JP6222906B2 - Biaxially stretched nylon film for cold forming - Google Patents

Biaxially stretched nylon film for cold forming Download PDF

Info

Publication number
JP6222906B2
JP6222906B2 JP2012189884A JP2012189884A JP6222906B2 JP 6222906 B2 JP6222906 B2 JP 6222906B2 JP 2012189884 A JP2012189884 A JP 2012189884A JP 2012189884 A JP2012189884 A JP 2012189884A JP 6222906 B2 JP6222906 B2 JP 6222906B2
Authority
JP
Japan
Prior art keywords
layer
battery case
base material
nylon film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012189884A
Other languages
Japanese (ja)
Other versions
JP2013189614A (en
Inventor
修一 永江
修一 永江
翼 本田
翼 本田
武典 村上
武典 村上
淳 幸原
淳 幸原
晋一郎 石原
晋一郎 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOHJIN Film and Chemicals Co Ltd
Original Assignee
KOHJIN Film and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOHJIN Film and Chemicals Co Ltd filed Critical KOHJIN Film and Chemicals Co Ltd
Priority to JP2012189884A priority Critical patent/JP6222906B2/en
Publication of JP2013189614A publication Critical patent/JP2013189614A/en
Application granted granted Critical
Publication of JP6222906B2 publication Critical patent/JP6222906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Description

本発明は冷間成形用包材、特にリチウムイオン二次電池等の電池ケース用包材の主要基材として好適に用いられる、冷間成形用二軸延伸ナイロンフィルムに関するものである。 The present invention relates to a cold forming biaxially stretched nylon film that is suitably used as a main base material for a cold forming packaging material, particularly a packaging material for a battery case such as a lithium ion secondary battery.

従来、例えば、リチウムイオン電池、リチウムイオンポリマー電池、燃料電池等、または液体、固体セラミック、有機物等の誘電体を含む液体コンデンサ、固体コンデンサ、二重層コンデンサ等の電解型コンデンサ等の化学的エネルギーを電気的エネルギーに変換する素子を含む種々の電池が、パソコン、携帯端末装置(携帯電話、PDA等)、ビデオカメラ、電気自動車、エネルギー貯蔵用蓄電池、ロボット、衛星等に広く用いられている。これらの電池用外装体としては、金属をプレス加工して円筒状または直方体状に容器化した金属製缶、あるいは、プラスチックフィルム、金属箔等をラミネートして得られる積層体を袋状にしたもの(以下、外装体)が用いられていた。 Conventionally, for example, chemical energy of lithium ion batteries, lithium ion polymer batteries, fuel cells, etc., or liquid capacitors including dielectric materials such as liquids, solid ceramics, and organic substances, solid capacitors, electrolytic capacitors such as double layer capacitors, etc. Various batteries including elements that convert to electric energy are widely used in personal computers, portable terminal devices (cell phones, PDAs, etc.), video cameras, electric vehicles, energy storage batteries, robots, satellites, and the like. As these battery outer bodies, metal cans formed by pressing metal into cylinders or rectangular parallelepiped containers, or laminates obtained by laminating plastic films, metal foils, etc. in the form of bags (Hereafter, exterior body) was used.

しかしながら、電池の外装体のうち、金属製缶タイプにおいては、容器外壁がリジッドであるため、ハード側を電池の形状に合わせて設計する必要があり、形状の自由度がなくなるという問題があった。また、金属製缶タイプは容器自体が厚いため、長時間使用時など電池が発熱した場合に放熱しにくいという欠点もあった。一方、積層体タイプは、金属端子の取出し易さや密封のし易さ、あるいは柔軟性を有するため、電子機器や電子部品の適当な空間に合わせた形状とすることができ、電子機器や電子部品自体の形状をある程度自由に設計することができる。さらに、薄膜で放熱性にも優れているため、発熱による異常放電を防止することも可能である。よって、積層体タイプは金属製缶タイプに比べて小型化、軽量化を図りやすい、および安全性が高い等の利点から、電池用外装体として主流になりつつある。 However, among the battery outer bodies, in the metal can type, since the outer wall of the container is rigid, it is necessary to design the hardware side according to the shape of the battery, and there is a problem that the degree of freedom of the shape is lost. . In addition, since the metal can type is thick, there is a drawback that it is difficult to dissipate heat when the battery generates heat, such as when used for a long time. On the other hand, the laminate type is easy to take out the metal terminal, easy to seal, or flexible, so it can be shaped to fit the appropriate space of the electronic device or electronic component. The shape of itself can be designed freely to some extent. Furthermore, since the thin film is excellent in heat dissipation, it is possible to prevent abnormal discharge due to heat generation. Therefore, the laminated body type is becoming mainstream as a battery exterior body because of advantages such as a reduction in size and weight, and high safety compared to a metal can type.

積層体タイプの外装体を用いたリチウム電池の形態としては、包材を筒状に加工し、リチウム電池本体および正極および負極との各々に接続された金属端子を外側に突出した状態で収納し、開口部を熱接着して密封した袋タイプ(たとえば、特許文献1の図2参照)と包材を容器状に成形し、この容器内にリチウム電池本体および正極および負極との各々に接続された金属端子を外側に突出した状態で収納し、平板状の包材ないし容器状に成形した包材で被覆すると共に、四周縁を熱接着して密封した成形タイプ(たとえば、特許文献1の図3参照)が知られている。
As a form of a lithium battery using a laminate type exterior body, a packaging material is processed into a cylindrical shape, and a metal terminal connected to each of the lithium battery main body and the positive electrode and the negative electrode is stored in a state of protruding outward. A bag type (for example, see FIG. 2 of Patent Document 1) in which the opening is thermally bonded and sealed, and a packaging material are formed into a container shape, and are connected to the lithium battery body, the positive electrode, and the negative electrode in the container. The metal terminal is housed in a state of protruding outward, covered with a flat packaging material or a packaging material molded into a container, and the four peripheral edges are thermally bonded and sealed (for example, FIG. 3) is known.

そして、成形タイプは袋タイプに比べて、電池本体をタイト(ぴったりとした状態)に収納することができるため、体積エネルギー密度を向上させることができると共に、リチウム電池本体の収納がし易いなどの利点がある。さらに、成形タイプのうち、冷間(常温)成形法は、加熱成形法に比べて加熱による強度物性の低下や熱収縮の発生など成形加工時に包材自体の特性が変化する危険性が低く、さらに成形装置も安価で、簡便であるとともに生産性も高いことから、現在主流の成形方法となっている。 And since the molded type can store the battery body tightly (tight state) compared to the bag type, the volume energy density can be improved and the lithium battery body can be easily stored. There are advantages. Furthermore, among the molding types, the cold (room temperature) molding method has a lower risk of changes in the properties of the packaging material during molding, such as a decrease in strength properties due to heating and the occurrence of thermal shrinkage, compared to the heat molding method. Furthermore, since the molding apparatus is inexpensive, simple and highly productive, it is currently the mainstream molding method.

電池用外装体に要求される物性・機能としては、高度な防湿性、密封性、耐突刺性、耐ピンホール性、絶縁性、耐熱・耐寒性、耐電解質性(耐電解液性)、耐腐蝕性(電解質の劣化や加水分解により発生するフッ酸に対する耐性)等が必要不可欠であり、特に防湿性は重要な要素となる。しかしながら、積層体タイプ、特に冷間成形タイプにおいて、金属箔として一般的に用いられるアルミニウム箔は成形性に優れる反面、成形時に生じる不均一変形によりピンホールやクラックが生じ易いという問題があり、シャープな形状で深く安定して成形するという成形安定性の点において改善の余地があった。また、積層体タイプは、少なくとも、基材層、バリア層、シーラント層から構成されているが、前記各層間の接着強度が電池の外装体として必要な性質に影響を与えることが確認されている。例えば、バリア層と基材層間の接着強度が不十分であると、電池本体を収納後ヒートシールして密封する工程、あるいは高温の状態で長時間使用された場合、基材層の熱収縮応力が層間接着強度より大きくなり、バリア層と基材層間でデラミネーション(剥離)が発生する問題があった。特に200℃前後の熱が基材層に加わるヒートシール時にデラミネーションの発生頻度が高かった。バリア層と基材層間でデラミネーションが発生した場合、電池用外装体の要求特性のうち、耐突刺性、耐ピンホール性等の強度特性の低下を招き、外部から水蒸気の浸入の原因となりうる。内部に水蒸気が侵入した場合、電池を形成する成分の一つである電解質と反応して生成するフッ化水素酸により、前記バリア層であるアルミニウム箔が腐食するという問題があった。 The physical properties and functions required for battery exteriors include advanced moisture resistance, sealing, piercing resistance, pinhole resistance, insulation, heat / cold resistance, electrolyte resistance (electrolyte resistance), Corrosion properties (resistance to hydrofluoric acid generated by electrolyte degradation and hydrolysis) are essential, and moisture resistance is an important factor. However, in the laminate type, especially the cold forming type, the aluminum foil generally used as a metal foil is excellent in formability, but there is a problem that pinholes and cracks are likely to occur due to non-uniform deformation that occurs during forming. There is room for improvement in terms of molding stability, which is deep and stable molding with a simple shape. In addition, the laminate type is composed of at least a base material layer, a barrier layer, and a sealant layer, but it has been confirmed that the adhesive strength between the respective layers affects the properties required for the battery outer package. . For example, if the adhesive strength between the barrier layer and the base material layer is insufficient, the heat shrink stress of the base material layer when the battery body is stored and sealed by heat sealing or when used for a long time at a high temperature. However, there is a problem that delamination (peeling) occurs between the barrier layer and the base material layer. In particular, the occurrence of delamination was high during heat sealing in which heat of around 200 ° C. was applied to the base material layer. When delamination occurs between the barrier layer and the base material layer, it may cause deterioration of strength characteristics such as piercing resistance and pinhole resistance among the required characteristics of the battery exterior body, which may cause water vapor to enter from the outside. . When water vapor enters the inside, there is a problem that the aluminum foil as the barrier layer is corroded by hydrofluoric acid generated by reacting with an electrolyte which is one of the components forming the battery.

以上、積層体タイプ、特に冷間成形タイプの電池用外装体の主たる品質的な課題、すなわち優れた冷間成形性の確保と各層間でのデラミネーションの抑制に関してこれまで種々の提案がなされている。優れた冷間成形性を確保する方法として、例えば特許文献2は、基材層表面に脂肪酸アマイド系の滑り性付与成分をコーティングし、成形時に金型内への滑り込みを良くして成形性を改善する方法、また特許文献3、特許文献4、特許文献5、および特許文献6はナイロンフィルム等の基材層の強度物性に着目し、冷間成形時におけるアルミニウム箔の破断抑制のため、異方性が少なく、かつ高強度あるいは高伸度等の性質を有する基材を使用してアルミニウム箔を補強する方法、さらには特許文献7のように基材層の結晶性に着目したものなどが提案されている。一方、デラミネーションを抑制する方法として、特許文献8は基材層の熱水収縮率を、特許文献9は基材層の密度をある範囲に限定する方法が提案されている。 As described above, various proposals have been made so far regarding the main quality problems of the battery-type outer casing of the laminate type, particularly the cold-forming type, that is, ensuring excellent cold-formability and suppressing delamination between the respective layers. Yes. As a method for ensuring excellent cold formability, for example, Patent Document 2 coats a base material layer surface with a fatty acid amide-based slipperiness-imparting component to improve slipping into a mold during molding. Methods for improvement, Patent Document 3, Patent Document 4, Patent Document 5, and Patent Document 6 pay attention to the strength properties of the base material layer such as nylon film, and are different in order to suppress breakage of the aluminum foil during cold forming. A method of reinforcing an aluminum foil by using a base material having a low property and having a property such as high strength or high elongation, and further, a method focusing on the crystallinity of the base material layer as in Patent Document 7 Proposed. On the other hand, as a method for suppressing delamination, Patent Literature 8 proposes a method for limiting the hot water shrinkage of the base material layer, and Patent Literature 9 proposes a method for limiting the density of the base material layer to a certain range.

