に示すように、ケース12の内側に幅方向に所定間隔をあけて配置した隔壁41~43と、桁板44と、が形成されている。隔壁41,43の縦方向の他方側には、突起部45a1,45a2が幅方向に沿って並び、柱状に突出して形成されている。隔壁41,43の縦方向の一方側には、突起部45b1,45b2が幅方向に沿って並び、柱状に突出して形成されている。 As shown in FIG. 3, the case 12 is formed with partition walls 41 to 43 arranged at predetermined intervals in the width direction inside the case 12, and a girder plate 44. On the other side of the partition walls 41 and 43 in the vertical direction, protrusions 45a1 and 45a2 are arranged along the width direction and protrude in a columnar shape. On one side of the partition walls 41 and 43 in the vertical direction, protrusions 45b1 and 45b2 are arranged along the width direction and protrude in a columnar shape.
 押しシフタ22aは、図4に示すように、幅方向の一方側に、隔壁41の突起部45a1が嵌り合う長穴51が形成され、幅方向の他方側に、隔壁42の突起部45b2が嵌り合う長穴52が形成されている。また、押しシフタ22aには、縦方向の一方側に係合片53~55が形成されているとともに、係合片55とは逆側の幅方向の他方側に突出する先端56が形成されている。
 引きシフタ22bは、図4に示すように、幅方向の一方側に、隔壁41の突起部45b1が嵌り合う長穴58が形成され、幅方向の他方側に、隔壁43の突起部45b2が嵌まり合う長穴59が形成されている。また、引きシフタ22bには、縦方向の他方側に係合片60~62が形成されているとともに、引きシフタ22bの幅方向の他方側には、縦方向の他方側で開口して一方側に延在する係合溝65が形成されている。
As shown in FIG. 4, the push shifter 22a has an elongated hole 51 formed on one side in the width direction into which the projection 45a1 of the partition wall 41 fits, and a long hole 51 into which the projection 45b2 of the partition wall 42 fits into the other side in the width direction. A matching long hole 52 is formed. Further, the push shifter 22a has engaging pieces 53 to 55 formed on one side in the vertical direction, and a tip 56 that projects toward the other side in the width direction opposite to the engaging piece 55. There is.
As shown in FIG. 4, the pull shifter 22b has an elongated hole 58 formed on one side in the width direction into which the projection 45b1 of the partition wall 41 fits, and a long hole 58 into which the projection 45b2 of the partition wall 43 fits into the other side in the width direction. A long hole 59 is formed to fit into each other. Further, the pull shifter 22b is formed with engagement pieces 60 to 62 on the other side in the vertical direction, and the engagement pieces 60 to 62 are formed on the other side in the width direction of the pull shifter 22b. An engagement groove 65 is formed that extends into the groove.
 図5は差動レバー23を示す斜視図であり、図6(a)は差動レバー23を幅方向の他方側から見た図であり、図6(b)は図6(a)のA-A断面を示している。
 差動レバー23は、縦方向の一方側に、一対の対向板70,71が形成されている。一対の対向板70,71は、縦方向及び幅方向に沿った平板状に形成され、奥行方向に離間した状態で互いに対向し、奥行方向に延びる円柱状の支軸72によって連結されている。一対の対向板70,71の離隔距離は、ケース12の桁板44の厚さよりも僅かに大きく、支軸72の直径は、引きシフタ22bの係合溝65の溝幅よりも僅かに小さい。差動レバー23の縦方向の他方側には、幅方向の一方側を向いて縦方向及び奥行方向に沿った平面とした端面73が形成されている。また、差動レバー23の縦方向の他方側には、幅方向の他方側に向かって凸となる奥行方向に沿った曲面である補償バイメタル接触面74が形成されている。
FIG. 5 is a perspective view showing the differential lever 23, FIG. 6(a) is a view of the differential lever 23 seen from the other side in the width direction, and FIG. 6(b) is a perspective view of the differential lever 23. -A cross section is shown.
The differential lever 23 has a pair of opposing plates 70 and 71 formed on one side in the vertical direction. The pair of opposing plates 70 and 71 are formed in a flat plate shape extending in the vertical direction and the width direction, facing each other while being spaced apart in the depth direction, and are connected by a cylindrical support shaft 72 extending in the depth direction. The distance between the pair of opposing plates 70 and 71 is slightly larger than the thickness of the digit plate 44 of the case 12, and the diameter of the support shaft 72 is slightly smaller than the groove width of the engagement groove 65 of the pull shifter 22b. On the other side of the differential lever 23 in the vertical direction, an end face 73 is formed that faces one side in the width direction and is a flat plane along the vertical direction and the depth direction. Further, on the other side of the differential lever 23 in the vertical direction, a compensating bimetallic contact surface 74 is formed, which is a curved surface along the depth direction that is convex toward the other side in the width direction.
