JP2011163925A - Monitoring device - Google Patents

Monitoring device Download PDF

Info

Publication number
JP2011163925A
JP2011163925A JP2010026842A JP2010026842A JP2011163925A JP 2011163925 A JP2011163925 A JP 2011163925A JP 2010026842 A JP2010026842 A JP 2010026842A JP 2010026842 A JP2010026842 A JP 2010026842A JP 2011163925 A JP2011163925 A JP 2011163925A
Authority
JP
Japan
Prior art keywords
electrode
monitoring
voltage
salt damage
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010026842A
Other languages
Japanese (ja)
Other versions
JP5364611B2 (en
Inventor
Iwao Oda
巌 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP2010026842A priority Critical patent/JP5364611B2/en
Publication of JP2011163925A publication Critical patent/JP2011163925A/en
Application granted granted Critical
Publication of JP5364611B2 publication Critical patent/JP5364611B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Alarm Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of estimating and monitoring a salt injury with high probability even under a high-humidity environment. <P>SOLUTION: A monitoring device is equipped with: a pair of monitor electrodes arranged on a substrate comprising an insulator in parallel so as to leave a predetermined interval and generating migration on the basis of an applied voltage; the monitor measuring electrodes arranged on a substrate on the side where a pair of monitor electrodes are formed in parallel so as to leave an interval between a pair of the monitor electrodes; a measuring means for measuring the voltage between a monitor measuring electrode and one monitor electrode; and a detection means for detecting the advance degree of migration on the basis of a monitor voltage value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被監視装置に対する塩害の予測監視できる監視装置に関する。   The present invention relates to a monitoring device that can predict and monitor salt damage to a monitored device.

近年、回路の高集積化に伴い、海岸近くに設置される通信施設などの装置に対する塩害対策の重要性がさらに増している。装置に塩害による故障や異常が発生する前に、塩害を予測監視できる技術が開発されている。   In recent years, with the high integration of circuits, the importance of countermeasures against salt damage to devices such as communication facilities installed near the coast has further increased. Technology has been developed that can predict and monitor salt damage before the device is damaged or malfunctioned by salt damage.

特許文献1は、実際に使用されている監視対象の硝子に、鋭角な尖状部を有する一対の放電電極を設けることにより、模擬碍子などによらないで実際に使用されている実機の碍子が塩害による放電を生じうる状況を事前に精度良く検出できる技術を開示している。   In Patent Document 1, a pair of discharge electrodes having sharp pointed portions are provided on a glass to be monitored that is actually used, so that an actual machine insulator that is actually used without using a simulated insulator can be obtained. A technique is disclosed that can accurately detect in advance a situation in which discharge due to salt damage can occur.

特開2008・175699号公報JP 2008-175699 A

しかしながら、特許文献1のような従来技術では、通信機器などの監視対象の装置の回路の配線間隔と同じ間隔を置いて配置した一対の放電電極の場合、監視対象の装置や回路にとって直接影響の無い、高湿度の環境下や小さな水滴が付着しただけで、間隔が狭いために放電してしまうという検出の精度に問題がある。   However, in the conventional technology such as Patent Document 1, in the case of a pair of discharge electrodes arranged at the same interval as the circuit wiring interval of a monitoring target device such as a communication device, the monitoring target device or circuit is directly affected. There is a problem in the accuracy of detection that there is no discharge in a high-humidity environment or a small drop of water just because the interval is narrow.

上記従来技術が有する問題に鑑み、本発明の目的は、高湿度の環境下などのであっても、確度高く塩害の予測監視できる技術を提供することにある。   In view of the problems of the above-described conventional techniques, an object of the present invention is to provide a technique capable of predicting and monitoring salt damage with high accuracy even in a high humidity environment.

上記課題を解決するために、本発明の監視装置は、絶縁体からなる基板上に所定の間隔を置いて平行に配置され、印加される電圧に基づいてマイグレーションを起こす監視電極対と、監視電極対が形成された側の基板上に、監視電極対の間に監視電極対それぞれと間隔を置いて平行に配置される監視測定電極と、監視測定電極と一方の監視電極との間の電圧を監視電圧値として測定する測定手段と、監視電圧値に基づいてマイグレーションの進行の度合いを検出する検出手段と、を備える。   In order to solve the above problems, a monitoring device according to the present invention includes a monitoring electrode pair arranged in parallel at a predetermined interval on a substrate made of an insulator and causing migration based on an applied voltage, and a monitoring electrode On the substrate on the side on which the pair is formed, a monitoring measuring electrode arranged in parallel with each other between the monitoring electrode pair and a voltage between the monitoring measuring electrode and one monitoring electrode are arranged between the monitoring electrode pair. Measuring means for measuring as a monitoring voltage value, and detecting means for detecting the progress of migration based on the monitoring voltage value.

また、監視電極対が形成された側の基板上に、一方の監視電極と並列にかつ他方の監視電極と所定の間隔を置いて平行に配置される基準電極と、監視電極対が形成された側の基板上に、他方の監視電極と基準電極との間に監視測定電極と並列に配置される基準測定電極とを備え、検出手段は、他方の監視電極と基準電極との間に電圧を印加し、基準測定電極と基準電極との間の電圧を基準電圧値として測定し、監視電圧値と基準電圧値とに基づいてマイグレーションの進行の度合いを検出してもよい。   Further, a reference electrode and a monitoring electrode pair arranged in parallel with one monitoring electrode and in parallel with the other monitoring electrode at a predetermined interval are formed on the substrate on which the monitoring electrode pair is formed. A reference measurement electrode disposed in parallel with the monitoring measurement electrode between the other monitoring electrode and the reference electrode, and the detection means applies a voltage between the other monitoring electrode and the reference electrode. The voltage may be applied, the voltage between the reference measurement electrode and the reference electrode may be measured as a reference voltage value, and the progress of migration may be detected based on the monitoring voltage value and the reference voltage value.

