JP2011162978A - Joint structure of precast concrete member and structure - Google Patents

Joint structure of precast concrete member and structure Download PDF

Info

Publication number
JP2011162978A
JP2011162978A JP2010025604A JP2010025604A JP2011162978A JP 2011162978 A JP2011162978 A JP 2011162978A JP 2010025604 A JP2010025604 A JP 2010025604A JP 2010025604 A JP2010025604 A JP 2010025604A JP 2011162978 A JP2011162978 A JP 2011162978A
Authority
JP
Japan
Prior art keywords
earthquake
precast concrete
pressure
rigidity
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010025604A
Other languages
Japanese (ja)
Inventor
Mitsuru Higuchi
満 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2010025604A priority Critical patent/JP2011162978A/en
Publication of JP2011162978A publication Critical patent/JP2011162978A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joint structure of a precast concrete member, which exhibits a damping effect by changing the rigidity of the member based on earthquake information without using a variable damper, and to provide a structure. <P>SOLUTION: When a control unit 50 determines by calculation that a big earthquake occurs, the control unit 50 controls pump members 46 to supply oil into cylinder members 30 through through-holes 42 and discharges the oil in the cylinder members 30 through the through-holes 40. Thereby the piston members 32 are moved to release the tensions of steel wires 24, reducing the pressing forces of beam members 16 and a column member 14. The rigidity of the structure 10 is reduced, causing the entire part of the structure 10 to be deformed, with the structure 10 vibrating at a long period. Thereby, the resonance of a ground and the structure 10 which are vibrated by the large earthquake can be suppressed. Thus, the damping effect can be exhibited by changing the rigidity of the member based on the earthquake information. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、プレキャストコンクリート部材の接合構造、及びこのプレキャストコンクリート部材の接合構造を備えた構造物に関する。   The present invention relates to a joint structure of precast concrete members and a structure provided with the joint structure of precast concrete members.

特許文献1には、地震発生初期のP波によって得られる地震情報に基づいて、可変減衰ダンパーの特性を変えて免震性能の向上を図る制振制御方法が記載されている。   Patent Document 1 describes a vibration suppression control method for improving the seismic isolation performance by changing the characteristics of the variable damping damper based on the earthquake information obtained from the P wave at the early stage of the earthquake occurrence.

特開2006−45885号公報JP 2006-45885 A

しかし、従来の方法では、可変減衰ダンパーを用いていたため、可変減衰ダンパーを設置するスペースが別途必要となっていた。   However, in the conventional method, since a variable damping damper is used, a space for installing the variable damping damper is required separately.

本発明の課題は、可変減衰ダンパーを用いることなく、地震情報に基づいて部材の剛性を変えることで制振効果を発揮させることである。   An object of the present invention is to exhibit a damping effect by changing the rigidity of a member based on earthquake information without using a variable damping damper.

本発明の請求項1に係るプレキャストコンクリート部材の接合構造は、プレキャストコンクリート製の柱部材と、プレキャストコンクリート製の梁部材の端面を前記柱部材の仕口部に圧着接合する圧着接合手段と、前記圧着接合手段の圧着力を変化させる圧着力変化手段と、地震発生初期のP波に基づいて前記圧着力変化手段を制御して前記圧着接合手段の圧着力を変化させる制御手段と、を備えたことを特徴とする。   The precast concrete member joining structure according to claim 1 of the present invention is a precast concrete column member, a pressure bonding means for pressure bonding the end face of the precast concrete beam member to the joint portion of the column member, A pressure-bonding force changing means for changing the pressure-bonding force of the pressure-bonding means; and a control means for changing the pressure-bonding force of the pressure-bonding means by controlling the pressure-bonding force changing means based on the P wave at the early stage of the earthquake. It is characterized by that.

上記構成によれば、地震発生初期のP波に基づいて制御部は、圧着力変化手段を制御して圧着接合手段の圧着力を変化させる(弱める)。梁部材の柱部材への圧着力を弱めることで、柱部材における仕口部の上下層の剛性が低下してこの梁と柱から構成される構造物の層の剛性が低下する。この結果、構造物の固有周期が長周期化する。   According to the above configuration, the control unit changes (weakens) the pressure-bonding force of the pressure-bonding means by controlling the pressure-bonding force changing means based on the P wave at the initial stage of the earthquake. By weakening the pressure-bonding force of the beam member to the column member, the rigidity of the upper and lower layers of the joint portion of the column member is reduced, and the rigidity of the layer of the structure composed of the beam and the column is reduced. As a result, the natural period of the structure becomes longer.

このように、構造物の固有周期を長周期化させることで、大地震の卓越周期より構造物の固有周期が長くなり、共振するのが抑制される。これにより、大地震時の構造物への入力エネルギーを減少させて制振効果を発揮させることができる。   In this way, by increasing the natural period of the structure, the natural period of the structure becomes longer than the dominant period of a large earthquake, and resonance is suppressed. Thereby, the input energy to the structure at the time of a large earthquake can be reduced and the damping effect can be exhibited.

本発明の請求項2に係るプレキャストコンクリート部材の接合構造は、請求項1に記載において、前記圧着接合手段は、前記柱部材の仕口部を貫通して両側の前記梁部材に固定され、緊張力を付与されることで圧着力を発揮する緊張部材であり、前記圧着力変化手段は、特定の前記緊張部材に設けられ、前記圧力変化手段が設けられた前記梁部材と前記柱部材から構成される構造物の層には、変形して地震エネルギーを吸収する制振装置が設けられることを特徴とする。   The joint structure of the precast concrete member according to claim 2 of the present invention is the joint structure according to claim 1, wherein the crimp joint means is fixed to the beam members on both sides through the joint portion of the column member, It is a tension member that exerts a crimping force by applying a force, and the crimping force changing means is provided on a specific tension member, and includes the beam member and the column member provided with the pressure changing means. The structure layer is provided with a vibration damping device that deforms and absorbs seismic energy.

上記構成によれば、緊張部材は、柱部材の仕口部を貫通して両側の梁部材に固定され、緊張力を付与されることで圧着力を発揮する。   According to the said structure, a tension | tensile_strength member penetrates the joint part of a pillar member, is fixed to the beam member of both sides, and exhibits a crimping force by giving tension | tensile_strength.