 押しシフタ22aは、図4に示すように、長穴51がケース12の隔壁41の突起部45a1に嵌め合わされ、長穴52が隔壁43の突起部45a2に嵌め合わされることで、幅方向に沿って変位可能に配置されている。また、押しシフタ22aの係合片53は、U相のバイメタル21Uの自由端21Uaに幅方向の他方側から係合し、係合片54は、V相のバイメタル21Vの自由端21Vaに幅方向の他方側から係合する。係合片55は、W相のバイメタル21Wの自由端21Waに幅方向の他方側から係合する。
 引きシフタ22bは、図4に示すように、長穴58がケース12の隔壁41の突起部45b1に嵌め合わされ、長穴59が隔壁43の突起部45b2に嵌め合わされることで、幅方向に沿って変位可能に配置されている。また、引きシフタ22bの係合片60は、U相のバイメタル21Uの自由端21Uaに幅方向の一方側から係合し、係合片61は、V相のバイメタル21Vの自由端21Vaに幅方向の一方側から係合する。係合片62は、W相のバイメタル21Wの自由端21Waに幅方向の一方側から係合する。
As shown in FIG. 4, the push shifter 22a is configured such that the elongated hole 51 is fitted into the protrusion 45a1 of the partition wall 41 of the case 12, and the elongated hole 52 is fitted into the protrusion 45a2 of the partition wall 43, so that the push shifter 22a can be moved along the width direction. It is arranged so that it can be displaced. Further, the engagement piece 53 of the push shifter 22a engages with the free end 21Ua of the U-phase bimetal 21U from the other side in the width direction, and the engagement piece 54 engages with the free end 21Va of the V-phase bimetal 21V in the width direction. engage from the other side. The engagement piece 55 engages with the free end 21Wa of the W-phase bimetal 21W from the other side in the width direction.
As shown in FIG. 4, the pull shifter 22b is configured such that the elongated hole 58 is fitted into the protrusion 45b1 of the partition wall 41 of the case 12, and the elongated hole 59 is fitted into the protrusion 45b2 of the partition wall 43, so that the pull shifter 22b can be moved along the width direction. It is arranged so that it can be displaced. Further, the engagement piece 60 of the pull shifter 22b engages with the free end 21Ua of the U-phase bimetal 21U from one side in the width direction, and the engagement piece 61 engages with the free end 21Va of the V-phase bimetal 21V in the width direction. engage from one side. The engagement piece 62 engages with the free end 21Wa of the W-phase bimetal 21W from one side in the width direction.
 差動レバー23は、図4に示すように、一対の対向板70,71がケース12の桁板44を挟み、支軸72が係合溝65に嵌り合うことで、ケース12に支軸72を中心として回動可能に支持されている。差動レバー23の幅方向の一方側を向いている端面73は、押しシフタ22aの係合片55の先端56に係合する。差動レバー23の幅方向の他方側を向いている補償バイメタル接触面74に、反転機構24の補償バイメタル31の自由端が係合している。 As shown in FIG. 4, the differential lever 23 has a pair of opposing plates 70 and 71 sandwiching the girder plate 44 of the case 12, and the support shaft 72 fits into the engagement groove 65, so that the support shaft 72 is attached to the case 12. It is rotatably supported around the center. An end surface 73 facing one side in the width direction of the differential lever 23 engages with the tip 56 of the engagement piece 55 of the push shifter 22a. The free end of the compensating bimetal 31 of the reversing mechanism 24 engages the compensating bimetallic contact surface 74 facing the other widthwise side of the differential lever 23 .