また、他方の監視電極は、銀メッキされていてもよい。   The other monitoring electrode may be silver-plated.

本発明の監視装置は、絶縁体からなる基板上に所定の間隔を置いて平行に配置され、印加される電圧に基づいてマイグレーションを起こす監視電極対と、監視電極対の間の基板の表面上を流れる電流を監視電流値として測定する測定手段と、監視電流値に基づいてマイグレーションの進行の度合いを検出する検出手段と、を備える。   The monitoring apparatus of the present invention is arranged on a substrate made of an insulator in parallel at a predetermined interval and causes a migration based on an applied voltage, and on the surface of the substrate between the monitoring electrode pair Measuring means for measuring the current flowing through the monitoring current value as a monitoring current value, and detecting means for detecting the progress of migration based on the monitoring current value.

また、監視電極対が形成された側の基板上に、監視電極対と並列に配置され、所定の間隔を置いて平行に配置される基準電極対を備え、検出手段は、基準電極対に電圧を印加し、基準電極対の間の基板の表面上を流れる電流を基準電流値として測定し、監視電流値と基準電流値とに基づいてマイグレーションの進行の度合いを検出してもよい。   In addition, a reference electrode pair is arranged on the substrate on the side where the monitoring electrode pair is formed in parallel with the monitoring electrode pair and arranged in parallel at a predetermined interval. And the current flowing on the surface of the substrate between the pair of reference electrodes is measured as a reference current value, and the degree of progress of migration may be detected based on the monitored current value and the reference current value.

本発明によれば、高湿度の環境下などのであっても、確度高く塩害の予測監視できる。   According to the present invention, it is possible to predict and monitor salt damage with high accuracy even in a high humidity environment.

一の実施形態に係る塩害監視装置100の回路図The circuit diagram of salt damage monitoring device 100 concerning one embodiment 一の実施形態の変形例に係る塩害監視装置200の回路図The circuit diagram of salt damage monitoring device 200 concerning the modification of one embodiment 他の実施形態に係る塩害監視装置300の回路図Circuit diagram of salt damage monitoring apparatus 300 according to another embodiment

《一の実施形態》
図1は、本発明の一の実施形態に係る塩害監視装置100の構成を示す回路図である。
<< One Embodiment >>
FIG. 1 is a circuit diagram showing a configuration of a salt damage monitoring apparatus 100 according to an embodiment of the present invention.

本実施形態に係る塩害監視装置100は、センサ部S、電圧計6、7、ボルテージフォロア8、スイッチ9、直流電源10、検出回路11から構成される。なお、本実施形態の塩害監視装置100は、監視対象となる装置に配置され、不図示のコンピュータなどと情報伝達可能に接続され、塩害による故障が起きる可能性が高いと判定した場合、コンピュータ(不図示)に警報信号を出力するものとする。   A salt damage monitoring apparatus 100 according to this embodiment includes a sensor unit S, voltmeters 6 and 7, a voltage follower 8, a switch 9, a DC power supply 10, and a detection circuit 11. Note that the salt damage monitoring apparatus 100 according to the present embodiment is arranged in an apparatus to be monitored, is connected to a computer (not shown) and the like so as to be able to transmit information, and determines that there is a high possibility of failure due to salt damage. An alarm signal is output to (not shown).

センサ部は、図に示すように、不図示の陶器や硝子などの絶縁体からなる基板上に配置された電極1〜5を有する。電極1〜5は、銀、銅、錫、鉛、ニッケル、金などの金属電極である。   As shown in the figure, the sensor unit includes electrodes 1 to 5 arranged on a substrate made of an insulator (not shown) such as pottery or glass. The electrodes 1 to 5 are metal electrodes such as silver, copper, tin, lead, nickel, and gold.

電極2は、電極1の一部分と対向し間隔Dを置いて平行に配置される。さらに、電極1と電極2との間に、電極1および電極2それぞれと間隔を置いて電極3が平行に配置される。電極3は、電圧計6による電極2との間の電圧値Vmを測定するための測定用電極である。一方、電極1および電極2は、後述する直流電源10の出力電圧Vが印可され、海水などを含む湿気や基板(不図示)に付着する水滴に応じて、エレクトロケミカルマイグレーション(以下、イオンマイグレーション)を起こす。本実施形態では、特に、電極1として電極表面全体が銀メッキされたものを用い、電極1によるイオンマイグレーションを加速度的に起こさせ進行させる。この電極1のイオンマイグレーションの進行に応じて、センサ部の基板(不図示)の表面抵抗は変化し、その表面を流れるリーク電流が変化する。本実施形態の塩害監視装置100は、そのリーク電流の変化を、電圧計6が測定する電圧値Vmに基づいて、電極1のイオンマイグレーションの進行の度合いを検出し、監視対象の装置の塩害を予測監視する。   The electrode 2 faces a part of the electrode 1 and is arranged in parallel with a distance D. Further, an electrode 3 is disposed between the electrode 1 and the electrode 2 in parallel with the electrode 1 and the electrode 2 being spaced from each other. The electrode 3 is a measurement electrode for measuring a voltage value Vm between the electrode 2 and the voltmeter 6. On the other hand, the electrode 1 and the electrode 2 are applied with an output voltage V of a DC power source 10 to be described later, and according to moisture including seawater or water droplets adhering to a substrate (not shown), electrochemical migration (hereinafter referred to as ion migration). Wake up. In the present embodiment, in particular, the electrode 1 that is silver-plated on the entire electrode surface is used, and ion migration by the electrode 1 is caused to accelerate and proceed. As the ion migration of the electrode 1 proceeds, the surface resistance of the substrate (not shown) of the sensor unit changes, and the leak current flowing on the surface changes. The salt damage monitoring apparatus 100 according to the present embodiment detects the degree of ion migration progress of the electrode 1 based on the voltage value Vm measured by the voltmeter 6 and detects the salt damage of the monitoring target apparatus. Predictive monitoring.