しかしながら、基材層の表面に滑り性付与成分をコーティングする方法は、コーティングする工程を設けなければならず、生産性が低下するという問題があった。また、電池の真空脱気時やシール加工時に滑り性付与成分が蒸発して、この蒸発成分が加工設備に付着するため、これらを除去する清掃作業が必要になることから、さらに生産性が低下するという問題があった。また、高強度あるいは高伸度の基材を使用してアルミニウム箔を補強する方法は、成形性の向上は見られるものの、デラミネーションの抑制に関しては何ら記載が無かった。さらに、基材層の熱水収縮率を制限しデラミネーションを抑制する方法は、特に発生頻度が高い200℃前後の熱が基材に加わるヒートシール工程や高温高湿度下条件でのデラミネーションの発生状況とは必ずしも条件が合致しておらず、デラミネーションの指標としては不十分であった。また、デラミネーションの発生は、基材層の熱収縮応力が層間接着強度より大きくなった場合に発生することから、熱水中での収縮量を制限するだけではデラミネーションの発生を完全に抑制することは必ずしも出来なかった。 However, the method of coating the surface of the base material layer with a slipperiness-imparting component has a problem in that productivity must be reduced because a coating step must be provided. In addition, the slipperiness-imparting component evaporates when the battery is vacuum degassed or sealed, and the evaporated component adheres to the processing equipment, which necessitates a cleaning operation to remove them, further reducing productivity. There was a problem to do. In addition, the method of reinforcing an aluminum foil using a high-strength or high-strength base material has no improvement on the suppression of delamination, although the moldability is improved. Furthermore, the method of limiting the hot water shrinkage rate of the base material layer and suppressing delamination is particularly suitable for the heat sealing process in which heat of around 200 ° C., which is frequently generated, is applied to the base material, and for delamination under conditions of high temperature and high humidity. The conditions did not necessarily match the occurrence status, and it was insufficient as an indicator for delamination. In addition, delamination occurs when the thermal shrinkage stress of the base material layer is greater than the interlayer adhesive strength, so delamination can be completely suppressed simply by limiting the amount of shrinkage in hot water. It was not always possible to do.

筆者らは上記課題に鑑み、特許文献10の基材層であるナイロンフィルムの熱収縮応力、および引張強度をある範囲に限定することにより、積層体タイプ、特に冷間成形タイプの電池用外装体の主たる品質的な課題であった優れた冷間成形性の確保と各層間でのデラミネーションの抑制を両立できることを見い出した。しかしながらリチウムイオン電池に代表される二次電池は広く普及しており、最近では自動車用等比較的長く、しかも過酷な条件で使用される場合があり、外装材に益々の耐久性の要求が高まっている。従来の技術では過酷条件での耐久性、特に高温高湿度下やONyフィルムとアルミニウム箔間に印刷層を設けた場合においては各層間の接着力が弱くなる場合があり、デラミネーション発生の危険性も高まる場合があった。 In view of the above problems, the authors limit the thermal shrinkage stress and tensile strength of the nylon film, which is the base material layer of Patent Document 10, to a certain range, thereby providing a laminate type, particularly a cold-molded type battery outer package. It was found that it was possible to achieve both excellent cold formability, which was the main quality issue, and suppression of delamination between layers. However, secondary batteries represented by lithium ion batteries are widely used. Recently, they are used for relatively long and harsh conditions such as those for automobiles, and the demand for durability is increasing for exterior materials. ing. With conventional technology, durability under severe conditions, especially when high temperature and high humidity, or when a printing layer is provided between ONy film and aluminum foil, the adhesive strength between each layer may be weakened, and there is a risk of delamination. There was also a case where it increased.

一方、ラミネート強度改善を目的として特にボイル、レトルト時の接着性が求められるような用途に易接着ナイロンフィルムが開発されている。(特許文献11、12、13)しかし、これを電池用外包材の基材として応用した例は無い。 On the other hand, an easy-adhesive nylon film has been developed for the purpose of requiring adhesiveness at the time of boiling and retorting for the purpose of improving the laminate strength. (Patent Documents 11, 12, and 13) However, there is no example in which this is applied as a base material for battery outer packaging materials.

特開2004−74419号公報JP 2004-74419 A 特開2002−216714号公報JP 2002-216714 A 特開2000−123800号公報JP 2000-123800 A 特開2006−236938号公報JP 2006-236938 A 特開2008−44209号公報JP 2008-44209 A 特開2005−22336号公報JP 2005-22336 A 特開2007−42469公報JP 2007-42469 A 特開2006−331897公報JP 2006-331897 A 特開2008−288117公報JP 2008-288117 A 特開2011−162702公報JP 2011-162702 A 特公昭57−26236公報Japanese Patent Publication No.57-26236 特開平8−258232公報JP-A-8-258232 特開平11−20104公報JP 11-20104 A

本発明は、前述のような、過酷条件での耐久性、特に高温高湿度下やONyとアルミニウム箔間に印刷層を設けた場合においても、デラミネーション発生がない、冷間成形用ナイロンフィルムを得ることを課題とする。 The present invention provides a nylon film for cold forming that does not cause delamination even when it is provided with a durability under severe conditions as described above, in particular, at high temperatures and high humidity, or when a printing layer is provided between ONy and aluminum foil. It is a problem to obtain.

本発明者は本課題に鋭意研究を重ねた結果、ある特定の強度特性を持つ二軸延伸フィルムの表面がある特定の樹脂で薄く塗工されていることで、それを基材とした電池用外装材として優れた冷間成形性の確保と高温高湿度下や印刷層の介在等の過酷条件下で各層間でのデラミネーションの抑制に関して両立できることを見出した。 As a result of intensive research on this subject, the present inventor has found that the surface of a biaxially stretched film having a specific strength property is thinly coated with a specific resin, and for a battery using this as a base material. We have found that it is possible to achieve both excellent cold formability as an exterior material and suppression of delamination between layers under severe conditions such as high temperature and high humidity and the presence of a printed layer.

具体的には、
[1]、未延伸または延伸され、熱処理されていないナイロンフィルムに、ポリウレタン樹脂、又はアクリル酸共重合体樹脂およびその架橋剤を塗工後、熱処理したことを特徴とする易接着性ナイロンフィルムであって、170〜210℃における熱収縮応力の最大値
がMD、TDともに5.0MPa以下で、かつ一軸引張試験(試料幅15mm、チャック間距離100mm、引張速度200mm/min.)における4方向(0°(MD)、45°、90°(TD)、135°)すべての破断強度が240MPa以上であることを特徴とする二軸延伸ナイロンフィルム、
[2]、[1]記載の樹脂Aおよびその架橋剤Bが下記A、Bであって固形分重量比A/B=98〜30/2〜70から成る組成物を主成分とする水性塗工剤を延伸後の塗工量が固形分で0.005〜0.030g/mである[1]記載の二軸延伸ナイロンフィルム、
A:三重結合の二つの隣接炭素原子にいずれも水酸基及びメチル基が置換されたアセチレングリコール及び/又はそのエチレンオキサイド付加物である非イオン系界面活性剤を含有した水系ポリウレタン樹脂。
B:水溶性ポリエポキシ化合物。
[3]、[2]記載の塗工剤に平均粒子径が0.001〜1.0μmの微粒子Cが固形分重量比A/B/C=98〜30/2〜70/0.1〜10となるように含まれていることを特徴とする[2]記載の二軸延伸ナイロンフィルム、
[4]、一軸引張試験(試料幅15mm、チャック間距離100mm、引張速度200mm/min.)における4方向(0°(MD)、45°、90°(TD)、135°)すべての50%モジュラス値が120MPa以上であることを特徴とする[1]〜[3]に記載の二軸延伸ナイロンフィルム、
[5]、少なくとも基材層、バリア層、シーラント層により形成された冷間成形用電池ケース包材であって、前記基材層として、[1]〜[4]に記載の二軸延伸ナイロンフィルムの塗工面をバリア層側に配したことを特徴とする冷間成形用電池ケース包材、
[6]、少なくとも基材層、バリア層、シーラント層により形成された冷間成形用電池ケース包材であって、前記基材層として、[1]〜[4]に記載の二軸延伸ナイロンフィルムの塗工面に印刷し、印刷面をバリア層側に配したことを特徴とする冷間成形用電池ケース包材、
[7]、[5]又は[6]に記載の冷間成形用電池ケース包材を使用し、シーラント層が内面になるように張り出し成形、または深絞り成形して凹部分を形成した電池ケース、
[8]、[7]に記載の電池ケースの凹部分に電池本体を収納し、密封されていることを特徴とする電池、
を提供する。
ここで、本発明の二軸延伸ナイロンフィルムの好ましい態様のうち一つは、
未延伸の又は延伸後の、熱処理されていないナイロンフィルムに、ポリウレタン樹脂、その架橋剤および微粒子を主成分とする水性塗工剤を塗工後、熱処理した易接着性ナイロンフィルムであって、
該易接着性ナイロンフィルムを基材層として用いたときに、高温高湿度下、該基材層とアルミニウム箔層との間でのデラミネーションの発生を抑制することができ且つ成形性に優れ、
170〜210℃における熱収縮応力の最大値がMD、TDともに5.0MPa以下であり、一軸引張試験(試料幅15mm、チャック間距離100mm、引張速度200mm/min.)における4方向(0°(MD)、45°、90°(TD)、135°)すべての破断強度が280MPa以上であり且つ50%モジュラス値が150MPa以上であり、
前記水性塗工剤中のポリウレタン樹脂、その架橋剤および微粒子がそれぞれ下記のA、BおよびCであって、固形分重量比A/B/C=98〜30/2〜70/0.1〜10であり、該水性塗工剤の塗工量が延伸後乾燥重量で0.010〜0.050g/m であることを特徴とする二軸延伸ナイロンフィルム。
A:三重結合の二つの隣接炭素原子にいずれも水酸基及びメチル基が置換されたアセチレングリコール及び/又はそのエチレンオキサイド付加物である非イオン系界面活性剤を含有した水系ポリウレタン樹脂
B:水溶性ポリエポキシ化合物
C:平均粒子径が0.001〜1.0μmの微粒子
である。
また、本発明の冷間成形用電池ケース包材の好ましい態様のうち一つは、
少なくとも基材層、バリア層及びシーラント層の順に積層して構成された、高温高湿度下、該基材層と該バリア層との間でのデラミネーションの発生を抑制することができ且つ成形性に優れた冷間成形用電池ケース包材であって、
前記基材層が未延伸の又は延伸後の、熱処理されていないナイロンフィルムに、ポリウレタン樹脂、その架橋剤および微粒子を主成分とする水性塗工剤を塗工後、熱処理した易接着性ナイロンフィルムであって、170〜210℃における熱収縮応力の最大値がMD、TDともに5.0MPa以下であり、一軸引張試験(試料幅15mm、チャック間距離100mm、引張速度200mm/min.)における4方向(0°(MD)、45°、90°(TD)、135°)すべての破断強度が280MPa以上であり且つ50%モジュラス値が150MPaであり、
前記水性塗工剤中のポリウレタン樹脂、その架橋剤および微粒子がそれぞれ下記のA、BおよびCであって、固形分重量比A/B/C=98〜30/2〜70/0.1〜10であり、該水性塗工剤の塗工量が延伸後乾燥重量で0.010〜0.050g/m である二軸延伸ナイロンフィルムであり、
前記バリア層がアルミニウム箔層である、電池ケース包材。
A:三重結合の二つの隣接炭素原子にいずれも水酸基及びメチル基が置換されたアセチレングリコール及び/又はそのエチレンオキサイド付加物である非イオン系界面活性剤を含有した水系ポリウレタン樹脂
B:水溶性ポリエポキシ化合物
C:平均粒子径が0.001〜1.0μmの微粒子
である。
In particular,
[1] An easy-adhesive nylon film characterized in that an unstretched or stretched nylon film that has not been heat-treated is coated with a polyurethane resin or an acrylic acid copolymer resin and a crosslinking agent thereof, and then heat-treated. The maximum value of the heat shrinkage stress at 170 to 210 ° C. is 5.0 MPa or less for both MD and TD, and four directions (sample width 15 mm, distance between chucks 100 mm, tensile speed 200 mm / min.) ( (0 ° (MD), 45 °, 90 ° (TD), 135 °) Biaxially stretched nylon film characterized by having a breaking strength of 240 MPa or more,
[2], Aqueous coating comprising, as a main component, a resin A and a crosslinking agent B according to [1], which are A and B below, and a composition comprising a solid content weight ratio A / B = 98 to 30/2 to 70 The biaxially stretched nylon film according to [1], wherein the coating amount after stretching the working agent is 0.005 to 0.030 g / m 2 in solid content,
A: An aqueous polyurethane resin containing a nonionic surfactant which is an acetylene glycol in which a hydroxyl group and a methyl group are substituted on two adjacent carbon atoms of a triple bond and / or its ethylene oxide adduct.
B: Water-soluble polyepoxy compound.
[3] In the coating agent according to [2], fine particles C having an average particle size of 0.001 to 1.0 μm are in a solid content weight ratio A / B / C = 98 to 30/2 to 70 / 0.1. The biaxially stretched nylon film according to [2], wherein the biaxially stretched nylon film is included so as to be 10;
[4] 50% of all four directions (0 ° (MD), 45 °, 90 ° (TD), 135 °) in a uniaxial tensile test (sample width: 15 mm, distance between chucks: 100 mm, tensile speed: 200 mm / min.) The biaxially stretched nylon film according to any one of [1] to [3], wherein a modulus value is 120 MPa or more,
[5] A battery case packaging material for cold forming formed of at least a base material layer, a barrier layer, and a sealant layer, and the biaxially stretched nylon according to [1] to [4] as the base material layer Battery case packaging material for cold forming, characterized in that the coated surface of the film is arranged on the barrier layer side,
[6] A battery case packaging material for cold forming formed of at least a base material layer, a barrier layer, and a sealant layer, and the biaxially stretched nylon according to [1] to [4] as the base material layer Battery case packaging material for cold forming, characterized in that printing is performed on the coated surface of the film, and the printed surface is disposed on the barrier layer side,
A battery case using the cold-forming battery case packaging material according to [7], [5] or [6], and forming a concave portion by overhang molding or deep drawing so that the sealant layer is on the inner surface. ,
[8] A battery characterized in that the battery body is housed in a recessed portion of the battery case according to [7] and sealed.
I will provide a.
Here, one of the preferred embodiments of the biaxially stretched nylon film of the present invention is:
An unstretched or unstretched nylon film that has not been heat-treated, coated with a polyurethane resin, a cross-linking agent and an aqueous coating agent mainly composed of fine particles, and then heat-treated, an easily-adhesive nylon film,
When the easy-adhesive nylon film is used as a base material layer, it is possible to suppress the occurrence of delamination between the base material layer and the aluminum foil layer under high temperature and high humidity and is excellent in moldability.
The maximum value of heat shrinkage stress at 170 to 210 ° C. is 5.0 MPa or less for both MD and TD, and the four directions (0 ° (0 ° (sample width 15 mm, distance between chucks 100 mm, tensile speed 200 mm / min.)). MD), 45 °, 90 ° (TD), 135 °) all breaking strengths are 280 MPa or more and 50% modulus value is 150 MPa or more,
The polyurethane resin, the crosslinking agent and the fine particles thereof in the aqueous coating agent are the following A, B and C, respectively, and the solid content weight ratio A / B / C = 98 to 30/2 to 70 / 0.1 A biaxially stretched nylon film, characterized in that the coating amount of the aqueous coating agent is 10 to 0.050 g / m 2 in terms of dry weight after stretching.
A: Aqueous polyurethane resin containing acetylene glycol in which hydroxyl groups and methyl groups are substituted on two adjacent carbon atoms of a triple bond and / or a nonionic surfactant that is an ethylene oxide adduct thereof
B: Water-soluble polyepoxy compound
C: Fine particles having an average particle size of 0.001 to 1.0 μm
It is.
One of the preferred embodiments of the cold-forming battery case packaging material of the present invention is:
Constructed by laminating at least a base material layer, a barrier layer and a sealant layer in this order, it is possible to suppress the occurrence of delamination between the base material layer and the barrier layer under high temperature and high humidity and formability A battery case packaging material for cold forming, excellent in
An easily-adhesive nylon film that has been heat-treated after coating a polyurethane resin, a cross-linking agent and an aqueous coating agent mainly composed of fine particles on a non-stretched or unheated nylon film with the base material layer unstretched or stretched. The maximum value of heat shrinkage stress at 170 to 210 ° C. is 5.0 MPa or less for both MD and TD, and the four directions in the uniaxial tensile test (sample width 15 mm, distance between chucks 100 mm, tensile speed 200 mm / min.). (0 ° (MD), 45 °, 90 ° (TD), 135 °) All the breaking strengths are 280 MPa or more and the 50% modulus value is 150 MPa,
The polyurethane resin, the crosslinking agent and the fine particles thereof in the aqueous coating agent are the following A, B and C, respectively, and the solid content weight ratio A / B / C = 98 to 30/2 to 70 / 0.1 A biaxially stretched nylon film in which the coating amount of the aqueous coating agent is 0.010 to 0.050 g / m 2 in terms of dry weight after stretching,
A battery case packaging material, wherein the barrier layer is an aluminum foil layer.
A: Aqueous polyurethane resin containing acetylene glycol in which hydroxyl groups and methyl groups are substituted on two adjacent carbon atoms of a triple bond and / or a nonionic surfactant that is an ethylene oxide adduct thereof
B: Water-soluble polyepoxy compound
C: Fine particles having an average particle size of 0.001 to 1.0 μm
It is.