 そして、図4に示すように、三相のバイメタル21U,21V,21Wが湾曲していない通常状態では、押しシフタ22aは、長穴51に嵌め合わされている隔壁41の突起部45a1と長穴51の幅方向の一方側の開口縁51aとの間に寸法D1の間隙を設けている。また、通常状態の引きシフタ22bは、長穴58に嵌め合わされている隔壁41の突起部45b1と長穴58の幅方向の一方側の開口縁58aとの間に寸法D2の間隙を設けている。なお、引きシフタ22bには、幅方向の他方側にも隔壁43の突起部45b2が嵌まり合う長穴59が形成されており、前述した長穴58及び突起部45b1との関係と同様に、突起部45b2と長穴59の幅方向の一方側の開口縁との間に寸法D2の間隙を設けているが、同一機能を有しているので、以下の説明では、長穴58及び突起部45b1の係合状態のみを説明する。 As shown in FIG. 4, in the normal state where the three- phase bimetals 21U, 21V, and 21W are not curved, the push shifter 22a is connected to the protrusion 45a1 of the partition wall 41 fitted in the elongated hole 51 and the elongated hole 51. A gap of dimension D1 is provided between the opening edge 51a on one side in the width direction. Further, in the normal state, the pull shifter 22b has a gap of dimension D2 between the protrusion 45b1 of the partition wall 41 fitted into the elongated hole 58 and the opening edge 58a on one side in the width direction of the elongated hole 58. . The pull shifter 22b also has an elongated hole 59 formed on the other side in the width direction into which the protrusion 45b2 of the partition wall 43 fits, and the relationship between the elongated hole 58 and the protrusion 45b1 described above is similar to that of the elongated hole 59. A gap of dimension D2 is provided between the protrusion 45b2 and the opening edge on one side in the width direction of the elongated hole 59, but since they have the same function, in the following description, the elongated hole 58 and the protrusion will be referred to as the elongated hole 58 and the protrusion. Only the engaged state of 45b1 will be explained.
 ここで、本実施形態は、過負荷状態で三相のバイメタル21U,21V,21Wが最大に湾曲するときの自由端21Ua,21Va,21Waの変位量(以下、過負荷バイメタル変位量と称する)をD3とする。この過負荷状態のバイメタル変位量D3は、通常状態の押しシフタ22aの間隙D1より小さく設定されている(D3<D1)。また、過電流状態のバイメタル変位量D3は、通常状態の引きシフタ22bの間隙D2より大きく設定されている(D3<D2)。したがって、過負荷状態のバイメタル変位量D3と、通常状態の押しシフタ22aの間隙D1と、通常状態の引きシフタ22bの間隙D2との関係が、以下の式(1)のように設定されている。
  D2 < D3 < D1 ……式(1)
Here, in this embodiment, the amount of displacement of the free ends 21Ua, 21Va, 21Wa when the three- phase bimetals 21U, 21V, 21W curve to the maximum in an overload state (hereinafter referred to as overload bimetal displacement amount) Set it as D3. The bimetal displacement amount D3 in this overload state is set smaller than the gap D1 of the push shifter 22a in the normal state (D3<D1). Further, the bimetal displacement amount D3 in the overcurrent state is set to be larger than the gap D2 of the pull shifter 22b in the normal state (D3<D2). Therefore, the relationship between the bimetal displacement amount D3 in the overload state, the gap D1 of the push shifter 22a in the normal state, and the gap D2 of the pull shifter 22b in the normal state is set as shown in equation (1) below. .
D2 < D3 < D1 ...Formula (1)
 また、調整ダイヤル37を大きな目盛り方向(整定電流が大きくなる方向)に回すと、偏心カム37aの周面に係合する釈放レバー32の時計回りの回動により、釈放レバー32に連結する補償バイメタル31の自由端が幅方向の他方側に移動していく。ここで、図4の破線で示す補償バイメタル31は、調整ダイヤル37を最大目盛り(整定電流を最も大きな値にする目盛り)まで回したときに補償バイメタル31が幅方向の他方側まで最大に変位する位置である。この調整ダイヤル37を最大目盛りまで回したときの補償バイメタル31は、実線で示す補償バイメタル31の基準位置から幅方向の他方側に寸法D4だけ変位する。この寸法D4を、補償バイメタル最大変位量と称する。
 そして、本実施形態は、補償バイメタル最大変位量D4と、通常状態の引きシフタ22bの間隙D2との関係が、以下の式(2)のように設定されている。
  D4 < D2 ……式(2)
Furthermore, when the adjustment dial 37 is turned in the direction of a larger scale (increasing the setting current), the release lever 32 that engages with the circumferential surface of the eccentric cam 37a is rotated clockwise, and the compensation bimetal that is connected to the release lever 32 is rotated clockwise. The free end of 31 moves to the other side in the width direction. Here, the compensation bimetal 31 shown by the broken line in FIG. 4 is such that when the adjustment dial 37 is turned to the maximum scale (the scale that sets the setting current to the largest value), the compensation bimetal 31 is maximally displaced to the other side in the width direction. It's the location. When the adjustment dial 37 is turned to the maximum scale, the compensation bimetal 31 is displaced by a dimension D4 from the reference position of the compensation bimetal 31 shown by the solid line to the other side in the width direction. This dimension D4 is referred to as the compensation bimetal maximum displacement amount.