一方、センサ部の電極4は、電極2と並列にかつ電極1の一部分と対向し間隔Dを置いて平行に基板(不図示)上に配置される。電極5は、電極1と電極4との間に電極3と並列に配置される。電圧計7は、電極1によるイオンマイグレーションの進行の度合いの基準となる電圧として、電極5と電極4との間の電圧値Vrを測定する。なお、電圧計6、7には、一般的な直流電圧計を適宜選択して用いられる。   On the other hand, the electrode 4 of the sensor unit is arranged on a substrate (not shown) in parallel with the electrode 2 and in parallel with a part of the electrode 1 with a distance D therebetween. The electrode 5 is disposed in parallel with the electrode 3 between the electrode 1 and the electrode 4. The voltmeter 7 measures a voltage value Vr between the electrode 5 and the electrode 4 as a reference voltage for the degree of progress of ion migration by the electrode 1. For the voltmeters 6 and 7, a general DC voltmeter is appropriately selected and used.

なお、各電極1〜5の長さや間隔Dなどの間隔は、塩害監視装置100に求められる塩害の検出精度や印加される直流電源10の出力電圧Vなどに応じて、適宜決定されることが好ましい。また、センサ部の部分だけ取りはずし可能に配置されてもよい。   Note that the length of each electrode 1 to 5 and the interval D and the like can be appropriately determined according to the salt damage detection accuracy required for the salt damage monitoring device 100, the output voltage V of the DC power supply 10 to be applied, and the like. preferable. Further, only the sensor portion may be arranged to be removable.

ボルテージフォロア8は、OPアンプから形成されるボルテージフォロアである。本実施形態では、スイッチ9の切換動作に応じて、ボルテージフォロア8は、センサ部の電極4を、通常時には電極1と同電位にし、塩害の予測監視時には電極2と同電位にする。なお、スイッチ9は、一般的なスイッチで形成され、検出回路11からの指示に基づいて切換動作する。   The voltage follower 8 is a voltage follower formed from an OP amplifier. In the present embodiment, according to the switching operation of the switch 9, the voltage follower 8 sets the electrode 4 of the sensor unit to the same potential as that of the electrode 1 in the normal state and to the same potential as that of the electrode 2 in the case of predictive monitoring of salt damage. Note that the switch 9 is formed of a general switch and performs a switching operation based on an instruction from the detection circuit 11.

直流電源10は、一般的な直流電源を適宜選択して用いることができる。なお、直流電源10として、監視対象の装置からの出力電圧を用いてもよい。また、本実施形態の直流電源10は、監視対象の装置の駆動電圧よりも高い出力電圧Vを出力し、センサ部の間隔Dに応じて調整されるものとする。すなわち、電極1と電極2および電極4との間の印可される電圧は高いが、センサ部の間隔Dを基板(不図示)に付着する水滴や埃などの大きさより大きくし、銀メッキされた電極1によるイオンマイグレーションの加速度的な進行の効果とともに、実際の回路の配線間隔の場合と同様の状況が再現できる。これにより、高湿度などによる塩害検出の誤動作を防止でき、監視対象の装置が故障する前に塩害を予測監視できる。   As the DC power source 10, a general DC power source can be appropriately selected and used. Note that the output voltage from the monitoring target device may be used as the DC power supply 10. Moreover, the DC power supply 10 of this embodiment outputs the output voltage V higher than the drive voltage of the monitoring object apparatus, and shall be adjusted according to the space | interval D of a sensor part. That is, although the voltage applied between the electrode 1 and the electrode 2 and the electrode 4 is high, the distance D between the sensor portions is larger than the size of water drops or dust adhering to the substrate (not shown), and silver plating is performed. Along with the effect of the acceleration of ion migration by the electrode 1, the same situation as in the case of an actual circuit wiring interval can be reproduced. Thereby, malfunction of salt damage detection due to high humidity or the like can be prevented, and salt damage can be predicted and monitored before the monitoring target device fails.

検出回路11は、電圧計6が測定した電圧値Vmに基づいて、電極1のイオンマイグレーションの進行の度合いを検出し、塩害の予測監視する。なお、本実施形態の検出回路11は、電圧計7、スイッチ9と連携して動作することにより、電圧計6が測定した電圧値Vmと電圧計7が測定した電圧値Vrとの差分を求め、高湿度などの影響を排除したイオンマイグレーションの進行の度合いを検出する。   The detection circuit 11 detects the degree of ion migration progress of the electrode 1 based on the voltage value Vm measured by the voltmeter 6 and predicts and monitors salt damage. The detection circuit 11 according to the present embodiment operates in cooperation with the voltmeter 7 and the switch 9 to obtain a difference between the voltage value Vm measured by the voltmeter 6 and the voltage value Vr measured by the voltmeter 7. The degree of progress of ion migration that eliminates the influence of high humidity and the like is detected.

次に、塩害監視装置100の監視動作について説明する。   Next, the monitoring operation of the salt damage monitoring apparatus 100 will be described.

