JP2011159501A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2011159501A
JP2011159501A JP2010020358A JP2010020358A JP2011159501A JP 2011159501 A JP2011159501 A JP 2011159501A JP 2010020358 A JP2010020358 A JP 2010020358A JP 2010020358 A JP2010020358 A JP 2010020358A JP 2011159501 A JP2011159501 A JP 2011159501A
Authority
JP
Japan
Prior art keywords
battery
sealing
control valve
lead
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010020358A
Other languages
Japanese (ja)
Inventor
Kenichi Hata
憲一 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010020358A priority Critical patent/JP2011159501A/en
Publication of JP2011159501A publication Critical patent/JP2011159501A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems wherein sealing structures of an individual exhaust system and a collective exhaust system used for a lead-acid battery of a conventional monoblock type battery case are different between types of the lead-acid batteries, and can not be standardized and shared; reduction of a size and weight of the battery, prolongation of service life, enhancement of efficiency of maintenance, and cost reduction or the like are restricted; as mounting and sealing of a sealing component are nearly the same, a sealing component can not be mounted at an optimal time point; and total cost reduction by optimization of cost distribution can not be carried out. <P>SOLUTION: Common cap-like sealing components and common sealing component mounting parts are arranged on two adjacent battery cells. A pressure control valve or the like, which suppresses moisture dissipation of an electrolyte and suppresses deformation caused by an inner pressure of an outer wall of a battery case and a battery cell barrier wall, is mounted thereon. A liquid injection port and gas ventilation port are opened and closed by rotating the sealing component to standardize and share the sealing structure, and problems of the cost reduction or the like of the lead-acid battery of the monoblock type battery case are improved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複数の電池セルを持つ鉛蓄電池に関する。  The present invention relates to a lead acid battery having a plurality of battery cells.

従来の前記鉛蓄電池の内部発生ガスの排気方法は、個別排気方式と一括排気方式とが一般的である。個別排気方式は、電槽蓋に設けられた電池セル毎の注液口に液栓を螺合するか圧力制御弁を直接装着するかのいずれかで封口し、電池セル毎に排気する。液栓には防沫体、防爆フィルター、圧力制御弁等が装着され、着脱可能となっている。圧力制御弁を直接装着する場合は、内圧上昇時の圧力制御弁脱落を防止するため圧力制御弁押さえ蓋が電槽蓋に固着され、圧力制御弁は一般的に着脱不能である。一括排気方式は、注液口からのガスを一括して排気するための電槽上蓋を電槽蓋に熱融着する。この場合は注液口が電槽上蓋で覆われているため、別途に注液口を設けない限り補水は出来ない。
このように、従来の内部発生ガスの排気方法即ち注液口封口方法には「発明の効果」や「発明を実施するための形態」の項にも示すように鉛蓄電池の種類に応じて各種のタイプがあり、注液口封口構造、注液方法、注液口封口方法、関連する製造工程や鉛蓄電池の保守方法等について特許文献1〜6に示すような種々の改善方法が提案されている。
Conventional exhaust methods for internally generated gas of the lead-acid battery are generally an individual exhaust method and a collective exhaust method. In the individual exhaust system, a battery plug is screwed into a liquid injection port for each battery cell provided on the battery case lid or a pressure control valve is directly mounted, and the battery cell is exhausted. The liquid stopper is equipped with a splash-proof body, an explosion-proof filter, a pressure control valve, and the like, and is removable. When the pressure control valve is directly mounted, the pressure control valve holding lid is fixed to the battery case lid to prevent the pressure control valve from falling off when the internal pressure rises, and the pressure control valve is generally not removable. In the batch exhaust method, a battery case upper lid for exhausting gases from the liquid injection port at once is heat-sealed to the battery case cover. In this case, since the liquid injection port is covered with the upper lid of the battery case, water cannot be replenished unless a liquid injection port is provided separately.
As described above, there are various methods for exhausting internally generated gas, that is, liquid filling and sealing methods, depending on the type of lead-acid battery as shown in the section of “Effects of the Invention” and “Mode for Carrying Out the Invention”. There have been proposed various improvement methods as shown in Patent Documents 1 to 6 regarding the injection port sealing structure, the injection method, the injection port sealing method, the related manufacturing process, the maintenance method of the lead storage battery, etc. Yes.

特開2001-102026 密閉型鉛蓄電池とその製造方法Patent application title: Sealed lead-acid battery and method for manufacturing the same 特開2003-142148 鉛蓄電池JP 2003-142148 lead acid battery 特開2003-142151 即用式鉛蓄電池およびその使用方法JP2003-142151 IMMEDIATE TYPE LEAD BATTERY AND METHOD OF USING THE SAME 特許4224762 制御弁式鉛蓄電池Patent 4422762 Controlled valve storage battery 特開2008-146895 鉛蓄電池JP2008-146895 Lead acid battery 特開2008-186690 鉛蓄電池JP 2008-186690 Lead acid battery

前記のように鉛蓄電池の種類に応じて注液口封口構造が異なり、全体としての共通化・標準化がされておらず、また、各々の注液口封口構造には以下に示す欠点がある。
液栓を使用する封口方法は、電池セル毎の液栓とこの装着のためのコストがかかり、液栓のため極板より上部の高さを低く出来ず鉛蓄電池の小型化の障害となる欠点がある。圧力制御弁を使用する封口方法は、電池セル毎の圧力制御弁とこの装着のためのコストがかかり、圧力制御弁が着脱不能のため電解液減少時の補水又は補液が出来ない欠点がある。一括排気方式は、電槽上蓋とこれを電槽蓋に熱融着するコストがかかり、電池セル毎に注液口と密栓を別途に設けなければ電解液減少時の補水又は補液が出来ない欠点がある。
また、従来の鉛蓄電池の封口部品(液栓、圧力制御弁、電槽上蓋)の注液口への装着や電槽蓋への熱融着と封口とは、ほぼ同義で同時に行われる。したがって、封口部品を装着した状態では電解液注液や装置内部のガス置換・減圧が出来ない構造となっており、封口部品を封口前の最適の時点で予め装着することが出来ない。また、封口関連部品のVA(価値分析)も封口部品の装着と封口は同義が前提条件となっており、改善効果もこの範囲に限定されている。さらに注液後の製造ラインに封口部品装着装置の設置・管理が必要で、封口部品装着装置トラブルによる製造ライン全体の稼働率低下の原因にもなっている。
As described above, the liquid injection port sealing structure differs depending on the type of the lead storage battery, and the liquid injection port sealing structure is not standardized or standardized as a whole, and each liquid injection port sealing structure has the following drawbacks.
The sealing method using a liquid stopper requires a liquid stopper for each battery cell and the cost for mounting it, and the height above the electrode plate cannot be lowered due to the liquid stopper, which is an obstacle to miniaturization of lead-acid batteries. There is. The sealing method using the pressure control valve has a drawback that it requires a pressure control valve for each battery cell and the cost for mounting it, and the pressure control valve cannot be attached or detached, so that replenishment or replenishment cannot be performed when the electrolyte is reduced. The batch exhaust method requires the cost of heat-sealing the battery case lid and heat-sealing it to the battery case lid, and it is not possible to refill or replenish the electrolyte when the electrolyte is reduced unless a separate injection port and sealing plug are provided for each battery cell. There is.
In addition, the mounting of a conventional lead storage battery sealing component (liquid stopper, pressure control valve, battery case upper lid) to the liquid injection port, heat fusion to the battery case lid, and sealing are performed simultaneously with substantially the same meaning. Therefore, in a state in which the sealing part is attached, the electrolyte solution injection and the gas replacement / decompression in the apparatus cannot be performed, and the sealing part cannot be attached in advance at the optimal time before sealing. In addition, the VA (value analysis) of sealing-related parts is premised on the same meaning for the installation and sealing of sealing parts, and the improvement effect is also limited to this range. Furthermore, it is necessary to install and manage the sealing part mounting device in the production line after the liquid injection, which causes a reduction in the operating rate of the entire manufacturing line due to the trouble of the sealing part mounting device.

本発明は、上記のような課題に鑑みその課題を解決すべく創案されたものであって、隣接する複数の電池セルに対し、前記隣接する複数の電池セル共通の封口部品と前記隣接する複数の電池セル共通の封口部品装着部とを設けることにより、各種類の鉛蓄電池について封口構造と封口関連部品の共通化・標準化を図るとともに、小型化と軽量化及び、長寿命化及び、保管中の保守業務の効率化及び、随時の補水・補液並びに、安全性の向上が可能な鉛蓄電池を提供することを目的とする。ここで前記隣接する複数の電池セルとは、電池セルが直列配置される12V系等の鉛蓄電池においては隣接する2個の電池セルを、電池セルが格子状に配置される24V系や36V系の鉛蓄電池においては隣接する4個又は2個の電池セルを意味する。また、封口部品を装着した状態で注液や装置内部のガス置換・減圧が出来る注液口封口構造という新たな視点でのVA(価値分析)により、トータルコストダウンを行う。即ち、最適な時点で封口部品が装着可能であることにより部品コスト及び、設備関連コスト並びに、労務コストの最適配分化によるトータルコストダウンされた鉛蓄電池を提供することをも目的とする。 The present invention has been devised in view of the problems as described above to solve the problem, and for a plurality of adjacent battery cells, the sealing parts common to the plurality of adjacent battery cells and the plurality of adjacent adjacent battery cells. By providing a common sealing part mounting part for all types of battery cells, it is possible to standardize and standardize the sealing structure and sealing-related parts for each type of lead-acid battery, while reducing the size and weight, extending the service life, and storing it. It is an object of the present invention to provide a lead storage battery capable of improving the efficiency of maintenance work, rehydrating and replenishing water as needed, and improving safety. Here, the plurality of adjacent battery cells refers to two adjacent battery cells in a 12V lead acid battery in which battery cells are arranged in series, such as a 24V system or a 36V system in which the battery cells are arranged in a grid. In the lead storage battery, it means four or two adjacent battery cells. In addition, we will reduce the total cost by VA (value analysis) from a new viewpoint of the injection port sealing structure that allows injection and gas replacement / depressurization inside the device with the sealing parts attached. That is, another object of the present invention is to provide a lead-acid battery whose total cost is reduced by optimally allocating component costs, equipment-related costs, and labor costs, because the sealing parts can be mounted at an optimal time.