In this embodiment, the relationship between the compensation bimetal maximum displacement amount D4 and the gap D2 of the pull shifter 22b in the normal state is set as shown in equation (2) below.
D4 < D2...Formula (2)
[動作]
 次に、本実施形態の主要な動作について、図4及び図7を参照して説明する。
 図4に示す通常状態では、押しシフタ22a及び引きシフタ22bが幅方向の一方側に位置し、補償バイメタル31が縦方向に延在した状態で配置されている。そして、押しシフタ22aは、長穴51に嵌め合わされている隔壁41の突起部45a1と長穴51の幅方向の一方側の開口縁51aとの間に間隙D1を設け、引きシフタ22bは、長穴58に嵌め合わされている隔壁41の突起部45b1と長穴58の幅方向の一方側の開口縁58aとの間に間隙D2を設けている。
[motion]
Next, the main operations of this embodiment will be explained with reference to FIGS. 4 and 7.
In the normal state shown in FIG. 4, the push shifter 22a and the pull shifter 22b are located on one side in the width direction, and the compensation bimetal 31 is arranged to extend in the vertical direction. The push shifter 22a provides a gap D1 between the protrusion 45a1 of the partition wall 41 fitted in the elongated hole 51 and the opening edge 51a on one side in the width direction of the elongated hole 51, and the pull shifter 22b A gap D2 is provided between the projection 45b1 of the partition wall 41 fitted into the hole 58 and the opening edge 58a on one side in the width direction of the elongated hole 58.
 過電流が流れ始めると、ヒータ26の加熱により三相のバイメタル21U,21V,21Wが湾曲して自由端21Ua,21Va,21Waが幅方向の他方側へ移動していく。自由端21Ua,21Va,21Waの幅方向の他方側への移動により、押しシフタ22aの係合片53~55が幅方向の他方側に押されて変位していく。この押しシフタ22aの変位により、突起部45a1が長穴51の幅方向の一方側の開口縁51aに近接していき、突起部45a2が長穴52の幅方向の一方側に近接していく。また、押しシフタ22aの変位とともに引きシフタ22bも幅方向の他方側に変位していく。引きシフタ22bの変位により、突起部45b1が長穴58の幅方向の一方側の開口縁58aに近接していく。また、差動レバー23も、押しシフタ22a及び引きシフタ22bとともに幅方向の他方側に変位していく。この差動レバー23の変位により、差動レバー23の補償バイメタル接触面74に係合している補償バイメタル31の自由端も幅方向の他方側へ変位していく。 When the overcurrent begins to flow, the three- phase bimetals 21U, 21V, and 21W are bent by the heating of the heater 26, and the free ends 21Ua, 21Va, and 21Wa move toward the other side in the width direction. As the free ends 21Ua, 21Va, and 21Wa move toward the other side in the width direction, the engagement pieces 53 to 55 of the push shifter 22a are pushed and displaced toward the other side in the width direction. Due to this displacement of the push shifter 22a, the protrusion 45a1 approaches the opening edge 51a on one side of the elongated hole 51 in the width direction, and the protrusion 45a2 approaches one side of the elongated hole 52 in the width direction. Further, along with the displacement of the push shifter 22a, the pull shifter 22b is also displaced to the other side in the width direction. Due to the displacement of the pull shifter 22b, the protrusion 45b1 approaches the opening edge 58a on one side of the elongated hole 58 in the width direction. Further, the differential lever 23 is also displaced to the other side in the width direction together with the push shifter 22a and the pull shifter 22b. Due to this displacement of the differential lever 23, the free end of the compensation bimetal 31 that is engaged with the compensation bimetal contact surface 74 of the differential lever 23 is also displaced toward the other side in the width direction.