また、圧着力変化手段は、特定の圧着接合部材に設けられ、さらに、圧着力変化手段が設けられた梁部材と柱部材から構成される構造物の層には、変形して地震エネルギーを吸収する制振装置が設けられる。   In addition, the crimping force changing means is provided on a specific crimping joining member, and the structure layer composed of the beam member and the column member provided with the crimping force changing means is deformed to absorb seismic energy. A vibration damping device is provided.

このように、特定の層の圧着度合いを弱めることで、その層の上下層の曲げ剛性を低下させ、その層を変形させることで長周期化を図ることができる。   Thus, by weakening the pressure-bonding degree of a specific layer, the bending rigidity of the upper and lower layers of that layer can be reduced, and a longer period can be achieved by deforming that layer.

また、圧着力変化手段が設けられた梁部材と柱部材から構成される構造物の層に設置された制振装置が効果的に地震エネルギーを吸収する。   Moreover, the vibration damping device installed in the layer of the structure composed of the beam member and the column member provided with the crimping force changing means effectively absorbs the seismic energy.

本発明の請求項3に係る構造物は、請求項1又は2に記載のプレキャストコンクリート部材の接合構造を備えたことを特徴とする。   According to a third aspect of the present invention, there is provided a structure having the precast concrete member joining structure according to the first or second aspect.

上記構成によれば、構造物に請求項1又は2に記載のプレキャストコンクリート部材の接合構造を設けることで、大地震時には、柱部材における仕口部の上下層の剛性を低減させて構造物を長周期化して、大地震時の構造物への入力エネルギーを低減する制振効果を発揮することができる。   According to the above configuration, by providing the joint structure of the precast concrete member according to claim 1 or 2 to the structure, the structure can be reduced by reducing the rigidity of the upper and lower layers of the joint portion in the column member at the time of a large earthquake. The vibration control effect that reduces the input energy to the structure at the time of a large earthquake can be exhibited by extending the period.

本発明の第1実施形態に係るプレキャストコンクリート部材の接合構造を示した断面図である。It is sectional drawing which showed the joining structure of the precast concrete member which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るプレキャストコンクリート部材の接合構造を示した断面図である。It is sectional drawing which showed the joining structure of the precast concrete member which concerns on 1st Embodiment of this invention. (A)(B)本発明の第1実施形態に係るプレキャストコンクリート部材の接合構造に用いられた圧着力変化装置等を示した断面図である。(A) (B) It is sectional drawing which showed the crimping force change apparatus etc. which were used for the joining structure of the precast concrete member which concerns on 1st Embodiment of this invention. (A)(B)本発明の第1実施形態に係るプレキャストコンクリート部材の接合構造を示した側面図である。(A) (B) It is the side view which showed the joining structure of the precast concrete member which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る構造物を示した側面図である。It is the side view showing the structure concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る構造物を示した側面図である。It is the side view showing the structure concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る構造物の特性を説明するのに使用したグラフであって、縦軸に地震の加速度スペクトル、横軸に周期を示した図面である。It is the graph used for demonstrating the characteristic of the structure concerning 1st Embodiment of this invention, Comprising: It is drawing which showed the acceleration spectrum of the earthquake on the vertical axis | shaft, and the period on the horizontal axis. (A)(B)本発明の第2実施形態に係るプレキャストコンクリート部材の接合構造を示した側面図である。(A) (B) It is the side view which showed the joining structure of the precast concrete member which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る構造物を示した側面図である。It is the side view which showed the structure which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る構造物の変形例を示した側面図である。It is the side view which showed the modification of the structure based on 2nd Embodiment of this invention. 本発明の第2実施形態に係る構造物の変形例を示した側面図である。It is the side view which showed the modification of the structure based on 2nd Embodiment of this invention. (A)(B)本発明の第3実施形態に係るプレキャストコンクリート部材の接合構造を示した側面図である。(A) (B) It is the side view which showed the joining structure of the precast concrete member which concerns on 3rd Embodiment of this invention.

本発明の第1実施形態に係るプレキャストコンクリート部材の接合構造、及びこのプレキャストコンクリート部材の接合構造を備えた構造物の一例について図1〜図7に従って説明する。なお、図中矢印UPは鉛直方向上方を示す。   An example of a joint structure of precast concrete members according to the first embodiment of the present invention and a structure provided with the joint structure of precast concrete members will be described with reference to FIGS. In the figure, the arrow UP indicates the upper side in the vertical direction.

(全体構成)
図5に示されるように、構造物10は、地盤(GL)に鉛直方向に埋め込まれた円柱状の複数本の杭(図示省略)と、地盤(GL)に構築され、杭に支持されたコンクリート基礎12(以下単に基礎12と言う)とを備えている。
(overall structure)
As shown in FIG. 5, the structure 10 is constructed by a plurality of cylindrical piles (not shown) vertically embedded in the ground (GL) and the ground (GL) and supported by the piles. A concrete foundation 12 (hereinafter simply referred to as a foundation 12) is provided.

さらに、この基礎12の上側(鉛直方向上側)には、の鉛直方向に延びるプレキャスト製(以下、PCa製)の柱部材14と、水平方向に延びるPCa製の梁部材16とを含んで構築された4階建ての上部構造体18が構築されている。   Furthermore, the upper side (vertical direction upper side) of the foundation 12 is constructed to include a column member 14 made of precast (hereinafter referred to as PCa) extending in the vertical direction and a beam member 16 made of PCa extending in the horizontal direction. A four-story upper structure 18 is constructed.

(要部構成)
次ぎに、PCa製の柱部材14とPCa製の梁部材16との接合構造38について説明する。
(Main part configuration)
Next, a joint structure 38 between the column member 14 made of PCa and the beam member 16 made of PCa will be described.

図1、図2に示されるように、鉛直方向に延びる柱部材14の両側の仕口部14Aには、水平方向に延びる梁部材16の端面16Aが突き当てられている。そして、鉛直方向(図1参照)及び水平方向(図2参照)に並んで配置された緊張部材20によって柱部材14の仕口部14Aと梁部材16の端面16Aとは圧着接合されている。   As shown in FIGS. 1 and 2, the end face 16 </ b> A of the beam member 16 extending in the horizontal direction is abutted against the joint portions 14 </ b> A on both sides of the column member 14 extending in the vertical direction. And the joint part 14A of the column member 14 and the end surface 16A of the beam member 16 are pressure-bonded and joined by the tension members 20 arranged side by side in the vertical direction (see FIG. 1) and the horizontal direction (see FIG. 2).