これらの課題を解決するために成した第一の発明は、複数の電池セルを持つ鉛蓄電池において、前記隣接する複数の電池セルに対し、前記隣接する複数の電池セル共通の封口部品装着部を設け、該封口部品装着部に、電池セル毎の電解液注液用通路及び、電池セル毎又は前記隣接する複数の電池セル共通の外部通気路を備え、前記隣接する複数の電池セル共通の封口部品を、前記封口部品装着部に装着することにより前記電解液注液用通路を封口することを特徴とする鉛蓄電池である。前記封口部品の装着方法には、前記封口部品と前記封口部品装着部の形状に対応して圧入・螺合・当接等の種々の方法があるが、キャップ状の封口部品を前記封口部品装着部に着脱可能に外嵌する方法が最も簡便で安全弁機能も持たせることが可能な方法である。また、前記外部通気路は、排気又は吸気又は双方に使用され、必要な場合は防爆用フィルターが設けられる。 A first invention made to solve these problems is a lead-acid battery having a plurality of battery cells, wherein a sealing part mounting portion common to the plurality of adjacent battery cells is provided for the plurality of adjacent battery cells. Provided with an electrolyte solution injection path for each battery cell and an external air passage common to each of the battery cells or the plurality of adjacent battery cells in the sealing component mounting portion. The lead storage battery is characterized in that the electrolyte solution injection passage is sealed by mounting a component on the sealing component mounting portion. The sealing component mounting method includes various methods such as press-fitting, screwing, and abutting according to the shape of the sealing component and the sealing component mounting portion, and the cap-shaped sealing component is mounted on the sealing component. The method of externally detachably fitting to the part is the simplest and can provide a safety valve function. The external air passage is used for exhaust or intake or both, and an explosion-proof filter is provided if necessary.

第二の発明は、電池セル内で発生したガス中の水分を凝縮し結露させるとともに前記外部通気路に接続された電池セル毎の排気室を、前記封口部品装着部にさらに設けたことを特徴とする第一の発明にかかる鉛蓄電池である。前記排気室は、凝縮・結露能力を向上するため可能な限り分割した小室を経由するようにするとともに凝縮し結露した水分が電池セル内に還流するように底面に段差や勾配を設ける。また、前記排気室は、電槽蓋と一体成形される前記封口部品装着部に設けられるため上面が開放した状態で成形されるが、該上面は前記封口部品で封口する構造とする方がよい。前記上面を密閉し前記底面を開放した状態でも前記一体成形が可能であるが、別途に電池セル毎の底面部材が必要となり、コストアップになる。 The second invention is characterized in that moisture in the gas generated in the battery cell is condensed and condensed, and an exhaust chamber for each battery cell connected to the external air passage is further provided in the sealing part mounting portion. The lead storage battery according to the first invention. The exhaust chamber passes through small chambers divided as much as possible in order to improve the condensation / condensation capability, and is provided with a step or a gradient on the bottom surface so that the condensed and condensed water flows back into the battery cell. Further, the exhaust chamber is provided in the sealing part mounting portion that is integrally formed with the battery case lid, so that the upper surface is formed in an open state, but the upper surface is preferably sealed with the sealing part. . The integral molding is possible even when the upper surface is sealed and the bottom surface is opened, but a separate bottom member for each battery cell is required, resulting in an increase in cost.

第三の発明は、前記外部通気路を開閉することによって電池セル内の圧力を制御する圧力制御弁を、前記封口部品装着部にさらに設けたことを特徴とする第一又は第二の発明にかかる鉛蓄電池である。前記圧力制御弁には、電池内の上昇圧力を制御する加圧制御弁と電池内の減圧を制御する減圧制御弁があり、いずれか又は双方を用いる。 A third invention is the first or second invention, wherein a pressure control valve for controlling the pressure in the battery cell by opening and closing the external air passage is further provided in the sealing part mounting portion. Such a lead storage battery. The pressure control valve includes a pressurization control valve for controlling the rising pressure in the battery and a pressure reduction control valve for controlling the pressure reduction in the battery. Either one or both are used.

第四の発明は、第三の発明の構成において、電池セル内の上昇圧力を制御する前記加圧制御弁のみを設けた場合に、常時通気可能な微小通気路が外部に開口していることを特徴とする第三の発明にかかる鉛蓄電池である。前記微小通気路は、電解液の水分消失量にほとんど影響を与えないようなわずかな通気量によって電池セル内の内圧を大気圧に収束させるために設ける。最終的に全ての電池セルが同一圧力(大気圧)に収束し、電槽の外壁や電池セル間の隔壁の圧力差による塑性変形が防止される。 According to a fourth aspect of the present invention, in the configuration of the third aspect, when only the pressurization control valve for controlling the rising pressure in the battery cell is provided, a micro-ventilation passage that can be continuously vented is opened to the outside. A lead-acid battery according to a third invention characterized by the above. The micro air passage is provided in order to converge the internal pressure in the battery cell to the atmospheric pressure with a slight air flow amount that hardly affects the water loss of the electrolytic solution. Finally, all the battery cells converge to the same pressure (atmospheric pressure), and plastic deformation due to the pressure difference between the outer wall of the battery case and the partition walls between the battery cells is prevented.

第五の発明は、前記隔壁の肉厚の最適化を図るため、前記圧力制御弁が共通の電池セル間の隔壁の肉厚を、他の電池セル間の隔壁の肉厚より薄くしたことを特徴とする第三の発明にかかる鉛蓄電池である。前記圧力制御弁が共通でない電槽ケースの電池セル間の隔壁には、前記圧力制御弁間の開閉動作圧力のバラツキで発生する差圧が働くため差圧を考慮して肉厚を厚くする必要があるが、前記圧力制御弁が共通な隔壁には差圧が発生しないので肉厚を薄く出来る。前記圧力制御弁が共通でない電槽蓋の電池セル間の隔壁については、受圧面積が小さく電槽蓋で補強されているので必ずしも厚くする必要は無い。 According to a fifth aspect of the present invention, in order to optimize the wall thickness of the partition wall, the pressure control valve is configured such that the partition wall thickness between the common battery cells is thinner than the partition wall thickness between the other battery cells. It is the lead acid battery concerning 3rd invention characterized by the above-mentioned. The partition wall between battery cells of the battery case that does not share the pressure control valve is subjected to a differential pressure generated by the variation in the opening / closing operation pressure between the pressure control valves, so it is necessary to increase the thickness in consideration of the differential pressure. However, since the differential pressure does not occur in the partition wall where the pressure control valve is common, the wall thickness can be reduced. The partition walls between the battery cells of the battery case lid that do not share the pressure control valve need not necessarily be thick because the pressure receiving area is small and reinforced with the battery case cover.

第六の発明は、前記圧力制御弁間の開閉動作圧力のバラツキで発生する前記圧力制御弁が共通でない電池セル間の隔壁変形を抑制するため、前記圧力制御弁が共通でない電池セル間の隔壁に微小通気口を設けたことを特徴とする第三又は第五の発明にかかる鉛蓄電池である。前記微小通気口は電槽蓋の隔壁に微小穴を設けるか、電槽蓋の電槽との熱融着部に微小な三角形等の切込みを設けて熱融着しない部分を設ける。切込みの形状は、前記微小通気口を形成できればよく三角形にはこだわらない。 According to a sixth aspect of the present invention, there is provided a partition wall between battery cells not sharing the pressure control valve in order to suppress partition wall deformation between the battery cells not sharing the pressure control valve, which is generated due to variation in the opening / closing operation pressure between the pressure control valves. A lead storage battery according to the third or fifth aspect of the present invention, characterized in that a micro vent is provided in the battery. The minute ventilation hole is provided with a minute hole in the partition wall of the battery case lid, or a portion that is not thermally fused by providing a notch such as a small triangle in a heat fusion part between the battery case and the battery case. The shape of the cut is not particularly limited to a triangle as long as the minute ventilation hole can be formed.

第七の発明は、前記封口部品を前記封口部品装着部に装着した状態で電解液の注液や電池セル内のガス置換を可能とするため、前記封口部品装着部に装着された前記封口部品を回動することにより、前記封口部品装着部と前記封口部品とで前記電解液注液用通路を構成する第一の装着状態と前記電解液注液用通路が前記封口部品で封口される第二の装着状態とが、選択的に維持可能に構成されることを特徴とする第一〜第六のいずれかの発明にかかる鉛蓄電池である。 In a seventh aspect of the present invention, the sealing component mounted on the sealing component mounting portion enables the injection of electrolyte or gas replacement in the battery cell in a state where the sealing component is mounted on the sealing component mounting portion. The first mounting state in which the electrolyte injection passage is constituted by the sealing component mounting portion and the sealing component, and the electrolyte injection passage is sealed by the sealing component. The lead-acid battery according to any one of the first to sixth aspects, wherein the second mounting state is configured to be selectively maintainable.

第八の発明は、前記外部通気路又は、前記圧力制御弁で開閉される前記外部通気路又は、前記微小通気路を備え前記加圧制御弁で開閉される前記外部通気路のうちの少なくとも一つを、前記封口部品装着部に設けず前記封口部品に設けたことを特徴とする第一〜第七のいずれかの発明にかかる鉛蓄電池である。前記封口部品装着部の機能の一部を前記封口部品に移行するこの構造は、前記封口部品装着部の形状の単純化とともに、前記排気室の面積をより多く確保するための構造である。 The eighth invention provides at least one of the external ventilation path, the external ventilation path opened and closed by the pressure control valve, or the external ventilation path provided with the minute ventilation path and opened and closed by the pressurization control valve. The lead-acid battery according to any one of the first to seventh inventions, wherein one is provided in the sealing part without being provided in the sealing part mounting part. This structure in which a part of the function of the sealing part mounting part is transferred to the sealing part is a structure for simplifying the shape of the sealing part mounting part and securing a larger area of the exhaust chamber.