 そして、図7に示すように、過電流が流れ続けている過負荷状態では、幅方向の他方側に同時に変位し続けている押しシフタ22a及び引きシフタ22bは、引きシフタ22bの間隙D2が押しシフタ22aの間隙D1より小さいため(D2<D1)、引きシフタ22bの長穴58の幅方向の一方側の開口縁58aに突起部45b1が係合して、引きシフタ22bの幅方向の他方側への変位が停止する。
 引きシフタ22bの変位は停止するが、押しシフタ22aは、自由端21Ua,21Va,21Waの幅方向の他方側への移動により、引き続き幅方向の他方側に変位していく。そして、押しシフタ22aの先端56が差動レバー23の端面73を幅方向の他方側に押していく。差動レバー23は、変位が停止した引きシフタ22bの係合溝65に係合している支軸72回りに反時計方向に回動していき、補償バイメタル接触面74が補償バイメタル31の自由端を幅方向の他方側へ変位させていく。これにより、反転機構24は、補償バイメタル31の自由端側が幅方向の他方側へ変位することで、a接点を閉じ、b接点を開いたトリップ状態となる。
As shown in FIG. 7, in an overload state where an overcurrent continues to flow, the push shifter 22a and the pull shifter 22b, which continue to be simultaneously displaced to the other side in the width direction, are pushed by the gap D2 of the pull shifter 22b. Since the gap D1 is smaller than the gap D1 of the shifter 22a (D2<D1), the protrusion 45b1 engages with the opening edge 58a on one side in the width direction of the elongated hole 58 of the pull shifter 22b, and the projection 45b1 engages with the opening edge 58a on the other side in the width direction of the elongated hole 58 of the pull shifter 22b. Displacement to stops.
Although the displacement of the pull shifter 22b stops, the push shifter 22a continues to be displaced toward the other side in the width direction due to the movement of the free ends 21Ua, 21Va, and 21Wa toward the other side in the width direction. Then, the tip 56 of the push shifter 22a pushes the end surface 73 of the differential lever 23 toward the other side in the width direction. The differential lever 23 rotates counterclockwise around the support shaft 72 that is engaged with the engagement groove 65 of the pull shifter 22b whose displacement has stopped, and the compensation bimetal contact surface 74 moves freely against the compensation bimetal 31. The end is displaced to the other side in the width direction. As a result, the reversing mechanism 24 enters a trip state in which the free end side of the compensation bimetal 31 is displaced to the other side in the width direction, thereby closing the a contact and opening the b contact.
[作用効果]
 次に、本実施形態の作用効果について説明する。
 過負荷状態では、幅方向の他方側に押しシフタ22a及び引きシフタ22bが同時に変位し続けているときに、引きシフタ22bの長穴58の幅方向の一方側の開口縁58aに隔壁41の突起部45b1が係合することで、引きシフタ22bの変位が停止する。押しシフタ22aは、引き続き幅方向の他方側に変位していき、押しシフタ22aの先端56で差動レバー23の端面73を押し付ける。この押しシフタ22aの押し付け動作により、引きシフタ22bの係合溝65に支軸72が係合している差動レバー23が支軸72回りに反時計方向に回動することで、補償バイメタル接触面74が補償バイメタル31の自由端を幅方向の他方側に大きく変位させていく。このように、過負荷状態において引きシフタ22bの変位が先に停止し、押しシフタ22aの変位により差動レバー23を回動させることで補償バイメタル31の自由端の変位を増幅し、反転機構24のトリップ動作を早期に開始することができる。
[Effect]
Next, the effects of this embodiment will be explained.
In an overload state, when the push shifter 22a and the pull shifter 22b continue to be displaced simultaneously to the other side in the width direction, a projection of the partition wall 41 is formed on the opening edge 58a on one side in the width direction of the elongated hole 58 of the pull shifter 22b. By engaging the portion 45b1, the displacement of the pull shifter 22b is stopped. The push shifter 22a continues to be displaced to the other side in the width direction, and the tip 56 of the push shifter 22a presses against the end surface 73 of the differential lever 23. Due to this pressing operation of the push shifter 22a, the differential lever 23, whose support shaft 72 is engaged with the engagement groove 65 of the pull shifter 22b, rotates counterclockwise around the support shaft 72, thereby causing compensation bimetal contact. The surface 74 largely displaces the free end of the compensation bimetal 31 toward the other side in the width direction. In this way, in an overload state, the displacement of the pull shifter 22b stops first, and by rotating the differential lever 23 by the displacement of the push shifter 22a, the displacement of the free end of the compensation bimetal 31 is amplified, and the reversing mechanism 24 The trip operation can be started early.