詳細には、緊張部材20は、柱部材14の両側に設けられた仕口部14Aを貫通して梁部材16の端面16Aから梁部材16の内部に埋め込まれる管状の鋼管部材22と、この鋼管部材22の内部を挿通する鋼線24と、を備えている。   Specifically, the tension member 20 includes a tubular steel pipe member 22 that passes through the joint portions 14A provided on both sides of the column member 14 and is embedded from the end surface 16A of the beam member 16 into the beam member 16, and the steel pipe. And a steel wire 24 inserted through the inside of the member 22.

さらに、鋼線24の一端側には、鋼線24の一端をその場で保持する保持部材26が設けられ、鋼線24の他端側には、梁部材16に付与する圧着力を変化させる圧着力変化手段としての圧着力変化装置28が設けられている。   Further, a holding member 26 that holds one end of the steel wire 24 in place is provided on one end side of the steel wire 24, and the crimping force applied to the beam member 16 is changed on the other end side of the steel wire 24. A crimping force changing device 28 is provided as the crimping force changing means.

図3(A)に示されるように、圧着力変化装置28は、鋼線24の他端側が挿入されると共に内部にオイルが充填された筒状のシリンダ部材30と、シリンダ部材30の内部を鋼線24の長手方向(以下単に「鋼線長手方向」と言う)に移動可能に支持されるピストン部材32と、を含んで構成されている。   As shown in FIG. 3A, the crimping force changing device 28 includes a cylindrical cylinder member 30 into which the other end side of the steel wire 24 is inserted and filled with oil, and an inside of the cylinder member 30. And a piston member 32 supported so as to be movable in the longitudinal direction of the steel wire 24 (hereinafter simply referred to as “steel wire longitudinal direction”).

さらに、ピストン部材32には、シリンダ部材30の内周面に沿って形成された円盤状の押圧部32Aと、この押圧部32Aに基端部が固定され、先端部が鋼線長手方向に延びてシリンダ部材30の外部に突出する円筒部32Bと、を備えている。そして、鋼線24の他端部は、円筒部32Bを挿通して円筒部32Bの先端部から突出している。   Further, the piston member 32 has a disk-shaped pressing portion 32A formed along the inner peripheral surface of the cylinder member 30, and a proximal end portion fixed to the pressing portion 32A, and the distal end portion extends in the longitudinal direction of the steel wire. And a cylindrical portion 32B protruding outside the cylinder member 30. And the other end part of the steel wire 24 penetrates the cylindrical part 32B, and protrudes from the front-end | tip part of the cylindrical part 32B.

また、鋼線24の他端部には雄ねじが形成された雄ねじ部24Aが設けられており、円筒部32Bの先端部から突出した雄ねじ部24Aにナット36が締め込まれている。これにより、ピストン部材32の移動に追従して鋼線24の他端部が移動するようになっている。   The other end portion of the steel wire 24 is provided with a male screw portion 24A in which a male screw is formed, and a nut 36 is fastened to the male screw portion 24A protruding from the tip portion of the cylindrical portion 32B. Thereby, the other end part of the steel wire 24 is moved following the movement of the piston member 32.

さらに、シリンダ部材30の壁面には、押圧部32Aを挟んで2個の貫通孔40、42が形成されている。また、貫通孔40、42を挟んでシリンダ部材30の反対側には、貫通孔40、42を通してシリンダ部材30内へオイルの注入又はシリンダ部材30内からオイルの排出を行うポンプ部材46が設けられている。   Further, two through holes 40 and 42 are formed on the wall surface of the cylinder member 30 with the pressing portion 32A interposed therebetween. A pump member 46 is provided on the opposite side of the cylinder member 30 across the through holes 40 and 42 to inject oil into or discharge oil from the cylinder member 30 through the through holes 40 and 42. ing.

この構成により、ポンプ部材46を稼動させ、貫通孔42からシリンダ部材30内へオイルを注入し、貫通孔40からシリンダ部材30内のオイルを排出させると、ピストン部材32が、図3(A)で示す矢印方向へ移動して、鋼線24の緊張力を解放するようになっている(図3(B)参照)。つまり、図1に示されるように、鋼線24の緊張力を解放することで、梁部材16の柱部材14に対する圧着力が弱まり、柱部材14における仕口部14Aの上下層の剛性が低下するようになっている。   With this configuration, when the pump member 46 is operated, oil is injected into the cylinder member 30 from the through hole 42, and the oil in the cylinder member 30 is discharged from the through hole 40, the piston member 32 is shown in FIG. It moves to the arrow direction shown by (2), and the tension | tensile_strength of the steel wire 24 is released (refer FIG.3 (B)). That is, as shown in FIG. 1, by releasing the tension of the steel wire 24, the crimping force of the beam member 16 to the column member 14 is weakened, and the rigidity of the upper and lower layers of the joint portion 14 </ b> A in the column member 14 is reduced. It is supposed to be.

これに対し、図3(B)に示されるように、ポンプ部材46を稼動させ、貫通孔40からシリンダ部材30内へオイルを注入し、貫通孔42からシリンダ部材30内のオイルを排出させると、ピストン部材32が、図3(B)で示す矢印方向へ移動して、鋼線24に緊張力を付与するようになっている。つまり、図1に示されるように、鋼線24に緊張力を付与することで、梁部材16の柱部材14に対する圧着力が強まり、柱部材14における仕口部14Aの上下層の剛性が高くなるようになっている。   On the other hand, as shown in FIG. 3B, when the pump member 46 is operated, oil is injected into the cylinder member 30 from the through hole 40, and oil in the cylinder member 30 is discharged from the through hole 42. The piston member 32 moves in the direction of the arrow shown in FIG. 3 (B) to apply tension to the steel wire 24. That is, as shown in FIG. 1, by applying tension to the steel wire 24, the crimping force of the beam member 16 to the column member 14 is increased, and the rigidity of the upper and lower layers of the joint portion 14 </ b> A in the column member 14 is high. It is supposed to be.

また、圧着力変化装置28を構成するポンプ部材46を制御して圧着力変化装置28の圧着力を変化させる制御手段としての制御部50が設けられている。通常時(地震が発生していない時)には、制御部50は、ポンプ部材46を制御してピストン部材32を図3(A)に示す位置に移動させ、鋼線24を緊張させて梁部材16の柱部材14に対する圧着力を強め、柱部材14における仕口部14Aの上下層の剛性を高くするようになっている。   Further, a control unit 50 is provided as control means for controlling the pump member 46 constituting the crimping force changing device 28 to change the crimping force of the crimping force changing device 28. During normal times (when no earthquake occurs), the control unit 50 controls the pump member 46 to move the piston member 32 to the position shown in FIG. The pressure-bonding force of the member 16 to the column member 14 is increased, and the rigidity of the upper and lower layers of the joint portion 14A in the column member 14 is increased.