検出回路11は、通常時、電極4が電極1と同電位になるようにスイッチ9を切換動作させ、電極2と対向する電極1の部分でのイオンマイグレーションを進行させる。一方、電極1と電極4との間には、電圧は印可されない。よって、電極4と対向する電極1の部分では、海水などの含む高湿度の環境や水滴が基板(不図示)に付着したとしても、イオンマイグレーションはあまり進行しない。これにより、電極2と対向する電極1の部分のイオンマイグレーションが進行するに従い、電極1と電極2との間の表面抵抗は、電極1と電極4との間の表面抵抗よりも小さくなる。同時に、電極1により近い電極1と電極3との間の表面抵抗は、電極3と電極2との間のより小さくなる。すなわち、スイッチ9が、塩害の予測監視時に電極4と電極2とが同電位になるように切換動作した場合、電圧計6が測定する電極3と電極2との間の電圧値Vmは、電圧計7が測定する電極5と電極3との間の電圧値Vmより大きくなることを意味する。   The detection circuit 11 normally switches the switch 9 so that the electrode 4 is at the same potential as the electrode 1, and advances ion migration at the portion of the electrode 1 facing the electrode 2. On the other hand, no voltage is applied between the electrode 1 and the electrode 4. Therefore, in the portion of the electrode 1 facing the electrode 4, even if a high humidity environment such as seawater or a water droplet adheres to the substrate (not shown), ion migration does not proceed so much. Thereby, as the ion migration of the part of the electrode 1 facing the electrode 2 proceeds, the surface resistance between the electrode 1 and the electrode 2 becomes smaller than the surface resistance between the electrode 1 and the electrode 4. At the same time, the surface resistance between the electrode 1 and the electrode 3 closer to the electrode 1 becomes smaller between the electrode 3 and the electrode 2. That is, when the switch 9 is switched so that the electrode 4 and the electrode 2 are at the same potential during the salt damage prediction monitoring, the voltage value Vm between the electrode 3 and the electrode 2 measured by the voltmeter 6 is the voltage It means that the voltage value Vm between the electrode 5 and the electrode 3 measured by the total 7 becomes larger.

一方、塩害の予測監視時、検出回路11は、電極4と電極2とが同電位になるようにスイッチ9を切換動作させ、電圧計6、7が測定した電圧値Vm、Vrを取得する。検出回路11は、差分電圧ΔV=(Vm−Vr)を求め、閾値Vαとの比較を行いイオンマイグレーションの進行の度合いを検出する。検出回路11は、差分電圧ΔVが閾値Vα以上の場合、イオンマイグレーションが進行し監視対象の装置が故障する可能性があると判定し、コンピュータ(不図示)に対して警報信号を出力する。その警報信号を受信したコンピュータ(不図示)は、例えば、モニタなどに警告表示して、オペレータに監視対象の装置に必要な塩害対策を施すよう通知する。   On the other hand, at the time of predictive monitoring of salt damage, the detection circuit 11 switches the switch 9 so that the electrode 4 and the electrode 2 are at the same potential, and acquires the voltage values Vm and Vr measured by the voltmeters 6 and 7. The detection circuit 11 obtains the differential voltage ΔV = (Vm−Vr), compares it with the threshold value Vα, and detects the degree of progress of ion migration. When the differential voltage ΔV is equal to or higher than the threshold value Vα, the detection circuit 11 determines that there is a possibility that the ion migration proceeds and the device to be monitored may break down, and outputs an alarm signal to a computer (not shown). A computer (not shown) that has received the alarm signal displays a warning on a monitor or the like, for example, and notifies the operator to take necessary salt damage countermeasures for the monitored device.

このように、本実施形態は、電極1と電極2との間でイオンマイグレーションを進行させ、電極1と電極4との間でイオンマイグレーションを進行させないようにすることにより、高湿度などの影響を排除したイオンマイグレーションの進行の度合いを検出でき、確度高く塩害を予測監視できる。   As described above, in the present embodiment, the ion migration proceeds between the electrode 1 and the electrode 2 and the ion migration does not proceed between the electrode 1 and the electrode 4, thereby affecting the influence of high humidity. The degree of progress of excluded ion migration can be detected, and salt damage can be predicted and monitored with high accuracy.

また、監視対象の装置同様に塩害が進行するが、センサ部の電極1と電極2および電極4との間に、装置を駆動させる最大電圧よりも高い直流電源10の出力電圧Vを印加することにより、監視対象の装置が故障する前に、確度高く塩害を予測監視できる。   Further, salt damage proceeds in the same manner as the device to be monitored, but the output voltage V of the DC power supply 10 higher than the maximum voltage for driving the device is applied between the electrode 1, the electrode 2 and the electrode 4 of the sensor unit. Thus, it is possible to predict and monitor salt damage with high accuracy before the device to be monitored fails.

さらに、電極1として銀メッキされたものを用いることにより、イオンマイグレーションを加速度的に進行させることができ、監視対象の装置が故障する前に、より確度高く塩害を予測監視できる。   Furthermore, by using a silver-plated electrode 1, ion migration can be accelerated and salt damage can be predicted and monitored with higher accuracy before the monitoring target device fails.

また、センサ部は電極1〜5からなる簡単な構造であることから、容易に回路規模の小型化ができ、コストの削減を図ることができる。
《一の実施形態の変形例》
図2は、本発明の一の実施形態に係る塩害監視装置100の変形例として、塩害監視装置200の構成を示す回路図である。
In addition, since the sensor unit has a simple structure including the electrodes 1 to 5, the circuit scale can be easily reduced, and the cost can be reduced.
<< Modification of one embodiment >>
FIG. 2 is a circuit diagram showing a configuration of a salt damage monitoring apparatus 200 as a modification of the salt damage monitoring apparatus 100 according to one embodiment of the present invention.