 したがって、高温のバイメタル21U,21V,21Wが湾曲して隔壁41~43に接触する前に、トリップ動作が早期に開始することができるので、隔壁41~43の損傷リスクを低減することができる。
 また、上述した式(1)のD2 < D3の関係から明らかなように、引きシフタ22bに設けた長穴58と隔壁41の突起部45b1との通常状態の間隙D2を、過負荷状態のバイメタル21U,21V,21Wの過負荷バイメタル変位量D3より小さい値に設定したことから、高温のバイメタル21U,21V,21Wの自由端21Ua,21Va,21Waが隔壁41~43に接触する前に、引きシフタ22bの変位が停止し、差動レバー23の回動が開始して反転機構24のトリップ動作を確実に開始させることができる。
Therefore, the tripping operation can be started early before the high- temperature bimetals 21U, 21V, and 21W curve and come into contact with the partition walls 41-43, so the risk of damage to the partition walls 41-43 can be reduced.
Furthermore, as is clear from the relationship D2 < D3 in equation (1) above, the gap D2 in the normal state between the elongated hole 58 provided in the pull shifter 22b and the protrusion 45b1 of the partition wall 41 is Since the value is set to be smaller than the overload bimetal displacement amount D3 of 21U, 21V, 21W, the pull shifter is 22b stops, the differential lever 23 starts rotating, and the tripping operation of the reversing mechanism 24 can be reliably started.
 また、誤った操作で調整ダイヤル37を最大目盛りまで回しても、上述した式(2)のD4 < D2の関係から明らかなように、補償バイメタル31は、引きシフタ22bの通常状態の間隙D2より小さい補償バイメタル最大変位量D4までしか変位しない。このため、過負荷状態では、上述したように補償バイメタル31の自由端の変位が増幅される。したがって、調整ダイヤル37を最大目盛りまで回していても、反転機構24のトリップ動作を早期に開始して電機設備への損傷を防止することができる。 Furthermore, even if the adjustment dial 37 is turned to the maximum scale due to an erroneous operation, the compensation bimetal 31 will be smaller than the gap D2 in the normal state of the pull shifter 22b, as is clear from the relationship D4 < D2 in equation (2) above. The small compensating bimetal is displaced only up to the maximum displacement amount D4. Therefore, in an overload state, the displacement of the free end of the compensation bimetal 31 is amplified as described above. Therefore, even if the adjustment dial 37 is turned to the maximum scale, the tripping operation of the reversing mechanism 24 can be started early to prevent damage to the electrical equipment.
11 熱動形過負荷継電器
12 ケース
21U,21V,21W バイメタル
21Ua,21Va,21Wa バイメタルの自由端
22 シフタ
23 差動レバー
24 反転機構
25 リセット棒
26 ヒータ
27 接続端子
31 補償バイメタル
32 釈放レバー
33 引張りばね
34 可動板
35 板ばね
36 連動板
37 調整ダイヤル
37a 偏心カム
22a 押しシフタ
22b 引きシフタ
41~43 隔壁
44 桁板
45a1 突起部(押しシフタ突起部)
45a2 突起部
45b1 突起部(引きシフタ突起部)
45b2 突起部
51 長穴(押しシフタ長穴)
52 長穴
53~55 係合片
56 先端
58 長穴(引きシフタ長穴)
59 長穴
60~62 係合片
65 係合溝
70,71 対向板
72 支軸
73 端面
74 補償バイメタル接触面
11 Thermal overload relay 12 Case 21U, 21V, 21W Bimetal 21Ua, 21Va, 21Wa Bimetal free end 22 Shifter 23 Differential lever 24 Reversing mechanism 25 Reset rod 26 Heater 27 Connection terminal 31 Compensation bimetal 32 Release lever 33 Tension spring 34 Movable plate 35 Leaf spring 36 Interlocking plate 37 Adjustment dial 37a Eccentric cam 22a Push shifter 22b Pull shifter 41 to 43 Partition wall 44 Girder plate 45a1 Projection (push shifter projection)
45a2 Projection 45b1 Projection (pull shifter projection)
45b2 Projection 51 Long hole (push shifter long hole)
52 Long holes 53 to 55 Engagement piece 56 Tip 58 Long hole (pull shifter long hole)
59 Elongated holes 60 to 62 Engaging piece 65 Engaging grooves 70, 71 Opposing plate 72 Support shaft 73 End face 74 Compensating bimetal contact surface

Claims (3)

  1.  ケースの内部に設けた複数の隔壁と、
     前記複数の隔壁の間に個別に収納された複数のバイメタルと、
     前記複数の隔壁の端部を覆うように配置され、前記バイメタルが湾曲したときに、前記バイメタルの自由端に係合して変位する押しシフタ及び引きシフタと、
     前記押しシフタ及び前記引きシフタの変位に押されて従動する差動レバーと、
     前記差動レバーの従動を補償バイメタルに伝達することで接点を反転させてトリップ動作を行う反転機構と、を備えた熱動形過負荷継電器において、