本発明は、冷間成形用二軸延伸ナイロンフィルムに関して、少なくとも1面に特定の樹脂が薄く塗工され、異方性が少なく、引張強度が大きい二軸延伸ナイロンフィルムを冷間成形用包材、特にリチウムイオン二次電池等の電池ケース用包材の主要基材として用いることにより、ヒートシールして密封する工程や高温高湿度下や印刷層が介在した状態で長時間使用された場合においても、バリア層と基材層間でのデラミネーションの発生を抑制することができ、かつあらゆる金型形状や成形深さの冷間成形加工時においてもアルミニウム箔の破断やピンホール等の発生が無く、安定した成形性を確保することが可能となった。また、従来技術のように、滑り性付与成分をコーティングしなくても優れた成形性を確保できるので生産性にも優れている。 The present invention relates to a biaxially stretched nylon film for cold forming, wherein a specific resin is thinly applied to at least one surface, the anisotropy is small, and the tensile strength is high. In particular, when used as a main base material for battery case packaging materials such as lithium ion secondary batteries, when it is used for a long time in the process of heat sealing and sealing, under high temperature and high humidity, or with a printed layer interposed However, it is possible to suppress the occurrence of delamination between the barrier layer and the base material layer, and there is no occurrence of aluminum foil breakage or pinholes during cold forming of any mold shape and molding depth. As a result, stable moldability can be secured. In addition, as in the prior art, excellent moldability can be secured without coating with a slipperiness-imparting component, so that productivity is also excellent.

ONyフィルムを製造するインライン樹脂塗工チューブラー延伸装置の工程図。The process drawing of the in-line resin coating tubular drawing apparatus which manufactures an ONy film.

以下に、本発明を実施するための最良の形態について説明する。
(二軸延伸ナイロンフィルムの原料) 本発明の二軸延伸ナイロンフィルム(以後、ONyフィルム)の原料は、ポリアミド系樹脂であれば特に限定されるものでは無い。例えば、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6,66,12共重合体、その他ポリアミド系共重合体、ナイロンMXD6、アラミド、ポリアミドイミド(PAI)、芳香族ポリイミド、ポリエーテルイミド(PEI)、ポリマレイミドアミン(PMIA)、ポリアミノビスマレイミド(PABM)などが挙げられるが、生産性や冷間成形性、強度物性を主としたフィルム物性の観点からナイロン6がもっとも好ましい。また、ナイロン6原料において、数平均分子量は10000〜30000が好ましく、特に好ましくは22000〜24000である。数平均分子量が10000未満の場合、得られたONyフィルムの衝撃強度や引張強度が不十分である。また数平均分子量が30000より大きい場合、分子鎖の絡み合いが著しく、延伸加工により過度なひずみが生じるため、延伸加工時に破断やパンクが頻繁に発生し、安定的に生産出来ない。
The best mode for carrying out the present invention will be described below.
(Raw Material of Biaxially Stretched Nylon Film) The raw material of the biaxially stretched nylon film (hereinafter referred to as ONy film) of the present invention is not particularly limited as long as it is a polyamide resin. For example, nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6, 66, 12 copolymer, other polyamide copolymers, nylon MXD6, aramid, polyamideimide (PAI), aromatic Polyimide, polyetherimide (PEI), polymaleimidoamine (PMIA), polyaminobismaleimide (PABM), etc. are mentioned. Nylon 6 is used from the viewpoint of film physical properties such as productivity, cold formability and strength properties. Most preferred. In the nylon 6 raw material, the number average molecular weight is preferably 10,000 to 30,000, particularly preferably 22,000 to 24,000. When the number average molecular weight is less than 10,000, the impact strength and tensile strength of the obtained ONy film are insufficient. When the number average molecular weight is larger than 30000, the molecular chain is entangled excessively and excessive strain is generated by the stretching process. Therefore, breakage and puncture frequently occur during the stretching process, and stable production cannot be achieved.

(塗工剤の原料)
本発明に用いる塗工剤はポリウレタン樹脂、又はアクリル酸共重合体樹脂を主成分とし架橋剤にて架橋されていることが必要である。好ましい樹脂としては水系エマルジョン、架橋剤は水溶性架橋剤が塗工のしやすさや環境対応の点でも好ましい。以下樹脂の例を示すが、ポリウレタン樹脂、又はアクリル酸系樹脂で薄膜塗工できかつ適切な架橋剤による架橋構造によりに特に水や溶剤に対する樹脂自体の凝集力が極端に低下するものでなければ特にこだわることなく使用できる。
(Raw material of coating agent)
The coating agent used in the present invention needs to have a polyurethane resin or an acrylic acid copolymer resin as a main component and be crosslinked with a crosslinking agent. A preferable resin is a water-based emulsion, and a cross-linking agent is preferably a water-soluble cross-linking agent from the viewpoint of easy coating and environmental friendliness. Examples of resins are shown below, but they can be coated with a polyurethane resin or acrylic resin, and the cohesive strength of the resin itself with respect to water and solvents is extremely low due to the crosslinking structure with an appropriate crosslinking agent. Can be used without particular attention.

水系ポリウレタン樹脂としては、粒子径が小さく、安定性が良好な点から自己乳化型が好ましい。その粒子径は10〜100nm程度が良い。本発明に用いる水系ポリウレタン樹脂はそのガラス転移点(Tg)が40℃〜150℃が望ましい。Tgが40℃未満のものは塗工後ロール状に巻き取る際ブロッキングが発生し、密着の跡形が残り透明斑となり、更に激しい場合には巻き戻せず、無理に巻き戻すとフィルムが破断する。また、本発明はポリアミドフィルムに塗工後延伸するインライン塗工であるため、塗工後の乾燥温度及び延伸時にかかる温度よりTgが高すぎると、均一な塗膜を形成しにくい。これは連続した塗膜を形成する最低成膜温度(MFT)が一般にTg付近にあるためであり、150℃未満が好ましい。 The water-based polyurethane resin is preferably a self-emulsifying type from the viewpoint of small particle size and good stability. The particle diameter is preferably about 10 to 100 nm. The water-based polyurethane resin used in the present invention preferably has a glass transition point (Tg) of 40 ° C to 150 ° C. When the Tg is less than 40 ° C., blocking occurs when winding into a roll after coating, leaving a trace of adhesion, resulting in transparent spots, and if it is more severe, the film cannot be rewound. Moreover, since this invention is in-line coating which extends after coating on a polyamide film, if the Tg is too higher than the drying temperature after coating and the temperature applied during stretching, it is difficult to form a uniform coating film. This is because the minimum film forming temperature (MFT) for forming a continuous coating film is generally in the vicinity of Tg, and is preferably less than 150 ° C.

本発明において、水系ポリウレタン樹脂には、三重結合の二つの隣接炭素原子にいずれも水酸基及びメチル基が置換されたアセチレングリコール及び/又はそのエチレンオキサイド付加物である非イオン系界面活性剤が添加されることが好ましい。かかる界面活性剤としては、例えば日信化学工業(株)製のサーフィノール104、440等を例示することができる。添加量は、水系ポリウレタン樹脂の固形分に対し0.01〜1.0%であることが好ましい。従来、塗工剤使用時の発泡と水の大きな表面張力によるフィルム等への均一な「濡れ」の困難さを解決するためには一般に2種類の界面活性剤(消泡剤、濡れ剤)を添加せねばならなかった。さらに多くの場合、消泡効果と濡れ効果は相反するため、一方を解決すれば、他方がかえって悪化するものであった。この界面活性剤を添加することにより、フィルムへの濡れが良くなり、塗工量が少なくても、均一の塗膜が得られるためコストダウンにもつながるのは勿論、消泡効果もあることから、塗工剤調製時及び塗工時の発泡によるトラブルも解消される。 In the present invention, the water-based polyurethane resin is added with acetylene glycol in which a hydroxyl group and a methyl group are substituted on two adjacent carbon atoms of a triple bond and / or a nonionic surfactant that is an ethylene oxide adduct thereof. It is preferable. Examples of such surfactants include Surfinol 104, 440 manufactured by Nissin Chemical Industry Co., Ltd. The addition amount is preferably 0.01 to 1.0% with respect to the solid content of the water-based polyurethane resin. Conventionally, two types of surfactants (antifoaming agent and wetting agent) are generally used to solve the difficulty of uniform “wetting” on films due to foaming and large surface tension of water when using coating agents. I had to add it. In many cases, the defoaming effect and the wetting effect are contradictory, so if one is solved, the other is worsened. By adding this surfactant, wetting to the film is improved, and even if the coating amount is small, a uniform coating film can be obtained. Troubles caused by foaming during preparation of the coating agent and during coating are also eliminated.

本発明に用いる水系ポリウレタンンの架橋剤としては、水溶性エポキシ化合物、水溶性オキサゾリン化合物等、汎用の水溶性架橋剤が使用できるが、安全性の観点から水溶性ポリエポキシ化合物が特に好ましい。水溶性エポキシ化合物は水への溶解性があり、2個以上のエポキシ基を有する化合物であり、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール等のグリコール類1モルとエピクロルヒドリン2モルとのエーテル化によって得られるジエポキシ化合物、グリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の多価アルコール類1モルとエピクロルヒドリン2モル以上とのエーテル化によって得られるポリエポキシ化合物、フタル酸テレフタル酸、シュウ酸、アジピン酸等のジカルボン酸類1モルとエピクロルヒドリン2モルとのエステル化によって得られるジエポキシ化合物等が挙げられるがこれらに限定されるものではない。これら水溶性架橋剤は水系ポリウレタン樹脂と架橋し、塗膜の耐水性、耐溶剤性を向上せしめ、更にはポリアミドフィルムとの接着性にも寄与する。 As the water-based polyurethane crosslinking agent used in the present invention, general-purpose water-soluble crosslinking agents such as water-soluble epoxy compounds and water-soluble oxazoline compounds can be used, but water-soluble polyepoxy compounds are particularly preferred from the viewpoint of safety. A water-soluble epoxy compound is a compound having solubility in water and having two or more epoxy groups. For example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene Diepoxy compounds obtained by etherification of 1 mol of glycols such as glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol and 2 mol of epichlorohydrin, glycerin, polyglycerin, trimethylolpropane, pentaerythritol , Polyepoxy compounds obtained by etherification of 1 mol of polyhydric alcohols such as sorbitol and 2 mol or more of epichlorohydrin, terephthalic acid phthalate, Although diepoxy compound obtained by esterification of a dicarboxylic acid 1 mol of epichlorohydrin 2 moles, and the like are not limited to these, such as adipic acid. These water-soluble crosslinking agents crosslink with the water-based polyurethane resin, improve the water resistance and solvent resistance of the coating film, and further contribute to adhesion to the polyamide film.

本発明における塗工剤には微粒子を添加してラミネート時の加工適性を向上することができる。塗工膜に微粒子が存在することにより、耐ブロッキング剤、及び巻き取り、印刷、ラミネート、塗工等の後加工工程での適度のすべり性を付与するすべり剤の機能が発現する。平均粒子径が0.001〜1.0μmの微粒子が使用され、好ましくは真球状の微粒子が用いられる。真球状微粒子とはその電子顕微鏡写真に於いて短径/長径が0.90以上であることを言う。微粒子が真球状の場合耐ブロッキング性、すべり性への効果がすぐれ、また、透明性の低下が少ないため好ましい。また、平均粒子径が0.001μm未満だと耐ブロッキング性、すべり性に効果がない。平均粒子径が1.0μmを超えると印刷適性が低下する。特に写真版印刷の場合、ハイライト部分でのインキ抜けが発生する。微粒子は無機系でも有機系でも良いが、製造工程中に変形して効果を失わない耐熱性が必要である。 Fine particles can be added to the coating agent in the present invention to improve processability during lamination. Due to the presence of fine particles in the coating film, the function of a blocking agent and a slipping agent that imparts an appropriate slipping property in post-processing steps such as winding, printing, laminating, and coating are developed. Fine particles having an average particle diameter of 0.001 to 1.0 μm are used, and preferably spherical fine particles are used. True spherical fine particles mean that the minor axis / major axis is 0.90 or more in the electron micrograph. It is preferable that the fine particles are spherical because the effect on blocking resistance and slipping is excellent and the decrease in transparency is small. On the other hand, when the average particle size is less than 0.001 μm, there is no effect on the blocking resistance and the slipping property. When the average particle diameter exceeds 1.0 μm, the printability is lowered. In particular, in the case of photographic printing, ink loss occurs at the highlight portion. The fine particles may be inorganic or organic, but they need heat resistance that is not deformed during the manufacturing process and loses its effect.

微粒子は無機、有機化合物特に限定されないが、好ましい微粒子として、例えば、日産化学工業(株)製のコロイダルシリカ"スノーテックス"ST−C(平均粒径0.010〜0.020μm)、ST−XS(平均粒径0.004〜0.006μm)等が挙げられる。
本発明において、界面活性剤を含んだ水系ポリウレタン樹脂(A)と、水溶性ポリエポキシ化合物(B)との配合比率A/Bの重量比は、固形分で98/2〜30/70である。A/Bの比率が98/2より大きいと架橋密度が減少し、耐水性、耐溶剤性、接着性が劣る。逆にA/Bの比率が30/70より小さくなると熟成中のブロッキングが問題点として残る。また、微粒子(C)の配合量は、界面活性剤を含んだ水系ポリウレタン樹脂(A)及び水溶性ポリエポキシ化合物(B)の合計量(A+B)との比率としてC/(A+B)は0.1/100〜10/100である。この比率が0.1/100より小さいと耐ブロッキング性、すべり性に効果が不十分であり、逆に、10/100より大きくしても効果は変わらず経済的に不利である。
The fine particles are not particularly limited to inorganic or organic compounds, but preferred fine particles include, for example, colloidal silica “Snowtex” ST-C (average particle diameter: 0.010 to 0.020 μm), ST-XS, manufactured by Nissan Chemical Industries, Ltd. (Average particle diameter of 0.004 to 0.006 μm).
In the present invention, the weight ratio of the mixing ratio A / B of the water-based polyurethane resin (A) containing the surfactant and the water-soluble polyepoxy compound (B) is 98/2 to 30/70 in solid content. . When the ratio of A / B is larger than 98/2, the crosslinking density is decreased, and the water resistance, solvent resistance and adhesiveness are inferior. Conversely, if the A / B ratio is less than 30/70, blocking during aging remains as a problem. The blending amount of the fine particles (C) is such that the ratio of the total amount (A + B) of the water-based polyurethane resin (A) containing the surfactant and the water-soluble polyepoxy compound (B) is 0. 1/100 to 10/100. If this ratio is less than 0.1 / 100, the effect of blocking resistance and slipping properties is insufficient, and conversely, even if it is greater than 10/100, the effect is not changed and it is economically disadvantageous.

界面活性剤を含んだ水系ポリウレタン樹脂脂、水溶性ポリエポキシ化合物及び微粒子を主成分とした水性塗工剤の塗工量は延伸後乾燥重量で0.005〜0.1000g/m 、好ましくは0.010〜0.050g/m であることが望ましい。0.005g/m 未満であると均一な塗膜が得られず耐水性、接着性が不十分である。逆に0.100g/m 以上塗工するとコート面/非コート面がブロッキングしやすくなる。また性能の向上も認められず、コストアップとなり好ましくない。 The coating amount of a water-based polyurethane resin fat containing a surfactant, a water-soluble polyepoxy compound and fine particles as a main component is 0.005 to 0.1000 g / m 2 in terms of dry weight after stretching, preferably It is desirable that it is 0.010-0.050 g / m < 2 >. If it is less than 0.005 g / m 2 , a uniform coating film cannot be obtained and water resistance and adhesiveness are insufficient. Conversely, when 0.100 g / m 2 or more is applied, the coated surface / non-coated surface is likely to be blocked. Moreover, the improvement in performance is not recognized and the cost increases, which is not preferable.

アクリル酸系共重合樹脂としては、そのガラス転移点が40℃以上であることが好ましい。ガラス転移点が40℃未満のものは水溶性ポリエポキシ化合物で架橋・硬化させるために塗工後ロール状に巻き取り、30〜60℃で熟成する際ブロッキングが発生し、密着の跡形が残り透明斑となり、更に激しい場合には巻き戻せず、無理に巻き戻すとフィルムが破断するので好ましくない。本発明に用いるアクリル酸系樹脂はアクリル酸エステル類及び/又はメタクリル酸エステル類等からなる主モノマーと、エポキシ基と架橋反応に寄与する官能基を有するコモノマーが特に好ましく、その他に希望により更に前記のモノマーと共重合し得る中性モノマーとを共重合することにより得られる。 The acrylic acid copolymer resin preferably has a glass transition point of 40 ° C. or higher. Those with a glass transition point of less than 40 ° C. are wound with a water-soluble polyepoxy compound to be crosslinked and cured, and then rolled into a roll. When aging at 30 to 60 ° C., blocking occurs, leaving a trace of adhesion and transparent. If it becomes more uneven and more severe, it cannot be rewound, and if it is rewound forcibly, the film will break, which is not preferable. The acrylic resin used in the present invention is particularly preferably a main monomer composed of acrylic acid esters and / or methacrylic acid esters and the like, and a comonomer having an epoxy group and a functional group contributing to a crosslinking reaction. It can be obtained by copolymerizing a neutral monomer that can be copolymerized with the above monomer.

前記の主モノマーのうちアクリル酸エステル類としては例えばアクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸2エチルへキシル等、又、メタクリル酸エステル類としてはメタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸2エチルへキシル等が挙げられる。
又、前記のコモノマーとしてはアクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、シトラコン酸、マレイン酸モノエステル、フマル酸モノエステル等のα,β−不飽和カルボン酸類、メタクリル酸2ヒドロキシエチル、ポリエチレングリコールモノメタクリレート等のヒドロキシ化合物、メタクリル酸グリシジル、アリルグリシジルエーテル等のエポキシ化合物、アリルアミン、N,N−ジメチルアミノエチルアクリレート、N,N−ジメチルアミノプロピルアクリルアミド等のアミン類、N−メチルアクリルアミド等のアミド類、無水マレイン酸等の酸無水物などが挙げられるがこれらに限定されるものではない。これらのモノマーの官能基はポリエポキシ化合物との架橋、プラスチックフィルムとの接着性等に寄与する。
Among the main monomers, acrylic acid esters include, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, acrylic acid 2 Ethylhexyl and the like, and methacrylic acid esters include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, methacrylic acid 2 And ethylhexyl.
Examples of the comonomer include acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, citraconic acid, maleic acid monoester, fumaric acid monoester and other α, β-unsaturated carboxylic acids, and 2-hydroxyethyl methacrylate. , Hydroxy compounds such as polyethylene glycol monomethacrylate, epoxy compounds such as glycidyl methacrylate and allyl glycidyl ether, amines such as allylamine, N, N-dimethylaminoethyl acrylate, N, N-dimethylaminopropylacrylamide, N-methylacrylamide Examples thereof include, but are not limited to, amides such as maleic acid anhydride, and acid anhydrides such as maleic anhydride. The functional group of these monomers contributes to crosslinking with a polyepoxy compound, adhesion to a plastic film, and the like.

又、前記の共重合し得る中性モノマーとしてはスチレン、αメチルスチレン等のスチレン類、アクリロニトリル、メタクリロニトリル等のアクリロニトリル類、酢酸ビニル、プロピオン酸ビニル等の脂肪族ビニルエステル類、ビニルメチルエーテル、ビニルエチルエーテル等のビニルアルキルエーテル類、エチレン、プロピレン、1−ブテン等のαオレフィン、塩化ビニル、塩化ビニリデン等が挙げられるがこれに限定されるものではない。 Examples of the neutral monomer capable of copolymerization include styrenes such as styrene and α-methylstyrene, acrylonitriles such as acrylonitrile and methacrylonitrile, aliphatic vinyl esters such as vinyl acetate and vinyl propionate, and vinyl methyl ether. , Vinyl alkyl ethers such as vinyl ethyl ether, α-olefins such as ethylene, propylene, and 1-butene, vinyl chloride, vinylidene chloride, and the like, but are not limited thereto.

本発明に用いるアクリル酸系共重合樹脂およびエポキシ架橋剤は水溶性が好ましい。有機溶剤溶液では引火爆発の危険性、急性、慢性の中毒及び高価な有機溶剤を使用することによりコストアップ等の問題点があり、本発明においては水系塗工剤を用いることが好ましい。しかし水溶性を付与するために必要最小限の有機溶剤を使用してもよい。 The acrylic acid copolymer resin and epoxy crosslinking agent used in the present invention are preferably water-soluble. The organic solvent solution has problems such as risk of flammable explosion, acute and chronic poisoning, and cost increase due to the use of an expensive organic solvent. In the present invention, it is preferable to use an aqueous coating agent. However, a minimum organic solvent necessary for imparting water solubility may be used.

前記の共重合体が水性分散液の場合は水溶液に比べて製膜性に劣り、接着性、耐水性、耐溶剤性に問題点があるので、酸或いは塩基の添加等により水溶化してから用いるのが好ましい。この際、用いる水性分散液は乳化剤を用いないで乳化したものが好ましい。また、少量の水溶性有機溶剤を使用して溶液重合したものは有機溶剤溶液に酸または塩基を添加することにより水溶化して用いる事もできるが、水溶化の方法はこれらに限定されるものではない。 When the above-mentioned copolymer is an aqueous dispersion, it is inferior in film-forming property as compared with an aqueous solution, and has problems in adhesion, water resistance, and solvent resistance. Is preferred. In this case, the aqueous dispersion to be used is preferably emulsified without using an emulsifier. In addition, a solution polymerized using a small amount of a water-soluble organic solvent can be used by making it water-soluble by adding an acid or base to the organic solvent solution, but the method of water-solubilization is not limited to these. Absent.

本発明に用いるアクリル酸系共重合樹脂の分子量は5,000以上100,000以下が好ましい。分子量が5,000未満であると耐水性、耐溶剤性、耐擦傷性が劣り、分子量が100,000を超えると水溶化が困難になり、かつ粘度も上昇し取扱いが困難になる。ここでいう分子量とはGPC(ゲルパーミネーションクロマトグラフィー)によるポリメタクリル酸メチルホモポリマー換算の重量平均分子量を指す。 The molecular weight of the acrylic acid copolymer resin used in the present invention is preferably 5,000 or more and 100,000 or less. When the molecular weight is less than 5,000, water resistance, solvent resistance and scratch resistance are poor, and when the molecular weight exceeds 100,000, water-solubilization becomes difficult, and the viscosity increases and handling becomes difficult. The molecular weight here refers to the weight average molecular weight in terms of polymethyl methacrylate homopolymer by GPC (gel permeation chromatography).

本発明に用いる水溶性ポリエポキシ化合物は水への溶解性があり、2個以上のエポキシ基を有する化合物であり、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール等のグリコール類1モルとエピクロルヒドリン2モルとのエーテル化によって得られるジエポキシ化合物、グリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール等の多価アルコール類1モルとエピクロルヒドリン2モル以上とのエーテル化によって得られるポリエポキシ化合物、フタル酸テレフタル酸、シュウ酸、アジピン酸等のジカルボン酸類1モルとエピクロルヒドリン2モルとのエステル化によって得られるジエポキシ化合物等が挙げられるがこれらに限定されるものではない。これらポリエポキシ化合物は本発明に用いるアクリル酸系共重合樹脂の架橋性官能基と架橋し、塗膜の耐水性、耐溶剤性を向上せしめ、更にはプラスッチックフィルムとの接着性にも寄与する。 The water-soluble polyepoxy compound used in the present invention is a compound having solubility in water and having two or more epoxy groups, such as ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, Diepoxy compounds obtained by etherification of 1 mol of glycols such as tripropylene glycol, polypropylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol and 2 mol of epichlorohydrin, glycerin, polyglycerin, tri Polyepoxy compounds obtained by etherification of 1 mol of polyhydric alcohols such as methylolpropane, pentaerythritol, sorbitol and 2 mol or more of epichlorohydrin, Phthalic acid, oxalic acid, diepoxy compounds obtained by esterification of a dicarboxylic acid 1 mol of epichlorohydrin 2 moles of adipic acid are exemplified, but the invention is not limited thereto. These polyepoxy compounds crosslink with the crosslinkable functional groups of the acrylic copolymer resin used in the present invention to improve the water resistance and solvent resistance of the coating film, and also contribute to the adhesion to the plastic film. To do.

(樹脂塗工二軸延伸ナイロンフィルムの製造方法)
本発明の樹脂塗工二軸延伸ナイロンフィルム(以下「ONyフィルム」)は、ポリアミド樹脂原料をダイスより押し出し原反を成形後、延伸して熱固定されるが、樹脂塗工は熱処理の前すなわち原反ないしは熱処理前の延伸フィルムに実施しなければならない。塗工された樹脂は熱処理によってフィルムと凝集力が飛躍的に高まり、強固な塗工層を形成することができる。樹脂塗工の方法は特に限定されるものでなく所定の薄膜塗工量が得られればよい。延伸前に塗工する方が後の延伸工程で塗工層が薄くなるので、塗工し易さの観点から好ましい。例えばグラビア塗工で固形分1g/m塗工した後、MD及びTD共3.2倍の延伸を実施すれば延伸後の塗工量は0.1g/mとなる。延伸後であって、熱処理前の延伸ナイロンフィルムに本発明の樹脂を薄膜塗工してもよい。
(Method for producing resin-coated biaxially stretched nylon film)
The resin-coated biaxially stretched nylon film (hereinafter referred to as “ONy film”) of the present invention is formed by extruding a polyamide resin raw material from a die and forming a raw material, and then stretching and heat-fixing. It must be carried out on the stretched film before the raw fabric or heat treatment. The applied resin dramatically increases the cohesive force with the film by heat treatment, and can form a strong coating layer. The method of resin coating is not particularly limited as long as a predetermined thin film coating amount can be obtained. The coating before stretching is preferred from the viewpoint of ease of coating because the coating layer becomes thin in the subsequent stretching step. For example, if a solid content of 1 g / m 2 is applied by gravure coating and then the MD and TD are stretched 3.2 times, the coating amount after the stretching is 0.1 g / m 2 . The resin of the present invention may be applied to the stretched nylon film after stretching and before heat treatment.

前記ポリアミド系原料のいずれかから構成される未延伸原反に対して、延伸倍率は、MD、およびTDそれぞれ2.8〜4.0倍の範囲であることが好ましく、特に好ましくは3.0〜3.4倍の範囲である。延伸倍率が2.8倍未満である場合、得られたONyフィルムの衝撃強度や引張強度が不十分である。また4.0倍以上の場合、延伸により過度な分子鎖のひずみが発生するため、延伸加工時に破断やパンクが頻繁に発生し、安定的に生産出来ない。二軸延伸方式としては、例えばチューブラー方式やテンター方式による同時二軸延伸、あるいは逐次二軸延伸が挙げられるが、縦横の強度バランスの点で、チューブラー法による同時二軸延伸が好ましい。このように二軸延伸加工を施すことにより、特に強度物性が飛躍的に向上し、冷間成形性に優れたONyフィルムを得ることが出来る。 With respect to the unstretched original fabric composed of any one of the polyamide-based raw materials, the draw ratio is preferably in the range of 2.8 to 4.0 times for MD and TD, particularly preferably 3.0. It is a range of ~ 3.4 times. When the draw ratio is less than 2.8 times, the impact strength and tensile strength of the obtained ONy film are insufficient. Further, when the ratio is 4.0 times or more, excessive molecular chain distortion occurs due to stretching, and thus breakage and puncture frequently occur during stretching and stable production cannot be achieved. Examples of the biaxial stretching method include simultaneous biaxial stretching by a tubular method or a tenter method, or sequential biaxial stretching, but simultaneous biaxial stretching by a tubular method is preferable from the viewpoint of longitudinal and lateral strength balance. By performing biaxial stretching in this manner, an ONy film having particularly improved strength properties and excellent cold formability can be obtained.

一般に、本発明のポリアミドフィルムは、印刷、金属蒸着、他フィルムとラミネートされるため、塗膜表面の濡れ指数は40〜52dyn/cmが好ましい。本願の樹脂塗工により濡れ指数は大きくなるため、塗膜形成後にコロナ処理等で表面処理しなくてもよい。 In general, since the polyamide film of the present invention is laminated with printing, metal deposition, or other films, the wetness index of the coating film surface is preferably 40 to 52 dyn / cm. Since the wetting index is increased by the resin coating of the present application, the surface treatment may not be performed by corona treatment after the coating film is formed.

得られた樹脂塗工延伸フィルムを熱ロール方式またはテンター方式、あるいはそれらを組み合わせた熱処理設備に任意の時間投入し、185〜215℃、特に好ましくは190〜210℃で熱処理を行うことにより、本発明のONyフィルムを得ることができる。熱処理温度が215℃よりも高い場合は、ボーイング現象が大きくなり過ぎて幅方向での異方性が増加する、または結晶化度が高くなり過ぎるため強度物性が低下してしまう。一方、熱処理温度が185℃よりも低い場合は、フィルムの熱寸法安定性が大きく低下するため、ラミネート加工時にフィルムが縮み易くなる、あるいは冷間成形後、ヒートシールして密閉する工程でデラミネーションが発生し易くなるため、実用上問題が生じる。 The obtained resin-coated stretched film is subjected to heat treatment at 185 to 215 ° C., particularly preferably at 190 to 210 ° C., for any time in a heat roll system or a tenter system, or a heat treatment facility combining them. The ONy film of the invention can be obtained. When the heat treatment temperature is higher than 215 ° C., the bowing phenomenon becomes too great and the anisotropy in the width direction increases, or the crystallinity becomes too high, resulting in a decrease in strength properties. On the other hand, when the heat treatment temperature is lower than 185 ° C., the thermal dimensional stability of the film is greatly reduced, so that the film is easily shrunk at the time of lamination, or delamination is performed in a process of heat sealing and sealing after cold forming. Is likely to occur, causing a problem in practical use.

ONyフィルムの厚みは、5〜50μm、より好ましくは10〜30μmであることが好ましい。厚みが5μmよりも小さい場合は、ラミネート包材の耐衝撃性が低くなり、冷間成形性が不十分となる。一方、50μmを超えると形状維持の強度は向上するものの、特に破断防止や成形性の向上への効果は小さく、体積エネルギー密度を低下させるだけである。 The thickness of the ONy film is preferably 5 to 50 μm, more preferably 10 to 30 μm. When the thickness is less than 5 μm, the impact resistance of the laminate packaging material becomes low, and the cold formability becomes insufficient. On the other hand, when the thickness exceeds 50 μm, the strength for maintaining the shape is improved, but the effect for preventing breakage and improving the moldability is small, and only the volume energy density is reduced.

ONyフィルムの4方向(0°(MD)、45°、90°(TD)、135°)における一軸引張破断強度、および50%モジュラス値は、一軸引張試験(試料幅15mm、標点間距離50mm、引張速度200mm/min)により得られた応力−ひずみ曲線から求める。この応力−ひずみ曲線において、4方向における引張破断強度は、いずれも240MPa以上であることが好ましく、さらに好ましくは280MPa以上である。これにより、一般的に成形しにくいとされる成形深さが大きい金型形状の場合においても、冷間成形時にONyフィルム、およびアルミニウム箔が破断し難くなり、安定して優れた成形性を確保することが出来る。4方向のうち、いずれか一方向でも引張破断強が240MPa未満の場合、冷間成形時にONyフィルムが容易に破断するようになり、特に高伸度時の引張強度が要求される成形深さが大きい金型形状を成形する場合に、安定した成形性が得られない。さらに、応力−ひずみ曲線において、4方向における50%モジュラス値は、いずれも120MPa以上であることが好ましく、さらに好ましくは150MPa以上である。これにより、特に成形深さが比較的小さい金型形状を成形する場合において、安定した成形性を確保出来る。4方向のうち、いずれか一方向でも50%モジュラス値が120MPa以上未満の場合、冷間成形時にONyフィルムが容易に破断するようになり、安定した成形性は得られない。 The uniaxial tensile strength at break and the 50% modulus value in four directions (0 ° (MD), 45 °, 90 ° (TD), 135 °) of the ONy film are determined by a uniaxial tensile test (sample width: 15 mm, distance between gauge points: 50 mm). , From a stress-strain curve obtained by a tensile speed of 200 mm / min). In this stress-strain curve, the tensile breaking strength in the four directions is preferably 240 MPa or more, and more preferably 280 MPa or more. As a result, the ONy film and aluminum foil are difficult to break during cold forming even in the case of a mold shape with a large forming depth, which is generally considered difficult to form, ensuring stable and excellent formability. I can do it. If the tensile breaking strength is less than 240 MPa in any one of the four directions, the ONy film will be easily broken during cold forming, and the forming depth that requires high tensile strength at high elongation is particularly high. When molding a large mold shape, stable moldability cannot be obtained. Furthermore, in the stress-strain curve, the 50% modulus values in the four directions are all preferably 120 MPa or more, and more preferably 150 MPa or more. Thereby, stable moldability can be ensured particularly when a mold shape having a relatively small molding depth is molded. When the 50% modulus value is less than 120 MPa or more in any one of the four directions, the ONy film easily breaks during cold forming, and stable moldability cannot be obtained.

ONyフィルムの170〜210℃における熱収縮応力の最大値は、MD、TDともに、5.0MPa以下が好ましく、成形後、ヒートシール等の二次加工時においても安定した品質を維持することができる。熱収縮応力の最大値がMD、TDいずれか一方でも5.0MPaより大きくなると、基材の熱収縮応力が大きくなり、特に200℃前後の熱が基材層に加わるヒートシール時やONyフィルムとアルミニウム箔間に印刷層が介在する場合に、アルミニウム箔層と基材層間で容易にデラミネーション(剥離)が発生するため好ましくない。 The maximum value of the heat shrinkage stress at 170 to 210 ° C. of the ONy film is preferably 5.0 MPa or less for both MD and TD, and can maintain stable quality even during secondary processing such as heat sealing after molding. . When the maximum value of heat shrinkage stress is greater than 5.0 MPa for either MD or TD, the heat shrinkage stress of the base material increases. When a printing layer is interposed between aluminum foils, delamination (peeling) easily occurs between the aluminum foil layer and the base material layer.

(ラミネート包材の構成) ラミネート包材は、前記したONyフィルムの少なくともいずれか一方の面に、1層あるいは2層以上他の基材を積層して構成されている。具体的に、他基材としては、高い防湿性を付与するための純アルミニウム箔またはアルミニウム−鉄系合金の軟質材からなるアルミニウム箔層、および密封性や耐薬品性を付与するためのポリエチレン、ポリプロピレン、マレイン酸変性ポリプロピレン、マレイン酸変性ポリエチレン、エチレン―アクリレート共重合体、アイオノマー樹脂、ポリ塩化ビニル等の未延伸フィルムからなるヒートシール層が挙げられる。一般に、アルミニウム箔層を含むラミネート包材は、冷間成形時にアルミニウム箔層の破断やピンホールが生じ易いため冷間成形に適していない。しかし本発明のONyフィルムを含むラミネート包材は、優れた成形性、耐衝撃性および耐ピンホール性を有するため、冷間での張出し成形や深絞り成形等の際に、アルミニウム層の破断を抑制できる。また、優れた接着性を有するため、200℃程度の熱が加わった場合や高温高湿度下条件においてもONyフィルムとアルミニウム箔間でのデラミネーションの発生を抑制出来る。さらに、本発明のONyフィルムはインキとの接着性にも優れていることから、必要に応じてONyフィルムとアルミニウム箔層間に印刷層を設けても品質上何ら支障は無い。 (Configuration of Laminate Packaging Material) The laminate packaging material is configured by laminating one or two or more other base materials on at least one surface of the above-described ONy film. Specifically, as other base materials, pure aluminum foil for imparting high moisture resistance or an aluminum foil layer made of a soft material of an aluminum-iron-based alloy, and polyethylene for imparting sealability and chemical resistance, Examples thereof include a heat seal layer made of an unstretched film such as polypropylene, maleic acid-modified polypropylene, maleic acid-modified polyethylene, ethylene-acrylate copolymer, ionomer resin, and polyvinyl chloride. In general, a laminate packaging material including an aluminum foil layer is not suitable for cold forming because the aluminum foil layer is easily broken or pinholes during cold forming. However, since the laminate packaging material including the ONy film of the present invention has excellent moldability, impact resistance and pinhole resistance, the aluminum layer breaks during cold stretch molding or deep drawing. Can be suppressed. Moreover, since it has excellent adhesiveness, it is possible to suppress the occurrence of delamination between the ONy film and the aluminum foil even when heat of about 200 ° C. is applied or under conditions of high temperature and high humidity. Furthermore, since the ONy film of the present invention is also excellent in adhesiveness with ink, there is no problem in quality even if a printing layer is provided between the ONy film and the aluminum foil layer as required.

ONyフィルムを含むラミネート基材の総厚みは200μm以下であることが好ましい。厚みが200μmを超える場合、冷間成形によるコーナー部の成形が困難となり、シャープな形状の成形品が得られない場合がある。 The total thickness of the laminate base material including the ONy film is preferably 200 μm or less. When the thickness exceeds 200 μm, it becomes difficult to form the corner portion by cold forming, and a molded product having a sharp shape may not be obtained.

アルミニウム箔層の厚みは20〜100μmであることが好ましい。これにより、成形品の形状を良好に保持することが可能となり、また酸素や水分等が包材内へ侵入することを防止できる。アルミニウム箔層の厚みが20μm未満である場合、ラミネート包材の冷間成形時にアルミニウム箔層の破断が生じ易く、また、破断しない場合でもピンホール等が発生し易くなるため、包材中に酸素や水分等が侵入してしまう場合がある。一方、アルミニウム箔層の厚みが100μmを超える場合、冷間成形時の破断やピンホール発生防止の効果も大きく改善されるわけではなく、総厚みが厚くなるだけで好ましくない。 The thickness of the aluminum foil layer is preferably 20 to 100 μm. Thereby, it becomes possible to hold | maintain the shape of a molded article favorably, and it can prevent that oxygen, a water | moisture content, etc. penetrate | invade into a packaging material. When the thickness of the aluminum foil layer is less than 20 μm, the aluminum foil layer is likely to break during cold forming of the laminate packaging material, and pinholes and the like are likely to occur even when the laminate packaging is not broken. Or moisture may enter. On the other hand, when the thickness of the aluminum foil layer exceeds 100 μm, the effect of preventing breakage and pinhole generation during cold forming is not greatly improved, and only the total thickness is not preferable.

本発明のONyフィルムを含むラミネート包材は、張出し成形、または深絞り成形などの冷間(常温)成形法により加工可能な性能を有する包材であり、包材総厚みが薄いにもかかわらず強度が大きいため、シャープな成形が可能であり、かつ成形時にアルミニウム箔の破断やピンホールの発生を防止したラミネート包材である。 The laminate wrapping material including the ONy film of the present invention is a wrapping material having a performance that can be processed by a cold (room temperature) forming method such as stretch forming or deep drawing, although the total thickness of the wrapping material is thin. Because of its high strength, it is a laminate packaging material that can be sharply molded and that prevents the aluminum foil from being broken or pinholes during molding.

本発明のONyフィルムを含むラミネート包材が使用される分野、および用途としては、特に腐食性の高い電解液を使用し、かつ水分や酸素の侵入を極度に嫌うリチウム二次電池用包材にもっとも適しているが、それ以外の軽量化、小型化を必要とする一次電池、二次電池などにおいても、電池ケースとして軽量で、シャープな形状の成形性が要求される場合に使用可能である。また電池用包材以外としては、ヒートシール性、耐薬品性、成形性などに優れているため、医薬品、化粧品、写真用薬品その他腐食性の強い有機溶剤を含む内容物のための容器用材料としても利用可能な包材である。 As a field where the laminate packaging material including the ONy film of the present invention is used, and as an application, particularly for a packaging material for a lithium secondary battery that uses a highly corrosive electrolytic solution and extremely hates invasion of moisture and oxygen. Although most suitable, other primary batteries and secondary batteries that require weight reduction and size reduction can also be used when the battery case is lightweight and requires sharp formability. . In addition to packaging materials for batteries, it has excellent heat sealability, chemical resistance, moldability, etc., so containers for materials containing pharmaceuticals, cosmetics, photographic chemicals, and other highly corrosive organic solvents It can also be used as a packaging material.

以下に実施例および比較例を用いて、本発明を具体的に説明する。
参考例1
(塗工剤の製造法)
塗工剤A:武田薬品工業(株)製の自己乳化型ポリウレタン樹脂”タケラック”W−6010にナガセ化成工業(株)製の水溶性ポリエポキシ化合物”デナコール”EX−521(ポリグリセロールポリグリシジルエーテル)、日信化学工業(株)製の”サーフィノール440”、及び日産化学工業(株)製のコロイダルシリカ”スノーテックス”ST−C(平均粒径10〜20nm)を70/30/0.05/5の配合比で加え、水で希釈した。
(二軸延伸ナイロンフィルムの製造) ナイロン6ペレット(相対粘度3.48)を押出機中、255℃で溶融混練した後、溶融物をダイスから円筒状のフィルムとして押出し、引き続き水で急冷して原反フィルムを作製した。次に、図1に示したように、原反の両面に予めコロナ処理し濡れ指数を上げた後、オフセットグラビアコートにより塗工剤Aを固形分で0.3g/m2両面塗工し乾燥した。この原反フィルムを一対の低速ニップロール
1間に挿通した後、中に空気を圧入しながらヒーター2、およびヒーター3で加熱すると共に、延伸終了点にエアーリング4よりエアーを吹き付けることにより、チューブラー法
によるMD、およびTD同時二軸延伸フィルム5を得た。延伸倍率は、MDが3.0倍、TDが3.2倍であった。次に、この延伸フィルム5を熱ロール式、およびテンター式熱処理設備にそれぞれ投入し、210℃で熱処理を実施し両端をトリミング後2枚に開くことにより片面に樹脂塗工されたONyフィルムを得た。なお、ONyフィルムの厚みは25μm、樹脂塗工量は0.03g/m2であった。
The present invention will be specifically described below with reference to examples and comparative examples.
Reference example 1
(Manufacturing method of coating agent)
Coating agent A: Self-emulsifying polyurethane resin “Takelac” W-6010 manufactured by Takeda Pharmaceutical Co., Ltd. and water-soluble polyepoxy compound “Denacol” EX-521 (polyglycerol polyglycidyl ether manufactured by Nagase Chemical Industries Co., Ltd.) ), “Surfinol 440” manufactured by Nissin Chemical Industry Co., Ltd., and colloidal silica “Snowtex” ST-C (average particle size 10-20 nm) manufactured by Nissan Chemical Industries, Ltd., 70/30 / 0.0. The mixture was added at a mixing ratio of 05/5 and diluted with water.
(Manufacture of biaxially stretched nylon film) After melt-kneading nylon 6 pellets (relative viscosity 3.48) at 255 ° C in an extruder, the melt was extruded as a cylindrical film from a die and then quenched with water. A raw film was prepared. Next, as shown in FIG. 1, after corona treatment is performed on both sides of the raw material in advance to increase the wetting index, the coating agent A is coated on both sides with a solid content of 0.3 g / m 2 by an offset gravure coat and dried. did. The raw film is inserted between a pair of low-speed nip rolls 1 and then heated by the heater 2 and the heater 3 while air is being pressed into the film. MD and TD simultaneous biaxially stretched films 5 by the method were obtained. The draw ratio was 3.0 times for MD and 3.2 times for TD. Next, the stretched film 5 is put into a heat roll type and a tenter type heat treatment facility, respectively, heat treated at 210 ° C., trimmed at both ends, and then opened into two sheets to obtain an ONy film coated with resin on one side. It was. The ONy film had a thickness of 25 μm and a resin coating amount of 0.03 g / m 2 .

(ONyフィルムの一軸引張破断強度、50%モジュラス値評価方法) ONyフィルムの一軸引張破断強度、50%モジュラス値の評価方法は、オリエンテック製―テンシロン(RTC−1210−A)を使用し、試料幅15mm、チャック間100mm、引張速度200mm/minにて実施した。ONyフィルム18は、23℃×50%の環境下で2時間調湿後、0℃(MD)方向/45°方向/90°(TD)方向/135°方向の4方向についてそれぞれ測定を行った。得られた応力−ひずみ曲線に基づいて、各方向での破断破断強度、および50%モジュラス値を求めた。 (Uniaxial tensile breaking strength of ONy film, evaluation method of 50% modulus value) For the evaluation method of uniaxial tensile breaking strength of ONy film and 50% modulus value, Tensylon (RTC-1210-A) manufactured by Orientec was used. The test was carried out at a width of 15 mm, a gap between chucks of 100 mm, and a tensile speed of 200 mm / min. The ONy film 18 was measured in four directions of 0 ° C. (MD) direction / 45 ° direction / 90 ° (TD) direction / 135 ° direction after humidity conditioning for 2 hours in an environment of 23 ° C. × 50%. . Based on the obtained stress-strain curve, the breaking strength in each direction and the 50% modulus value were determined.

(ONyフィルムの熱収縮応力評価方法) ONyフィルムの熱収縮応力は、SIIナノテクノロジー製−EXSTAR−TMA/SS6100を使用し、試料幅3mm、チャック間15mm、30〜245℃(昇温速度:10℃/min.)の温度プログラムにて測定した。ONyフィルムは、23℃×50%の環境下で2時間調湿後、170〜210℃で見られる最大熱収縮応力値をMD、およびTDそれぞれについて測定した。 (Method for evaluating thermal shrinkage stress of ONy film) The thermal shrinkage stress of the ONy film was SII Nanotechnology-EXSTAR-TMA / SS6100, the sample width was 3 mm, the distance between chucks was 15 mm, and the temperature was 30 to 245 ° C (temperature increase rate: 10). (° C./min.). For the ONy film, the maximum heat shrinkage stress value observed at 170 to 210 ° C. was measured for each of MD and TD after conditioning for 2 hours in an environment of 23 ° C. × 50%.

(冷間成形性、デラミネーションの発生状況評価方法) ONyフィルムを含むラミネート包材の冷間成形性を評価した。具体的には、まず得られたONyフィルムを基材層とし、樹脂塗工面をアルミニウム側としてアルミニウム箔(AA8079−O材、厚み32μm)、および未延伸ポリプロピレンフィルム〔パイレンフィルムCT−P1128(商品名)、東洋紡績製、厚み30μm〕をそれぞれドライラミネート(ドライ塗布量4.0g/m)することによりラミネート包材を得た。なお、ドライラミネート用の接着剤としては、東洋モートン(株)TM−K55/東洋モートン(株)CAT−10(配合比100/8)を用いた。また、ドライラミネート後のラミネート包材は、60℃で72時間エージングを行った。このようにして得られたラミネート包材は、23℃×50%の環境下で2時間調湿後、圧縮用金型(38mm×38mm)を用いて、未延伸ポリプロピレンフィルム側から最大荷重10MPaで冷間(常温)にて成形し、ピンホールやクラックなどの欠陥が発生しない最高成形深さを0.5mmピッチで評価した。前記方法で冷間成形したラミネート包材について、凹部分近傍の余剰部分を200℃×0.2MPa×2sec.の条件でヒートシールし、シール後のナイロン/アルミニウム箔間でのデラミネーションの発生の有無を目視にて確認した。また試料を高温高湿下条件50℃×90%RHに1週間放置し、更にデラミネーションが発生するかどうかを目視にて確認した。 (Cold-formability, evaluation method for occurrence of delamination) The cold-formability of the laminate packaging material including the ONy film was evaluated. Specifically, first, the obtained ONy film was used as a base material layer, the resin coating surface was aluminum side, aluminum foil (AA8079-O material, thickness 32 μm), and unstretched polypropylene film [pyrene film CT-P1128 (trade name) ) And Toyobo Co., Ltd., each having a thickness of 30 μm] was dry laminated (dry coating amount: 4.0 g / m 2 ) to obtain a laminate packaging material. In addition, Toyo Morton Co., Ltd. TM-K55 / Toyo Morton Co., Ltd. CAT-10 (mixing ratio 100/8) was used as an adhesive for dry lamination. The laminate packaging material after dry lamination was aged at 60 ° C. for 72 hours. The laminate packaging material thus obtained was conditioned at 23 ° C. × 50% for 2 hours, and then used a compression mold (38 mm × 38 mm) with a maximum load of 10 MPa from the unstretched polypropylene film side. Molding was performed cold (normal temperature), and the maximum molding depth at which defects such as pinholes and cracks did not occur was evaluated at a pitch of 0.5 mm. About the laminated packaging material cold-molded by the above method, the surplus portion in the vicinity of the concave portion is set to 200 ° C. × 0.2 MPa × 2 sec. The film was heat-sealed under the conditions described above, and the presence or absence of delamination between the sealed nylon / aluminum foil was visually confirmed. Further, the sample was left in a high temperature and high humidity condition of 50 ° C. × 90% RH for 1 week, and it was visually confirmed whether or not delamination occurred.

実施例2
参考例1において、延伸フィルムを熱ロール、およびテンター式熱処理設備に入れ、195℃で熱処理した以外は参考例1と同様に行った。
Example 2
In Reference Example 1, the same procedure as in Reference Example 1 was performed except that the stretched film was placed in a heat roll and a tenter type heat treatment facility and heat treated at 195 ° C.

参考例3
塗工剤B:中央理化工業(株)製の水溶性メタクリル酸メチル共重合体”リカボンド”SA−R615A(Tg67℃)にナガセ化成工業(株)製の水溶性ポリエポキシ化合物”デナコール”EX−521(ポリグリセロールポリグリシジルエーテル)及び日本触媒化学工業(株)製の真球シリカ微粒子”シーホスター”KE−P30(平均粒子径0.3μm)を75/25/0.5の配合比で加え、水で希釈した。
参考例1において、塗工剤をBにした以外は参考例1と同様に行った。
Reference example 3
Coating agent B: water-soluble methyl methacrylate copolymer “Rikabond” SA-R615A (Tg 67 ° C.) manufactured by Chuo Rika Kogyo Co., Ltd. and water-soluble polyepoxy compound “Denacol” EX- manufactured by Nagase Kasei Kogyo Co., Ltd. 521 (polyglycerol polyglycidyl ether) and true spherical silica fine particles “Seahoster” KE-P30 (average particle diameter 0.3 μm) manufactured by Nippon Shokubai Chemical Industry Co., Ltd. were added at a blending ratio of 75/25 / 0.5, Dilute with water.
The same procedure as in Reference Example 1 was performed except that the coating agent was changed to B in Reference Example 1.

参考例4
参考例1において、ONyとアルミニウム箔間に印刷層を設けた以外は参考例1と同様に行った。
Reference example 4
In Reference Example 1, the same procedure as in Reference Example 1 was performed except that a printing layer was provided between ONy and the aluminum foil.

実施例5
参考例1において、延伸フィルムを熱ロール、およびテンター式熱処理設備に入れ、195℃で熱処理し、かつONyとアルミニウム箔間に印刷層を設けた以外は参考例1と同様に行った。
Example 5
In Reference Example 1, the stretched film was placed in a heat roll and a tenter heat treatment facility, heat treated at 195 ° C., and the same procedure as in Reference Example 1 was performed except that a printing layer was provided between ONy and the aluminum foil.

比較例1
参考例1において、原反にコロナ処理及び樹脂塗工をしなかった以外は参考例1と同様に行った。
Comparative Example 1
In Reference Example 1, the same procedure as in Reference Example 1 was performed except that the original fabric was not subjected to corona treatment or resin coating.

比較例2
参考例1において、延伸フィルムを熱ロール、およびテンター式熱処理設備に入れ、220℃で熱処理した以外は参考例1と同様に行った。
Comparative Example 2
In Reference Example 1, the same procedure as in Reference Example 1 was performed except that the stretched film was put in a heat roll and a tenter type heat treatment facility and heat treated at 220 ° C.

比較例3
参考例1において、延伸フィルムを熱ロール、およびテンター式熱処理設備に入れ、150℃で熱処理した以外は参考例1と同様に行った。
Comparative Example 3
In Reference Example 1, the same procedure as in Reference Example 1 was performed except that the stretched film was placed in a heat roll and a tenter type heat treatment facility and heat treated at 150 ° C.

比較例4
参考例1において、ONyフィルムとして東洋紡績製二軸延伸ナイロンフィルム(ハーデンフィルムNAP4142、厚み25μm)を使用した以外は参考例1と同様に行った。
Comparative Example 4
In Reference Example 1, the same procedure as in Reference Example 1 was carried out except that a biaxially stretched nylon film (Harden film NAP4142, thickness 25 μm) manufactured by Toyobo was used as the ONy film.

比較例5
参考例1において、原反にコロナ処理及び樹脂塗工をせず、かつONyとアルミニウム箔間に印刷層を設けた以外は参考例1と同様に行った。
Comparative Example 5
In Reference Example 1, the same procedure as in Reference Example 1 was performed except that the original fabric was not subjected to corona treatment and resin coating, and a printing layer was provided between ONy and the aluminum foil.

表1に示すように、ポリウレタン樹脂ないしはアクリル系樹脂を片面に塗工されたONyフィルムで170〜210℃における熱収縮応力の最大値をMD、TDともに5.0MPa以下に、かつ一軸引張試験における4方向すべての破断強度を240MPa以上、50%モジュラス値を120MPa以上に調整した参考例1、実施例2および参考例3におい
ては、優れた成形性の確保とデラミネーションの抑制を両立することが出来た。また、破断強度が280MPa以上、50%モジュラス値が150MPa以上である実施例2においては、デラミネーションの発生を抑制したまま、成形性をさらに向上させることが出来た。更にONyフィルムとアルミニウム箔間の印刷層の有無に関係なく、いずれも高温高湿度下条件でデラミネーションすることが無かった。一方、樹脂塗工をしなかった比較例1、および比較例5は、成形性は良好だったものの、成形時および/または高温高湿度条件でデラミネーションが発生した。樹脂塗工された比較例2、4は成形時のデラミネーションも高温高湿度下でのデラミネーションもなかったが、参考例1、実施例2および参考例3と比較し成形性が劣っていた。また樹脂塗工された比較例3は成形性は優れていたものの、170〜210℃における熱収縮応力の最大値がMD、TDともに、あるいはMD、TDいずれも5.0MPaを超えており、いずれの条件においてもデラミネーションの発生が見られた。また4方向のいずれかの破断強度が240MPa以下、50%モジュラス値が120MPa以下の場合は成形性の低下が見られた。よって、比較例1〜比較例5はいずれも優れた成形性の確保とデラミネーションの抑制を両立することが出来なかった。
As shown in Table 1, the maximum value of heat shrinkage stress at 170-210 ° C. at 170 to 210 ° C. in an ONy film coated on one side with polyurethane resin or acrylic resin is 5.0 MPa or less in both uniaxial tensile tests. In Reference Example 1, Example 2 and Reference Example 3 in which the breaking strength in all four directions is adjusted to 240 MPa or more and the 50% modulus value is adjusted to 120 MPa or more, it is possible to achieve both excellent formability and suppression of delamination. done. In Example 2 in which the breaking strength was 280 MPa or more and the 50% modulus value was 150 MPa or more, the formability could be further improved while suppressing the occurrence of delamination. Furthermore, regardless of the presence or absence of the printed layer between the ONy film and the aluminum foil, none of them was delaminated under high temperature and high humidity conditions. On the other hand, Comparative Example 1 and Comparative Example 5 in which resin coating was not performed had good moldability, but delamination occurred during molding and / or high temperature and high humidity conditions. Resin-coated Comparative Examples 2 and 4 had neither delamination during molding nor delamination under high temperature and high humidity, but were inferior in moldability compared to Reference Example 1, Example 2 and Reference Example 3. . Moreover, although the resin-coated Comparative Example 3 was excellent in moldability, the maximum value of the heat shrinkage stress at 170 to 210 ° C. was both MD and TD, or both MD and TD exceeded 5.0 MPa. The occurrence of delamination was also observed under the above conditions. Further, when the breaking strength in any of the four directions was 240 MPa or less and the 50% modulus value was 120 MPa or less, the moldability was reduced. Therefore, all of Comparative Examples 1 to 5 could not achieve both excellent moldability and suppression of delamination.

Figure 0006222906
Figure 0006222906

本発明は冷間成形用包材、特にリチウムイオン二次電池等の電池ケース用包材の主要基材として好適に用いられる。 The present invention is suitably used as a main base material for packaging materials for cold forming, particularly packaging materials for battery cases such as lithium ion secondary batteries.