本実施形態に係る塩害監視装置200において、一の実施形態に係る塩害監視装置100の構成要素と同じ動作をするものは、同一の符号を付し詳細な説明は省略する。   In the salt damage monitoring apparatus 200 according to the present embodiment, components that perform the same operations as the components of the salt damage monitoring apparatus 100 according to one embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施形態に係る塩害監視装置200と一の実施形態の塩害監視装置100と異なる点は、図2に示すように、電極2が、電極1と同じ長さを持って平行に配置され、電極4が電極5とともに電極1と電極2との間に配置される。電極4は、スイッチ9の切換動作に応じて、電極1と電極2との間でのイオンマイグレーションのうち、電極4と対向する電極1の部分でのイオンマイグレーションを抑制するガード電極として動作する。なお、本実施形態の電極4は、電極1との電位差が電極1と電極2との電位差とほぼ同じになるように、可能な限り電極2の近傍に配置されることが好ましい。本実施形態に係る塩害監視装置200の動作は、一の実施形態に係る塩害監視装置100の場合と同一であるから、詳細な説明は省略する。   The salt damage monitoring apparatus 200 according to this embodiment is different from the salt damage monitoring apparatus 100 according to one embodiment in that the electrode 2 is arranged in parallel with the same length as the electrode 1 as shown in FIG. 4 is disposed between the electrode 1 and the electrode 2 together with the electrode 5. The electrode 4 operates as a guard electrode that suppresses ion migration in the portion of the electrode 1 facing the electrode 4 out of ion migration between the electrode 1 and the electrode 2 according to the switching operation of the switch 9. The electrode 4 of this embodiment is preferably arranged as close to the electrode 2 as possible so that the potential difference with the electrode 1 is substantially the same as the potential difference between the electrode 1 and the electrode 2. Since the operation of the salt damage monitoring apparatus 200 according to the present embodiment is the same as that of the salt damage monitoring apparatus 100 according to one embodiment, detailed description thereof is omitted.

このように、本実施形態は、電極1と電極2との間でイオンマイグレーションを進行させ、電極1と電極4との間でイオンマイグレーションを進行させないようにすることにより、高湿度などの影響を排除したイオンマイグレーションの進行の度合いを検出でき、確度高く塩害を予測監視できる。   As described above, in the present embodiment, the ion migration proceeds between the electrode 1 and the electrode 2 and the ion migration does not proceed between the electrode 1 and the electrode 4, thereby affecting the influence of high humidity. The degree of progress of excluded ion migration can be detected, and salt damage can be predicted and monitored with high accuracy.

また、監視対象の装置同様に塩害が進行するが、センサ部の電極1と電極2および電極4との間に、装置を駆動させる最大電圧よりも高い直流電源10の出力電圧Vを印加することにより、監視対象の装置が故障する前に、確度高く塩害を予測監視できる。   Further, salt damage proceeds in the same manner as the device to be monitored, but the output voltage V of the DC power supply 10 higher than the maximum voltage for driving the device is applied between the electrode 1, the electrode 2 and the electrode 4 of the sensor unit. Thus, it is possible to predict and monitor salt damage with high accuracy before the device to be monitored fails.

さらに、電極1として銀メッキされたものを用いることにより、イオンマイグレーションを加速度的に進行させることができ、監視対象の装置が故障する前に、より確度高く塩害を予測監視できる。   Furthermore, by using a silver-plated electrode 1, ion migration can be accelerated and salt damage can be predicted and monitored with higher accuracy before the monitoring target device fails.

また、センサ部は電極1〜5からなる簡単な構造であることから、容易に回路規模の小型化ができ、コストの削減を図ることができる。
《他の実施形態》
図3は、本発明の他の実施形態に係る塩害監視装置300の構成を示す回路図である。
In addition, since the sensor unit has a simple structure including the electrodes 1 to 5, the circuit scale can be easily reduced, and the cost can be reduced.
<< Other embodiments >>
FIG. 3 is a circuit diagram showing a configuration of a salt damage monitoring apparatus 300 according to another embodiment of the present invention.

本実施形態に係る塩害監視装置300において、一の実施形態に係る塩害監視装置100の構成要素と同じ動作をするものは、同一の符号を付し詳細な説明は省略する。   In the salt damage monitoring apparatus 300 according to the present embodiment, components that perform the same operations as the components of the salt damage monitoring apparatus 100 according to one embodiment are denoted by the same reference numerals and detailed description thereof is omitted.

本実施形態に係る塩害監視装置300と一の実施形態の塩害監視装置100と異なる点は、下記のとおりである。   Differences between the salt damage monitoring apparatus 300 according to the present embodiment and the salt damage monitoring apparatus 100 according to one embodiment are as follows.

(1)本実施形態のセンサ部の銀メッキされた電極1が2つの銀メッキされた電極1および1’に分割される。また、電極3、5が無い。なお、
(2)一般的な直流電流計である電流計20、21を用い、電極1と電極2との間および電極1’と電極4との間の基板(不図示)の表面を流れるリーク電流の電流値Im、Irを測定する。
(1) The silver-plated electrode 1 of the sensor unit of this embodiment is divided into two silver-plated electrodes 1 and 1 ′. There are no electrodes 3 and 5. In addition,
(2) Using the ammeters 20 and 21 which are general DC ammeters, leakage current flowing between the electrodes 1 and 2 and between the electrodes 1 ′ and 4 on the surface of the substrate (not shown) Current values Im and Ir are measured.

