JP2011162702A - Biaxially stretched nylon film for cold forming - Google Patents

Biaxially stretched nylon film for cold forming Download PDF

Info

Publication number
JP2011162702A
JP2011162702A JP2010028651A JP2010028651A JP2011162702A JP 2011162702 A JP2011162702 A JP 2011162702A JP 2010028651 A JP2010028651 A JP 2010028651A JP 2010028651 A JP2010028651 A JP 2010028651A JP 2011162702 A JP2011162702 A JP 2011162702A
Authority
JP
Japan
Prior art keywords
base material
packaging material
film
cold forming
biaxially stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010028651A
Other languages
Japanese (ja)
Other versions
JP5999674B2 (en
Inventor
Shuichi Nagae
修一 永江
Shinichiro Ishihara
晋一郎 石原
Kazuhiro Hamada
和宏 浜田
Tsubasa Honda
翼 本田
Takenori Murakami
武典 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Kohjin Co
Original Assignee
Kohjin Holdings Co Ltd
Kohjin Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44593775&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2011162702(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kohjin Holdings Co Ltd, Kohjin Co filed Critical Kohjin Holdings Co Ltd
Priority to JP2010028651A priority Critical patent/JP5999674B2/en
Publication of JP2011162702A publication Critical patent/JP2011162702A/en
Application granted granted Critical
Publication of JP5999674B2 publication Critical patent/JP5999674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To secure stable formability by preventing breakage of an aluminum foil and production of pinholes or the like even during cold forming of all mold shapes and molding depths and to suppress occurrence of delamination between respective layers, in particular, between a base material layer and a barrier layer even when used in a process for sealing by heat sealing or under a high temperature condition for a long period of time, in a cold forming type packaging material for batteries containing a biaxially stretched nylon film as a main base material. <P>SOLUTION: The biaxially stretched nylon film is characterized in that both maximum values of thermal shrinkage stress in MD and TD at 170 to 210°C are ≤5.0 MPa, anisotropy is small, the tensile strength is large, and it is used as a main base material of a packaging material for cold forming, in particular, of a packaging material for battery cases of lithium ion secondary batteries or the like. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は冷間成形用包材、特にリチウムイオン二次電池等の電池ケース用包材の主要基材として好適に用いられる、
冷間成形用二軸延伸ナイロンフィルムに関するものである。
The present invention is suitably used as a main base material for cold-forming packaging materials, in particular, battery case packaging materials such as lithium ion secondary batteries.
The present invention relates to a biaxially stretched nylon film for cold forming.

従来、例えば、リチウムイオン電池、リチウムイオンポリマー電池、燃料電池等、または液体、固体セラミック、有機物等の誘電体を含む液体コンデンサ、固体コンデンサ、二重層コンデンサ等の電解型コンデンサ等の化学的エネルギーを電気的エネルギーに変換する素子を含む種々の電池が、パソコン、携帯端末装置(携帯電話、PDA等)、ビデオカメラ、電気自動車、エネルギー貯蔵用蓄電池、ロボット、衛星等に広く用いられている。これらの電池用外装体としては、金属をプレス加工して円筒状または直方体状に容器化した金属製缶、あるいは、プラスチックフィルム、金属箔等をラミネートして得られる積層体を袋状にしたもの(以下、外装体)が用いられていた。 Conventionally, for example, chemical energy of lithium ion batteries, lithium ion polymer batteries, fuel cells, etc., or liquid capacitors including dielectric materials such as liquids, solid ceramics, and organic substances, solid capacitors, electrolytic capacitors such as double layer capacitors, etc. Various batteries including elements that convert to electric energy are widely used in personal computers, portable terminal devices (cell phones, PDAs, etc.), video cameras, electric vehicles, energy storage batteries, robots, satellites, and the like. As these battery outer bodies, metal cans formed by pressing metal into cylinders or rectangular parallelepiped containers, or laminates obtained by laminating plastic films, metal foils, etc. in the form of bags (Hereafter, exterior body) was used.

しかしながら、電池の外装体のうち、金属製缶タイプにおいては、容器外壁がリジッドであるため、ハード側を電池の形状に合わせて設計する必要があり、形状の自由度がなくなるという問題があった。また、金属製缶タイプは容器自体が厚いため、長時間使用時など電池が発熱した場合に放熱しにくいという欠点もあった。一方、積層体タイプは、金属端子の取出し易さや密封のし易さ、あるいは柔軟性を有するため、電子機器や電子部品の適当な空間に合わせた形状とすることができ、電子機器や電子部品自体の形状をある程度自由に設計することができる。さらに、薄膜で放熱性にも優れているため、発熱による異常放電を防止することも可能である。よって、積層体タイプは金属製缶タイプに比べて小型化、軽量化を図りやすい、および安全性が高い等の利点から、電池用外装体として主流になりつつある。 However, among the battery outer bodies, in the metal can type, since the outer wall of the container is rigid, it is necessary to design the hardware side according to the shape of the battery, and there is a problem that the degree of freedom of the shape is lost. . In addition, since the metal can type is thick, there is a drawback that it is difficult to dissipate heat when the battery generates heat, such as when used for a long time. On the other hand, the laminate type is easy to take out the metal terminal, easy to seal, or flexible, so it can be shaped to fit the appropriate space of the electronic device or electronic component. The shape of itself can be designed freely to some extent. Furthermore, since the thin film is excellent in heat dissipation, it is possible to prevent abnormal discharge due to heat generation. Therefore, the laminated body type is becoming mainstream as a battery exterior body because of advantages such as a reduction in size and weight, and high safety compared to a metal can type.

積層体タイプの外装体を用いたリチウム電池の形態としては、包材を筒状に加工し、リチウム電池本体および正極および負極との各々に接続された金属端子を外側に突出した状態で収納し、開口部を熱接着して密封した袋タイプ(たとえば、特許文献1の図2参照)と包材を容器状に成形し、この容器内にリチウム電池本体および正極および負極との各々に接続された金属端子を外側に突出した状態で収納し、平板状の包材ないし容器状に成形した包材で被覆すると共に、四周縁を熱接着して密封した成形タイプ(たとえば、特許文献1の図3参照)が知られている。 As a form of a lithium battery using a laminate type exterior body, a packaging material is processed into a cylindrical shape, and a metal terminal connected to each of the lithium battery main body and the positive electrode and the negative electrode is stored in a state of protruding outward. A bag type (for example, see FIG. 2 of Patent Document 1) in which the opening is thermally bonded and sealed, and a packaging material are formed into a container shape, and are connected to the lithium battery body, the positive electrode, and the negative electrode in the container. The metal terminal is housed in a state of protruding outward, covered with a flat packaging material or a packaging material molded into a container, and the four peripheral edges are thermally bonded and sealed (for example, FIG. 3) is known.

そして、成形タイプは袋タイプに比べて、電池本体をタイト(ぴったりとした状態)に収納することができるため、体積エネルギー密度を向上させることができると共に、リチウム電池本体の収納がし易いなどの利点がある。さらに、成形タイプのうち、冷間(常温)成形法は、加熱成形法に比べて加熱による強度物性の低下や熱収縮の発生など成形加工時に包材自体の特性が変化する危険性が低く、さらに成形装置も安価で、簡便であるとともに生産性も高いことから、現在主流の成形方法となっている。 And since the molded type can store the battery body tightly (tight state) compared to the bag type, the volume energy density can be improved and the lithium battery body can be easily stored. There are advantages. Furthermore, among the molding types, the cold (room temperature) molding method has a lower risk of changes in the properties of the packaging material during molding, such as a decrease in strength properties due to heating and the occurrence of thermal shrinkage, compared to the heat molding method. Furthermore, since the molding apparatus is inexpensive, simple and highly productive, it is currently the mainstream molding method.