一方、地震波には伝播速度が速いP波(初期微動)と、伝播速度は遅いが大きな揺れを起こす振幅の大きいS波(主要動)がある。そして、気象庁の緊急地震速報(ナウキャスト)や、防災科学技術研究所のリアルタイム地震情報活用システム(REIS)等によって、地震発生時に震源の近くで検知されたP波による地震に関するリアルタイム地震情報が発信されている。   On the other hand, the seismic wave includes a P wave (initial tremor) with a high propagation speed and an S wave (main movement) with a large amplitude that causes a large shake although the propagation speed is slow. Then, real-time earthquake information about earthquakes caused by P waves detected near the epicenter at the time of the earthquake is transmitted by the Japan Earthquake Agency's emergency earthquake bulletin (Nowcast) and the Real-time Earthquake Information Utilization System (REIS) of the National Research Institute for Earth Science and Disaster Prevention. Has been.

図5に示されるように、構造物10には、前述したリアルタイム地震情報を衛星通信又はインターネットを介して受信するセンサ52が設けられている。   As shown in FIG. 5, the structure 10 is provided with a sensor 52 that receives the real-time earthquake information described above via satellite communication or the Internet.

制御部50(図1参照)は、センサ52からのリアルタイム地震情報を常時取り込み可能に設定されおり、取り込まれたリアルタイム地震情報から、地震レベル又は構造物10の応答値を算出するようになっている。   The control unit 50 (see FIG. 1) is set so that real-time earthquake information from the sensor 52 can be captured at all times, and the earthquake level or the response value of the structure 10 is calculated from the captured real-time earthquake information. Yes.

詳細には、制御部50には、マグニチュードと震源位置に関するリアルタイム地震情報から構造物10の建設地点における地震動レベルとして最大加速度振幅を算出するための距離減衰式を用いた演算プログラムが組み込まれている。   Specifically, the control unit 50 incorporates a calculation program using a distance attenuation formula for calculating the maximum acceleration amplitude as the seismic motion level at the construction point of the structure 10 from the real-time earthquake information about the magnitude and the location of the epicenter. .

この距離減衰式としては、下記のような式が知られている。   As this distance attenuation formula, the following formula is known.

logA=aM+b・R+c−log(R+e) D≦30km
logA=aM+b・R+c D>30km
logA = aM w + b · R + c-log (R + e) D ≦ 30 km
logA = aM w + b · R + c D> 30 km

ここで、A:最大加速度応答スペクトル、M:マグニチュード、R:震源からの距離、a、b、c:回帰係数、e:補正項、D:震源深さ、である。 Here, A: maximum acceleration response spectrum, M w : magnitude, R: distance from the epicenter, a, b, c: regression coefficient, e: correction term, D: hypocenter depth.

そして、マグニチュードMと震源位置に関するリアルタイム地震情報が制御部50に取り込まれると、震源位置と構造物10の建設地点の位置情報とにより震源からの距離Rや震源深さDが算定され、さらにこれらR、Dの値とマグニチュードMとから、上記距離減衰式により、構造物10の建設地点における地震動の最大加速度振幅が算定されるようになっている。 Then, when the real-time earthquake information about the magnitude Mw and the epicenter location is taken into the control unit 50, the distance R from the epicenter and the epicenter depth D are calculated from the epicenter location and the location information of the construction point of the structure 10, and From the values of R and D and the magnitude Mw , the maximum acceleration amplitude of the ground motion at the construction point of the structure 10 is calculated by the distance attenuation formula.

この結果に基づいて、制御部50がポンプ部材46を制御して圧着力変化装置28による圧着力を変化させるようになっている。   Based on this result, the control unit 50 controls the pump member 46 to change the crimping force by the crimping force changing device 28.

そして、図4(A)に示されるように、鋼線24に緊張力が付与された状態では、梁部材16の柱部材14に対する圧着力が強くなり、柱部材14における仕口部14Aの上下層の剛性が高くなるようになっている。   As shown in FIG. 4A, in a state where the tension force is applied to the steel wire 24, the pressure-bonding force of the beam member 16 to the column member 14 is increased, and the top of the joint portion 14A in the column member 14 is increased. The rigidity of the lower layer is increased.

これに対し、図4(B)に示されるように、鋼線24の緊張力が解放された状態では、鋼線24の緊張力消失により曲げ剛性の低下および圧縮軸力の低減によるコンクリートの見かけ上のヤング係数の低減にともなうせん断剛性の低下が生じる。   On the other hand, as shown in FIG. 4B, in the state where the tension of the steel wire 24 is released, the appearance of the concrete due to the decrease in bending rigidity and the reduction of the compression axial force due to the disappearance of the tension of the steel wire 24. A decrease in shear stiffness is accompanied by a decrease in the above Young's modulus.

そして、梁部材16では、鋼線24の緊張力消失による曲げ耐力の低下が生じる。これにより、梁部材16の柱部材14に対する圧着力が弱まり、柱部材14と梁部材16とが相対的に移動可能となり、柱部材14における仕口部14Aの上下層の剛性が低下するようになっている。   And in the beam member 16, the bending proof stress falls by the tension | tensile_strength disappearance of the steel wire 24 arises. Thereby, the pressure-bonding force of the beam member 16 to the column member 14 is weakened, the column member 14 and the beam member 16 are relatively movable, and the rigidity of the upper and lower layers of the joint portion 14A in the column member 14 is reduced. It has become.

なお、柱部材14と梁部材16との接合構造38は、柱部材14、梁部材16、緊張部材20、圧着力変化装置28及び制御部50を含んで構成されている。   The joint structure 38 between the column member 14 and the beam member 16 includes the column member 14, the beam member 16, the tension member 20, the crimping force change device 28, and the control unit 50.

(作用・効果)
次ぎに、柱部材14と梁部材16との接合構造38を用いて構造物10に制振効果を発揮させる方法について説明する。
(Action / Effect)
Next, a method for causing the structure 10 to exert a damping effect using the joint structure 38 between the column member 14 and the beam member 16 will be described.