(3)検出回路22は、図3に示すように、電流計20が測定した電流値Imに基づいて、電極1のイオンマイグレーションの進行の度合いを検出し、塩害の予測監視する。なお、本実施形態の検出回路22は、電圧計21、スイッチ9と連携して動作することにより、電流計20が測定した電流値Imと電流計21が測定した電流値Irとの差分を求め、高湿度などの影響を排除したイオンマイグレーションの進行の度合いを検出する。   (3) As shown in FIG. 3, the detection circuit 22 detects the progress of ion migration of the electrode 1 based on the current value Im measured by the ammeter 20 and predicts and monitors salt damage. The detection circuit 22 according to the present embodiment operates in cooperation with the voltmeter 21 and the switch 9 to obtain a difference between the current value Im measured by the ammeter 20 and the current value Ir measured by the ammeter 21. The degree of progress of ion migration that eliminates the influence of high humidity and the like is detected.

次に、本実施形態に係る塩害監視装置300の監視動作について説明する。   Next, the monitoring operation of the salt damage monitoring apparatus 300 according to this embodiment will be described.

検出回路22は、通常時、電極4が電極1’と同電位になるようにスイッチ9を切換動作させ、電極1のイオンマイグレーションを進行させる。一方、電極1’と電極4との間は、スイッチ9の切換動作により、直流電源10の出力電圧Vが印加されず、電極1’のイオンマイグレーションはあまり進行しない。   The detection circuit 22 normally switches the switch 9 so that the electrode 4 is at the same potential as the electrode 1 ′, and advances the ion migration of the electrode 1. On the other hand, the output voltage V of the DC power supply 10 is not applied between the electrode 1 'and the electrode 4 due to the switching operation of the switch 9, and the ion migration of the electrode 1' does not proceed so much.

一方、塩害の予測監視時、検出回路22は、電極4と電極2とが同電位になるようにスイッチ9を切換動作させ、電流計20、21が測定した電流値Im、Irを取得する。検出回路22は、差分電流ΔI=(Im−Ir)を求め、閾値Iαとの比較しイオンマイグレーションの進行の度合いを検出する。検出回路22は、差分電流ΔIが閾値Iα以上の場合、イオンマイグレーションが進行し監視対象の装置が故障する可能性があると判定し、コンピュータ(不図示)に対して警報信号を出力する。その警報信号を受信したコンピュータ(不図示)は、例えば、モニタなどに警告表示して、オペレータに監視対象の装置に必要な塩害対策を施すよう通知する。   On the other hand, at the time of predictive monitoring of salt damage, the detection circuit 22 switches the switch 9 so that the electrode 4 and the electrode 2 are at the same potential, and acquires the current values Im and Ir measured by the ammeters 20 and 21. The detection circuit 22 obtains the differential current ΔI = (Im−Ir), compares it with the threshold value Iα, and detects the progress of ion migration. When the differential current ΔI is equal to or greater than the threshold value Iα, the detection circuit 22 determines that there is a possibility that the ion migration proceeds and the device to be monitored may break down, and outputs an alarm signal to a computer (not shown). A computer (not shown) that has received the alarm signal displays a warning on a monitor or the like, for example, and notifies the operator to take necessary salt damage countermeasures for the monitored device.

このように、本実施形態は、電極1と電極2との間でイオンマイグレーションを進行させ、電極1’と電極4との間でイオンマイグレーションを進行させないようにすることにより、高湿度などの影響を排除したイオンマイグレーションの進行の度合いを検出でき、確度高く塩害を予測監視できる。   As described above, in the present embodiment, by causing ion migration to proceed between the electrode 1 and the electrode 2 and preventing ion migration from proceeding between the electrode 1 ′ and the electrode 4, the influence of high humidity and the like is exerted. It is possible to detect the degree of progress of ion migration that excludes water and to predict and monitor salt damage with high accuracy.

また、監視対象の装置同様に塩害が進行するが、センサ部の電極1と電極2および電極1’と電極4との間に、装置を駆動させる最大電圧よりも高い直流電源10の出力電圧Vを印加することにより、監視対象の装置が故障する前に、確度高く塩害を予測監視できる。   Moreover, although salt damage advances like the apparatus to be monitored, the output voltage V of the DC power supply 10 higher than the maximum voltage for driving the apparatus is between the electrodes 1 and 2 and the electrodes 1 ′ and 4 of the sensor unit. By applying, salt damage can be predicted and monitored with high accuracy before the device to be monitored fails.

さらに、電極1、1’として銀メッキされたものを用いることにより、イオンマイグレーションを加速度的に進行させることができ、監視対象の装置が故障する前に、より確度高く塩害を予測監視できる。   Furthermore, by using silver-plated electrodes 1 and 1 ', ion migration can be accelerated and salt damage can be predicted and monitored with higher accuracy before the device to be monitored fails.

また、センサ部は4つの電極からなる簡単な構造であることから、容易に回路規模の小型化ができ、コストの削減を図ることができる。
《実施形態の補足事項》
上記一の実施形態では、検出回路11による塩害の予測監視をより正確に行うために、差分電圧ΔV=(Vm−Vr)を求めたが、本発明はこれに限定されない。例えば、監視装置100を設置した直後に、検出回路11は、電圧計6、7に初期電圧値Vm0、Vr0を測定させて保持し、差分電圧ΔVを(Vm−Vm0)−(Vr−Vr0)として求めてもよい。これにより、より正確な塩害の予測監視ができる。
Further, since the sensor unit has a simple structure composed of four electrodes, the circuit scale can be easily reduced and the cost can be reduced.
<< Additional items of embodiment >>
In the one embodiment, the differential voltage ΔV = (Vm−Vr) is obtained in order to more accurately perform the salt damage prediction monitoring by the detection circuit 11, but the present invention is not limited to this. For example, immediately after the monitoring device 100 is installed, the detection circuit 11 causes the voltmeters 6 and 7 to measure and hold the initial voltage values Vm0 and Vr0, and the differential voltage ΔV is (Vm−Vm0) − (Vr−Vr0). You may ask as. Thereby, more accurate prediction and monitoring of salt damage can be performed.