電池用外装体に要求される物性・機能としては、高度な防湿性、密封性、耐突刺性、耐ピンホール性、絶縁性、耐熱・耐寒性、耐電解質性(耐電解液性)、耐腐蝕性(電解質の劣化や加水分解により発生するフッ酸に対する耐性)等が必要不可欠であり、特に防湿性は重要な要素となる。しかしながら、積層体タイプ、特に冷間成形タイプにおいて、金属箔として一般的に用いられるアルミニウム箔は成形性に優れる反面、成形時に生じる不均一変形によりピンホールやクラックが生じ易いという問題があり、シャープな形状で深く安定して成形するという成形安定性の点において改善の余地があった。また、積層体タイプは、少なくとも、基材層、バリア層、シーラント層から構成されているが、前記各層間の接着強度が電池の外装体として必要な性質に影響を与えることが確認されている。例えば、バリア層と基材層間の接着強度が不十分であると、電池本体を収納後ヒートシールして密封する工程、あるいは高温の状態で長時間使用された場合、基材層の熱収縮応力が層間接着強度より大きくなり、バリア層と基材層間でデラミネーション(剥離)が発生する問題があった。特に200℃前後の熱が基材層に加わるヒートシール時にデラミネーションの発生頻度が高かった。バリア層と基材層間でデラミネーションが発生した場合、電池用外装体の要求特性のうち、耐突刺性、耐ピンホール性等の強度特性の低下を招き、外部から水蒸気の浸入の原因となりうる。内部に水蒸気が侵入した場合、電池を形成する成分の一つである電解質と反応して生成するフッ化水素酸により、前記バリア層であるアルミニウム箔が腐食するという問題があった。 The physical properties and functions required for battery exteriors include advanced moisture resistance, sealing, piercing resistance, pinhole resistance, insulation, heat / cold resistance, electrolyte resistance (electrolyte resistance), Corrosion properties (resistance to hydrofluoric acid generated by electrolyte degradation and hydrolysis) are essential, and moisture resistance is an important factor. However, in the laminate type, especially the cold forming type, the aluminum foil generally used as a metal foil is excellent in formability, but there is a problem that pinholes and cracks are likely to occur due to non-uniform deformation that occurs during forming. There is room for improvement in terms of molding stability, which is deep and stable molding with a simple shape. In addition, the laminate type is composed of at least a base material layer, a barrier layer, and a sealant layer, but it has been confirmed that the adhesive strength between the respective layers affects the properties required for the battery outer package. . For example, if the adhesive strength between the barrier layer and the base material layer is insufficient, the heat shrink stress of the base material layer when the battery body is stored and sealed by heat sealing or when used for a long time at a high temperature. However, there is a problem that delamination (peeling) occurs between the barrier layer and the base material layer. In particular, the occurrence of delamination was high during heat sealing in which heat of around 200 ° C. was applied to the base material layer. When delamination occurs between the barrier layer and the base material layer, it may cause deterioration of strength characteristics such as piercing resistance and pinhole resistance among the required characteristics of the battery exterior body, which may cause water vapor to enter from the outside. . When water vapor enters the inside, there is a problem that the aluminum foil as the barrier layer is corroded by hydrofluoric acid generated by reacting with an electrolyte which is one of the components forming the battery.

以上、積層体タイプ、特に冷間成形タイプの電池用外装体の主たる品質的な課題、すなわち優れた冷間成形性の確保と各層間でのデラミネーションの抑制に関してこれまで種々の提案がなされている。優れた冷間成形性を確保する方法として、例えば特許文献2は、基材層表面に脂肪酸アマイド系の滑り性付与成分をコーティングし、成形時に金型内への滑り込みを良くして成形性を改善する方法、また特許文献3、特許文献4、特許文献5、および特許文献6はナイロンフィルム等の基材層の強度物性に着目し、冷間成形時におけるアルミニウム箔の破断抑制のため、異方性が少なく、かつ高強度あるいは高伸度等の性質を有する基材を使用してアルミニウム箔を補強する方法、さらには特許文献7のように基材層の結晶性に着目したものなどが提案されている。一方、デラミネーションを抑制する方法として、特許文献8は基材層の熱水収縮率を、特許文献9は基材層の密度をある範囲に限定する方法が提案されている。 As described above, various proposals have been made so far regarding the main quality problems of the battery-type outer casing of the laminate type, particularly the cold-forming type, that is, ensuring excellent cold-formability and suppressing delamination between the respective layers. Yes. As a method for ensuring excellent cold formability, for example, Patent Document 2 coats a base material layer surface with a fatty acid amide-based slipperiness-imparting component to improve slipping into a mold during molding. Methods for improvement, Patent Document 3, Patent Document 4, Patent Document 5, and Patent Document 6 pay attention to the strength properties of the base material layer such as nylon film, and are different in order to suppress breakage of the aluminum foil during cold forming. A method of reinforcing an aluminum foil by using a base material having a low property and having a property such as high strength or high elongation, and further, a method focusing on the crystallinity of the base material layer as in Patent Document 7 Proposed. On the other hand, as a method for suppressing delamination, Patent Literature 8 proposes a method for limiting the hot water shrinkage of the base material layer, and Patent Literature 9 proposes a method for limiting the density of the base material layer to a certain range.

特開2004−74419号公報JP 2004-74419 A 特開2002−216714号公報JP 2002-216714 A 特許第3567230号公報Japanese Patent No. 3567230 特開2006−236938号公報JP 2006-236938 A 特開2008−44209号公報JP 2008-44209 A 特開2005−22336号公報JP 2005-22336 A 特開2007−42469公報JP 2007-42469 A 特開2006−331897公報JP 2006-331897 A 特開2008−288117公報JP 2008-288117 A

しかしながら、基材層の表面に滑り性付与成分をコーティングする方法は、コーティングする工程を設けなければならず、生産性が低下するという問題があった。また、電池の真空脱気時やシール加工時に滑り性付与成分が蒸発して、この蒸発成分が加工設備に付着するため、これらを除去する清掃作業が必要になることから、さらに生産性が低下するという問題があった。また、高強度あるいは高伸度の基材を使用してアルミニウム箔を補強する方法は、成形性の向上は見られるものの、デラミネーションの抑制に関しては何ら記載が無かった。さらに、基材層の熱水収縮率を制限しデラミネーションを抑制する方法は、特に発生頻度が高い200℃前後の熱が基材に加わるヒートシール工程でのデラミネーションの発生状況とは必ずしも条件が合致しておらず、デラミネーション発生の指標としては不十分であった。また、デラミネーションの発生は、基材層の熱収縮応力が層間接着強度より大きくなった場合に発生することから、熱水中での収縮量を制限するだけではデラミネーションの発生を完全に抑制することは必ずしも出来なかった。 However, the method of coating the surface of the base material layer with a slipperiness-imparting component has a problem in that productivity must be reduced because a coating step must be provided. In addition, the slipperiness-imparting component evaporates when the battery is vacuum degassed or sealed, and the evaporated component adheres to the processing equipment, which necessitates a cleaning operation to remove them, further reducing productivity. There was a problem to do. In addition, the method of reinforcing an aluminum foil using a high-strength or high-strength base material has no improvement on the suppression of delamination, although the moldability is improved. Furthermore, the method of limiting the hot water shrinkage rate of the base material layer to suppress delamination is not necessarily a condition of the occurrence of delamination in the heat sealing process in which heat of around 200 ° C., which is frequently generated, is applied to the base material. Was not met, and it was insufficient as an indicator for delamination. In addition, delamination occurs when the thermal shrinkage stress of the base material layer is greater than the interlayer adhesive strength, so delamination can be completely suppressed simply by limiting the amount of shrinkage in hot water. It was not always possible to do.