図5に示されるように、ある場所で地震が発生すると、その震源の近くで検知された初期微動を示すP波によって得られたリアルタイム地震情報が防災科学技術研究所のREIS等から発信せられる。   As shown in FIG. 5, when an earthquake occurs at a certain location, real-time earthquake information obtained from P-waves indicating the initial tremor detected near the epicenter is transmitted from REIS of the National Research Institute for Earth Science and Disaster Prevention. .

そうすると、構造物10に設置されたセンサ52が、発信されたリアルタイム地震情報を受信し、制御部50(図1参照)は、センサ52が受信したリアルタイム地震情報を取り込む。さらに、取り込んだリアルタイム地震情報に基づいて制御部50は、震源からの距離Rや震源深さDを算定し、さらに、構造物10の建設地点における地震動の最大加速度振幅を算定する。   If it does so, the sensor 52 installed in the structure 10 will receive the transmitted real-time earthquake information, and the control part 50 (refer FIG. 1) will take in the real-time earthquake information which the sensor 52 received. Further, the control unit 50 calculates the distance R from the epicenter and the seismic source depth D based on the captured real-time earthquake information, and further calculates the maximum acceleration amplitude of the earthquake motion at the construction point of the structure 10.

図1に示されるように、制御部50が大地震(例えば震度5弱以上)と算定した場合には、制御部50がポンプ部材46を制御して圧着力変化装置28による圧着力を変化させる。   As shown in FIG. 1, when the control unit 50 calculates a large earthquake (for example, seismic intensity of 5 or less), the control unit 50 controls the pump member 46 to change the crimping force by the crimping force changing device 28. .

詳細には、図3(A)で示されるように、制御部50は、ポンプ部材46を制御して、貫通孔42からシリンダ部材30内へオイルを注入し、貫通孔40からシリンダ部材30内のオイルを排出させる。これにより、ピストン部材32を図3(A)で示す矢印方向へ移動させ、鋼線24の緊張力を解放する(図3(B)参照)。   Specifically, as shown in FIG. 3A, the control unit 50 controls the pump member 46 to inject oil into the cylinder member 30 from the through hole 42, and into the cylinder member 30 from the through hole 40. Drain the oil. As a result, the piston member 32 is moved in the direction of the arrow shown in FIG. 3A, and the tension of the steel wire 24 is released (see FIG. 3B).

図6に示されるように、構造物10全体の剛性を低下させることで構造物10の全体が変形して構造物10が長周期化し、大地震の卓越周期より構造物10の固有周期が長くなり、振動する地盤と構造物10とが共振するのが抑制される。そして、大地震によって振動する地盤と構造物10とが共振するのが抑制されることで、大地震による構造物10への入力エネルギーが減少する。   As shown in FIG. 6, by reducing the rigidity of the entire structure 10, the entire structure 10 is deformed and the structure 10 becomes longer, and the natural period of the structure 10 is longer than the dominant period of a large earthquake. Thus, resonance of the vibrating ground and the structure 10 is suppressed. And by suppressing that the ground and the structure 10 which vibrate by a big earthquake resonate, the input energy to the structure 10 by a big earthquake reduces.

ここで、図7には、縦軸が地震の加速度スペクトルを示し、横軸が地震の周期を示すグラフが記載されている。例えば、グラフ上で斜線にて示した範囲の周期を大地震の卓越周期Tとし、卓越周期Tの中に通常時の構造物10の固有周期Tが存在するとする。構造物10を固有周期Tから卓越周期Tより周期が長い固有周期Tとすること(長周期化)で、構造物10が受ける加速度スペクトルがaからaに減少すると共に地震による構造物10への入力エネルギーが小さくなる。このように、大地震時には、構造物10を長周期化させることで、地震による構造物10への入力エネルギーが小さくなることが分かる。なお、大地震の卓越周期T内に、通常時の構造物10の固有周期Tが存在していなくても、同様の考えがあてはまる。 Here, FIG. 7 shows a graph in which the vertical axis indicates the acceleration spectrum of the earthquake and the horizontal axis indicates the period of the earthquake. For example, it is assumed that the period in the range shown by diagonal lines on the graph is the dominant period T 3 of a large earthquake, and the natural period T 1 of the structure 10 at the normal time exists in the dominant period T 3 . By changing the structure 10 from the natural period T 1 to the natural period T 2 having a period longer than the dominant period T 3 (lengthening), the acceleration spectrum received by the structure 10 decreases from a 1 to a 2 and is caused by an earthquake. Input energy to the structure 10 is reduced. Thus, it can be seen that the input energy to the structure 10 due to the earthquake is reduced by making the structure 10 longer in a large earthquake. Note that the same idea applies even if the natural period T 1 of the normal structure 10 does not exist within the dominant period T 3 of a large earthquake.

一方、図3(B)に示されるように、大地震が終了すると、制御部50は、ポンプ部材46を制御して、貫通孔40からシリンダ部材30内へオイルを注入し、貫通孔42からシリンダ部材30内のオイルを排出させる。これにより、ピストン部材32を図3(B)で示す矢印方向へ移動させ、鋼線24に緊張力を付与する(図3(A)参照)。鋼線24に緊張力が付与されことで、梁部材16の柱部材14に対する圧着力が強くなり、柱部材14における仕口部14Aの上下層の剛性を高くなり、構造物10が通常の剛性に復帰する。   On the other hand, as shown in FIG. 3B, when the large earthquake ends, the control unit 50 controls the pump member 46 to inject oil into the cylinder member 30 from the through hole 40 and from the through hole 42. The oil in the cylinder member 30 is discharged. Thereby, the piston member 32 is moved in the direction of the arrow shown in FIG. 3B, and tension is applied to the steel wire 24 (see FIG. 3A). By applying a tension force to the steel wire 24, the crimping force of the beam member 16 to the column member 14 is increased, the rigidity of the upper and lower layers of the joint portion 14A in the column member 14 is increased, and the structure 10 has a normal rigidity. Return to.

以上説明したように、構造物10を大地震の卓越周期より長周期化させることで、大地震によって振動する地盤と構造物10とが共振するのが抑制され、大地震による構造物10への入力エネルギーが減少して制振効果を発揮させることができる。   As described above, by making the structure 10 longer than the dominant period of a large earthquake, the ground that vibrates due to the large earthquake and the structure 10 are suppressed from resonating, and the structure 10 caused by the large earthquake The input energy is reduced and the damping effect can be exhibited.

また、プレキャストコンクリート造(PCa造)で通常用いられる部材のみを使用し、特別な装置(例えば可変減衰ダンパー)を用いる構造となっていないため、空間の有効利用を図ることができる。   In addition, since only a member normally used in precast concrete construction (PCa construction) is used and a special device (for example, a variable damping damper) is not used, space can be effectively used.

また、梁部材16の柱部材14に対する圧着力を弱めて構造物10の剛性を低下させる構成となっているため、大地震時に、梁部材16の端部に有害な損傷が生じるのを抑制することができる。   Moreover, since it has the structure which weakens the crimping | compression-bonding force with respect to the column member 14 of the beam member 16 and reduces the rigidity of the structure 10, it suppresses that the harmful | damage damage arises at the edge part of the beam member 16 at the time of a big earthquake. be able to.

また、梁部材16の端部の損傷が抑制されるため、地震終了後に圧着力を強めることで、構造物10の剛性を大地震が発生する前の状態(通常状態)に戻すことができる。つまり、構造物10の継続使用性を確保することができる。   Moreover, since the damage of the edge part of the beam member 16 is suppressed, the rigidity of the structure 10 can be returned to the state (normal state) before the occurrence of the large earthquake by increasing the pressure-bonding force after the earthquake. That is, the continuous usability of the structure 10 can be ensured.

また、構造物10全体の剛性を低下させることで構造物10の全体が変形して長周期化するため、仕上げ材の構成を各層(各階)で同じにすることができる。   Moreover, since the whole structure 10 deform | transforms and lengthens by reducing the rigidity of the whole structure 10, the structure of a finishing material can be made the same in each layer (each floor).

なお、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかである。例えば、上記実施形態では、防災科学技術研究所のREIS等から発信されたリアルタイム地震情報に基づいて制御部50が、ポンプ部材46を制御したが、例えば、構造物10のエレベータに備えられているP波検出装置が検出したP波に基づいて制御部50がポンプ部材46を制御してもよい。   Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments are possible within the scope of the present invention. It is clear to the contractor. For example, in the said embodiment, although the control part 50 controlled the pump member 46 based on the real-time earthquake information transmitted from REIS etc. of National Research Institute for Earth Science and Disaster Prevention, for example, it is provided in the elevator of the structure 10. The control unit 50 may control the pump member 46 based on the P wave detected by the P wave detection device.

また、上記実施形態では、構造物10について杭基礎を例にとって説明したが、特にこれに限定されるものではなく、基礎形式については、立地する地盤状況に応じて適宜、直接基礎、地盤改良、杭基礎等を選択すればよい。   Moreover, in the said embodiment, although the pile foundation was demonstrated as an example about the structure 10, it is not limited to this in particular, About a foundation form, according to the ground condition to locate, a direct foundation, ground improvement, A pile foundation or the like may be selected.

また、上記実施形態では、4階建ての構造物10を例にとって説明したが、特にこれに限定されるものではなく、本発明の技術的思想は低層建物から高層建物まで適用することができる。   In the above embodiment, the four-story structure 10 has been described as an example. However, the present invention is not particularly limited thereto, and the technical idea of the present invention can be applied from a low-rise building to a high-rise building.

次ぎに、本発明の第2実施形態に係るプレキャストコンクリート部材の接合構造、及びこのプレキャストコンクリート部材の接合構造を備えた構造物の一例について図8〜図11に従って説明する。   Next, an example of a joint structure of precast concrete members according to a second embodiment of the present invention and a structure provided with the joint structure of precast concrete members will be described with reference to FIGS.

なお、第1実施形態と同一部材については、同一符号を付してその説明を省略する。   In addition, about the same member as 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図8(A)(B)に示されるように、構造物70の接合構造72に設けられる圧着力変化装置76は、2階の床スラブ(図示省略)を支持する梁部材16を柱部材14に圧着させる緊張部材74に設けられ、他の階の床スラブを支持する緊張部材74には設けられてない。さらに、圧着力変化装置76が設けられた梁部材16と柱部材14から構成される構造物70の層には、変形して地震エネルギーを吸収する制振装置としての制振ダンパー78が設けられている。   As shown in FIGS. 8A and 8B, the crimping force changing device 76 provided in the joint structure 72 of the structure 70 is formed by attaching the beam member 16 that supports the floor slab (not shown) on the second floor to the column member 14. It is provided on the tension member 74 that is crimped to the floor, and is not provided on the tension member 74 that supports the floor slabs of other floors. Further, the layer of the structure 70 composed of the beam member 16 and the column member 14 provided with the crimping force changing device 76 is provided with a damping damper 78 as a damping device that deforms and absorbs seismic energy. ing.

図8(A)に示されるように、梁部材16の柱部材14に対する圧着力を強くした状態では、柱部材14における仕口部14Aの上下層の剛性が高くなる。これに対し、図8(B)に示されるように、梁部材16の柱部材14に対する圧着力を弱めた状態では、柱部材14と梁部材16とが相対的に移動可能となり、柱部材14における仕口部14Aの上下層の剛性が低下する。   As shown in FIG. 8A, in the state in which the crimping force of the beam member 16 to the column member 14 is increased, the rigidity of the upper and lower layers of the joint portion 14A in the column member 14 is increased. On the other hand, as shown in FIG. 8B, in a state where the pressure-bonding force of the beam member 16 to the column member 14 is weakened, the column member 14 and the beam member 16 are relatively movable, and the column member 14 The rigidity of the upper and lower layers of the joint portion 14A is reduced.

以上の構成により、図9に示されるように、2階の床スラブを支持する梁部材16の上下層の剛性を低下させることで、2階の床スラブを支持する梁部材16と柱部材14から構成される構造物70の層の剛性が低下する。この結果、構造物70を大地震の卓越周期より長周期化させることで、大地震によって振動する地盤と構造物70とが共振するのが抑制される。   With the above configuration, as shown in FIG. 9, by lowering the rigidity of the upper and lower layers of the beam member 16 that supports the floor slab on the second floor, the beam member 16 and the column member 14 that support the floor slab on the second floor. The rigidity of the layer of the structure 70 composed of As a result, by making the structure 70 longer than the dominant period of a large earthquake, the ground and the structure 70 that are vibrated by the large earthquake are suppressed from resonating.

そして、大地震によって振動する地盤と構造物70とが共振するのが抑制されることで、大地震による構造物70への入力エネルギーが減少する。   And by suppressing that the ground and the structure 70 which vibrate by a big earthquake resonate, the input energy to the structure 70 by a big earthquake reduces.

このように、特定の層の圧着力を弱めることで、その層の剛性を低下させ、その層を変形させることで長周期化を図ることができる。   Thus, by weakening the pressure-bonding force of a specific layer, the rigidity of the layer can be reduced, and a long period can be achieved by deforming the layer.

また、大地震発生時には、圧着力変化装置76が設けられた梁部材16と柱部材14が相対的に移動するため、圧着力変化装置76が設けられた梁部材16と柱部材14から構成される構造物70の層に設けられた制振ダンパー78によって効果的に地震エネルギーを吸収することができる。   Further, when a large earthquake occurs, the beam member 16 provided with the crimping force change device 76 and the column member 14 move relative to each other. Therefore, the beam member 16 provided with the crimping force change device 76 and the column member 14 are configured. Seismic energy can be effectively absorbed by the damping damper 78 provided in the layer of the structure 70.

また、構造物70の用途に応じて、特定の層に変形を集中させることで、他の層が変形するのを抑制することができる。   Moreover, it can suppress that another layer deform | transforms by concentrating a deformation | transformation to a specific layer according to the use of the structure 70. FIG.

また、全ての緊張部材74に圧着力変化装置76を設ける必要がないため、安価な構成とすることができる。   Moreover, since it is not necessary to provide the crimping force changing device 76 on all the tension members 74, it can be set as an inexpensive structure.

なお、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかである。例えば、上記実施形態では、2階の梁部材16を柱部材14に圧着させる緊張部材74に圧着力変化装置76を設けたが、特に2階の梁部材16に限定されることなく、3(中間)階の床スラブを支持する梁部材16であってもよく(図10参照)、4(最上)階の床スラブを支持する梁部材16であってもよく(図11参照)、その構造物の用途に応じて適宜決めればよい。   Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments are possible within the scope of the present invention. It is clear to the contractor. For example, in the above embodiment, the crimping force changing device 76 is provided on the tension member 74 that crimps the beam member 16 on the second floor to the column member 14, but is not limited to the beam member 16 on the second floor. It may be a beam member 16 that supports a floor slab on the middle floor (see FIG. 10), or may be a beam member 16 that supports a floor slab on the 4th (top) floor (see FIG. 11). What is necessary is just to determine suitably according to the use of a thing.

この場合には、図10、図11に示されるように、振動モードを変えることができる。   In this case, the vibration mode can be changed as shown in FIGS.

次ぎに、本発明の第3実施形態に係るプレキャストコンクリート部材の接合構造、及びこのプレキャストコンクリート部材の接合構造を備えた構造物の一例について図12に従って説明する。   Next, an example of a joint structure of a precast concrete member according to a third embodiment of the present invention and a structure including the joint structure of the precast concrete member will be described with reference to FIG.

なお、第2実施形態と同一部材については、同一符号を付してその説明を省略する。   In addition, about the same member as 2nd Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図12(A)(B)に示されるように、構造物80の接合構造82に設けられる圧着力変化装置86は、2階の床スラブ(図示省略)を支持する梁部材16を柱部材14に圧着させる緊張部材84に設けられ、他の階の床スラブを支持する緊張部材84には設けられてない。さらに、圧着力変化装置86が設けられた梁部材16と柱部材14から構成される構造物80の層(本実施形態の場合、1階と2階との間に設けられた層)には、変形して地震エネルギーを吸収する制振装置としてのオイルダンパー88が設けられている。   As shown in FIGS. 12A and 12B, the pressure-bonding force change device 86 provided in the joint structure 82 of the structure 80 has the beam member 16 that supports the floor slab (not shown) on the second floor as the column member 14. It is not provided in the tension member 84 that is provided on the tension member 84 to be crimped to the floor and supports the floor slabs of other floors. Furthermore, in the layer of the structure 80 composed of the beam member 16 and the column member 14 provided with the crimping force changing device 86 (in this embodiment, the layer provided between the first floor and the second floor) An oil damper 88 is provided as a vibration damping device that deforms and absorbs seismic energy.

詳細には、柱部材14の1階の仕口部14Aから一対のブレース部材90が、互いに先端部が近づくように配設されており、一対のブレース部材90の先端部は、接合部材92によって接合されている。さらに、前述したオイルダンパー88はブラケット94を介して2階の梁部材16に固定されており、オイルダンパー88の可動ロッド88Aの先端部は接合部材92に固定されている。   Specifically, a pair of brace members 90 are disposed from the first floor joint portion 14 </ b> A of the column member 14 so that the distal ends thereof are close to each other, and the distal ends of the pair of brace members 90 are joined by a joining member 92. It is joined. Further, the oil damper 88 described above is fixed to the beam member 16 on the second floor via the bracket 94, and the distal end portion of the movable rod 88 </ b> A of the oil damper 88 is fixed to the joining member 92.

図12(A)に示されるように、梁部材16の柱部材14に対する圧着力を強くした状態では、柱部材14における2階の仕口部14Aの上下層の剛性が高くなる。これに対し、図12(B)に示されるように、2階の梁部材16の柱部材14に対する圧着力を弱めた状態では、柱部材14と梁部材16とが相対的に移動可能となり、柱部材14における仕口部14Aの上下層の曲げ耐力が低下する。   As shown in FIG. 12A, in the state where the pressure-bonding force of the beam member 16 to the column member 14 is increased, the rigidity of the upper and lower layers of the joint portion 14A on the second floor of the column member 14 is increased. On the other hand, as shown in FIG. 12 (B), in a state where the crimping force of the beam member 16 on the second floor is weakened against the column member 14, the column member 14 and the beam member 16 are relatively movable, The bending strength of the upper and lower layers of the joint portion 14A in the column member 14 is reduced.

大地震発生時には、圧着力変化装置86が設けられた梁部材16と柱部材14が図12(B)に示すように相対的に移動する。これにより、オイルダンパー88の可動ロッド88Aが可動して効果的に地震エネルギーを吸収することができる。   When a large earthquake occurs, the beam member 16 and the column member 14 provided with the crimping force change device 86 move relatively as shown in FIG. Thereby, the movable rod 88A of the oil damper 88 can move and can effectively absorb the seismic energy.

10 構造物
14 柱部材
14A 仕口部
16 梁部材
16A 端面
20 緊張部材(圧着接合手段)
28 圧着力変化装置(圧着力変化手段)
38 接合構造
50 制御部(制御手段)
70 構造物
72 接合構造
74 緊張部材(圧着接合手段)
76 圧着力変化装置(圧着力変化手段)
78 制振ダンパー(制振装置)
80 構造物
82 接合構造
84 緊張部材(圧着接合手段)
86 圧着力変化装置(圧着力変化手段)
88 オイルダンパー(制振装置)
DESCRIPTION OF SYMBOLS 10 Structure 14 Column member 14A Joint part 16 Beam member 16A End surface 20 Tension member (crimping joining means)
28 Crimping force change device (crimping force changing means)
38 Junction Structure 50 Control Unit (Control Unit)
70 Structure 72 Bonding Structure 74 Tension Member (Pressure Bonding Means)
76 Crimping force change device (crimping force changing means)
78 Damping damper (damping device)
80 Structure 82 Joining structure 84 Tension member (crimping joining means)
86 Crimping force change device (crimping force changing means)
88 Oil damper (damping device)

Claims (3)

プレキャストコンクリート製の柱部材と、
プレキャストコンクリート製の梁部材の端面を前記柱部材の仕口部に圧着接合する圧着接合手段と、
前記圧着接合手段の圧着力を変化させる圧着力変化手段と、
地震発生初期のP波に基づいて前記圧着力変化手段を制御して前記圧着接合手段の圧着力を変化させる制御手段と、
を備えたプレキャストコンクリート部材の接合構造。
Column members made of precast concrete;
A pressure bonding means for pressure bonding the end face of the beam member made of precast concrete to the joint portion of the column member;
Pressure bonding force changing means for changing the pressure bonding force of the pressure bonding means;
Control means for controlling the pressure-bonding force changing means based on the P wave in the early stage of the earthquake to change the pressure-bonding force of the pressure-bonding means;
A joint structure of precast concrete members with
前記圧着接合手段は、前記柱部材の仕口部を貫通して両側の前記梁部材に固定され、緊張力を付与されることで圧着力を発揮する緊張部材であり、
前記圧着力変化手段は、特定の前記緊張部材に設けられ、
前記圧力変化手段が設けられた前記梁部材と前記柱部材から構成される構造物の層には、変形して地震エネルギーを吸収する制振装置が設けられる請求項1に記載のプレキャストコンクリート部材の接合構造。
The pressure bonding means is a tension member that penetrates the joint portion of the column member and is fixed to the beam members on both sides, and exerts a pressure bonding force by applying a tension force,
The crimping force changing means is provided on the specific tension member,
2. The precast concrete member according to claim 1, wherein a vibration damping device that deforms and absorbs seismic energy is provided in a layer of the structure including the beam member and the column member provided with the pressure changing unit. Junction structure.
請求項1又は2に記載のプレキャストコンクリート部材の接合構造を備えた構造物。   The structure provided with the joining structure of the precast concrete member of Claim 1 or 2.
JP2010025604A 2010-02-08 2010-02-08 Joint structure of precast concrete member and structure Pending JP2011162978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010025604A JP2011162978A (en) 2010-02-08 2010-02-08 Joint structure of precast concrete member and structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010025604A JP2011162978A (en) 2010-02-08 2010-02-08 Joint structure of precast concrete member and structure

Publications (1)

Publication Number Publication Date
JP2011162978A true JP2011162978A (en) 2011-08-25

Family

ID=44593999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010025604A Pending JP2011162978A (en) 2010-02-08 2010-02-08 Joint structure of precast concrete member and structure

Country Status (1)

Country Link
JP (1) JP2011162978A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106368486A (en) * 2016-11-08 2017-02-01 沈阳建筑大学 Self-repair assembled node shear-resistant connecting structure
CN109667349A (en) * 2019-01-03 2019-04-23 深圳信息职业技术学院 Full prefabricated PC concrete frame structure shock-resistant node
WO2020103234A1 (en) * 2018-11-23 2020-05-28 大连理工大学 Calculation method for flexural capacity and moment-rotation curve of concrete-filled steel tubular column-steel beam through bolt connecting joint
JP7356936B2 (en) 2020-03-16 2023-10-05 株式会社フジタ Support structure of the building body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106368486A (en) * 2016-11-08 2017-02-01 沈阳建筑大学 Self-repair assembled node shear-resistant connecting structure
CN106368486B (en) * 2016-11-08 2019-02-22 沈阳建筑大学 Selfreparing assembling type node shear connections structure
WO2020103234A1 (en) * 2018-11-23 2020-05-28 大连理工大学 Calculation method for flexural capacity and moment-rotation curve of concrete-filled steel tubular column-steel beam through bolt connecting joint
US11821806B2 (en) 2018-11-23 2023-11-21 Dalian University Of Technology Calculation method of ultimate moment resistance and moment-rotation curve for steel beam to concrete-filled steel tube column connections with bidirectional bolts
CN109667349A (en) * 2019-01-03 2019-04-23 深圳信息职业技术学院 Full prefabricated PC concrete frame structure shock-resistant node
JP7356936B2 (en) 2020-03-16 2023-10-05 株式会社フジタ Support structure of the building body

Similar Documents

Publication Publication Date Title
JP5146757B2 (en) Beam vibration reduction mechanism
CN102859097A (en) Seismic damping metal plate and building structure
JP2017517659A (en) Energy absorber
JP2011162978A (en) Joint structure of precast concrete member and structure
JP2016027239A (en) Destruction prevention structure for viaduct
JP7017879B2 (en) A bridge equipped with a function-separated shock absorber and a function-separated shock absorber
JP2004068289A (en) Earthquake proof frame
JP3882633B2 (en) Steel pipe damper and rocking foundation structure using the same
JP2001336572A (en) Damper and building using the same
JP5337329B2 (en) Post-installed anchor, seismic reinforcement structure using the anchor, and seismic reinforcement method
JP6412684B2 (en) Vibration control structure
JP2011169070A (en) Building using perpendicular vibration control pc structural member to which vibration control prestress has been applied
JP5271164B2 (en) Floor slab structure
JP2011184983A (en) Bearing wall and building
JP2006097274A (en) Shock absorbing wire structure and shock absorbing structure using the structure
JP3297413B2 (en) Damping frame with friction damping mechanism
JP2005090101A (en) Seismic response control structure
JP2010281171A (en) Building having vibration control reinforcing structure and vibration control reinforcing method
JP2002285656A (en) Architectural design wall
JP2010024708A (en) Connecting and vibration control structure of structure
JP2002266936A (en) Base isolation device
JP2011012427A (en) Initial displacement-imparted tmd vibration control system for building
JPH09302681A (en) Construction structure provided with aseismic mechanism
JP4825088B2 (en) Seismic reinforcement structure for existing buildings
JP2006002364A (en) Building and building unit