1塗工装置
2 チューブラー延伸装置のニップロール
3 チューブラー延伸装置の予熱ヒーター
4 チューブラー延伸装置の主熱ヒーター
5 チューブラー延伸装置の冷却エアーリング
6 チューブラー延伸時のフィルム
1 Coating device 2 Tubular drawing device nip roll 3 Tubular drawing device preheating heater 4 Tubular drawing device main heat heater 5 Tubular drawing device cooling air ring 6 Tubular drawing film

Claims (9)

未延伸の又は延伸後の、熱処理されていないナイロンフィルムに、ポリウレタン樹脂、その架橋剤および微粒子を主成分とする水性塗工剤を塗工後、熱処理した易接着性ナイロンフィルムであって、
該易接着性ナイロンフィルムを基材層として用いたときに、高温高湿度下、該基材層とアルミニウム箔層との間でのデラミネーションの発生を抑制することができ且つ成形性に優れ、
170〜210℃における熱収縮応力の最大値がMD、TDともに5.0MPa以下であり、一軸引張試験(試料幅15mm、チャック間距離100mm、引張速度200mm/min.)における4方向(0°(MD)、45°、90°(TD)、135°)すべての破断強度が280MPa以上であり且つ50%モジュラス値が150MPa以上であり、
前記水性塗工剤中のポリウレタン樹脂、その架橋剤および微粒子がそれぞれ下記のA、BおよびCであって、固形分重量比A/B/C=98〜30/2〜70/0.1〜10であり、該水性塗工剤の塗工量が延伸後乾燥重量で0.010〜0.050g/m であることを特徴とする二軸延伸ナイロンフィルム。
A:三重結合の二つの隣接炭素原子にいずれも水酸基及びメチル基が置換されたアセチレングリコール及び/又はそのエチレンオキサイド付加物である非イオン系界面活性剤を含有した水系ポリウレタン樹脂
B:水溶性ポリエポキシ化合物
C:平均粒子径が0.001〜1.0μmの微粒子
After or stretching of unstretched nylon film non-heat-treated, after coating the aqueous coating material mainly composed of polyurethane resin, its crosslinker and microparticles, a highly adhesive nylon film was heat-treated ,
When the easy-adhesive nylon film is used as a base material layer, it is possible to suppress the occurrence of delamination between the base material layer and the aluminum foil layer under high temperature and high humidity and is excellent in moldability.
170 to 210 the maximum value of the thermal shrinkage stress at ℃ is MD, TD and at both 5.0MPa or less, first axis tensile test (sample width 15 mm, distance between chucks 100 mm, tension rate 200 mm / min.) In the four directions (0 ° (MD), 45 °, 90 ° (TD), 135 °) all breaking strengths are 280 MPa or more and 50% modulus value is 150 MPa or more,
The polyurethane resin, the crosslinking agent and the fine particles thereof in the aqueous coating agent are the following A, B and C, respectively, and the solid content weight ratio A / B / C = 98 to 30/2 to 70 / 0.1 A biaxially stretched nylon film, characterized in that the coating amount of the aqueous coating agent is 10 to 0.050 g / m 2 in terms of dry weight after stretching.
A: Aqueous polyurethane resin containing acetylene glycol in which hydroxyl groups and methyl groups are substituted on two adjacent carbon atoms of a triple bond and / or a nonionic surfactant that is an ethylene oxide adduct thereof
B: Water-soluble polyepoxy compound
C: Fine particles having an average particle size of 0.001 to 1.0 μm
少なくとも基材層、バリア層、シーラント層により形成された冷間成形用電池ケース包材であって、前記基材層として、請求項1に記載の二軸延伸ナイロンフィルムを用い、該二軸延伸ナイロンフィルムの塗工面をバリア層側に配し、かつ前記バリア層がアルミニウム箔層であることを特徴とする冷間成形用電池ケース包材。 A battery case packaging material for cold forming formed of at least a base material layer, a barrier layer, and a sealant layer, wherein the biaxially stretched nylon film according to claim 1 is used as the base material layer. A battery case packaging material for cold forming , wherein a coated surface of a nylon film is disposed on a barrier layer side , and the barrier layer is an aluminum foil layer . 少なくとも基材層、バリア層、シーラント層により形成された冷間成形用電池ケース包
材であって、前記基材層として、請求項1に記載の二軸延伸ナイロンフィルムを用い、該二軸延伸ナイロンフィルムの塗工面に印刷層を設けて印刷をバリア層側に配し、かつ前記バリア層がアルミニウム箔層であることを特徴とする冷間成形用電池ケース包材。
A battery case packaging material for cold forming formed of at least a base material layer, a barrier layer, and a sealant layer, wherein the biaxially stretched nylon film according to claim 1 is used as the base material layer. providing a printed layer on the coated surface of the nylon film, it placed the printed layer on the barrier layer side, and cold-formed battery case packaging material, wherein said barrier layer is an aluminum foil layer.
請求項又はに記載の冷間成形用電池ケース包材を使用し、シーラント層が内面になるように張り出し成形、または深絞り成形して凹部分を形成した電池ケース。 A battery case in which the cold-forming battery case packaging material according to claim 2 or 3 is used, and a concave portion is formed by overmolding or deep drawing so that the sealant layer becomes an inner surface. 請求項に記載の電池ケースの凹部分に電池本体を収納し、密封されていることを特徴とする電池。 A battery body, wherein the battery body is housed in a recessed portion of the battery case according to claim 4 and sealed. 少なくとも基材層、バリア層及びシーラント層の順に積層して構成された、高温高湿度下、該基材層と該バリア層との間でのデラミネーションの発生を抑制することができ且つ成形性に優れた冷間成形用電池ケース包材であって、Constructed by laminating at least a base material layer, a barrier layer and a sealant layer in this order, it is possible to suppress the occurrence of delamination between the base material layer and the barrier layer under high temperature and high humidity and formability A battery case packaging material for cold forming, excellent in
前記基材層が未延伸の又は延伸後の、熱処理されていないナイロンフィルムに、ポリウレタン樹脂、その架橋剤および微粒子を主成分とする水性塗工剤を塗工後、熱処理した易接着性ナイロンフィルムであって、170〜210℃における熱収縮応力の最大値がMD、TDともに5.0MPa以下であり、一軸引張試験(試料幅15mm、チャック間距離100mm、引張速度200mm/min.)における4方向(0°(MD)、45°、90°(TD)、135°)すべての破断強度が280MPa以上であり且つ50%モジュラス値が150MPaであり、An easily-adhesive nylon film that has been heat-treated after coating a polyurethane resin, a cross-linking agent and an aqueous coating agent mainly composed of fine particles on a non-stretched or unheated nylon film with the base material layer unstretched or stretched. The maximum value of heat shrinkage stress at 170 to 210 ° C. is 5.0 MPa or less for both MD and TD, and the four directions in the uniaxial tensile test (sample width 15 mm, distance between chucks 100 mm, tensile speed 200 mm / min.). (0 ° (MD), 45 °, 90 ° (TD), 135 °) All the breaking strengths are 280 MPa or more and the 50% modulus value is 150 MPa,
前記水性塗工剤中のポリウレタン樹脂、その架橋剤および微粒子がそれぞれ下記のA、BおよびCであって、固形分重量比A/B/C=98〜30/2〜70/0.1〜10であり、該水性塗工剤の塗工量が延伸後乾燥重量で0.010〜0.050g/mThe polyurethane resin, the crosslinking agent and the fine particles thereof in the aqueous coating agent are the following A, B and C, respectively, and the solid content weight ratio A / B / C = 98 to 30/2 to 70 / 0.1 10 and the coating amount of the aqueous coating agent is 0.010 to 0.050 g / m in dry weight after stretching. 2 である二軸延伸ナイロンフィルムであり、Is a biaxially stretched nylon film,
前記バリア層がアルミニウム箔層である、電池ケース包材。A battery case packaging material, wherein the barrier layer is an aluminum foil layer.
A:三重結合の二つの隣接炭素原子にいずれも水酸基及びメチル基が置換されたアセチレングリコール及び/又はそのエチレンオキサイド付加物である非イオン系界面活性剤を含有した水系ポリウレタン樹脂A: Aqueous polyurethane resin containing acetylene glycol in which hydroxyl groups and methyl groups are substituted on two adjacent carbon atoms of a triple bond and / or a nonionic surfactant that is an ethylene oxide adduct thereof
B:水溶性ポリエポキシ化合物B: Water-soluble polyepoxy compound
C:平均粒子径が0.001〜1.0μmの微粒子C: Fine particles having an average particle size of 0.001 to 1.0 μm
前記基材層と前記バリア層との間に印刷層を設けた、請求項6に記載の冷間成形用電池ケース包材。The battery case packaging material for cold forming according to claim 6, wherein a printing layer is provided between the base material layer and the barrier layer. 請求項6又は7に記載の冷間成形用電池ケース包材を使用し、シーラント層が内面になるように張り出し成形、または深絞り成形して凹部分を形成した電池ケース。A battery case in which the cold-forming battery case packaging material according to claim 6 or 7 is used, and a concave portion is formed by overmolding or deep drawing so that the sealant layer is an inner surface. 請求項8に記載の電池ケースの凹部分に電池本体を収納し、密封されていることを特徴とする電池。A battery, wherein the battery main body is housed in a recessed portion of the battery case according to claim 8 and sealed.
JP2012189884A 2012-02-15 2012-08-30 Biaxially stretched nylon film for cold forming Active JP6222906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012189884A JP6222906B2 (en) 2012-02-15 2012-08-30 Biaxially stretched nylon film for cold forming

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012030103 2012-02-15
JP2012030103 2012-02-15
JP2012189884A JP6222906B2 (en) 2012-02-15 2012-08-30 Biaxially stretched nylon film for cold forming

Publications (2)

Publication Number Publication Date
JP2013189614A JP2013189614A (en) 2013-09-26
JP6222906B2 true JP6222906B2 (en) 2017-11-01

Family

ID=49390203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012189884A Active JP6222906B2 (en) 2012-02-15 2012-08-30 Biaxially stretched nylon film for cold forming

Country Status (1)

Country Link
JP (1) JP6222906B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220000905A (en) * 2013-09-03 2022-01-04 코진 필름 앤드 케미칼즈 가부시키가이샤 Biaxially oriented nylon film for cold molding
JP6444070B2 (en) * 2014-06-18 2018-12-26 興人フィルム&ケミカルズ株式会社 Biaxially stretched polyamide film for cold forming and packaging material using the same
EP3235859B1 (en) 2014-12-17 2020-11-18 Unitika, Ltd. Polyamide film and method for producing same
JP6819029B2 (en) * 2015-03-03 2021-01-27 凸版印刷株式会社 Exterior material for power storage device and power storage device using it
JP6592938B2 (en) * 2015-03-31 2019-10-23 大日本印刷株式会社 Battery packaging materials
CN106584953A (en) * 2016-11-14 2017-04-26 湖北宏裕新型包材股份有限公司 Automatic packaging composite film for betel nuts and preparation method of automatic packaging composite film
CN117965023A (en) * 2024-01-11 2024-05-03 昆山运城塑业有限公司 Puncture-resistant nylon film with high surface wetting tension and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576886B2 (en) * 1988-06-17 1997-01-29 株式会社興人 Easy adhesion film
JP3429386B2 (en) * 1995-03-23 2003-07-22 株式会社興人 Easy adhesion polyamide film
JP3825143B2 (en) * 1997-07-07 2006-09-20 株式会社興人 Easy-adhesive polyamide film
JP4017500B2 (en) * 2002-11-07 2007-12-05 株式会社興人 Antibacterial polyamide film
JP4422171B2 (en) * 2007-05-21 2010-02-24 昭和電工パッケージング株式会社 Battery case packaging and battery case
JP2011060501A (en) * 2009-09-08 2011-03-24 Toppan Printing Co Ltd Packaging material for lithium ion battery
JP5999674B2 (en) * 2010-02-12 2016-09-28 興人フィルム&ケミカルズ株式会社 Biaxially stretched nylon film for cold forming

Also Published As

Publication number Publication date
JP2013189614A (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP6222906B2 (en) Biaxially stretched nylon film for cold forming
JP5999674B2 (en) Biaxially stretched nylon film for cold forming
JP6032786B2 (en) Battery case packaging material for cold forming containing biaxially stretched polybutylene terephthalate film
JP6206195B2 (en) A composite body, a structure in which a sealant layer is laminated on the composite body.
JP5942385B2 (en) Power storage device exterior materials
JP5487485B2 (en) Biaxially stretched nylon film for cold forming
JP2012172091A (en) Biaxially stretched polybutylene terephthalate film and battery case packaging material for cold forming using the same
JP4978126B2 (en) Lithium battery packaging
JP6444070B2 (en) Biaxially stretched polyamide film for cold forming and packaging material using the same
JP2017157432A (en) Exterior packaging material for power storage device and power storage device
JP6205868B2 (en) Biaxially oriented polyester film
WO2015033897A1 (en) Biaxially oriented nylon film for cold molding
JP5467387B2 (en) Battery case packaging material for cold forming containing biaxially stretched nylon film
JP6222279B2 (en) Power storage device exterior materials
JP2012238491A (en) Polyester film for battery outer package, laminate for battery outer package including the same, and constitutional body
JPWO2018021398A1 (en) Stacked wound body
JP6595634B2 (en) Packaging materials and molded cases
JP2014002902A (en) Battery case packing material for cold molding including biaxially oriented polybutylene terephthalate film
JP2017177412A (en) Polyester film, and laminate material containing the same, metal foil and sealant layer
JP2015026438A (en) Battery case packaging material for cold molding
JP3429386B2 (en) Easy adhesion polyamide film
JP5566127B2 (en) Battery case packaging material for cold forming containing biaxially oriented polypropylene film
JP7352131B2 (en) Laminates, exterior materials for power storage devices, and power storage devices
JP2022056851A (en) Polyester film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160728

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6222906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250