本発明者らは、鋭意研究の結果、基材層であるナイロンフィルムの熱収縮応力、および引張強度をある範囲に限定することにより、積層体タイプ、特に冷間成形タイプの電池用外装体の主たる品質的な課題であった優れた冷間成形性の確保と各層間でのデラミネーションの抑制を両立できることを見い出し、本発明を完成するに至った。すなわち、本発明は以下の手段を提供する。 As a result of diligent research, the inventors of the present invention limited the heat shrinkage stress and tensile strength of the nylon film as the base material layer to a certain range. The present inventors have found that it is possible to achieve both excellent cold formability, which is a main quality problem, and suppression of delamination between the respective layers, thereby completing the present invention. That is, the present invention provides the following means.

[1]170〜210℃における熱収縮応力の最大値がMD、TDともに5.0MPa以下で、かつ一軸引張試験(試料幅15mm、チャック間距離100mm、引張速度200mm/min.)における4方向(0°(MD)、45°、90°(TD)、135°)すべての破断強度が240MPa以上であることを特徴とする二軸延伸ナイロンフィルム。 [1] The maximum value of heat shrinkage stress at 170 to 210 ° C. is 5.0 MPa or less for both MD and TD, and four directions in a uniaxial tensile test (sample width: 15 mm, distance between chucks: 100 mm, tensile speed: 200 mm / min.) (0 ° (MD), 45 °, 90 ° (TD), 135 °) A biaxially stretched nylon film having a breaking strength of 240 MPa or more.

[2]一軸引張試験(試料幅15mm、チャック間距離100mm、引張速度200mm/min.)における4方向(0°(MD)、45°、90°(TD)、135°)すべての50%モジュラス値が120MPa以上であることを特徴とする前項1に記載の二軸延伸ナイロンフィルム。 [2] 50% modulus in all four directions (0 ° (MD), 45 °, 90 ° (TD), 135 °) in a uniaxial tensile test (sample width 15 mm, distance between chucks 100 mm, tensile speed 200 mm / min.) The biaxially stretched nylon film according to item 1, wherein the value is 120 MPa or more.

[3]少なくとも基材層、バリア層、シーラント層により形成された冷間成形用電池ケース包材において、前記基材層として、前項1又は前項2に記載の二軸延伸ナイロンフィルムを用いることを特徴とする冷間成形用電池ケース包材。 [3] In the battery case packaging material for cold forming formed by at least a base material layer, a barrier layer, and a sealant layer, the biaxially stretched nylon film described in the preceding item 1 or 2 is used as the base material layer. A battery case packaging material for cold forming.

[4]前項3に記載の冷間成形用電池ケース包材を使用し、シーラント層が内面になるように張り出し成形、または深絞り成形して凹部分を形成した電池ケース。 [4] A battery case in which the cold-forming battery case packaging material according to item 3 above is used, and a concave portion is formed by overmolding or deep drawing so that the sealant layer becomes an inner surface.

[5]前項4に記載の電池ケースの凹部分に電池本体を収納し、密封されていることを特徴とする電池。 [5] A battery, wherein the battery main body is housed in the concave portion of the battery case according to the item 4 and sealed.

本発明は、冷間成形用二軸延伸ナイロンフィルムに関して、170〜210℃における熱収縮応力の最大値をMD、TDともに5.0MPa以下に、かつ異方性が少なく、引張強度が大きい二軸延伸ナイロンフィルムを冷間成形用包材、特にリチウムイオン二次電池等の電池ケース用包材の主要基材として用いることにより、ヒートシールして密封する工程や高温の状態で長時間使用された場合においても、バリア層と基材層間でのデラミネーションの発生を抑制することができ、かつあらゆる金型形状や成形深さの冷間成形加工時においてもアルミニウム箔の破断やピンホール等の発生が無く、安定した成形性を確保することが可能となった。また、従来技術のように、滑り性付与成分をコーティングしなくても優れた成形性を確保できるので生産性にも優れている。 The present invention relates to a biaxially stretched nylon film for cold forming that has a maximum thermal shrinkage stress at 170 to 210 ° C. of 5.0 MPa or less for both MD and TD, little anisotropy, and high tensile strength. By using stretched nylon film as the main base material for cold forming packaging materials, especially for battery case packaging such as lithium ion secondary batteries, it has been used for a long time in heat sealing and sealing processes and at high temperatures. Even in this case, it is possible to suppress the occurrence of delamination between the barrier layer and the base material layer, and the aluminum foil is ruptured or pinholes are generated even during cold forming with any mold shape and forming depth. It became possible to ensure stable moldability. In addition, as in the prior art, excellent moldability can be secured without coating with a slipperiness-imparting component, so that productivity is also excellent.

前記実施形態におけるONyフィルムを製造するチューブラー延伸装置の工程図。Process drawing of the tubular extending | stretching apparatus which manufactures the ONy film in the said embodiment.

以下に、本発明を実施するための最良の形態について説明する。
(二軸延伸ナイロンフィルムの原料) 本発明の二軸延伸ナイロンフィルム(以後、ONyフィルム)の原料は、ポリアミド系樹脂であれば特に限定されるものでは無い。例えば、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6,66,12共重合体、その他ポリアミド系共重合体、ナイロンMXD6、アラミド、ポリアミドイミド(PAI)、芳香族ポリイミド、ポリエーテルイミド(PEI)、ポリマレイミドアミン(PMIA)、ポリアミノビスマレイミド(PABM)などが挙げられるが、生産性や冷間成形性、強度物性を主としたフィルム物性の観点からナイロン6がもっとも好ましい。また、ナイロン6原料において、数平均分子量は10000〜30000が好ましく、特に好ましくは22000〜24000である。数平均分子量が10000未満の場合、得られたONyフィルムの衝撃強度や引張強度が不十分である。また数平均分子量が30000より大きい場合、分子鎖の絡み合いが著しく、延伸加工により過度なひずみが生じるため、延伸加工時に破断やパンクが頻繁に発生し、安定的に生産出来ない。
The best mode for carrying out the present invention will be described below.
(Raw Material of Biaxially Stretched Nylon Film) The raw material of the biaxially stretched nylon film (hereinafter referred to as ONy film) of the present invention is not particularly limited as long as it is a polyamide resin. For example, nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6, 66, 12 copolymer, other polyamide copolymers, nylon MXD6, aramid, polyamideimide (PAI), aromatic Polyimide, polyetherimide (PEI), polymaleimidoamine (PMIA), polyaminobismaleimide (PABM), etc. are mentioned. Nylon 6 is used from the viewpoint of film physical properties such as productivity, cold formability and strength properties. Most preferred. In the nylon 6 raw material, the number average molecular weight is preferably 10,000 to 30,000, particularly preferably 22,000 to 24,000. When the number average molecular weight is less than 10,000, the impact strength and tensile strength of the obtained ONy film are insufficient. When the number average molecular weight is larger than 30000, the molecular chain is entangled excessively and excessive strain is generated by the stretching process. Therefore, breakage and puncture frequently occur during the stretching process, and stable production cannot be achieved.