上記他の実施形態では、検出回路22による塩害の予測監視をより正確に行うために、差分電流ΔI=(Im−Ir)を求めたが、本発明はこれに限定されない。例えば、監視装置300を設置した直後に、検出回路22は、電流計20、21に初期電流値Im0、Ir0を測定させて保持し、差分電流ΔIを(Im−Im0)−(Ir−Ir0)として求めてもよい。これにより、より正確な塩害の予測監視ができる。   In the other embodiment described above, the differential current ΔI = (Im−Ir) is obtained in order to more accurately perform the salt damage prediction monitoring by the detection circuit 22, but the present invention is not limited to this. For example, immediately after the monitoring device 300 is installed, the detection circuit 22 causes the ammeters 20 and 21 to measure and hold the initial current values Im0 and Ir0, and the differential current ΔI is (Im−Im0) − (Ir−Ir0). You may ask as. Thereby, more accurate prediction and monitoring of salt damage can be performed.

以上の詳細な説明により、実施形態の特徴点および利点は明らかになるであろう。これは、特許請求の範囲が、その精神および権利範囲を逸脱しない範囲で前述のような実施形態の特徴点および利点にまで及ぶことを意図する。また、当該技術分野において通常の知識を有する者であれば、あらゆる改良および変更に容易に想到できるはずであり、発明性を有する実施形態の範囲を前述したものに限定する意図はなく、実施形態に開示された範囲に含まれる適当な改良物および均等物によることも可能である。   From the above detailed description, features and advantages of the embodiments will become apparent. It is intended that the scope of the claims extend to the features and advantages of the embodiments as described above without departing from the spirit and scope of the right. Further, any person having ordinary knowledge in the technical field should be able to easily come up with any improvements and modifications, and there is no intention to limit the scope of the embodiments having the invention to those described above. It is also possible to use appropriate improvements and equivalents within the scope disclosed in.

1〜5、1’ 電極、6、7 電圧計、8 ボルテージフォロア、9 スイッチ、10 直流電源、11、22 検出装置、20、21 電流計、100、200、300 塩害監視装置
1-5, 1 ′ electrode, 6, 7 voltmeter, 8 voltage follower, 9 switch, 10 DC power supply, 11, 22 detection device, 20, 21 ammeter, 100, 200, 300 salt damage monitoring device

Claims (5)

絶縁体からなる基板上に所定の間隔を置いて平行に配置され、印加される電圧に基づいてマイグレーションを起こす監視電極対と、
前記監視電極対が形成された側の前記基板上に、前記監視電極対の間に前記監視電極対それぞれと間隔を置いて平行に配置される監視測定電極と、
前記監視測定電極と一方の監視電極との間の電圧を監視電圧値として測定する測定手段と、
前記監視電圧値に基づいて前記マイグレーションの進行の度合いを検出する検出手段と、
を備えることを特徴とする監視装置。
A pair of monitoring electrodes that are arranged in parallel at a predetermined interval on a substrate made of an insulator and cause migration based on an applied voltage;
On the substrate on the side where the monitoring electrode pair is formed, a monitoring measurement electrode disposed in parallel with the monitoring electrode pair with a space between each monitoring electrode pair;
Measuring means for measuring a voltage between the monitoring measuring electrode and one monitoring electrode as a monitoring voltage value;
Detecting means for detecting the degree of progress of the migration based on the monitoring voltage value;
A monitoring device comprising:
請求項1に記載の監視装置において、
前記監視電極対が形成された側の前記基板上に、前記一方の監視電極と並列にかつ他方の監視電極と前記所定の間隔を置いて平行に配置される基準電極と、
前記監視電極対が形成された側の前記基板上に、前記他方の監視電極と前記基準電極との間に前記監視測定電極と並列に配置される基準測定電極とを備え、
前記検出手段は、
前記他方の監視電極と前記基準電極との間に前記電圧を印加し、前記基準測定電極と前記基準電極との間の電圧を基準電圧値として測定し、前記監視電圧値と前記基準電圧値とに基づいて前記マイグレーションの進行の度合いを検出する
ことを特徴とする監視装置。
The monitoring device according to claim 1,
On the substrate on the side where the monitoring electrode pair is formed, a reference electrode disposed in parallel with the one monitoring electrode and in parallel with the other monitoring electrode at the predetermined interval;
A reference measurement electrode disposed in parallel with the monitoring measurement electrode between the other monitoring electrode and the reference electrode on the substrate on which the monitoring electrode pair is formed;
The detection means includes
The voltage is applied between the other monitoring electrode and the reference electrode, the voltage between the reference measurement electrode and the reference electrode is measured as a reference voltage value, and the monitoring voltage value and the reference voltage value are The degree of progress of the migration is detected based on the monitoring device.
請求項2に記載の監視装置において、
前記他方の監視電極は、銀メッキされていることを特徴とする監視装置。
The monitoring device according to claim 2,
The other monitoring electrode is silver-plated.
絶縁体からなる基板上に所定の間隔を置いて平行に配置され、印加される電圧に基づいてマイグレーションを起こす監視電極対と、
前記監視電極対の間の前記基板の表面上を流れる電流を監視電流値として測定する測定手段と、
前記監視電流値に基づいて前記マイグレーションの進行の度合いを検出する検出手段と、
を備えることを特徴とする監視装置。
A pair of monitoring electrodes that are arranged in parallel at a predetermined interval on a substrate made of an insulator and cause migration based on an applied voltage;
Measuring means for measuring a current flowing on the surface of the substrate between the monitoring electrode pair as a monitoring current value;
Detecting means for detecting the degree of progress of the migration based on the monitoring current value;
A monitoring device comprising:
請求項4に記載の監視装置において、
前記監視電極対が形成された側の前記基板上に、前記監視電極対と並列に配置され、前記所定の間隔を置いて平行に配置される基準電極対を備え、
前記検出手段は、
前記基準電極対に前記電圧を印加し、前記基準電極対の間の前記基板の表面上を流れる電流を基準電流値として測定し、前記監視電流値と前記基準電流値とに基づいて前記マイグレーションの進行の度合いを検出する
ことを特徴とする監視装置。
The monitoring device according to claim 4,
A reference electrode pair disposed in parallel with the monitoring electrode pair on the side on which the monitoring electrode pair is formed and disposed in parallel with the predetermined interval;
The detection means includes
The voltage is applied to the reference electrode pair, the current flowing on the surface of the substrate between the reference electrode pair is measured as a reference current value, and the migration is performed based on the monitoring current value and the reference current value. A monitoring device characterized by detecting the degree of progress.
JP2010026842A 2010-02-09 2010-02-09 Monitoring device Expired - Fee Related JP5364611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026842A JP5364611B2 (en) 2010-02-09 2010-02-09 Monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026842A JP5364611B2 (en) 2010-02-09 2010-02-09 Monitoring device