     前記差動レバーは、前記引きシフタに係合する位置を回動中心として前記押しシフタに径方向外側から押されることで回動し、当該差動レバーに設けた補償バイメタル接触面が前記補償バイメタルを変位させることで前記反転機構のトリップ動作を行うようにし、
     過電流が流れている過負荷状態において、先に前記引きシフタの変位が停止するとともに、引き続き前記押しシフタが変位することで前記差動レバーを回動させて前記補償バイメタルの変位を増幅させる補償バイメタル変位増幅手段を設けていることを特徴とする熱動形過負荷継電器。
    Multiple partition walls provided inside the case,
    a plurality of bimetals individually housed between the plurality of partition walls;
    a push shifter and a pull shifter that are arranged to cover the ends of the plurality of partition walls, and that engage and displace the free end of the bimetal when the bimetal is curved;
    a differential lever that is pushed and driven by the displacement of the push shifter and the pull shifter;
    A thermal overload relay comprising: a reversing mechanism that transmits the driven force of the differential lever to a compensating bimetal to reverse the contact and perform a trip operation;
    The differential lever is rotated by being pushed from the outside in the radial direction by the push shifter with a rotation center at a position where it engages with the pull shifter, and the compensation bimetal contact surface provided on the differential lever is rotated by the compensation bimetal contact surface provided on the differential lever. The tripping operation of the reversing mechanism is performed by displacing the
    In an overload state where an overcurrent is flowing, the displacement of the pull shifter is first stopped, and the push shifter is subsequently displaced, thereby rotating the differential lever and amplifying the displacement of the compensation bimetal. A thermal overload relay characterized by being equipped with a bimetal displacement amplification means.
  2.  前記補償バイメタル変位増幅手段は、
     前記押しシフタの変位方向に長軸方向が延在している押しシフタ長穴と、
     前記引きシフタの変位方向に長軸方向が延在している引きシフタ長穴と、
     前記隔壁の端部から突出して前記押しシフタ長穴に摺動自在に嵌合している押しシフタ突起部と、
     前記隔壁の端部から突出して前記引きシフタ長穴に摺動自在に嵌合している引きシフタ突起部と、を備えており、
     前記押しシフタが、前記バイメタルが湾曲していない通常状態から変位し、前記押しシフタ長穴の長軸方向の一方の開口縁に前記押しシフタ突起部が係合するまでの間隔をD1とし、
     前記引きシフタが前記通常状態から変位し、前記引きシフタ長穴の長軸方向の一方の開口縁に前記引きシフタ突起部が係合するまでの間隔をD2とし、
     前記過負荷状態において前記バイメタルが最大に湾曲したときの前記自由端の変位量をD3とすると、
     以下の式(1)の関係に設定されていることを特徴とする請求項1記載の熱動形過負荷継電器。
      D2 < D3 < D1   …… 式(1)
    The compensation bimetal displacement amplification means
    a push shifter elongated hole whose longitudinal axis extends in the displacement direction of the push shifter;
    a pull shifter elongated hole whose longitudinal axis extends in the displacement direction of the pull shifter;
    a push shifter projection protruding from an end of the partition wall and slidably fitting into the push shifter elongated hole;
    a pull shifter protrusion protruding from an end of the partition wall and slidably fitting into the pull shifter elongated hole;
    The distance between the push shifter being displaced from the normal state in which the bimetal is not curved and the push shifter protrusion engaging one opening edge in the long axis direction of the push shifter elongated hole is D1;
    The distance from when the pull shifter is displaced from the normal state until the pull shifter protrusion engages with one opening edge in the longitudinal direction of the pull shifter elongated hole is D2;
    If the displacement amount of the free end when the bimetal is curved to the maximum in the overload state is D3,
    2. The thermal overload relay according to claim 1, wherein the thermal overload relay is set to the following equation (1).
    D2 < D3 < D1... Formula (1)
  3.  整定電流を調整する調整ダイヤルが設けられており、当該調整ダイヤルの目盛りを整定電流が大きくなる方向に回すと、前記反転機構の前記補償バイメタルが、前記差動レバーの前記補償バイメタル接触面に対して所定変位だけ離間するように設定されており、
     前記調整ダイヤルの目盛りを整定電流が最大になる方向に回したときに、前記補償バイメタルの最大変位量をD4とすると、前記引きシフタが前記通常状態から前記引きシフタ突起部に係合して停止するまでの間隔D2との関係を、以下の式(2)としたことを特徴とする請求項2記載の熱動形過負荷継電器。
      D4 < D2   …… 式(2)
    An adjustment dial is provided for adjusting the setting current, and when the scale of the adjustment dial is turned in a direction that increases the setting current, the compensation bimetal of the reversing mechanism is moved against the compensation bimetal contact surface of the differential lever. are set to be separated by a predetermined displacement,
    When the scale of the adjustment dial is turned in the direction where the setting current is maximized, if the maximum displacement of the compensation bimetal is D4, the pull shifter engages with the pull shifter protrusion from the normal state and stops. 3. The thermal overload relay according to claim 2, wherein the relationship between the interval D2 and the interval D2 is expressed by the following equation (2).
    D4 < D2... Formula (2)
PCT/JP2023/007915 2022-08-26 2023-03-02 Thermal overload relay WO2024042746A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022134986 2022-08-26
JP2022-134986 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024042746A1 true WO2024042746A1 (en) 2024-02-29

Family

ID=90012886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007915 WO2024042746A1 (en) 2022-08-26 2023-03-02 Thermal overload relay

Country Status (1)

Country Link
WO (1) WO2024042746A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172122A (en) * 2002-11-15 2004-06-17 Lg Industrial Syst Co Ltd Thermal overload relay
JP2009076355A (en) * 2007-09-21 2009-04-09 Fuji Electric Fa Components & Systems Co Ltd Thermal relay
JP2011165492A (en) * 2010-02-10 2011-08-25 Fuji Electric Fa Components & Systems Co Ltd Thermal overload relay

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172122A (en) * 2002-11-15 2004-06-17 Lg Industrial Syst Co Ltd Thermal overload relay
JP2009076355A (en) * 2007-09-21 2009-04-09 Fuji Electric Fa Components & Systems Co Ltd Thermal relay
JP2011165492A (en) * 2010-02-10 2011-08-25 Fuji Electric Fa Components & Systems Co Ltd Thermal overload relay

Similar Documents

Publication Publication Date Title
JP4621751B2 (en) Circuit breaker
JPH0143975B2 (en)
JPH0347242Y2 (en)
JPS6156753U (en)
US3706057A (en) Single or multipole push button actuated excess current switch having thermal and/or electromagnetic trip
JP4706772B2 (en) Thermal overload relay
JP3298428B2 (en) Inverted spring contact switching mechanism and thermal overload relay
WO2024042746A1 (en) Thermal overload relay
EP1420433A1 (en) Thermal overload relay
KR200491965Y1 (en) Adjustable thermal trip mechanism for circuit breaker
US8138879B2 (en) Thermal overload relay
US8174350B2 (en) Thermal overload relay
JP4154835B2 (en) Circuit breaker
KR200226336Y1 (en) Trip for open phase protection type thermal over load relay
US2786113A (en) Calibration of circuit breaker mechanism within casing
TW202303650A (en) Thermomotive overload relay
JP2024089099A (en) Thermal overload relay
JPH0641328Y2 (en) Circuit breaker
JP5656899B2 (en) Method of manufacturing thermal trip device and circuit breaker using thermal trip device manufactured by the manufacturing method
JP4722088B2 (en) Thermal overcurrent relay
JPS62274522A (en) Thermal over-current relay
JPS639094Y2 (en)
JPH0628763Y2 (en) Thermal overcurrent relay
JP2000243203A (en) Contact opening and closing mechanism of thermal overload relay
JPS583334B2 (en) Thermal response trip device for circuit breakers and breakers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856871

Country of ref document: EP

Kind code of ref document: A1