(ONyフィルムの製造方法) 本発明のONyフィルムは、前記ポリアミド系原料のいずれかから構成される未延伸原反フィルムに対して、MD、およびTDそれぞれ延伸倍率が2.8〜4.0倍となる条件で二軸延伸加工を施した後、180〜220℃の温度条件で熱処理することにより得られる。延伸倍率は、MD、およびTDそれぞれ2.8〜4.0倍の範囲であることが好ましく、特に好ましくは3.0〜3.4倍の範囲である。延伸倍率が2.8倍未満である場合、得られたONyフィルムの衝撃強度や引張強度が不十分である。また4.0倍以上の場合、延伸により過度な分子鎖のひずみが発生するため、延伸加工時に破断やパンクが頻繁に発生し、安定的に生産出来ない。二軸延伸方式としては、例えばチューブラー方式やテンター方式による同時二軸延伸、あるいは逐次二軸延伸が挙げられるが、縦横の強度バランスの点で、チューブラー法による同時二軸延伸が好ましい。このように二軸延伸加工を施すことにより、特に強度物性が飛躍的に向上し、冷間成形性に優れたONyフィルムを得ることが出来る。 (Manufacturing method of ONy film) The ONy film of the present invention has a draw ratio of 2.8 to 4.0 times for MD and TD, respectively, with respect to an unstretched raw film composed of any of the polyamide-based raw materials. It is obtained by heat-treating under a temperature condition of 180 to 220 ° C. after performing biaxial stretching under the following conditions. The draw ratio is preferably in the range of 2.8 to 4.0 times each of MD and TD, particularly preferably in the range of 3.0 to 3.4 times. When the draw ratio is less than 2.8 times, the impact strength and tensile strength of the obtained ONy film are insufficient. Further, when the ratio is 4.0 times or more, excessive molecular chain distortion occurs due to stretching, and thus breakage and puncture frequently occur during stretching and stable production cannot be achieved. Examples of the biaxial stretching method include simultaneous biaxial stretching by a tubular method or a tenter method, or sequential biaxial stretching, but simultaneous biaxial stretching by a tubular method is preferable from the viewpoint of longitudinal and lateral strength balance. By performing biaxial stretching in this manner, an ONy film having particularly improved strength properties and excellent cold formability can be obtained.

得られた延伸フィルムを熱ロール方式またはテンター方式、あるいはそれらを組み合わせた熱処理設備に任意の時間投入し、185〜215℃、特に好ましくは190〜210℃で熱処理を行うことにより、本発明のONyフィルムを得ることができる。熱処理温度が215℃よりも高い場合は、ボーイング現象が大きくなり過ぎて幅方向での異方性が増加する、または結晶化度が高くなり過ぎるため強度物性が低下してしまう。一方、熱処理温度が185℃よりも低い場合は、フィルムの熱寸法安定性が大きく低下するため、ラミネート加工時にフィルムが縮み易くなる、あるいは冷間成形後、ヒートシールして密閉する工程でデラミネーションが発生し易くなるため、実用上問題が生じる。 The obtained stretched film is put into a heat roll system or a tenter system, or a heat treatment facility combining them for an arbitrary time, and heat-treated at 185 to 215 ° C., particularly preferably 190 to 210 ° C. A film can be obtained. When the heat treatment temperature is higher than 215 ° C., the bowing phenomenon becomes too great and the anisotropy in the width direction increases, or the crystallinity becomes too high, resulting in a decrease in strength properties. On the other hand, when the heat treatment temperature is lower than 185 ° C., the thermal dimensional stability of the film is greatly reduced, so that the film is easily shrunk at the time of lamination, or delamination is performed in a process of heat sealing and sealing after cold forming. Is likely to occur, causing a problem in practical use.

ONyフィルムの厚みは、5〜50μm、より好ましくは10〜30μmであることが好ましい。厚みが5μmよりも小さい場合は、ラミネート包材の耐衝撃性が低くなり、冷間成形性が不十分となる。一方、50μmを超えると形状維持の強度は向上するものの、特に破断防止や成形性の向上への効果は小さく、体積エネルギー密度を低下させるだけである。 The thickness of the ONy film is preferably 5 to 50 μm, more preferably 10 to 30 μm. When the thickness is less than 5 μm, the impact resistance of the laminate packaging material becomes low, and the cold formability becomes insufficient. On the other hand, when the thickness exceeds 50 μm, the strength for maintaining the shape is improved, but the effect for preventing breakage and improving the moldability is small, and only the volume energy density is reduced.

ONyフィルムの4方向(0°(MD)、45°、90°(TD)、135°)における一軸引張破断強度、および50%モジュラス値は、一軸引張試験(試料幅15mm、標点間距離50mm、引張速度200mm/min)により得られた応力−ひずみ曲線から求める。この応力−ひずみ曲線において、4方向における引張破断強度は、いずれも240MPa以上であることが好ましく、さらに好ましくは280MPa以上である。これにより、一般的に成形しにくいとされる成形深さが大きい金型形状の場合においても、冷間成形時にONyフィルム、およびアルミニウム箔が破断し難くなり、安定して優れた成形性を確保することが出来る。4方向のうち、いずれか一方向でも引張破断強が240MPa未満の場合、冷間成形時にONyフィルムが容易に破断するようになり、特に高伸度時の引張強度が要求される成形深さが大きい金型形状を成形する場合に、安定した成形性が得られない。さらに、応力−ひずみ曲線において、4方向における50%モジュラス値は、いずれも120MPa以上であることが好ましく、さらに好ましくは150MPa以上である。これにより、特に成形深さが比較的小さい金型形状を成形する場合において、安定した成形性を確保出来る。4方向のうち、いずれか一方向でも50%モジュラス値が120MPa以上未満の場合、冷間成形時にONyフィルムが容易に破断するようになり、安定した成形性は得られない。 The uniaxial tensile strength at break and the 50% modulus value in four directions (0 ° (MD), 45 °, 90 ° (TD), 135 °) of the ONy film are determined by a uniaxial tensile test (sample width: 15 mm, distance between gauge points: 50 mm). , From a stress-strain curve obtained by a tensile speed of 200 mm / min). In this stress-strain curve, the tensile breaking strength in the four directions is preferably 240 MPa or more, and more preferably 280 MPa or more. As a result, the ONy film and aluminum foil are difficult to break during cold forming even in the case of a mold shape with a large forming depth, which is generally considered difficult to form, ensuring stable and excellent formability. I can do it. If the tensile breaking strength is less than 240 MPa in any one of the four directions, the ONy film will be easily broken during cold forming, and the forming depth that requires high tensile strength at high elongation is particularly high. When molding a large mold shape, stable moldability cannot be obtained. Furthermore, in the stress-strain curve, the 50% modulus values in the four directions are all preferably 120 MPa or more, and more preferably 150 MPa or more. Thereby, stable moldability can be ensured particularly when a mold shape having a relatively small molding depth is molded. When the 50% modulus value is less than 120 MPa or more in any one of the four directions, the ONy film easily breaks during cold forming, and stable moldability cannot be obtained.

ONyフィルムの170〜210℃における熱収縮応力の最大値は、MD、TDともに、5.0MPa以下が好ましく、成形後、ヒートシール等の二次加工時においても安定した品質を維持することができる。熱収縮応力の最大値がMD、TDいずれか一方でも5.0MPaより大きくなると、基材の熱収縮応力が大きくなり、特に200℃前後の熱が基材層に加わるヒートシール時に、バリア層と基材層間で容易にデラミネーション(剥離)が発生するため好ましくない。 The maximum value of the heat shrinkage stress at 170 to 210 ° C. of the ONy film is preferably 5.0 MPa or less for both MD and TD, and can maintain stable quality even during secondary processing such as heat sealing after molding. . When the maximum value of thermal shrinkage stress is greater than 5.0 MPa in either MD or TD, the thermal shrinkage stress of the base material increases, and in particular during the heat sealing in which heat of around 200 ° C. is applied to the base material layer, This is not preferable because delamination easily occurs between the base material layers.

(ラミネート包材の構成) ラミネート包材は、前記したONyフィルムの少なくともいずれか一方の面に、1層あるいは2層以上他の基材を積層して構成されている。具体的に、他基材としては、高い防湿性を付与するための純アルミニウム箔またはアルミニウム−鉄系合金の軟質材からなるアルミニウム箔層、および密封性や耐薬品性を付与するためのポリエチレン、ポリプロピレン、マレイン酸変性ポリプロピレン、マレイン酸変性ポリエチレン、エチレン―アクリレート共重合体、アイオノマー樹脂、ポリ塩化ビニル等の未延伸フィルムからなるヒートシール層が挙げられる。一般に、アルミニウム箔層を含むラミネート包材は、冷間成形時にアルミニウム箔層の破断やピンホールが生じ易いため冷間成形に適していない。しかし本発明のONyフィルムを含むラミネート包材は、優れた成形性、耐衝撃性および耐ピンホール性を有するため、冷間での張出し成形や深絞り成形等の際に、アルミニウム層の破断を抑制できる。 (Configuration of Laminate Packaging Material) The laminate packaging material is configured by laminating one or two or more other base materials on at least one surface of the above-described ONy film. Specifically, as other base materials, pure aluminum foil for imparting high moisture resistance or an aluminum foil layer made of a soft material of an aluminum-iron-based alloy, and polyethylene for imparting sealability and chemical resistance, Examples thereof include a heat seal layer made of an unstretched film such as polypropylene, maleic acid-modified polypropylene, maleic acid-modified polyethylene, ethylene-acrylate copolymer, ionomer resin, and polyvinyl chloride. In general, a laminate packaging material including an aluminum foil layer is not suitable for cold forming because the aluminum foil layer is easily broken or pinholes during cold forming. However, since the laminate packaging material including the ONy film of the present invention has excellent moldability, impact resistance and pinhole resistance, the aluminum layer breaks during cold stretch molding or deep drawing. Can be suppressed.

ONyフィルムを含むラミネート基材の総厚みは200μm以下であることが好ましい。厚みが200μmを超える場合、冷間成形によるコーナー部の成形が困難となり、シャープな形状の成形品が得られない場合がある。 The total thickness of the laminate base material including the ONy film is preferably 200 μm or less. When the thickness exceeds 200 μm, it becomes difficult to form the corner portion by cold forming, and a molded product having a sharp shape may not be obtained.

アルミニウム箔層の厚みは20〜100μmであることが好ましい。これにより、成形品の形状を良好に保持することが可能となり、また酸素や水分等が包材内へ侵入することを防止できる。アルミニウム箔層の厚みが20μm未満である場合、ラミネート包材の冷間成形時にアルミニウム箔層の破断が生じ易く、また、破断しない場合でもピンホール等が発生し易くなるため、包材中に酸素や水分等が侵入してしまう場合がある。一方、アルミニウム箔層の厚みが100μmを超える場合、冷間成形時の破断やピンホール発生防止の効果も大きく改善されるわけではなく、総厚みが厚くなるだけで好ましくない。 The thickness of the aluminum foil layer is preferably 20 to 100 μm. Thereby, it becomes possible to hold | maintain the shape of a molded article favorably, and it can prevent that oxygen, a water | moisture content, etc. penetrate | invade into a packaging material. When the thickness of the aluminum foil layer is less than 20 μm, the aluminum foil layer is likely to break during cold forming of the laminate packaging material, and pinholes and the like are likely to occur even when the laminate packaging is not broken. Or moisture may enter. On the other hand, when the thickness of the aluminum foil layer exceeds 100 μm, the effect of preventing breakage and pinhole generation during cold forming is not greatly improved, and only the total thickness is not preferable.

本発明のONyフィルムを含むラミネート包材は、張出し成形、または深絞り成形などの冷間(常温)成形法により加工可能な性能を有する包材であり、包材総厚みが薄いにもかかわらず強度が大きいため、シャープな成形が可能であり、かつ成形時にアルミニウム箔の破断やピンホールの発生を防止したラミネート包材である。 The laminate wrapping material including the ONy film of the present invention is a wrapping material having a performance that can be processed by a cold (room temperature) forming method such as stretch forming or deep drawing, although the total thickness of the wrapping material is thin. Because of its high strength, it is a laminate packaging material that can be sharply molded and that prevents the aluminum foil from being broken or pinholes during molding.

本発明のONyフィルムを含むラミネート包材が使用される分野、および用途としては、特に腐食性の高い電解液を使用し、かつ水分や酸素の侵入を極度に嫌うリチウム二次電池用包材にもっとも適しているが、それ以外の軽量化、小型化を必要とする一次電池、二次電池などにおいても、電池ケースとして軽量で、シャープな形状の成形性が要求される場合に使用可能である。また電池用包材以外としては、ヒートシール性、耐薬品性、成形性などに優れているため、医薬品、化粧品、写真用薬品その他腐食性の強い有機溶剤を含む内容物のための容器用材料としても利用可能な包材である。 As a field where the laminate packaging material including the ONy film of the present invention is used, and as an application, particularly for a packaging material for a lithium secondary battery that uses a highly corrosive electrolytic solution and extremely hates invasion of moisture and oxygen. Although most suitable, other primary batteries and secondary batteries that require weight reduction and size reduction can also be used when the battery case is lightweight and requires sharp formability. . In addition to packaging materials for batteries, it has excellent heat sealability, chemical resistance, moldability, etc., so containers for materials containing pharmaceuticals, cosmetics, photographic chemicals, and other highly corrosive organic solvents It can also be used as a packaging material.

以下に実施例および比較例を用いて、本発明を具体的に説明する。
実施例1 (二軸延伸ナイロンフィルムの製造) ナイロン6ペレット(相対粘度3.48)を押出機中、255℃で溶融混練した後、溶融物をダイスから円筒状のフィルムとして押出し、引き続き水で急冷して原反フィルムを作製した。次に、図1に示したように、この原反フィルムを一対の低速ニップロール1間に挿通した後、中に空気を圧入しながらヒーター2、およびヒーター3で加熱すると共に、延伸終了点にエアーリング4よりエアーを吹き付けることにより、チューブラー法によるMD、およびTD同時二軸延伸フィルム5を得た。延伸倍率は、MDが3.0倍、TDが3.2倍であった。
次に、この延伸フィルム5を熱ロール式、およびテンター式熱処理設備にそれぞれ投入し、210℃で熱処理を施すことによりONyフィルムを得た。なお、ONyフィルムの厚みは25μmであった。
The present invention will be specifically described below with reference to examples and comparative examples.
Example 1 (Production of biaxially stretched nylon film) After nylon 6 pellets (relative viscosity 3.48) were melt kneaded in an extruder at 255 ° C, the melt was extruded as a cylindrical film from a die, and subsequently with water. A raw film was prepared by rapid cooling. Next, as shown in FIG. 1, the raw film is inserted between a pair of low-speed nip rolls 1 and then heated by the heater 2 and the heater 3 while air is being pressed into the film. By blowing air from the ring 4, MD and TD simultaneous biaxially stretched films 5 by the tubular method were obtained. The draw ratio was 3.0 times for MD and 3.2 times for TD.
Next, this stretched film 5 was put into a heat roll type and a tenter type heat treatment facility, respectively, and heat treated at 210 ° C. to obtain an ONy film. The ONy film had a thickness of 25 μm.

(ONyフィルムの一軸引張破断強度、50%モジュラス値評価方法) ONyフィルムの一軸引張破断強度、50%モジュラス値の評価方法は、オリエンテック製―テンシロン(RTC−1210−A)を使用し、試料幅15mm、チャック間100mm、引張速度200mm/minにて実施した。ONyフィルム18は、23℃×50%の環境下で2時間調湿後、0℃(MD)方向/45°方向/90°(TD)方向/135°方向の4方向についてそれぞれ測定を行った。得られた応力−ひずみ曲線に基づいて、各方向での破断破断強度、および50%モジュラス値を求めた。 (Uniaxial tensile breaking strength of ONy film, evaluation method of 50% modulus value) For the evaluation method of uniaxial tensile breaking strength of ONy film and 50% modulus value, Tensylon (RTC-1210-A) manufactured by Orientec was used. The test was carried out at a width of 15 mm, a gap between chucks of 100 mm, and a tensile speed of 200 mm / min. The ONy film 18 was measured in four directions of 0 ° C. (MD) direction / 45 ° direction / 90 ° (TD) direction / 135 ° direction after humidity conditioning for 2 hours in an environment of 23 ° C. × 50%. . Based on the obtained stress-strain curve, the breaking strength in each direction and the 50% modulus value were determined.

(ONyフィルムの熱収縮応力評価方法) ONyフィルムの熱収縮応力は、SIIナノテクノロジー製−EXSTAR−TMA/SS6100を使用し、試料幅3mm、チャック間15mm、30〜245℃(昇温速度:10℃/min.)の温度プログラムにて測定した。ONyフィルムは、23℃×50%の環境下で2時間調湿後、170〜210℃で見られる最大熱収縮応力値をMD、およびTDそれぞれについて測定した。 (Method for evaluating thermal shrinkage stress of ONy film) The thermal shrinkage stress of the ONy film was SII Nanotechnology-EXSTAR-TMA / SS6100, the sample width was 3 mm, the distance between chucks was 15 mm, and the temperature was 30 to 245 ° C (temperature increase rate: 10). (° C./min.). For the ONy film, the maximum heat shrinkage stress value observed at 170 to 210 ° C. was measured for each of MD and TD after conditioning for 2 hours in an environment of 23 ° C. × 50%.

(冷間成形性、デラミネーションの発生状況評価方法) ONyフィルムを含むラミネート包材の冷間成形性を評価した。具体的には、まず得られたONyフィルムを基材層とし、アルミニウム箔(AA8079−O材、厚み32μm)、および未延伸ポリプロピレンフィルム〔パイレンフィルムCT−P1128(商品名)、東洋紡績製、厚み30μm〕をそれぞれドライラミネート(ドライ塗布量4.0g/m)することによりラミネート包材を得た。なお、ドライラミネート用の接着剤としては、東洋モートン(株)TM−K55/東洋モートン(株)CAT−10(配合比100/8)を用いた。また、ドライラミネート後のラミネート包材は、60℃で72時間エージングを行った。このようにして得られたラミネート包材は、23℃×50%の環境下で2時間調湿後、圧縮用金型(38mm×38mm)を用いて、未延伸ポリプロピレンフィルム側から最大荷重10MPaで冷間(常温)にて成形し、ピンホールやクラックなどの欠陥が発生しない最高成形深さを0.5mmピッチで評価した。前記方法で冷間成形したラミネート包材について、凹部分近傍の余剰部分を200℃×0.2MPa×2sec.の条件でヒートシールし、シール後のナイロン/アルミニウム箔間でのデラミネーション発生の有無を目視にて確認した。 (Cold-formability, evaluation method for occurrence of delamination) The cold-formability of the laminate packaging material including the ONy film was evaluated. Specifically, first, the obtained ONy film was used as a base material layer, an aluminum foil (AA8079-O material, thickness 32 μm), and an unstretched polypropylene film [pyrene film CT-P1128 (trade name), manufactured by Toyobo Co., Ltd., thickness 30 μm] was dry laminated (dry coating amount 4.0 g / m 2 ) to obtain a laminate packaging material. In addition, Toyo Morton Co., Ltd. TM-K55 / Toyo Morton Co., Ltd. CAT-10 (mixing ratio 100/8) was used as an adhesive for dry lamination. The laminate packaging material after dry lamination was aged at 60 ° C. for 72 hours. The laminate packaging material thus obtained was conditioned at 23 ° C. × 50% for 2 hours, and then used a compression mold (38 mm × 38 mm) with a maximum load of 10 MPa from the unstretched polypropylene film side. Molding was carried out cold (room temperature), and the maximum molding depth at which defects such as pinholes and cracks did not occur was evaluated at 0.5 mm pitch. About the laminated packaging material cold-molded by the above method, the surplus portion in the vicinity of the concave portion is set to 200 ° C. × 0.2 MPa × 2 sec. The film was heat-sealed under the conditions described above, and the presence or absence of delamination between the sealed nylon / aluminum foil was visually confirmed.

実施例2 実施例1において、延伸フィルムを熱ロール、およびテンター式熱処理設備に入れ、195℃で熱処理した以外は実施例1と同様に行った。 Example 2 The same procedure as in Example 1 was performed except that the stretched film was placed in a heat roll and a tenter heat treatment facility and heat treated at 195 ° C.

比較例1 実施例1において、延伸フィルムを熱ロール、およびテンター式熱処理設備に入れ、180℃で熱処理した以外は実施例1と同様に行った。 Comparative example 1 In Example 1, it carried out similarly to Example 1 except having put the stretched film into the heat roll and the tenter type heat processing equipment, and heat-processing at 180 degreeC.

比較例2 実施例1において、延伸フィルムを熱ロール、およびテンター式熱処理設備に入れ、150℃で熱処理した以外は実施例1と同様に行った。 Comparative example 2 In Example 1, it carried out similarly to Example 1 except having put the stretched film into the heat roll and the tenter type heat treatment equipment, and heat-treating at 150 degreeC.

比較例3 実施例1において、延伸フィルムを熱ロール、およびテンター式熱処理設備に入れ、220℃で熱処理した以外は実施例1と同様に行った。 Comparative example 3 In Example 1, it carried out similarly to Example 1 except having put the stretched film into the heat roll and the tenter type heat treatment equipment, and heat-treating at 220 degreeC.

比較例4 実施例1において、ONyフィルムとして東洋紡績製二軸延伸ナイロンフィルム(ハーデンフィルム―N1102、厚み25μm)を使用した以外は実施例1と同様に行った。 Comparative example 4 In Example 1, it carried out like Example 1 except having used the Toyobo biaxially-stretched nylon film (Harden film-N1102, 25 micrometers in thickness) as an ONy film.

比較例5 実施例1において、ONyフィルムとしてユニチカ製二軸延伸ナイロンフィルム(エンブレムON―RT、厚み25μm)を使用した以外は実施例1と同様に行った。 Comparative example 5 In Example 1, it carried out like Example 1 except having used the biaxially stretched nylon film (emblem ON-RT, thickness 25 micrometers) made from Unitika as an ONy film.

表1に示すように、170〜210℃における熱収縮応力の最大値をMD、TDともに5.0MPa以下に、かつ一軸引張試験における4方向すべての破断強度を240MPa以上、50%モジュラス値を120MPa以上に調整した実施例1、および実施例2においては、優れた成形性の確保とデラミネーションの抑制を両立することが出来た。また、破断強度が280MPa以上、50%モジュラス値が150MPa以上である実施例2においては、デラミネーションの発生を抑制したまま、成形性をさらに向上させることが出来た。一方、170〜210℃における熱収縮応力の最大値がMD、TDともに、あるいはMD、TDいずれかが5.0MPaを超えた場合、デラミネーションの発生が見られ、また4方向のいずれかの破断強度が240MPa以下、50%モジュラス値が120MPa以下の場合は成形性の低下が見られた。よって、比較例1〜比較例5はいずれも優れた成形性の確保とデラミネーションの抑制を両立することが出来なかった。なお成形性に関しては、より成形の高さが深い形状で成形出来ることが好ましい。比較例3は、デラミの発生はなかったが、実施例1及び2と比べ成形性が劣っていた。 As shown in Table 1, the maximum value of heat shrinkage stress at 170 to 210 ° C. is 5.0 MPa or less for both MD and TD, the breaking strength in all four directions in the uniaxial tensile test is 240 MPa or more, and the 50% modulus value is 120 MPa. In Example 1 and Example 2 adjusted as described above, it was possible to achieve both excellent moldability and suppression of delamination. In Example 2 in which the breaking strength was 280 MPa or more and the 50% modulus value was 150 MPa or more, the formability could be further improved while suppressing the occurrence of delamination. On the other hand, when the maximum value of the heat shrinkage stress at 170 to 210 ° C. is both MD and TD, or when either MD or TD exceeds 5.0 MPa, delamination occurs, and the fracture in any of the four directions occurs. When the strength was 240 MPa or less and the 50% modulus value was 120 MPa or less, a decrease in moldability was observed. Therefore, all of Comparative Examples 1 to 5 could not achieve both excellent moldability and suppression of delamination. As for moldability, it is preferable that the mold can be molded in a deeper shape. In Comparative Example 3, no delamination occurred, but the moldability was inferior to Examples 1 and 2.

Figure 2011162702
Figure 2011162702

本発明は冷間成形用包材、特にリチウムイオン二次電池等の電池ケース用包材の主要基材として好適に用いられる。 The present invention is suitably used as a main base material for packaging materials for cold forming, particularly packaging materials for battery cases such as lithium ion secondary batteries.

1 チューブラー延伸装置のニップロール
2 チューブラー延伸装置の予熱ヒーター
3 チューブラー延伸装置の主熱ヒーター
4 チューブラー延伸装置の冷却エアーリング
5 チューブラー延伸時のフィルム
1 Tubular stretcher nip roll 2 Tubular stretcher preheating heater 3 Tubular stretcher main heat heater 4 Tubular stretcher cooling air ring 5 Tubular stretcher film

Claims (5)

170〜210℃における熱収縮応力の最大値がMD、TDともに5.0MPa以下で、かつ一軸引張試験(試料幅15mm、チャック間距離100mm、引張速度200mm/min.)における4方向(0°(MD)、45°、90°(TD)、135°)すべての破断強度が240MPa以上であることを特徴とする二軸延伸ナイロンフィルム。 The maximum value of heat shrinkage stress at 170 to 210 ° C. is 5.0 MPa or less for both MD and TD, and four directions (0 ° (0 ° (sample width 15 mm, distance between chucks 100 mm, tensile speed 200 mm / min.)). MD), 45 °, 90 ° (TD), 135 °) A biaxially stretched nylon film characterized by having a breaking strength of 240 MPa or more. 一軸引張試験(試料幅15mm、チャック間距離100mm、引張速度200mm/min.)における4方向(0°(MD)、45°、90°(TD)、135°)すべての50%モジュラス値が120MPa以上であることを特徴とする請求項1に記載の二軸延伸ナイロンフィルム。 50% modulus value in all four directions (0 ° (MD), 45 °, 90 ° (TD), 135 °) in a uniaxial tensile test (sample width: 15 mm, distance between chucks: 100 mm, tensile speed: 200 mm / min.) Is 120 MPa. It is the above, The biaxially stretched nylon film of Claim 1 characterized by the above-mentioned. 少なくとも基材層、バリア層、シーラント層により形成された冷間成形用電池ケース包材において、前記基材層として、請求項1又は請求項2に記載の二軸延伸ナイロンフィルムを用いることを特徴とする冷間成形用電池ケース包材。 In the battery case packaging material for cold forming formed of at least a base material layer, a barrier layer, and a sealant layer, the biaxially stretched nylon film according to claim 1 or 2 is used as the base material layer. Battery case packaging material for cold forming. 請求項3に記載の冷間成形用電池ケース包材を使用し、シーラント層が内面になるように張り出し成形、または深絞り成形して凹部分を形成した電池ケース。 A battery case in which the cold-forming battery case packaging material according to claim 3 is used, and a recessed portion is formed by over-extrusion molding or deep drawing so that the sealant layer is on the inner surface. 請求項4に記載の電池ケースの凹部分に電池本体を収納し、密封されていることを特徴とする電池。
A battery body, wherein the battery body is housed in a recessed portion of the battery case according to claim 4 and sealed.
JP2010028651A 2010-02-12 2010-02-12 Biaxially stretched nylon film for cold forming Active JP5999674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010028651A JP5999674B2 (en) 2010-02-12 2010-02-12 Biaxially stretched nylon film for cold forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010028651A JP5999674B2 (en) 2010-02-12 2010-02-12 Biaxially stretched nylon film for cold forming

Publications (2)

Publication Number Publication Date
JP2011162702A true JP2011162702A (en) 2011-08-25
JP5999674B2 JP5999674B2 (en) 2016-09-28

Family

ID=44593775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010028651A Active JP5999674B2 (en) 2010-02-12 2010-02-12 Biaxially stretched nylon film for cold forming

Country Status (1)

Country Link
JP (1) JP5999674B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011909A1 (en) * 2011-07-15 2013-01-24 出光ユニテック株式会社 Biaxially stretched nylon film for cold molding, laminate film, and molded body
JP2013101765A (en) * 2011-11-07 2013-05-23 Toppan Printing Co Ltd External facing material for power storage device
JP2013189614A (en) * 2012-02-15 2013-09-26 Kohjin Holdings Co Ltd Biaxially stretched nylon film for cold forming
JP2014108528A (en) * 2012-11-30 2014-06-12 Gunze Ltd Multilayer stretched film for cold molding, multilayer film for cold molding and cold molded product
KR20140118369A (en) 2013-03-29 2014-10-08 코오롱인더스트리 주식회사 Nylon film and manufacturing method thereof
WO2015033897A1 (en) * 2013-09-03 2015-03-12 興人フィルム&ケミカルズ株式会社 Biaxially oriented nylon film for cold molding
JP2015133327A (en) * 2015-03-05 2015-07-23 凸版印刷株式会社 Exterior material for lithium ion battery
CN105070851A (en) * 2015-08-16 2015-11-18 苏州锂盾储能材料技术有限公司 Special high-obstruction packaging film for polymer lithium ion batteries
JPWO2014017457A1 (en) * 2012-07-24 2016-07-11 ユニチカ株式会社 POLYESTER FILM FOR COLD MOLDING AND METHOD FOR PRODUCING THE SAME
KR20160122852A (en) 2014-12-17 2016-10-24 유니티카 가부시끼가이샤 Polyamide film and method for producing same
CN107471801A (en) * 2017-09-14 2017-12-15 上海紫东尼龙材料科技有限公司 Special nylon film of a kind of aluminum plastic film and preparation method thereof
WO2022131190A1 (en) * 2020-12-16 2022-06-23 昭和電工パッケージング株式会社 Casing for power storage device, and power storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157410A (en) * 1995-12-06 1997-06-17 Unitika Ltd Biaxially oriented polyamide film and its production
WO2008020569A1 (en) * 2006-08-14 2008-02-21 Idemitsu Unitech Co., Ltd. Biaxially oriented nylon film, laminate wrapping material and process for production of biaxially oriented nylon film
JP2008288117A (en) * 2007-05-21 2008-11-27 Showa Denko Packaging Co Ltd Package material for battery case, and case for battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157410A (en) * 1995-12-06 1997-06-17 Unitika Ltd Biaxially oriented polyamide film and its production
WO2008020569A1 (en) * 2006-08-14 2008-02-21 Idemitsu Unitech Co., Ltd. Biaxially oriented nylon film, laminate wrapping material and process for production of biaxially oriented nylon film
JP2008288117A (en) * 2007-05-21 2008-11-27 Showa Denko Packaging Co Ltd Package material for battery case, and case for battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011909A1 (en) * 2011-07-15 2013-01-24 出光ユニテック株式会社 Biaxially stretched nylon film for cold molding, laminate film, and molded body
JP2013101765A (en) * 2011-11-07 2013-05-23 Toppan Printing Co Ltd External facing material for power storage device
JP2013189614A (en) * 2012-02-15 2013-09-26 Kohjin Holdings Co Ltd Biaxially stretched nylon film for cold forming
JPWO2014017457A1 (en) * 2012-07-24 2016-07-11 ユニチカ株式会社 POLYESTER FILM FOR COLD MOLDING AND METHOD FOR PRODUCING THE SAME
JP2014108528A (en) * 2012-11-30 2014-06-12 Gunze Ltd Multilayer stretched film for cold molding, multilayer film for cold molding and cold molded product
KR20140118369A (en) 2013-03-29 2014-10-08 코오롱인더스트리 주식회사 Nylon film and manufacturing method thereof
CN105722899A (en) * 2013-09-03 2016-06-29 兴人薄膜与化学株式会社 Biaxially oriented nylon film for cold molding
KR20160078331A (en) 2013-09-03 2016-07-04 코진 필름 앤드 케미칼즈 가부시키가이샤 Biaxially oriented nylon film for cold molding
WO2015033897A1 (en) * 2013-09-03 2015-03-12 興人フィルム&ケミカルズ株式会社 Biaxially oriented nylon film for cold molding
KR20220000905A (en) 2013-09-03 2022-01-04 코진 필름 앤드 케미칼즈 가부시키가이샤 Biaxially oriented nylon film for cold molding
CN115232342A (en) * 2013-09-03 2022-10-25 兴人薄膜与化学株式会社 Biaxially stretched nylon film for cold forming
KR20230117762A (en) 2013-09-03 2023-08-09 코진 필름 앤드 케미칼즈 가부시키가이샤 Biaxially oriented nylon film for cold molding
KR20160122852A (en) 2014-12-17 2016-10-24 유니티카 가부시끼가이샤 Polyamide film and method for producing same
JP2015133327A (en) * 2015-03-05 2015-07-23 凸版印刷株式会社 Exterior material for lithium ion battery
CN105070851A (en) * 2015-08-16 2015-11-18 苏州锂盾储能材料技术有限公司 Special high-obstruction packaging film for polymer lithium ion batteries
CN107471801A (en) * 2017-09-14 2017-12-15 上海紫东尼龙材料科技有限公司 Special nylon film of a kind of aluminum plastic film and preparation method thereof
WO2022131190A1 (en) * 2020-12-16 2022-06-23 昭和電工パッケージング株式会社 Casing for power storage device, and power storage device

Also Published As

Publication number Publication date
JP5999674B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5999674B2 (en) Biaxially stretched nylon film for cold forming
JP6032786B2 (en) Battery case packaging material for cold forming containing biaxially stretched polybutylene terephthalate film
JP5487485B2 (en) Biaxially stretched nylon film for cold forming
US8637180B2 (en) Packing material for battery case and battery case
JP5888860B2 (en) Biaxially stretched polybutylene terephthalate film and battery case packaging material for cold forming using the same
US8541080B2 (en) Packaging material for battery case and battery case
JP5467387B2 (en) Battery case packaging material for cold forming containing biaxially stretched nylon film
JP6276047B2 (en) Packaging material, packaging material manufacturing method and molded case
JP6222906B2 (en) Biaxially stretched nylon film for cold forming
JP2013225412A (en) Battery case packaging material for cold molding including biaxially-oriented polybutylene terephthalate film
JP6595634B2 (en) Packaging materials and molded cases
JP2008130436A (en) Package material for battery case, and case for the battery
JP2016104565A (en) Biaxial oriented polybutylene terephthalate-based film and battery case packaging material for cold molding using the same
JP2014002902A (en) Battery case packing material for cold molding including biaxially oriented polybutylene terephthalate film
JP5566127B2 (en) Battery case packaging material for cold forming containing biaxially oriented polypropylene film
JP6444070B2 (en) Biaxially stretched polyamide film for cold forming and packaging material using the same
JP2015026438A (en) Battery case packaging material for cold molding
WO2015033897A1 (en) Biaxially oriented nylon film for cold molding
JP2016053167A (en) Biaxially stretched polybutylene terephthalate-based film and battery case packaging material for cold molding using the same
JP2023124440A (en) Biaxially stretched polyamide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160824

R150 Certificate of patent or registration of utility model

Ref document number: 5999674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250