Publications (2)

Publication Number Publication Date
JP2011163925A true JP2011163925A (en) 2011-08-25
JP5364611B2 JP5364611B2 (en) 2013-12-11

Family

ID=44594778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026842A Expired - Fee Related JP5364611B2 (en) 2010-02-09 2010-02-09 Monitoring device

Country Status (1)

Country Link
JP (1) JP5364611B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091577A (en) * 2013-01-06 2013-05-08 中国电力科学研究院 Direct current insulator ionic migration test equipment
KR20200045196A (en) * 2018-10-22 2020-05-04 현대모비스 주식회사 Apparatus and method for detecting ionmigration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318529A (en) * 1994-05-23 1995-12-08 Yamatake Honeywell Co Ltd Corrosion rate meter
JPH1019819A (en) * 1996-07-03 1998-01-23 Hitachi Chem Co Ltd Silver-resistant migratioopnal evaluating test piece and testing method
JP2006515061A (en) * 2003-01-20 2006-05-18 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) Device for measuring the quality and / or deterioration of fluids, especially edible oils
JP2008065311A (en) * 2006-07-14 2008-03-21 Barco Nv Display board, aging determination and calibrating method
JP2009259937A (en) * 2008-04-15 2009-11-05 Ricoh Elemex Corp Electronic circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07318529A (en) * 1994-05-23 1995-12-08 Yamatake Honeywell Co Ltd Corrosion rate meter
JPH1019819A (en) * 1996-07-03 1998-01-23 Hitachi Chem Co Ltd Silver-resistant migratioopnal evaluating test piece and testing method
JP2006515061A (en) * 2003-01-20 2006-05-18 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) Device for measuring the quality and / or deterioration of fluids, especially edible oils
JP2008065311A (en) * 2006-07-14 2008-03-21 Barco Nv Display board, aging determination and calibrating method
JP2009259937A (en) * 2008-04-15 2009-11-05 Ricoh Elemex Corp Electronic circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091577A (en) * 2013-01-06 2013-05-08 中国电力科学研究院 Direct current insulator ionic migration test equipment
KR20200045196A (en) * 2018-10-22 2020-05-04 현대모비스 주식회사 Apparatus and method for detecting ionmigration
KR102152634B1 (en) * 2018-10-22 2020-09-07 현대모비스 주식회사 Apparatus and method for detecting ionmigration
US10779416B2 (en) 2018-10-22 2020-09-15 Hyundai Mobis Co., Ltd. Apparatus and method for detecting ion migration

Also Published As

Publication number Publication date
JP5364611B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
US9857411B2 (en) Electronic device having function of detecting degradation of printed circuit board
JP2017158185A5 (en)
WO2007046237A1 (en) Insulation inspecting device and insulation inspecting method
JP2011220694A (en) Detector and detection method for measuring battery modules
JP4369949B2 (en) Insulation inspection device and insulation inspection method
US20130158371A1 (en) Bioelectrical impedance measuring apparatus, semiconductor device, and control method for bioelectrical impedance measuring apparatus
JP2010271267A (en) Battery monitoring device
CN104597364A (en) Method for maintaining a contact, and testing apparatus
JP2015220856A (en) Battery residual amount prediction device and battery pack
JP2008292403A (en) Method and device for detecting abnormality of battery pack
JP5364611B2 (en) Monitoring device
JP5085275B2 (en) Insulation inspection equipment
JP2007333465A (en) Inspection apparatus
US20210041348A1 (en) Holiday Testing Circuit for Coated Surface Inspection
JP2013205211A (en) Corrosion sensor, deterioration detection sensor, and deterioration monitor
WO2019229534A3 (en) Secure system that includes driving related systems
CN103207342B (en) A kind of checking experiment grounding intelligent prior-warning device
CN207502678U (en) Detect the device of contactor mirror image contact
JP2008076266A (en) Apparatus and method for inspecting substrate
JP2013161553A (en) Conductive sheet and substrate inspecting device
JP2014181977A (en) Insulation inspection method and insulation inspection device
CN207601082U (en) A kind of device for the content and position for monitoring W/O
JP5546986B2 (en) Insulation inspection equipment
JP2009216528A (en) Insulation inspection method and insulation inspection device
JP2016003988A (en) Inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees