JP2011160330A - 無線基地局および無線基地局システム - Google Patents

無線基地局および無線基地局システム Download PDF

Info

Publication number
JP2011160330A
JP2011160330A JP2010022129A JP2010022129A JP2011160330A JP 2011160330 A JP2011160330 A JP 2011160330A JP 2010022129 A JP2010022129 A JP 2010022129A JP 2010022129 A JP2010022129 A JP 2010022129A JP 2011160330 A JP2011160330 A JP 2011160330A
Authority
JP
Japan
Prior art keywords
radio base
base station
frequency
interference wave
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010022129A
Other languages
English (en)
Inventor
Atsushi Abe
敦史 阿部
Mikio Kuwabara
幹夫 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010022129A priority Critical patent/JP2011160330A/ja
Publication of JP2011160330A publication Critical patent/JP2011160330A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】無線基地局において、無線要因によるシステム問題が発生した時、サービスエリアの無線状態の実態を把握し、要因を特定する機能を提供する。
【解決手段】無線基地局において、PERMON部321は、受信信号において周波数軸上にスケジューリングされたリソースエレメントのパケット誤り率を監視する。特定の周波数スケジューリングされたパケットの誤り率が高くなった場合、PERMON部321は、当該周波数に妨害波が存在していると判断する。
【選択図】図4

Description

本発明は、無線基地局および無線基地局システムに係り、妨害波を特定する無線基地局および無線基地局システムに関する。
無線通信システムにおいて、特定の無線基地局で通信品質が低下する状況が発生した場合、通信品質が低下する要因として、無線基地局の受信感度を劣化させる妨害波が発生した可能性が有る。近年、無線通信システムは高速化し、かつVoIPニーズの圧力があり、上り無線回線に要求される通信品質が高まったことにより、妨害波の存在が無視できなくなっている。一方800MHz帯における周波数再編により新周波数帯が割り当てされ、未知なる妨害波との出会いが増えている。また加入者増によって他システムとの離調周波数が狭まったために、他システム干渉の頻度も増えている。加えてオペレータはライバルとの競争からサービス影響を最も重要視するようになっている。
特開2009−206682号公報
無線通信システムにおいて、周波数利用効率を上げることを目的として、周波数軸上でスケジューリングするシステムがある。
図1を参照して、3GPPで議論されているLTEのリソースエレメント、リソースブロックについて説明する。図1で紙面の上下方向は周波数、左右方向は時間を表している。箱1つ100はリソースエレメントと呼ばれる単位となる。リソースエレメントの時間軸の長さ103はOFDMシンボル長で決まる。また、リソースエレメントの周波数軸の長さ104はOFDMシンボルを作る際のFFT(高速フーリエ変換)の点数とシステム帯域から決まる。LTEでは、周波数軸に12個、時間軸に7個のリソースエレメントが集まってリソースブロック102(太枠で囲われた部分)を構成する。各リソースブロック内には、ハッチが掛ったリソースエレメント101が見られるが、これは、リファレンス信号が配置されるリソースエレメントを示している。リファレンス信号は、予め送信する符号が既知である信号であり、受信機側で該当時間および該当周波数の伝搬路推定に利用される。妨害波が特定の周波数に及ぶ場合、該当する周波数のリソースブロックに雑音が加算され、伝搬路推定が誤りを起こす。その結果、正しい検波処理を行なえなくなり、該当周波数付近の符号判定誤りを引き起こす。あるいは直接、データシンボルに強い雑音が加算され、該当リソースエレメントの符号判定誤りを引き起こす。
図2を参照して、平均信号電力に対する妨害波電力とパケットエラーレイトのシミュレーション結果を説明する。図2において、横軸は平均信号電力に対する妨害波電力[dB]である。また、縦軸はパケットエラーレイトである。パラメータであるTU(Typical Urban)特性は、3GPPの伝搬モデルであり、f特性を有する。AWGN(Additive White Gaussian Noise)特性は、ノイズのみ重畳するf特性のない伝搬モデルである。
受信帯域において妨害波が発生した場合、図2の妨害波発生時のパケット誤り率のシミュレーション結果に示す様に、受信帯域において各周波数に配された各キャリアの平均信号電力に対する妨害波電力の増大により、受信したユーザデータのパケット誤り率も急激に劣化する。この結果、通信品質が低下が懸念される。
本発明は、妨害波を早期に検出可能な基地局および無線基地局システム提供する。
上記課題は、通信トラフィックに応じて通信速度を制御する無線基地局において、周波数軸上でスケジューリング制御をする手段と、周波数軸上にスケジューリングされたリソースエレメントのパケット誤り率を監視する手段とを備え、監視する手段が特定の周波数スケジューリングされたパケットの誤り率が高くなったことを検出したとき、当該周波数に妨害波が存在していると判断する無線基地局により、達成できる。
また、通信トラフィックに応じて通信速度を制御する無線基地局において、周波数軸上でスケジューリング制御をする手段と、伝搬路を推定する手段とを備え、推定する手段が、隣接する周波数の伝搬路推定結果と離反する周波数を検出するとき、当該周波数に妨害波が存在していると判断する無線基地局により、達成できる。。
さらに、通信トラフィックに応じて通信速度を制御する無線基地局において、周波数軸上でスケジューリング制御をする手段と、対数尤度比を計算する尤度演算部を備え、尤度演算部が、特定の周波数で受信シンボル点がレプリカと離れたことを検出するとき、当該周波数に妨害波が存在していると判断する無線基地局により、達成できる。
また、複数の無線基地局と、これらの無線基地局と接続された運用管理局とからなる無線基地局システムにおいて、運用管理局は、無線基地局が検出した妨害波情報を管理する妨害波監視部と、無線基地局配置データベースと、妨害波情報データベースとを備え、第1の無線基地局が妨害波を検出したとき、無線基地局配置データベースを参照して、第1の無線基地局の周囲の無線基地局の妨害波情報が、妨害波情報データベースにあるか否かに基づいて、外来妨害波と内部発生妨害波とを切り分ける無線基地局システムにより、達成できる。
妨害波調査機能を利用する事により、ある地点に設置された無線基地局の特定の周波数で通信品質が低下する状況が発生した場合、その原因が妨害波に起因するものか自立的に確認し、妨害波であった場合、その妨害波が当該無線基地局内設備の故障によって内部発生したものか、外部から到来したものであるかを、遠隔操作により簡単かつ迅速に特定する事ができる。
LTEのリソースエレメント、リソースブロックを説明する図である。 妨害波発生時のパケット誤り率のシミュレーション結果である。 無線基地局RF部の構成を説明するブロック図である。 無線基地局ベースバンド部の構成を説明するブロック図である。 伝搬路推定結果のを説明する図である。 送信信号Sのコンスタレーションを説明する図である。 伝搬路hのコンスタレーションを説明する図である。 受信信号rのコンスタレーションを説明する図である。 IQ平面上の受信シンボル点とレプリカ点を説明する図である。 受信シンボル点とレプリカ点との距離を説明する図である。 LLRと受信シンボル点−レプリカ間距離の関係を説明する図である。 無線基地局および運用管理局の構成を説明するブロック図である。 妨害波監視部の動作フローチャートである。
以下、本発明の実施の形態について、実施例を用い、図面を参照しながら詳細に説明する。なお、実質同一部位には同じ参照番号を振り、説明する。
まず、無線基地局RF部400の構成について、図3を参照して説明する。また、ベースバンド部300の構成について、図4を参照して説明する。なお、ベースバンド部300とRF部400とは、CPRI(Common Public Radio Interface:団体名)インターフェースにて接続される。
図3において、複数のアンテナ401が受信した信号について、DUP(Duplexer)部402は、上り信号と下り信号に分離する。上り信号について、DUP部402は、RX(Receiver)部403に送る。RX部403は、信号増幅、周波数変換、デジタル化などの信号処理を行なう。RX部403は、信号処理後の信号を、CPRIインターフェース部404に送る。CPRIインターフェース部404は、受信信号をCPRIのフォーマットに変換する。CPRIインターフェース部404は、変換した信号を、図3でPort0と示されたベースバンド部300に送る。
CPRIインターフェース部404は、ベースバンド部300から受信した下り信号をフォーマット変換して、TX(Transmitter)部405に送信する。TX部405は、アナログ化、周波数変換、信号増幅などの信号処理を行なう。TX部405は、信号処理後の信号をDUP部402に送る。DUP部402は、上り信号と分離してアンテナ401から送信する。
図4において、RF部400が受信した信号について、CPRIインターフェース部301は、IQ16ビット、複数アンテナの信号に置き換える。変換された信号について、CPE(Cyclic Prefix Extractor)部302は、アンテナ401毎にCP(サイクリックプリフィックス)を取り除く。ここで、CPは、OFDM信号の遅延波耐性を向上させるために挿入された冗長信号である。CPが取り除かれた信号について、FFT(Fast Fourier Transform)部303は、周波数領域の情報に変換する。周波数領域に変換された情報について、SSP(Special Signal Processing)部304は、デジタルビームフォームし、アンテナエレメントの情報からビームエレメントの情報に加工する。ビームエレメントに加工された情報について、DMX(Demultiplexer)部305は、OFDMシンボル、サブキャリヤの分解能にて分離し、各チャネル要素に分解する。これをデマッピングと呼ぶ。デマッピングされた情報には、リファレンス信号が含まれる。リファレンス信号について、CE(Channel Estimation)部306は、伝搬路推定に利用する。またCE部は、リファレンス信号を用い、隣接する基地局に接続する端末からの干渉波の推定等も行なう。推定された伝搬路は、送信データの検波に利用される。送信データには、ユーザデータと制御用のデータが含まれる。制御用のデータについて、DEM(Demodulator)部310は、検波とデコード処理を行なう。DEM部310は、処理後の信号をDSP(Digital Signal Processor)部309に渡す。ユーザデータについて、推定された伝搬路を用い、MLD(Most Likelihood Detection)部307は、MLD処理を行なう。その結果得られたLLR(Log Likelihood Ratio:対数尤度比)を用いて、DEC(Decoder)部308は、デコード処理を行なう。デコード処理で得られた復号結果について、DEC部308は、DSP部309に渡す。
DSP部309は、CE部306で行なわれたチャネル推定結果、制御データのデコード結果、ユーザデータのデコード結果などを収集する。DSP部309は、ユーザデータについて、ネットワークインターフェースを通じてネットワークに送信する。DSP部309は、チャネル推定結果、制御情報などについて、メモリ311に蓄積する。DSP部309は、チャネル推定結果、制御情報などについて、内部に構築したパケットスケジューラの制御に利用する。
ネットワークから送信されてきた下りの信号について、DSP部309のメモリ311は、それらを一旦蓄積する。蓄積された下り信号について、DSP部309に内蔵されるスケジューラは、送信タイミング、送信ビーム、送信リソースブロック、変調方式を決定する。DSP部309は、その決定にしたがって送信信号に加工する。まず、メモリ311にあったユーザデータについて、CC(Channel Coding)部312は、チャネルコーディングを実施する。チャネルコーディングを終えた信号について、MOD(Modulator)部313にてQPSKなどの変調信号に変換される。変換された変調信号について、MUX(Multiplexer)部317は、OFDMシンボルのサブキャリヤに配置するマッピングを実施する。マッピング処理は、RSG(Reference Signal Generator)部316で生成したリファレンス信号、CCHCC(Control Channel Channel Coring)部314およびCCHMOD(Control Channel Modulator)部315を経由して生成された制御チャネルの情報も配置される。ここで、CCHCC部314は、DSP部309が生成した制御情報をコーディングするブロックである。また、CCHMOD部315は、コーディングされた制御情報を変調するブロックである。
MUX部317にてマッピングされた周波数領域、ビームエレメントの情報について、SSP部318は、アレイ重みが掛けられてアンテナエレメントの情報に変換する。得られたアンテナエレメントの周波数領域の情報について、IFFT(Inverse Fast Fourier Transform)部319は、時間領域の信号に変換する。得られた時間領域の信号について、CPI(Cyclic Prefix Inserter)部320は、CPを付与する。CPRIインターフェース部301は、CPRIインターフェースに変換して、RF部(RRH:Remote Radio Head)に送信する。
基地局が送信した信号について、端末は、デコードする。この際に、端末は、誤り判定を行なう。端末は、正しく受信したか、あるいは誤りであったかについて、上り回線のACKチャネルを通じて基地局に報告する。
以下、3種類の妨害波検出方法を説明する。
<実施例1>
伝搬路推定部(CE部)306において、強い妨害波を検出する。図5を参照して、伝搬路推定結果を説明する。図5は、検波前のIQ平面であり、各黒点は図1のリファレンス信号101から伝搬路を推定したものである。なお、推定方法は、後述する。図5において、矢印で示す1点だけ伝搬路推定結果が、隣接する周波数の伝搬路推定結果と離れて表示されている。この点は、大きな妨害波の影響により、ノイズが加算されて伝搬路推定結果が離散している。このことから、隣接周波数の伝搬路推定結果と、推定される雑音の範囲を超えて大きな推定誤差が検出された場合、該当する周波数に妨害波が混入したと推定する。
雑音電力は、伝搬路推定において推定することができる。具体的には、特許文献1で開示されるように、あるパイロット信号(リファレンス信号と同義)と、そのパイロット信号に隣接する複数のパイロット信号から推定された該当周波数の予測される推定値との差を計算し、その差を雑音によって発生したものと仮定して雑音電力を推定する方法などがある。
得られた雑音電力と比較し、隣接するパイロットに対して、例えば3σ以上の誤差が、特定の周波数において、連続して発生する場合にアラームを挙げるようにする。
伝搬路推定の方法について、補足説明する。図6は、送信信号のIQ平面上の信号のコンスタレーションである。図6ではQPSK変調を想定している。送信した信号Sは伝搬路hの影響を受けて位相が回転し、振幅も変化する。図7に示すような伝搬路hを経由したとすると、受信された信号rは、図8のようになる。これを式で表すと、
Figure 2011160330
(式1)となる。式1で得られた受信信号から、伝搬路hを推定するには、送信信号Sの複素共役を受信信号に掛けることで得られる。これが
Figure 2011160330
(式2)である。ここで、アスタリスク(*)は複素共役の演算を表す。また、hの上のチルダ(~)は推定値を示す。リファレンス信号では、送信信号Sが既知であるため、その既知信号の複素共役値を該当する受信信号に掛けることで伝搬路推定値が得られる。
<実施例2>
MLD部307において、強い妨害波を検出する。MLD部307では、受信信号からLLR(対数尤度比)を計算している。以下、LLRの求め方について説明する。
図6では、2ビットの情報を送信可能なQPSKシンボルを送る。その各ビットについて対数尤度比を、以下の手順で求める。すなわち、2ビットの各ビットに注目し、送信側が0を送ったと仮定した場合の確率P0を計算する。また、送信側が1を送ったと仮定した場合の確率P1を計算する。そして、それら確率の比をとり、更に対数をとったもの、log(P0/P1)を計算する。
ここで、各ビットとは、送信情報Sをビット情報に分割し、(b0、b1)のように2ビットとして表したとすると、その内の1ビットに注目することを意味する、例えばb0のビットだけに注目すると、他のビットb1の組合せ2通り全てについて考え、P0およびP1の確率計算を行なう。ただし、2通り全てについて確率を計算することは大変であるため、計算量を削減するために、MAX log MAP近似がよく知られている。これは、本来は上記の2通り全てを考えるべきところを、メトリックが最小となるビットの組合せだけを選択して、そのビット組合せによる確率でP0あるいはP1を近似する方法である。
ノイズがガウス分布であると仮定すれば、確率はexp(−x^2)の形で表される。この式でx^2の部分が図9にて矢印示している受信シンボル点とレプリカ点との距離の二乗であるメトリックに相当する。尤度比は、商計算であるが、対数演算により、P0/P1を、単にlog(P0)−log(P1)という差の演算に置き換えることができる。また、P0あるいはP1の計算に必要となるexpの演算も消すことができる。結局、対数尤度比は、あるビットに注目し、そのビットが0あるいは1と仮定した場合に、他のビットの組合せを全て考え、メトリックが最小となるものを選択し、そのメトリックが、log(P0)あるいはlog(P1)になることを利用し、その差を計算したものとなる。この演算を2つのビット全てについて行なう。
得られた2つのビットに対応する2つの対数尤度比は、正負の値をとる実数である。その意味は、正値をとるならば、0が送られたと考える確率の方が高い情報であったことを示す指標である。また、その正の値が大きな値であるほど、送信情報が0であることが確からしいことを意味する。
逆に、負の値をとるならば、1が送られたと考える確率の方が高い情報であったことを意味する指標である。その負の値が小さな値であるほど、送信情報が1であることが確からしいことを意味する。得られた対数尤度比は、上記の例では、2つあるビット毎、順に正負の実数として、メモリなどに蓄積する。
具体例を挙げ、上記の説明を補足する。図6を送信符号とする。具体的にはS=”00”が送られていたとする。平面上では、S=(0.70,0.70)の情報が送信されていたとする(図6の第1象限の黒丸)。受信される信号について、それぞれに伝搬路が掛かり合成されr=(0.11,−0.43)となる(図8の第2象限の”00”)。実際には、受信信号には雑音が乗ってしまうため、図9の白点R=(0.50,−0.40)が受信される。このとき、Sの第1ビットについてP0を考える。S=”0x”(xは任意)が送られていたとすると、P0には2通りの組合せが考えられる。伝搬路を掛けて、レプリカを作ると、図9に示す4通りのレプリカが出来上がる。これらのレプリカを使い、受信点とのメトリックを計算する。ここではS=”00”を送ったとしたレプリカとS=”01”を送ったとしたレプリカとを比較すると、S=”00”を送ったと考える場合のメトリックが小さい。MAX log MAP近似では、最も距離の近いレプリカだけを考えるため、P0は
Figure 2011160330
(式3)となる。同様にP1を計算する。図9に示す4通りのレプリカを使い、受信点とのメトリックを計算する。ここではS=”10”を送ったとしたレプリカとS=”11”を送ったとしたレプリカとを比較すると、S=”10”を送ったと考える場合のメトリックが小さい。MAX log MAP近似では、最も距離の近いレプリカだけを考えるため、P1は
Figure 2011160330
(式4)となる。対数尤度比は
Figure 2011160330
(式5)となる。この値は正値であるので、0をとる尤度が1をとる尤度よりも高いことを示している。
上述では、送信アンテナ数1、受信アンテナ数1のSISO(Single Input Single Output)の場合を例にあげて、LLRの求め方を説明したが、MIMO(Multiple Input Multiple Output)についても同様な処理を使ってLLRを求めることができる。
強い妨害波が特定の周波数に混入した場合、図10に示すように、特定の周波数のシンボルにおいて、受信シンボル点がレプリカと離れる現象が見られる。図10において、2つのレプリカ点は、Y軸上の(0,+1)、(0,−1)に配置されているとした。受信シンボル点は、Y軸上の(0,+6)にあり、”0”の信頼性が高いと通常みなされる。
図11は、強い妨害波が特定の周波数に混入した際のLLRを簡易的に計算したものである。図11において、横軸は受信シンボル点のY軸上の座標、また縦軸はその際のLLRを示す。図11において、2つのレプリカ点は、Y軸上の(0,+1)、(0,−1)に配置されているとした。
図11から、受信シンボル点が中心点(Y軸上の原点)から離れるにしたがってLLRが大きくなる。受信シンボル点が中心点から離れるにしたがって、その点の信頼性が高いように見える結果がでる。しかし、この結果は、該当するシンボルに強い妨害波が混入した結果である。すなわち、妨害波によって、本来は0の情報を送っていたにも関わらず、LLRが負値で大きな値をとってしまうと、後段のブロックである複号ブロック(DEC部)308にて誤り訂正ができなくなり、パケットエラーとなってしまう。
そこで、上記で説明したLLRにおいて、隣接周波数のLLRと比較し、予め定められた閾値と比較して大きな差異が見られる場合に該当する周波数に妨害波が混入したと推定する。特定の周波数において、連続して妨害波の混入と考えられる現象が発生する場合にアラームを挙げるようにする。
<実施例3>
ユーザデータのパケット誤り率について、PERMON部321は、特定の周波数スケジューリングされたパケットデータの誤り率が高くなっていないか常時監視する。もし、特定の周波数でスケジューリングされたユーザデータのパケット誤り率が高くなった場合、PERMON部321は当該周波数に妨害波の存在が存在していると判断する。従来、端末毎にパケット誤り率を算出する仕組みは検討されている。しかし、特にOFDMAシステムでは、DSP309に内蔵されるパケットスケジューラによって、様々な周波数にパケット割当てが分散するようにスケジューリングされてしまう。これにより周波数ダイバーシチ効果が生まれるが、特定の周波数に妨害波が混入したことを突き止めることは困難になっている。そこで、本実施例では、ユーザ毎ではなく、リソースブロック毎に誤り率を集計するブロックを設け、その誤り率を他のリソースブロックと比較することで、特定の周波数に問題が発生していないかをモニタする。
本機能の利点は、先に説明した2つの方法は、いずれも上りの回線の監視しかできなかったが、本機能であれば、端末から報告される受信パケットのACK情報から、下りについてもモニタすることができる点である。
<実施例4>
実施例1ないし実施例3では、基地局装置の受信機において、妨害波の検出を行なうことを説明した。実施例4は、複数の基地局の監視による妨害波判定を説明する。
一般に基地局装置は、1つのロケーションに複数のアンテナ分の装置がコロケーションして置かれている。具体的には、3セクタ構成の基地局では、3つの基地局装置が1つラックなどに収容されている。
妨害波は、その発生源は基地局の設置とは何ら関係がないため、3セクタ構成の場合でもどの方向に妨害波が混入するかは不明である。また、妨害波が非常に強い場合、アンテナ利得によるFB比(アンテナが向く最大利得方向と、アンテナが後ろを向くバック方向の利得比)を考えても複数のセクタに妨害波が混入するケースがあると考えられる。そのため、複数のセクタを連携させて特定の周波数において、伝搬路推定の結果に問題がないか、LLRの計算結果に問題がないか、周波数リソース毎のパケット誤り率に問題がないかをチェックすることで、より妨害波の存在を際立たせることが可能である。
同様に、隣接する基地局を連携させて監視することもできる。これを図12を参照して、説明する。図12において、無線基地局システム700は、複数の無線基地局600と、運用管理局500とから構成される。運用管理局500は、無線基地局I/F部504、妨害波監視部505、妨害波情報データベース507、無線基地局配置情報データベース506から構成される。無線基地局600は、ベースバンド部300、RF部400から構成される。無線基地局I/F部504は、複数の無線基地局600を接続する。妨害波監視部505は、無線基地局600で検出した妨害波を監視する。妨害波情報データベース507は、妨害波情報を蓄積する。無線基地局配置情報データベース506は、無線基地局配置情報を保持する。
図12の無線基地局システム700で、無線基地局600−Aだけでなく、無線基地局600−Bにおいて、同一の周波数において誤り率が高いアラームが上がった場合、その結果は、ネットワークに接続される運用管理局500に報告される。運用管理局500は、無線基地局I/F部504を通じて接続する妨害波監視部505に通知する。妨害波監視部505は、無線基地局配置情報データベース506を参照して、該当する基地局における妨害波情報の収集を指示し、結果を妨害波情報データベース507に収容する。オペレータは、妨害波情報データベースの結果を参照することで、より素早い判断を行ない、該当するリソースブロックの閉鎖などの指示を行なうことができる。
図13を参照して、妨害波監視部505の処理を説明する。図13において、妨害波監視部505は、接続された無線基地局600からの妨害波情報を監視する(S11)。妨害波監視部505は、妨害波検出を受信したか判定する(S12)。NOのとき、妨害波監視部505は、ステップ11に戻る。ステップ12で、無線基地局から妨害波検出のアラームが上がってきたことを検知と(YES)、妨害波監視部505は、無線基地局配置情報データベースを参照し、周辺基地局を判定し、該当局における妨害波検出記録を参照する(S13)。妨害波監視部505は、参照結果から同一周波数における妨害波を観測したかを判定する(S14)。YESのとき、妨害波監視部505は、外来妨害波と判定して(S16)、ステップ11に戻る。ステップ14でNOのとき、基地局内部で発生した妨害波と判断して(S17)、ステップ11に戻る。
なお、ステップ16と、ステップ17の判定結果は、アラーム等でし、オペレータに報告する。
<実施例5>
実施例5は、下り信号処理における妨害波検出を記載する。下り信号処理における妨害波検出は、上り信号処理における妨害波検出の実施例3を適用する。
ユーザデータのパケット誤り率について、PERMON(Packet Error Rate Monitor)部321は、特定の周波数スケジューリングされたパケットデータの誤り率が高くなっていないか常時監視する。誤り率の監視は、端末から送信され、基地局が受信するACK情報を用いる。HARQ(Hybrid Automatic Repeat reQuest)実施時には、再送回数に依存して誤り率が変化してしまう。このため、PERMON部321は、第1回目のように、予め定めた再送回数時の誤り率を統計量として蓄積する。
特定の周波数スケジューリングされたユーザデータのパケット誤り率が高くなった場合、PERMON部321は、当該周波数に妨害波の存在が存在していると判断する。
100…リソースエレメント、101…リファレンス信号が配置されるリソースエレメント、102…リソースブロック、300…無線基地局ベースバンド部、301…CPRIインターフェース部、302…CPE部、303…FFT部、304…SSP部、305…DMX部、306…CE部、307…MLD部、308…DEC部、309…DSP部、310…DEM部、311…メモリ部、312…CC部、313…MOD部、314…CCHCC部、315…CCHMOD部、316…RSG部、317…MUX部、318…SSP部、319…IFFT部、320…CPI部、321…PERMON部、400…無線基地局RF部、401…アンテナ、402…DUP部、403…RFRX部、404…CPRIインターフェース部、405…RFTX部、500…運用管理局、504…無線基地局I/F部、505…妨害波監視部、506…無線基地局配置情報データベース部、507…妨害波情報データベース部、600…無線基地局、700…無線基地局システム。

Claims (4)

  1. 通信トラフィックに応じて通信速度を制御する無線基地局において、
    周波数軸上でスケジューリング制御をする手段と、周波数軸上にスケジューリングされたリソースエレメントのパケット誤り率を監視する手段とを備え、
    前記監視する手段が特定の周波数スケジューリングされたパケットの誤り率が高くなったことを検出したとき、当該周波数に妨害波が存在していると判断することを特徴とする無線基地局。
  2. 通信トラフィックに応じて通信速度を制御する無線基地局において、
    周波数軸上でスケジューリング制御をする手段と、伝搬路を推定する手段とを備え、
    前記推定する手段が、隣接する周波数の伝搬路推定結果と離反する周波数を検出するとき、当該周波数に妨害波が存在していると判断することを特徴とする無線基地局。
  3. 通信トラフィックに応じて通信速度を制御する無線基地局において、
    周波数軸上でスケジューリング制御をする手段と、対数尤度比を計算する尤度演算部を備え、
    前記尤度演算部が、特定の周波数で受信シンボル点がレプリカと離れたことを検出するとき、当該周波数に妨害波が存在していると判断することを特徴とする無線基地局。
  4. 複数の無線基地局と、これらの無線基地局と接続された運用管理局とからなる無線基地局システムにおいて、
    前記運用管理局は、前記無線基地局が検出した妨害波情報を管理する妨害波監視部と、無線基地局配置データベースと、妨害波情報データベースとを備え、第1の無線基地局が妨害波を検出したとき、前記無線基地局配置データベースを参照して、前記第1の無線基地局の周囲の無線基地局の妨害波情報が、前記妨害波情報データベースにあるか否かに基づいて、外来妨害波と内部発生妨害波とを切り分けることを特徴とする無線基地局システム。
JP2010022129A 2010-02-03 2010-02-03 無線基地局および無線基地局システム Pending JP2011160330A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010022129A JP2011160330A (ja) 2010-02-03 2010-02-03 無線基地局および無線基地局システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010022129A JP2011160330A (ja) 2010-02-03 2010-02-03 無線基地局および無線基地局システム

Publications (1)

Publication Number Publication Date
JP2011160330A true JP2011160330A (ja) 2011-08-18

Family

ID=44591879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010022129A Pending JP2011160330A (ja) 2010-02-03 2010-02-03 無線基地局および無線基地局システム

Country Status (1)

Country Link
JP (1) JP2011160330A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014033981A1 (ja) * 2012-09-03 2014-03-06 日本電気株式会社 受信装置、基地局及び信号測定方法
JP2017076851A (ja) * 2015-10-13 2017-04-20 株式会社東芝 無線通信装置および無線通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503354A (ja) * 1993-09-14 1996-04-09 ノキア テレコミュニカシオンス オサケ ユキチュア ベース基地無線チャネルの監視方法
JP2002171564A (ja) * 2000-11-30 2002-06-14 Nec Corp 無線通信システム
JP2005204307A (ja) * 2004-01-14 2005-07-28 Samsung Electronics Co Ltd 通信システムにおける干渉及び雑音推定装置及びその方法
JP2005318052A (ja) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd ブランチメトリック演算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503354A (ja) * 1993-09-14 1996-04-09 ノキア テレコミュニカシオンス オサケ ユキチュア ベース基地無線チャネルの監視方法
JP2002171564A (ja) * 2000-11-30 2002-06-14 Nec Corp 無線通信システム
JP2005204307A (ja) * 2004-01-14 2005-07-28 Samsung Electronics Co Ltd 通信システムにおける干渉及び雑音推定装置及びその方法
JP2005318052A (ja) * 2004-04-27 2005-11-10 Matsushita Electric Ind Co Ltd ブランチメトリック演算方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014033981A1 (ja) * 2012-09-03 2014-03-06 日本電気株式会社 受信装置、基地局及び信号測定方法
JP2017076851A (ja) * 2015-10-13 2017-04-20 株式会社東芝 無線通信装置および無線通信方法

Similar Documents

Publication Publication Date Title
US11290990B2 (en) Terminal apparatus, base station apparatus, and communication method
US11323156B2 (en) Base station apparatus, terminal apparatus, and communication method
US10965389B2 (en) OFDM system with reverse link interference estimation
US11283565B2 (en) Base station apparatus, terminal apparatus, and communication method
JP5259639B2 (ja) 無線通信システム及び方法、基地局装置
JP5399412B2 (ja) 無線通信システム、及び無線通信方法
US20210091902A1 (en) Base station apparatus, terminal apparatus, and communication method
US8654745B2 (en) Technique for signal transmission mode determination in wireless communication system and apparatus for same
US11228476B2 (en) Base station apparatus, terminal apparatus, and communication method
US11290997B2 (en) Base station apparatus, terminal apparatus, and communication method
JP2013504951A (ja) Mcsレベルを調整するための方法及び基地局
CN106465475B (zh) 基站装置、终端装置以及通信方法
US20200220680A1 (en) Base station apparatus, terminal apparatus, and communication method
KR101457690B1 (ko) 통신 시스템에서 간섭 신호를 제거하기 위한 수신 장치 및 방법
KR20120138169A (ko) 무선 통신 시스템에서 신호 수신 장치 및 방법
WO2022073615A1 (en) Arrangement for removing transmitter power amplifier distortion at a receiver
KR20070074708A (ko) 무선 통신 시스템에서 채널 상태 추정 장치 및 방법
US8619885B2 (en) Radio communication system
US20210135810A1 (en) Base station apparatus, terminal apparatus, and communication method
JP2011160330A (ja) 無線基地局および無線基地局システム
US20210135724A1 (en) Base station apparatus, terminal apparatus, and communication method
US10050820B2 (en) Apparatus and method for modulation/demodulation for transmitting and receiving signal in wireless communication system
Harada et al. A TV white space wireless broadband prototype for wireless regional area network
JP6362156B2 (ja) 無線通信システム、無線通信装置および無線通信方法
KR102487892B1 (ko) 선박 중심 직접 통신 시스템 및 이의 실행 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008