本発明による効果には各種類の鉛蓄電池に共通な効果と種類ごとに異なる個別効果があり、種類ごとに異なる個別効果については代表的な種類について以下に示す。また、類似の構造を持つ鉛蓄電池に対しても以下の代表的な種類の鉛蓄電池と同様な効果がある。(代表的な種類の鉛蓄電池に対する個別効果は、「発明を実施するための形態」の項に記載した内容を参照) The effects of the present invention include the effects common to each type of lead-acid battery and the individual effects that differ for each type. The individual effects that differ for each type are shown below for typical types. In addition, a lead storage battery having a similar structure has the same effect as the following typical types of lead storage batteries. (For the individual effects on typical types of lead-acid batteries, refer to the contents described in the section “Mode for Carrying Out the Invention”)

1)各種類の鉛蓄電池に共通な効果
前記の第一〜第六の発明を採用した場合の共通効果を以下に記載する。
a)各種類の鉛蓄電池について、前記個別排気方式に比べ前記封口部品及び前記封口部品装着部の個数が半数以下に削減されるとともに、封口構造と封口関連部品の共通化・標準化が可能となり、トータルコストダウンされる。
b)製品在庫・流通・保管・使用中のいずれの段階においても、電槽の外壁と電池セル隔壁の変形が抑制され、電槽の塑性変形による各種の不具合と電槽亀裂による電解液漏出が防止される。これにより電槽の使用材質・肉厚の設計条件が緩和されて重量軽減とコストダウンが可能となる。
c)キャップ状の前記封口部品を前記封口部品装着部に着脱可能に外嵌すれば、電池内圧が異常上昇したときに内部ガスを放出し電槽の亀裂・破裂を防止する緊急ガス放出弁にも代用出来るので、該緊急ガス放出弁を別途設ける必要が無く安全性が向上する。
d)また、前記第七の発明を採用した場合の共通効果は、前記封口部品が最適な時点で装着可能となるため、部品コスト(部品代・部品管理コスト)及び、設備関連コスト(設備投資額・償却費・維持管理費用)及び、労務コスト(直接・間接)並びに、製造ライン全体の稼働率を含めたコスト配分の最適化によるトータルコストダウンが可能となる。
1) Effects common to each type of lead-acid battery Common effects when the first to sixth inventions are adopted are described below.
a) For each type of lead-acid battery, the number of sealing parts and sealing part mounting parts is reduced to less than half compared to the individual exhaust system, and the sealing structure and sealing-related parts can be shared and standardized. Total cost is reduced.
b) At any stage of product inventory, distribution, storage, and use, deformation of the outer wall of the battery case and the battery cell partition wall is suppressed, and various problems due to plastic deformation of the battery case and electrolyte leakage due to battery case cracking Is prevented. As a result, the design conditions for the material and thickness of the battery case are relaxed, and weight reduction and cost reduction are possible.
c) When the cap-shaped sealing part is detachably fitted to the sealing part mounting part, an emergency gas release valve that releases internal gas when the battery internal pressure rises abnormally and prevents cracking or rupture of the battery case Can be substituted, so that it is not necessary to provide the emergency gas release valve separately, and safety is improved.
d) In addition, the common effect of adopting the seventh invention is that the sealing part can be mounted at the optimal time, so that the part cost (part cost / part management cost) and the equipment related cost (capital investment) Total cost reduction by optimizing the cost allocation including the total production line utilization rate and labor cost (direct / indirect) and labor cost (direct / indirect).

2)制御弁付の始動用鉛蓄電池への個別効果。
自動車始動用の液式鉛蓄電池は、充分な量の電解液を持ち内部発生ガス(水の電気分解ガス・水蒸気・電解液ミスト)のガス放出口が常時開放されている鉛蓄電池である。しかし使用期間中に電解液の水分消失があるため補水が必要である。これに対して内圧が上昇したときにのみ動作する前記加圧制御弁をガス放出口に装着して水分消失を抑制し、ほぼ補水不要とした制御弁式始動用鉛蓄電池や制御弁付の始動用鉛蓄電池が提案されている。これに対して前記の第二・第三・第四・第七の発明を採用した実施例1及び前記の第二・第三・第五・第六・第七の発明を採用した実施例2と実施例3における効果を以下に記載する。
a)従来の液栓を使用せず極板より上部の高さを低く出来るため、小型化が可能な分割排気式の鉛蓄電池を提供出来る。また、小型化のためにも採用される前記一括排気方式鉛蓄電池と比較して、前記上蓋や前記上蓋の電槽蓋への熱融着を必要とせず、補水のための各電池セルに対する注液口や封口栓も別途設ける必要が無く、これらに必要な部品代及び成型金型費用並びに装着コストが削減される。
b)電解液の水分消失量が従来の制御弁式鉛蓄電池と同等又はこれ以下となり、補水不要の長寿命な始動用鉛蓄電池を低コストで提供出来る。特に実施例2と実施例3では大幅に長寿命化される。また、もし補水が必要な時は随時に車載状態でも出来る。
c)保管期間中に電槽変形防止のための補充電等の保守業務が不要で、これが必要な現状と比較し製品在庫・流通・保管、特に輸出入において受け入れ側の設備負担及び保管コストの削減効果が大きい。
2) Individual effects on starting lead-acid batteries with control valves.
A liquid lead-acid battery for starting an automobile is a lead-acid battery that has a sufficient amount of electrolyte and has a gas discharge port for an internally generated gas (water electrolysis gas, water vapor, electrolyte mist) always open. However, water replenishment is necessary due to the loss of water in the electrolyte during the period of use. On the other hand, the pressure control valve that operates only when the internal pressure rises is attached to the gas discharge port to suppress the loss of moisture and start with a control valve type start-up storage battery that does not require rehydration or a control valve Lead storage batteries have been proposed. In contrast, the first embodiment adopting the second, third, fourth and seventh inventions and the second embodiment adopting the second, third, fifth, sixth and seventh inventions. And the effect in Example 3 is described below.
a) Since the height above the electrode plate can be lowered without using a conventional liquid stopper, a split exhaust lead acid battery capable of being miniaturized can be provided. In addition, compared with the package exhaust type lead-acid battery that is also adopted for miniaturization, it does not require heat fusion to the upper lid or the battery case lid of the upper lid, and it is a note for each battery cell for water replenishment. There is no need to provide a liquid port and a sealing plug separately, and the parts cost, molding die cost, and mounting cost necessary for these are reduced.
b) The amount of water lost in the electrolytic solution is equal to or less than that of the conventional control valve type lead acid battery, and a long life start lead acid battery that does not require rehydration can be provided at low cost. Especially in Example 2 and Example 3, the service life is significantly extended. Also, if rehydration is necessary, it can be done on-board at any time.
c) Maintenance work such as supplementary charging to prevent battery case deformation is not required during the storage period, and compared to the current situation where this is necessary, the equipment burden and storage cost on the receiving side in product inventory / distribution / storage, especially in import / export Reduction effect is great.

3)制御弁付の即用式鉛蓄電池への個別効果。
即用式鉛蓄電池は自動車の始動用等に用いられるが、電槽化成後に電解液を排出し密封を行った状態で製品在庫・流通・保管され、使用前に電解液を注液すれば使用可能となる鉛蓄電池である。これに対して実施例2とほぼ同様の構成を採用した実施例4と、実施例3とほぼ同様の構成を採用した実施例5における効果を以下に記載する。
a)前記の制御弁付の始動用鉛蓄電池への個別効果のa)項と同じ効果がある。
b)前記の制御弁付の始動用鉛蓄電池への個別効果のb)項と同じ効果がある。
c)前記の制御弁付の始動用鉛蓄電池への個別効果のb)項と同じ効果がある。さらに、即用化のための前記液栓の別途添付や脱着作業が不要で、注液作業が非常に簡略化される。
3) Individual effects on ready-to-use lead-acid batteries with control valves.
Ready-to-use lead-acid batteries are used for starting automobiles, etc., but are used if products are stocked, distributed and stored in a state where the electrolyte is discharged and sealed after the battery is formed, and the electrolyte is injected before use. Lead-acid battery that can be used. On the other hand, the effect in Example 4 which employ | adopted the structure substantially the same as Example 2 and Example 5 which employ | adopted the structure substantially the same as Example 3 is described below.
a) The same effect as the item a) of the individual effect on the starting lead-acid battery with the control valve is obtained.
b) The same effect as the item b) of the individual effect on the starting lead-acid battery with the control valve is obtained.
c) It has the same effect as the item b) of the individual effect on the starting lead-acid battery with the control valve. Furthermore, it is not necessary to separately attach or remove the liquid stopper for immediate use, and the liquid injection work is greatly simplified.

4)制御弁式鉛蓄電池への個別効果。
負極吸収式の制御弁式鉛蓄電池は自動車始動用等に用いられるが、電解液量を抑制して極板を一部露出させ充電時に正極極板から発生した酸素ガスを負極極板に吸収させることにより水分消失が抑制される密閉型鉛蓄電池で、内部ガス圧が上昇した時に内部ガスを放出する前記加圧制御弁が注液口に設けられる。これに対して実施例2又は実施例3とほぼ同様の構成を採用した実施例6における効果を以下に記載する。
a)前記液栓を使用せず極板より上部の高さを低く出来るため、小型化が可能な分割排 気式の鉛蓄電池を提供出来る。従来必要であった前記制御弁押さえ蓋及び該押さえ蓋の電槽蓋への熱融着等の装着工程が不要となり、コストダウンされる。また、前記押さえ蓋のため従来出来なかった補水が随時に出来るのでさらに寿命延長が出来る。
b)前記の制御弁付の始動用鉛蓄電池への個別効果のb)項と同じ効果がある。
c)前記の制御弁付の始動用鉛蓄電池への個別効果のb)項と同じ効果がある。
d)減圧注液方法により正・負極板内及び電池セル間の化成ばらつきの減少による放電容量の安定化と鉛蓄電池の寿命改善の効果がある。
4) Individual effects on control valve type lead acid batteries.
The negative electrode absorption control valve type lead acid battery is used for starting automobiles, etc., but the negative electrode plate absorbs oxygen gas generated from the positive electrode plate during charging by suppressing the amount of electrolyte and partially exposing the electrode plate. Thus, in the sealed lead-acid battery in which the disappearance of moisture is suppressed, the pressurization control valve for releasing the internal gas when the internal gas pressure increases is provided in the liquid injection port. On the other hand, the effect in Example 6 which employ | adopted the structure substantially the same as Example 2 or Example 3 is described below.
a) Since the height above the electrode plate can be lowered without using the liquid stopper, a split exhaust type lead-acid battery capable of being miniaturized can be provided. Installation steps such as heat fusion of the control valve pressing cover and the pressing cover to the battery case cover, which have been necessary in the past, are unnecessary, and the cost is reduced. In addition, since the water can be replenished at any time due to the presser lid, the life can be further extended.
b) The same effect as the item b) of the individual effect on the starting lead-acid battery with the control valve is obtained.
c) It has the same effect as the item b) of the individual effect on the starting lead-acid battery with the control valve.
d) The reduced pressure injection method has the effect of stabilizing the discharge capacity and improving the life of the lead-acid battery by reducing the variation in formation within the positive and negative electrode plates and between the battery cells.

5)24V系又は36V系の鉛蓄電池への個別効果。
24V系や36V系の鉛蓄電池は、電池セルが格子状に配置される。これに対して本発明を採用した実施例7における効果を以下に記載する。
a)前記個別排気方式の24V系又は36V系の鉛蓄電池に比べ、前記封口部品及び前記封口部品装着部の個数が大幅に削減され、部品コスト(部品代・管理コスト)及び装着コストが削減される。24V系では12セットから3セットに、36V系では18セットから5セット(4電池セル共通4セット及び2電池セル共通1セット)又は6セット(4電池セル共通3セット及び2電池セル共通3セット)に削減される。
b)12V系の同種の鉛蓄電池と同様の効果がある。
5) Individual effects on 24V or 36V lead acid batteries.
In 24V and 36V lead acid batteries, the battery cells are arranged in a grid. On the other hand, the effect in Example 7 which employ | adopted this invention is described below.
a) Compared to the individual exhaust type 24V or 36V lead acid battery, the number of the sealing parts and the sealing part mounting part is greatly reduced, and the part cost (part cost / management cost) and the mounting cost are reduced. The 24V series from 12 sets to 3 sets, 36V series from 18 sets to 5 sets (4 sets common to 4 battery cells and 1 set common to 2 battery cells) or 6 sets (3 sets common to 4 battery cells and 3 sets common to 2 battery cells) ).
b) It has the same effect as a 12V lead-acid battery of the same type.

実施例1、2、4、6の鉛蓄電池の第二の装着状態の外観説明図。External appearance explanatory drawing of the 2nd mounting state of the lead acid battery of Example 1, 2, 4, 6. 実施例1、2、4、6の鉛畜電池の第一、第二の装着状態を示す説明図で、注液経路とガス放出経路についても説明する。図2−1、3は第一の装着状態を示す説明図(平面図、断面図)、図2−5、6は封口部品を180度回動した第二の装着状態を示す説明図(平面図、断面図)、図2−2、4は封口部品及び加圧制御弁並びに防爆フィルターを除いた封口部品装着部の説明図(平面図、断面図)である。It is explanatory drawing which shows the 1st, 2nd mounting state of the lead livestock battery of Example 1, 2, 4, 6 and demonstrates a liquid injection path | route and a gas discharge | release path | route. FIGS. 2-1 and 3 are explanatory diagrams (plan view, cross-sectional view) showing the first mounting state, and FIGS. 2-5 and 6 are explanatory diagrams (plan view) showing the second mounting state in which the sealing part is rotated 180 degrees. FIGS. 2-2, 4 are explanatory views (plan view, cross-sectional view) of the sealing part mounting portion excluding the sealing part, the pressure control valve, and the explosion-proof filter. 実施例3、5、6の鉛蓄電池の第二の装着状態の外観説明図。External appearance explanatory drawing of the 2nd mounting state of the lead acid battery of Example 3, 5, 6. FIG. 実施例3、5、6の鉛畜電池の第一、第二の装着状態を示す説明図で、注液経路とガス放出経路についても説明する。図4−1、3は第一の装着状態を示す説明図(平面図、断面図)、図4−5、6は封口部品を180度回動した第二の装着状態を示す説明図(平面図、断面図)、図4−2、4は封口部品を除いた封口部品装着部の説明図(平面図、断面図)である。It is explanatory drawing which shows the 1st, 2nd mounting state of the lead livestock battery of Example 3, 5, and 6, and also demonstrates a liquid injection path | route and a gas discharge | release path | route. FIGS. 4-1 and 3 are explanatory diagrams (plan view, cross-sectional view) showing the first mounting state, and FIGS. 4-5 and 6 are explanatory diagrams (plan view) showing the second mounting state where the sealing part is rotated 180 degrees. FIGS. 4-2 and 4 are explanatory views (a plan view and a sectional view) of the sealing part mounting portion excluding the sealing part. 実施例1〜6の制御弁装着部の説明図で、排気経路と吸気経路についても説明する。図5−1、2は加圧制御弁装着部、図5−3は減圧制御弁装着部の説明図である。Exhaust paths and intake paths will also be described with reference to the control valve mounting portions of the first to sixth embodiments. 5A and 5B are explanatory views of the pressurization control valve mounting portion, and FIG. 実施例1、2の加圧制御弁装着部8jを電池セル毎に設けた場合の鉛畜電池の第一、第二の装着状態を示す説明図で、ガス放出経路についても説明する。図6−1は第一の装着状態を示す説明図、図6−3は封口部品を180度回動した第二の装着状態を示す説明図、図6−2は封口部品を除いた封口部品装着部の説明図である。In the explanatory view showing the first and second mounting states of the lead-acid battery when the pressurization control valve mounting portion 8j of the first and second embodiments is provided for each battery cell, the gas discharge path will also be described. FIG. 6A is an explanatory diagram illustrating the first mounting state, FIG. 6-3 is an explanatory diagram illustrating a second mounting state in which the sealing component is rotated 180 degrees, and FIG. 6-2 is a sealing component excluding the sealing component. It is explanatory drawing of a mounting part. 実施例3の加圧制御弁装着部8jと減圧制御弁装着部8tを電池セル毎に設けた場合の鉛畜電池の第一、第二の装着状態を示す説明図で、ガス放出経路についても説明する。図7−1は第一の装着状態を示す説明図、図7−3は封口部品を180度回動した第二の装着状態を示す説明図、図7−2は封口部品を除いた封口部品装着部の説明図である。It is explanatory drawing which shows the 1st, 2nd mounting state of the lead live battery at the time of providing the pressurization control valve mounting part 8j and pressure reduction control valve mounting part 8t of Example 3 for every battery cell, and also about a gas discharge path | route. explain. FIG. 7-1 is an explanatory diagram showing the first mounting state, FIG. 7-3 is an explanatory diagram showing a second mounting state in which the sealing component is rotated 180 degrees, and FIG. 7-2 is a sealing component excluding the sealing component. It is explanatory drawing of a mounting part. 加圧制御弁及び常時通気用微小溝を封口部品装着部に設けず、封口部品に設けた場合の説明図である。It is explanatory drawing at the time of not providing a pressurization control valve and the micro groove | channel for regular ventilation in a sealing component mounting part, but providing in a sealing component. 減圧制御弁を封口部品装着部に設けず、封口部品に設けた場合の説明図である。It is explanatory drawing at the time of providing a pressure-reduction control valve in a sealing component, without providing in a sealing component mounting part. 実施例7の24V系の鉛蓄電池の第一及び第二の装着状態の外観説明図(平面図)である。FIG. 7 is an external appearance explanatory view (plan view) of the first and second mounting states of the 24V lead storage battery of Example 7.

具体的な封口構造は、鉛蓄電池の種類と用途によって多少異なるので代表的な種類の鉛蓄電池について本発明の封口構造を以下に記載する。ただし、以下の記載事項は代表例を示すもので、類似の構造となる鉛蓄電池にも適用され、記載例に限定されるものではない。また、符号は、同一の機能を持つものに対しては同一又は類似の符号を極力使用して説明する。 Since the specific sealing structure differs somewhat depending on the type and application of the lead storage battery, the sealing structure of the present invention will be described below for a typical type of lead storage battery. However, the following description items show typical examples, and are also applied to lead storage batteries having a similar structure, and are not limited to the description examples. In addition, the same reference numerals are used for those having the same function as much as possible.

1)制御弁付の始動用鉛蓄電池(1)
前記の第二・第三・第四・第七の発明を採用した前記圧力制御弁を備えた始動用鉛蓄電池に対する実施例を以下に記載する。従来の制御弁式始動用鉛蓄電池では電解液量が抑制されており注液口は各電池セルに設けられ前記加圧制御弁又は前記加圧制御弁付液栓で各々が封口されるが、本実施例では注液口封口構造以外は従来の充分な電解液量を持つ液式の始動用鉛蓄電池とし、前記隣接する電池セル2個に対して、前記隣接する電池セル2個共通の封口部品装着部を設け、これに前記の電池セル毎の電解液注液用通路(注液口)及び、電池セル内で発生したガス中の水分を凝縮し結露させる前記の電池セル毎の排気室並びに、前記の常時通気用の微小通気路を持ち前記加圧制御弁が装着された前記共通の外部通気口を設ける。前記共通の封口部品は、キャップ状とし電池セル毎の注液口と前記共通のガス放出口を設ける。
各構成要素の構成と作用は以下の通りである。(図1、2、5参照)
1) Lead-acid storage battery with control valve (1)
Embodiments for the lead-acid storage battery for starting having the pressure control valve adopting the second, third, fourth and seventh inventions will be described below. In the conventional lead-acid battery for control valve type starting, the amount of electrolyte is suppressed, and the injection port is provided in each battery cell, and each is sealed with the pressure control valve or the liquid stopper with the pressure control valve, In this embodiment, a liquid type lead acid storage battery having a sufficient amount of electrolytic solution is used except for the liquid inlet sealing structure, and the two adjacent battery cells have a common sealing against the two adjacent battery cells. Provided with a component mounting part, an electrolyte injection passage (injection port) for each battery cell, and an exhaust chamber for each battery cell for condensing and condensing moisture in the gas generated in the battery cell In addition, the common external ventilation opening having the micro ventilation path for the continuous ventilation and having the pressurization control valve mounted thereon is provided. The common sealing part has a cap shape and is provided with a liquid injection port for each battery cell and the common gas discharge port.
The configuration and operation of each component are as follows. (See Figures 1, 2, and 5)

a)本実施例の注液口封口構造以外は前記の従来の液式の始動用鉛蓄電池のもので、6電池セルのモノブロック式電槽に正・負極板とセパレーターが内蔵されており電槽蓋が熱融着され外部端子が形成される。正・負極板及び正・負外部端子は、電槽蓋の熱融着前に電気接続されている。本実施例では、電槽蓋に設けた注液口封口構造関連についてのみ詳述する。
b)封口部品装着部8aは、合成樹脂製の電槽蓋8と一体成形される。封口部品装着部8aは、電池セル隔壁8b上に中心を持つわずかに円錐形の円盤状で、上面中心部にタッピングネジ11の下穴8cを持つ。内部には、電池セル毎に注液口8h及び排気室隔壁8eで区分され連続した排気室8d並びに第二の装着状態で封口部品10の注液口10hを封口する柱状部8gを、底面にはガス流入口8fを、電池セル隔壁8b上には前記共通の加圧制御弁装着部8jを設ける。ガス流入口8fの形状は1〜3mm×2〜4mmの長方形が良い。封口部品10の内面と接触する排気室隔壁8eの上端面等は、貼り付きを回避するため接触面積の極力少ないU形等の形状とする。各電池セルの排気室8dと加圧制御弁装着部8jの間には、排気絞り用細幅縦溝8iを設ける。発生ガス中の水分・電解液ミストは、排気絞り用細幅縦溝8iに到達するまでにほとんど排気室8dで凝縮し結露して電池セル内に還流し、電解液や水分が隣接する電池セルにガス体として移動することは少ないが、排気絞り用細幅縦溝8iにより各電池セルの発生ガスが直接的に隣接する電池セルに流入するのを出来るだけ防止する。加圧制御弁装着部8jには、中心部に円錐状の封口面8mを持つ柱状突起部8kを、周辺部に通気用の縦溝8pを設ける。封口面8mには常時通気用微小溝8nを2〜3個設ける。常時通気用微小溝8nの寸法は、高さ1mm、幅0.4mm程度とする。排気室8dの底面はガス流入口8fのある排気室の底面を最下位に順次高くして凝縮し結露した水分・電解液がガス流入口8fより電池セル内に還流するようにする。ガス流入口8fの下部には電解液や電解液飛沫がガス流入口8fに直接流入し難くするための下側筒状部8qを設け、内部には階段状の排出経路8rを、側壁には細幅の通気用スリット8sを設ける。排出経路8rは、電解液や電解液飛沫が排気室8dに直接流入し難くするため経路の断面を変化させる。排出経路8rに替えて下側筒状部8qの内部に従来の液栓内部に装着されるような防沫体を装着してもよい。
c)5〜15kPaで開弁する加圧制御弁13を加圧制御弁装着部8jに、防爆用フィルター12を加圧制御弁13の円筒状部13aに、気密に圧入する。加圧制御弁13は、合成ゴム又は熱可塑性エラストマー又は合成樹脂等の弾性体で作られ、円筒状部13aと薄肉弁13bで構成され、薄肉弁13bの中心にガス放出口13cを持つ。加圧制御弁13と防爆用フィルター12は圧入により保持されるだけでなく、封口部品10の頭部10aにより脱落しないように押さえられている。また、加圧制御弁13と防爆用フィルター12とのいずれかは、気密に頭部10aの内面に押圧されている。薄肉弁13bの封口面の貼り付きが懸念される場合には封口面にシリコンオイル又はグリス等のシール剤を塗布する方がよい。または、フッ素樹脂等のコーティングをしてもよい。
d)前記緊急ガス放出弁ともなるキャップ状の封口部品10は、合成ゴム又は熱可塑性エラストマー又は合成樹脂等の弾性体で作られ、頭部10aと外周部の薄肉リブ10bで構成される。頭部10aには、中心部に回動用の六角頭部10dとタッピングネジ11の取り付け穴10cが、外周部に2個の注液口10hと前記共通のガス放出口10jが設けられる。封口部品10の開弁圧は、電槽が亀裂しない圧力以下、例えば25〜35kPaに設定する。封口部品10は、加圧制御弁13と防爆用フィルター12とが装着された電槽蓋8の封口部品装着部8aに気密に着脱可能に外嵌するとともに、タッピングネジ11で回動可能に固定する。タッピングネジ11を使用せず、鍔付圧入ピンを圧入してもよい。また、密封性の向上と封口時の回転抵抗の減少を行うため、少なくとも薄肉リブ10bの内面にはシリコンオイル又はグリス等の潤滑シール剤を塗布する。または、フッ素樹脂等のコーティングをしてもよい。
e)封口部品10が装着された電槽蓋8は、正・負極板とセパレーターが組み込まれた電槽に熱融着され、注液口10hから注液可能となる。電槽蓋8は封口部品10が前記の第一の装着状態で購入・保管し、製造ラインに投入する方がよい。この場合は、ガス放出口10j3個を連続した接着テープで密封すれば、封口工程の回動時に剥離し易く、保管中に防爆用フィルター12に塵埃が沈積することが無く、注液や電槽化成等の工程で電解液等により汚染されない。封口部品10を装着しない状態で製造ラインに投入する場合は、加圧制御弁13と防爆用フィルター12とは、電槽蓋に装着した状態で購入・保管するか、封口部品10の装着前に装着するかのいずれかとなるが、電槽蓋に装着した状態で購入・保管する方がよい。封口部品10を装着せずに購入すれば、電解液の注液や電槽化成等の工程で封口部品10を電解液等で汚染させない長所があるが、製造ラインへの封口部品等の装着装置の設置・管理が必要で封口部品10等の供給作業も必要となる短所がある。
f)電槽化成中の発生ガスは、電池セル毎に注液口10hより直接外部に放出される。次に、必要な場合は電解液の濃度と液量を調整した後、封口部品10を半回転して封口する。封口部品10は薄肉リブ10bと封口部品装着部8aの外周壁との摩擦力とタッピングネジ11とで保持され、注液口10hは柱状部8gで封口され、ガス放出口10jは防爆用フィルター12の上方に位置する。
g)内部発生ガス(水の電気分解ガス・水蒸気・電解液ミスト)は、下側筒状部8qの階段状の排出経路8rよりガス流入口8fを通過して排気室8dに流入する。排気室8dで凝縮し結露した水分と電解液はガス流入口8fから各電池セル内に還流し、その他は排気絞り用細幅縦溝8iを経由してガス排気用縦溝8pより加圧制御弁装着部8jに流入する。自己放電時等のわずかなガス量であれば、封口面8mの常時通気用微小溝8nより加圧制御弁13のガス放出口13cと防爆用フィルター12を経て、ガス排出口10jより電池外に放出される。
h)図2に示したガス放出経路は一例であってこれに限定されるものではないが、鉛蓄電池を反転して注液口8hより電解液を排出する必要がある場合は、注液口8hとガス流入口8fとは鉛蓄電池の幅方向に極力離して配置し、ガス流入口8fに電解液が流入しないようにすることが必要である。また、外部端子も反転時に上方となる様に配置し、電解液で汚染されないようにする。ガス放出口10jは、同様に上方となる様に配置するか又は前記のように連続テープで密封する。
i)大電流充電等により多量のガスが発生し内圧が加圧制御弁13の開弁圧より上昇したときは、薄肉弁10bを外方に変形させ封口面8mとの間に出来た空隙部からも内部ガスを放出する。このガス排出方法は、従来の液栓装着方式に比較し極板より上部の高さを低く出来るため、小型化が可能な分割排気式鉛蓄電池を提供出来る。また、小型化のために採用される一括排気方式鉛蓄電池に必要な上蓋や上蓋の電槽蓋への熱融着を必要とせず、補水のために必要な電池セル毎の注液口や封口栓も別途設ける必要が無く、これらに必要な部品代及び成型金型費用並びに装着コストが削減される。
j)前記「特許文5 特開2008−146895 鉛蓄電池」で記載されているように、常時通気用微小溝8nにより鉛蓄電池は常に外部にわずかではあるが開放されておりどの電池セルの内圧も大気圧に収束するので、電池セル間に差圧も発生しない。このため電槽の外壁や電池セルの隔壁には塑性変形を起こすような圧力が常時加圧されることは無い。したがって、製品在庫・流通・保管・使用中のいずれの段階においても、電槽の外壁や電池セルの隔壁への加圧・減圧が抑制され、電槽の塑性変形による各種の不具合と亀裂による電解液漏出が防止される。これにより、電槽の材質を安価な材質とし肉厚を薄くすることが出来るので、鉛蓄電池の重量軽減とコストダウンに有効となる。
k)電池使用中に内部短絡等により内圧が封口部品10の開弁圧以上に異常上昇したときは、封口部品10の頭部10aと外周部の薄肉リブ10bが変形する。これにより隣接する電池セル側の封口部品装着部8aにも流入するとともに、封口部品装着部8aの外周壁との間に出来た空隙部と注液口10hとから内部ガスを放出する。この場合は鉛蓄電池の継続使用は考慮する必要がなく電槽の亀裂・破裂による電解液の漏洩・飛散だけを防止すればよいが、従来のキャップ状の小さな防爆弁と異なり大きな受圧面積に対する圧力により開弁するので、多少の封口弁貼り付きがあっても確実に動作し、開弁圧の変化も少ない。薄肉リブ10bに部分的な薄肉部又は小さな切り欠き部を設け、薄肉リブ10bが確実に拡大・破断される様にしてもよい。封口部品10はタッピングネジ11で保持されており封口部品装着部8aとの位置関係が変わらないため、動作後も脱落せずほぼ元の装着状態に復帰する。
l)常時通気用微小溝8nによる非常にわずかな通気があるものの加圧制御弁13の装着により電解液の水分消失は、前記「特許文献5 特開2008−146895 鉛蓄電池」で記載されているように非常に抑制されるため、電池への補水は通常ほとんど必要とせず鉛蓄電池も長寿命化されるが、封口部品10を半回転すれば何時でも封口部品10を脱着せずに補水可能で、鉛蓄電池を車体に装着した状態で補水出来る。
m)図1に示すようにガス排出口10j共通の連続シート15を貼付すれば、鉛蓄電池周辺の気流による影響が無くなり水分消失量が削減されるとともに、ガス排出口10i内への塵芥の沈積も無くなる。ガス排出経路を確保するため、連続シートの接着剤は斜線部のみとする。
n)以上は加圧調整弁13を前記共通とした場合であるが、図6に示すように封口部品装着部8aの内部を電池セル毎に分離し、加圧調整弁装着部8jを電池セル毎に設けてもよい。この場合は、封口部品10のガス排出口10iは注液口10hで兼用する。始動用鉛蓄電池は高温になるエンジンルーム内に装着されることがほとんどで、両端の電池セルの温度が高くなり内側の電池セルより電解液の水分蒸発が多くなる傾向にある。したがって、端部の電池セルと内側の電池セルに共通の加圧調整弁13を使用したとき、使用条件によっては排気絞り用細幅縦溝8iがあっても端部の電池セルから内側の電池セルに水分を含んだガスが一方的に流入し、鉛蓄電池の長期使用によって内側の電池セルの電解液が増加し溢液する可能性がある。これに対しては、封口部品装着部8aの内部を電池セル毎に分離する本構造を使用し、加圧調整弁13の開弁圧力を内側の電池セルより端部の電池セルを高くした方が好ましく、電池セル隔壁の肉厚も厚くする。
o)前記の第八の発明を採用し、加圧調整弁13と常時通気用微小溝8nとを封口部品装着部8aに設けずに、封口部品10に設けることも出来る。加圧調整弁13と常時通気用微小溝8nとの機能を、封口部品頭部10aの内部に設けるために以下の構造とする。封口部品頭部10aに、圧力調整弁軸16を装着するための圧力調整弁軸装着部10kを設ける。圧力調整弁軸装着部10kには、封口部品頭部10aの上下両端面に円板状の凹部10lを、凹部10lの間に封口部品10と一体成型された薄肉弁10nを、薄肉弁10nの中心に圧力調整弁中心軸16bより大径の貫通穴10mを設ける。薄肉弁10nは、フランジ部16aの封口面に押圧される。薄肉弁10nを封口部品10と一体成型しないリング状の薄肉弁とし、圧力調整弁軸装着部10kに気密に装着してもよい。圧力調整弁軸16は、フランジ部16aと中心軸16bとで構成される。リング状防爆フィルター12は、フランジ部16aが圧力調整弁軸装着部10kに気密に装着されるように中心軸16bに固着される。また、フランジ部16aの薄肉弁10nとの封口面の外周にリング状溝16dを、前記の封口面の一部に複数の常時通気用微小溝16nを、また、リング状溝16dと排気室8dを接続する通気用穴16eを設ける。通気用穴16eは、排気絞り用細幅縦溝8iを経由したガスが流入するように配置する。圧力調整弁軸16の材質は、外部スパークによる封口弁装着部8aの引火・爆発を防止するため合成樹脂等の非導電材とする。薄肉弁10nは、封口部品装着部8aの圧力が減圧時はフランジ部16aに気密に押圧され、加圧時には外側に変形する。これにより開閉弁圧以上の内部発生ガスは、通気用穴16eよりリング状溝16d、薄肉弁10nとフランジ部16aとの間の空隙、貫通穴10m、リング状防爆フィルター12を経由して外部へ排出される。この構造は、封口部品装着部8aの形状が単純化され成型金型費用が削減されるとともに、排気室8dの面積をより多く確保できるので凝縮・結露能力が向上し、電解液中の水分消失量が減少する効果がある。(図8参照)
p)前記の第七の発明の構成において封口部品10に注液口10hを設けない場合は、前記の第一の装着状態と前記の第二の装着状態とを選択的に維持出来ず、封口部品10の装着と封口は同義となり、前記のコスト配分の最適化によるトータルコストダウンという共通効果と封口部品10を脱着せずに補水可能という個別効果は無いが、これら以外の効果はすべて可能である。この場合は注液口10hを封口する柱状部8gは当然不要である。また、封口部品装着部8aの形状も封口部品10の回動を考慮しない長方形にすることが出来るので、排気室8dの面積拡大により凝縮・結露能力を向上させることが可能となる。
a) Other than the liquid inlet sealing structure of the present embodiment, the conventional liquid type lead storage battery for start-up is used, and a positive / negative electrode plate and a separator are built in a 6-cell monoblock battery case. The tank lid is heat-sealed to form external terminals. The positive / negative electrode plates and the positive / negative external terminals are electrically connected before heat-sealing the battery case lid. In this example, only the liquid inlet sealing structure related to the battery case lid will be described in detail.
b) The sealing part mounting portion 8a is integrally formed with the battery case lid 8 made of synthetic resin. The sealing part mounting portion 8a has a slightly conical disk shape with a center on the battery cell partition wall 8b, and has a pilot hole 8c for the tapping screw 11 at the center of the upper surface. Inside, a continuous exhaust chamber 8d divided by a liquid injection port 8h and an exhaust chamber partition wall 8e for each battery cell, and a columnar portion 8g for sealing the liquid injection port 10h of the sealing component 10 in the second mounted state are provided on the bottom surface. The gas inlet 8f is provided, and the common pressurizing control valve mounting portion 8j is provided on the battery cell partition wall 8b. The shape of the gas inlet 8f is preferably a rectangle of 1 to 3 mm × 2 to 4 mm. The upper end surface of the exhaust chamber partition wall 8e that comes into contact with the inner surface of the sealing part 10 has a U-shaped shape with a minimal contact area in order to avoid sticking. An exhaust throttle narrow vertical groove 8i is provided between the exhaust chamber 8d of each battery cell and the pressurization control valve mounting portion 8j. Most of the moisture / electrolyte mist in the generated gas is condensed in the exhaust chamber 8d until it reaches the narrow vertical groove 8i for exhaust throttling, and is condensed and recirculated into the battery cell. However, the exhaust throttle narrow vertical groove 8i prevents the generated gas of each battery cell from flowing directly into the adjacent battery cell as much as possible. The pressurizing control valve mounting portion 8j is provided with a columnar projection 8k having a conical sealing surface 8m at the center and a ventilation vertical groove 8p at the periphery. Two to three micro-grooves 8n for ventilation are always provided on the sealing surface 8m. The dimensions of the micro-groove 8n for continuous ventilation are about 1 mm in height and about 0.4 mm in width. The bottom surface of the exhaust chamber 8d is formed so that the bottom surface of the exhaust chamber having the gas inlet 8f is sequentially raised to the lowest position to condense and condense moisture / electrolyte to flow back into the battery cell from the gas inlet 8f. A lower cylindrical portion 8q is provided at the lower part of the gas inlet 8f to make it difficult for the electrolyte or splashes to flow directly into the gas inlet 8f. A step-like discharge path 8r is provided inside, and a side wall is provided on the side wall. A narrow ventilation slit 8s is provided. The discharge path 8r changes the cross section of the path in order to make it difficult for the electrolytic solution or the splash of electrolytic solution to directly flow into the exhaust chamber 8d. Instead of the discharge path 8r, a splash-proof body that is mounted inside a conventional liquid stopper may be mounted inside the lower cylindrical portion 8q.
c) Pressurize the pressurization control valve 13 that opens at 5 to 15 kPa into the pressurization control valve mounting portion 8j and press the explosion-proof filter 12 into the cylindrical portion 13a of the pressurization control valve 13 in an airtight manner. The pressurization control valve 13 is made of an elastic body such as synthetic rubber, thermoplastic elastomer, or synthetic resin, and includes a cylindrical portion 13a and a thin valve 13b, and has a gas discharge port 13c at the center of the thin valve 13b. The pressurization control valve 13 and the explosion-proof filter 12 are not only held by press-fitting, but also pressed by the head portion 10a of the sealing part 10 so as not to drop off. Further, either the pressurization control valve 13 or the explosion-proof filter 12 is pressed against the inner surface of the head 10a in an airtight manner. When there is a concern about sticking of the sealing surface of the thin valve 13b, it is better to apply a sealing agent such as silicon oil or grease to the sealing surface. Or you may coat a fluororesin etc.
d) The cap-shaped sealing part 10 that also serves as the emergency gas release valve is made of an elastic body such as synthetic rubber, thermoplastic elastomer, or synthetic resin, and includes a head 10a and thin ribs 10b on the outer periphery. The head 10a is provided with a hexagonal head 10d for rotation and a mounting hole 10c for the tapping screw 11 at the center, and two liquid injection ports 10h and the common gas discharge port 10j at the outer periphery. The valve opening pressure of the sealing component 10 is set to a pressure that does not crack the battery case, for example, 25 to 35 kPa. The sealing part 10 is airtightly detachably fitted to the sealing part mounting part 8a of the battery case lid 8 on which the pressurization control valve 13 and the explosion-proof filter 12 are mounted, and is fixed rotatably with a tapping screw 11. To do. Instead of using the tapping screw 11, a press-fitting pin with a flange may be press-fitted. Further, in order to improve sealing performance and reduce rotational resistance during sealing, a lubricating sealant such as silicon oil or grease is applied to at least the inner surface of the thin rib 10b. Or you may coat a fluororesin etc.
e) The battery case lid 8 to which the sealing part 10 is attached is heat-sealed to the battery case in which the positive and negative electrode plates and the separator are incorporated, and can be injected from the liquid injection port 10h. It is better to purchase and store the battery case lid 8 with the sealing part 10 in the first mounting state and put it into the production line. In this case, if the three gas discharge ports 10j are sealed with a continuous adhesive tape, they are easy to peel off during the rotation of the sealing process, and dust does not accumulate on the explosion-proof filter 12 during storage. It is not polluted by the electrolyte during the chemical conversion process. If the sealing part 10 is not installed in the production line, the pressurization control valve 13 and the explosion-proof filter 12 can be purchased and stored in the battery case cover or before the sealing part 10 is installed. Either it is attached, but it is better to purchase and store it while attached to the battery case lid. If it is purchased without mounting the sealing part 10, there is an advantage that the sealing part 10 is not contaminated with the electrolytic solution in the process of injecting electrolyte or forming a battery case. There is a disadvantage that it is necessary to install and manage the sealing parts 10 and to supply the sealing parts 10 and the like.
f) The generated gas during the formation of the battery case is directly discharged to the outside from the liquid injection port 10h for each battery cell. Next, if necessary, after adjusting the concentration and amount of the electrolytic solution, the sealing component 10 is sealed by half-turning. The sealing component 10 is held by the frictional force between the thin rib 10b and the outer peripheral wall of the sealing component mounting portion 8a and the tapping screw 11, the liquid injection port 10h is sealed by the columnar portion 8g, and the gas discharge port 10j is the explosion-proof filter 12. It is located above.
g) The internally generated gas (water electrolysis gas / water vapor / electrolyte mist) flows from the stepped discharge path 8r of the lower cylindrical portion 8q through the gas inlet 8f and flows into the exhaust chamber 8d. Moisture and electrolyte condensed and condensed in the exhaust chamber 8d recirculate into each battery cell through the gas inlet 8f, and the others are pressurized from the gas exhaust vertical groove 8p via the narrow exhaust vertical groove 8i. It flows into the valve mounting part 8j. If the amount of gas is small, such as during self-discharge, the gas vent 13c of the pressurization control valve 13 and the explosion-proof filter 12 pass through the constant ventilation micro-groove 8n on the sealing surface 8m, and go out of the battery through the gas discharge port 10j. Released.
h) The gas discharge path shown in FIG. 2 is an example and is not limited to this. However, when it is necessary to reverse the lead storage battery and discharge the electrolyte from the liquid injection port 8h, the liquid injection port It is necessary to arrange 8h and the gas inlet 8f as far apart as possible in the width direction of the lead storage battery so that the electrolyte does not flow into the gas inlet 8f. In addition, the external terminals are also arranged so as to be upward when they are reversed so that they are not contaminated with the electrolyte. Similarly, the gas discharge port 10j is arranged so as to be on the upper side or sealed with a continuous tape as described above.
i) When a large amount of gas is generated due to large current charging, etc., and the internal pressure rises above the opening pressure of the pressurization control valve 13, the gap formed between the sealing surface 8m by deforming the thin valve 10b outward The internal gas is also released from. Since this gas discharge method can reduce the height above the electrode plate as compared with the conventional liquid stopper mounting method, it is possible to provide a split exhaust type lead-acid battery that can be miniaturized. In addition, it does not require heat fusion to the battery lid of the top cover or top cover required for the package exhaust type lead-acid battery adopted for miniaturization, and the liquid inlet and seal for each battery cell required for water replenishment There is no need to provide a plug separately, and the parts cost, molding die cost, and mounting cost required for these components are reduced.
j) As described in the above-mentioned “Patent Document 5 Japanese Patent Application Laid-Open No. 2008-146895 Lead Acid Battery”, the lead acid battery is always slightly opened to the outside by the micro-groove 8n for constant ventilation, and the internal pressure of any battery cell is Since it converges to atmospheric pressure, no differential pressure is generated between the battery cells. For this reason, pressure that causes plastic deformation is not constantly applied to the outer wall of the battery case or the partition walls of the battery cells. Therefore, at any stage during product inventory, distribution, storage, and use, pressurization and decompression of the outer wall of the battery case and the battery cell partition are suppressed, and various problems due to plastic deformation of the battery case and electrolysis due to cracks are suppressed. Liquid leakage is prevented. As a result, the battery case can be made of an inexpensive material and the thickness can be reduced, which is effective in reducing the weight and cost of the lead storage battery.
k) When the internal pressure abnormally rises above the valve opening pressure of the sealing component 10 during use of the battery due to an internal short circuit or the like, the head 10a of the sealing component 10 and the thin rib 10b on the outer peripheral portion are deformed. As a result, the gas flows into the sealing part mounting part 8a on the adjacent battery cell side, and the internal gas is released from the gap formed between the sealing part mounting part 8a and the outer peripheral wall of the sealing part mounting part 8a and the liquid injection port 10h. In this case, there is no need to consider the continued use of lead-acid batteries, and it is only necessary to prevent leakage and scattering of the electrolyte due to cracking or rupture of the battery case, but unlike conventional cap-shaped small explosion-proof valves, the pressure for a large pressure-receiving area Therefore, even if there is a little sticking of the sealing valve, it operates reliably and there is little change in the valve opening pressure. The thin rib 10b may be provided with a partial thin wall portion or a small cutout portion so that the thin rib 10b is reliably expanded and broken. Since the sealing component 10 is held by the tapping screw 11 and the positional relationship with the sealing component mounting portion 8a does not change, it does not fall off after the operation and returns to the original mounting state.
l) Although there is very slight ventilation due to the always fine ventilation groove 8n, the water loss of the electrolyte due to the attachment of the pressurization control valve 13 is described in the above-mentioned “Patent Document 5 Japanese Patent Laid-Open No. 2008-146895 Lead Acid Battery”. Therefore, replenishment of the battery is usually almost unnecessary and the life of the lead-acid battery is extended.However, if the sealing part 10 is rotated half a turn, it can be replenished without removing the sealing part 10 at any time. Water can be replenished with the lead-acid battery mounted on the vehicle body.
m) If the continuous sheet 15 common to the gas discharge port 10j is attached as shown in FIG. 1, the influence of the air current around the lead storage battery is eliminated, the amount of water loss is reduced, and the accumulation of dust in the gas discharge port 10i is reduced. Will also disappear. In order to secure the gas discharge path, the adhesive of the continuous sheet is limited to the shaded portion.
n) The above is the case where the pressure adjusting valve 13 is used in common. However, as shown in FIG. 6, the inside of the sealing part mounting portion 8a is separated for each battery cell, and the pressure adjusting valve mounting portion 8j is connected to the battery cell. You may provide for every. In this case, the gas discharge port 10i of the sealing part 10 is also used as the liquid injection port 10h. In most cases, the starting lead-acid battery is mounted in a high-temperature engine room, and the temperature of the battery cells at both ends becomes higher, and the moisture evaporation of the electrolytic solution tends to increase more than the inner battery cells. Therefore, when the pressure adjusting valve 13 common to the battery cell at the end and the battery cell at the inner side is used, depending on the use conditions, the inner battery from the battery cell at the end can be changed even if there is a narrow vertical groove 8i for exhaust throttling. There is a possibility that a gas containing moisture unilaterally flows into the cell, and the electrolyte of the inner battery cell increases and overflows due to long-term use of the lead storage battery. For this, use this structure that separates the inside of the sealing part mounting portion 8a for each battery cell, and the opening pressure of the pressurizing regulating valve 13 is made higher than the inner battery cell. Is preferable, and the thickness of the battery cell partition is also increased.
o) By adopting the above-mentioned eighth invention, the pressurizing regulating valve 13 and the constant ventilation fine groove 8n can be provided in the sealing component 10 without being provided in the sealing component mounting portion 8a. In order to provide the functions of the pressure adjusting valve 13 and the constant ventilation micro groove 8n inside the sealing part head 10a, the following structure is adopted. A pressure adjusting valve shaft mounting portion 10k for mounting the pressure adjusting valve shaft 16 is provided on the sealing component head portion 10a. The pressure regulating valve shaft mounting portion 10k includes a disk-shaped recess 101 on both upper and lower end surfaces of the sealing part head 10a, a thin valve 10n integrally formed with the sealing part 10 between the recesses 101, and a thin valve 10n. A through hole 10m having a diameter larger than that of the pressure adjusting valve central shaft 16b is provided at the center. The thin valve 10n is pressed against the sealing surface of the flange portion 16a. The thin-walled valve 10n may be a ring-shaped thin-walled valve that is not integrally molded with the sealing part 10, and may be airtightly mounted on the pressure adjusting valve shaft mounting portion 10k. The pressure adjusting valve shaft 16 includes a flange portion 16a and a central shaft 16b. The ring-shaped explosion-proof filter 12 is fixed to the center shaft 16b so that the flange portion 16a is airtightly attached to the pressure regulating valve shaft attachment portion 10k. Further, a ring-shaped groove 16d is formed on the outer periphery of the sealing surface of the flange portion 16a with the thin valve 10n, a plurality of constant ventilation microgrooves 16n are formed on a part of the sealing surface, and the ring-shaped groove 16d and the exhaust chamber 8d. A vent hole 16e is provided for connecting the two. The ventilation hole 16e is arranged so that gas flows through the exhaust throttle narrow vertical groove 8i. The material of the pressure regulating valve shaft 16 is a non-conductive material such as a synthetic resin in order to prevent ignition and explosion of the sealing valve mounting portion 8a due to external spark. The thin valve 10n is hermetically pressed against the flange portion 16a when the pressure of the sealing part mounting portion 8a is reduced, and is deformed outward when pressurized. As a result, the internally generated gas exceeding the on-off valve pressure is sent to the outside through the vent hole 16e via the ring-shaped groove 16d, the gap between the thin valve 10n and the flange portion 16a, the through hole 10m, and the ring-shaped explosion-proof filter 12. Discharged. This structure simplifies the shape of the sealing part mounting portion 8a, reduces the cost of the molding die, and secures a larger area of the exhaust chamber 8d, thereby improving the condensation / condensation capability and eliminating water in the electrolyte. The amount is reduced. (See Figure 8)
p) When the liquid injection port 10h is not provided in the sealing part 10 in the configuration of the seventh invention, the first mounting state and the second mounting state cannot be selectively maintained, The mounting of parts 10 and sealing are synonymous, and there is no common effect of total cost reduction by optimizing the cost distribution mentioned above and no individual effect of water replenishment without removing sealing parts 10, but all other effects are possible. is there. In this case, the columnar portion 8g for sealing the liquid injection port 10h is naturally unnecessary. In addition, since the shape of the sealing part mounting portion 8a can be a rectangle that does not consider the rotation of the sealing part 10, it is possible to improve the condensation / condensation capability by expanding the area of the exhaust chamber 8d.

2)制御弁付の始動用鉛蓄電池(2)
前記の常時通気可能な微小通気路(常時通気用微小溝8n)を持たない前記の第二・第三・第五・第六・第七の発明を採用した制御弁付の液式の始動用鉛蓄電池に対する実施例を以下に記載する。本実施例は、常時通気用微小溝8nが無く電池セル隔壁8bが一部異なること以外は実施例1の封口構造であるので、同一構成の部分については説明を省略し、異なる構成の部分についてのみ記載する。(図1、2、5参照)
2) Lead-acid storage battery with control valve (2)
For liquid-type starting with a control valve that adopts the second, third, fifth, sixth, and seventh inventions that do not have the above-described micro-ventilation passage (always micro-groove 8n). Examples for lead-acid batteries are described below. Since the present embodiment is the sealing structure of Example 1 except that there is no microscopic groove 8n for constant ventilation and the battery cell partition wall 8b is partially different, the description of the same configuration part is omitted and the different configuration part is omitted. Only listed. (See Figures 1, 2, and 5)

本実施例では常時通気用微小溝8nが無いため、電池セルは加圧制御弁13毎に密封されている。このため以下に記載するように、鉛蓄電池がさらに長寿命化される長所と電槽が変形し易い短所とがあり、短所には以下に記載する対策を採る。
a)長所は、電池セルが加圧制御弁13で密封されているため電解液の減液がさらに抑制され長寿命化されるだけでなく、減液して極板が露出しても制御弁式鉛蓄電池として動作することになり、 前記「特許文献2 特開2003−142148 鉛蓄電池」に示すように大幅に長寿命化される。電解液の凝縮・結露用の排気室を持つ本実施例の鉛蓄電池は、これを持たない前記特許文献2の鉛蓄電池よりさらに電解液の減液が抑制され長寿命化されている。
b)第一の短所は、保管期間中に発生する内部減圧に対応できず前記「特許文献4 特許4224762 制御弁式鉛蓄電池」に記載されている様に電槽が変形したり亀裂したりし、電解液の漏洩や性能(放電能力・寿命)低下の危険性があることである。電槽化成後の鉛蓄電池内は、水蒸気及び電解液ミスト並びに正・負極板で発生した酸素ガス・水素ガスの分圧が高くこの状態で封口(密封)すると、保管期間中に酸素ガスは負極に吸収され、水素ガスは電槽等を透過して外部に放出され、水蒸気・電解液ミストは凝縮する。したがって、保管期間中に鉛蓄電池内は減圧され、電槽の外壁のクリープ変形による亀裂発生・電解液漏洩や、電池セル隔壁変形によるセパレーターの非可逆変形による性能低下の原因となる場合がある。対策としては、封口(密封)前に鉛蓄電池内の空間を窒素ガス置換し保管中の減圧を防止する。本実施例の場合、前記圧力制御弁が装着されていない十分な口径の注液口10hが各電池セルに開口しているので、ここに窒素ガス用ノズルを挿入すれば十分なレベルの窒素ガス置換が容易に出来る。その後に封口部品10を半回転して封口する。ノズルは先端部の側方に開口し、窒素ガスを側方に噴出して電解液に直接吹き付けない。
c)第二の短所は、電池セルの内圧が大気圧に収束せず、封口部品10が共通でない電池セルの間に、加圧制御弁13間の開閉圧力のバラツキによる差圧が発生し継続することである。この差圧は小さいが受圧面積が大きいため、極板群に群圧をかけず電槽ケース部の電池セル隔壁が極板群で反発支持されない場合は、前記隔壁が一方に大きく変形する可能性がある。前記隔壁が大きく変形すると電池セルの容積変化により電解液面が一方は高く他方は低くなり、電解液の溢液やストラップ腐食等を発生する危険がある。これに対しては、前記の第五又は/及び前記の第六の発明による対策を実施する。
d)前記第五の発明により、前記不具合を防止しながらコストダウンと重量軽減を図る。また、加圧調整弁13が共通でない前記隔壁の両面には、複数の細幅薄形縦溝を設けて前記隔壁と極板が密着しても電解液の通路が確保できる様にした方がよい。
e)前記第六の発明により、前記第五の発明と同様に前記不具合を防止しながらコストダウンと重量軽減を図る。前記第五と前記第六の発明による対策を並行実施してもよい。前記微小通気口の面積は前記ガス流入口8fの面積の10%以下とする方が良い。前記微小通気口は隣接する電池セルの圧力を同圧に収束させるためのものであり、高圧側の電池セルで発生したガスのほとんどを自己の排気室8dへ流入させ、凝縮し結露させて水分と電解液を還流させる。全ての電池セルは、封口弁10と前記微小通気口により連通しているので、最終的に同一圧力に収束する。前記微小通気口の面積を大きくすると高圧側の電池セルから低圧側に発生ガスが直接多量に流入し、前記隔壁の変形はなくても最終的に電解液量の不均衡による電解液面の不均衡が発生するので避けなければならない。この方法は、電槽ケースの仕様変更が不要で電槽蓋の仕様変更のみとなり、このための新たな成形金型費用が発生しない利点がある。
f)以上により製品在庫・流通・保管・使用中のいずれの段階においても、電槽の外壁と電池セル隔壁の変形が抑制される制御弁付の始動用鉛蓄電池となり電槽の塑性変形による前記不具合と亀裂による電解液漏出が防止される。これにより、電槽の材質を安価な材質とし肉厚を薄くすることが出来るので、鉛蓄電池の重量軽減とコストダウンに有効である。また、制御弁式又は制御弁付の始動用鉛蓄電池に従来必要であった保管中の内圧変化による電槽の塑性変形を防止するための前記保守業務が不要となり、製品の在庫・流通・保管、特に輸出入において受け入れ側の設備負担と保管コストの削減に効果が大きい。また、本実施例の始動用鉛蓄電池は、実施例1とほぼ同様のコストで実施例1より大幅に寿命延長された制御弁付の始動用鉛蓄電池となる。また、この構成は始動用鉛蓄電池以外の鉛蓄電池にも適用可能である。
g)以上は加圧調整弁13を前記共通とした場合であるが、実施例1と同じく封口弁装着部8aの内部を電池セル毎に分離し、加圧調整弁装着部8jを電池セル毎に設けてもよい。この場合は、電池セル毎に密封状態となるので、前記電池セル隔壁に前記微小通気口を設けたほうがよい。(図6参照)
h)前記の第七の発明の構成において封口部品10に注液口10hを設けない場合については、実施例1と同様である。
In the present embodiment, since there is no always fine ventilation groove 8n, the battery cell is sealed for each pressurization control valve 13. For this reason, as described below, there are advantages that lead-acid batteries have a longer life and disadvantages that the battery case is easily deformed, and the measures described below are taken for the disadvantages.
a) The advantage is that the battery cell is sealed by the pressurization control valve 13, so that not only the electrolyte depletion is further suppressed and the service life is extended, but also the control valve can be used even if the electrode plate is exposed due to liquid reduction. It will operate as a lead-acid battery, and as shown in the above-mentioned “Patent Document 2 Japanese Patent Application Laid-Open No. 2003-142148 Lead-acid battery”, the life is significantly extended. The lead storage battery of the present embodiment having an exhaust chamber for condensation / condensation of the electrolytic solution has a longer life because the liquid reduction of the electrolytic solution is further suppressed than the lead storage battery of Patent Document 2 that does not have the exhaust chamber.
b) The first disadvantage is that it cannot cope with the internal decompression that occurs during the storage period, and the battery case is deformed or cracked as described in "Patent Document 4 Patent 4224762 Control Valve Lead Acid Battery". There is a risk of leakage of electrolyte and performance (discharge capacity / lifetime). Inside the lead-acid battery after battery cell formation, the partial pressure of water vapor, electrolyte mist, and oxygen gas / hydrogen gas generated in the positive and negative electrode plates is high, and if this is sealed (sealed) in this state, the oxygen gas will be negative during the storage period. The hydrogen gas passes through the battery case and is released to the outside, and the water vapor / electrolyte mist is condensed. Therefore, the inside of the lead storage battery is depressurized during the storage period, and this may cause cracks and electrolyte leakage due to creep deformation of the outer wall of the battery case, and performance deterioration due to irreversible deformation of the separator due to battery cell partition deformation. As a countermeasure, the space inside the lead-acid battery is replaced with nitrogen gas before sealing (sealing) to prevent decompression during storage. In the case of the present embodiment, the injection port 10h having a sufficient diameter not equipped with the pressure control valve is open to each battery cell, so that a sufficient level of nitrogen gas can be obtained by inserting a nitrogen gas nozzle here. Replacement is easy. Thereafter, the sealing part 10 is sealed by half-turning. The nozzle opens to the side of the tip, and nitrogen gas is blown to the side so as not to blow directly onto the electrolyte.
c) The second disadvantage is that the internal pressure of the battery cell does not converge to atmospheric pressure, and a differential pressure is generated between the battery cells where the sealing component 10 is not common due to the variation in the open / close pressure between the pressurization control valves 13. It is to be. Although this differential pressure is small but the pressure receiving area is large, if the battery cell partition wall of the battery case part is not repulsively supported by the electrode plate group without applying group pressure to the electrode plate group, the partition wall may be greatly deformed to one side. There is. When the partition wall is greatly deformed, the electrolytic solution surface becomes higher and the other becomes lower due to a change in the volume of the battery cell, and there is a risk of overflow of the electrolytic solution or strap corrosion. For this, the measures according to the fifth and / or the sixth invention are implemented.
d) According to the fifth aspect of the present invention, the cost is reduced and the weight is reduced while preventing the inconvenience. In addition, it is better to provide a plurality of narrow thin vertical grooves on both sides of the partition wall where the pressure regulating valve 13 is not common so that the electrolyte passage can be secured even if the partition wall and the electrode plate are in close contact with each other. Good.
e) According to the sixth invention, as in the fifth invention, the cost is reduced and the weight is reduced while preventing the problems. The measures according to the fifth and sixth inventions may be implemented in parallel. The area of the micro vent is preferably 10% or less of the area of the gas inlet 8f. The micro vent is for converging the pressure of adjacent battery cells to the same pressure, and most of the gas generated in the high-pressure battery cell flows into the exhaust chamber 8d to condense and condense moisture. And reflux the electrolyte. Since all the battery cells communicate with each other through the sealing valve 10 and the minute ventilation hole, they finally converge to the same pressure. If the area of the micro vent is increased, a large amount of generated gas flows directly from the battery cell on the high-pressure side to the low-pressure side. Since equilibrium occurs, it must be avoided. This method has the advantage that the specification change of the battery case is not required and only the specification of the battery case lid is changed, and a new molding die cost is not generated.
f) As described above, in any stage of product inventory, distribution, storage, and use, the lead-acid storage battery with a control valve that suppresses the deformation of the outer wall of the battery case and the battery cell partition wall is used, and the above-described plastic deformation of the battery case Electrolyte leakage due to defects and cracks is prevented. As a result, the battery case can be made of an inexpensive material and the wall thickness can be reduced, which is effective in reducing the weight and cost of the lead storage battery. In addition, the maintenance work for preventing plastic deformation of the battery case due to a change in internal pressure during storage, which was conventionally required for a start-up lead-acid battery with a control valve type or with a control valve, is no longer necessary. In particular, it is very effective in reducing the equipment burden and storage costs on the receiving side in import and export. Further, the starting lead-acid battery of the present embodiment is a starting lead-acid battery with a control valve whose life is significantly extended from that of the first embodiment at substantially the same cost as the first embodiment. Moreover, this structure is applicable also to lead acid batteries other than the starting lead acid battery.
g) The above is the case where the pressure adjusting valve 13 is the same as the above, but as in the first embodiment, the inside of the sealing valve mounting portion 8a is separated for each battery cell, and the pressure adjusting valve mounting portion 8j is set for each battery cell. May be provided. In this case, since each battery cell is hermetically sealed, it is better to provide the micro vent in the battery cell partition wall. (See Figure 6)
h) In the configuration of the seventh invention, the case where the sealing part 10 is not provided with the liquid injection port 10h is the same as that of the first embodiment.

3)制御弁付の始動用鉛蓄電池(3)
前記の第二・第三・第五・第六・第七の発明を採用した制御弁付の液式の始動用鉛蓄電池に対する実施例を以下に記載する。本実施例は実施例2の封口構造とほぼ同様であるが、前記共通の制御弁装着部が2箇所となり前記加圧制御弁と前記減圧制御弁が装着される。また、前記の第二の装着状態で注液口10hが前記制御弁装着部の上方に位置しガス排出口ともなるので、前記共通のガス排出口10jが無いことも異なる。また、電槽化成後の前記窒素ガス置換は行わない。(図3〜5参照)
各構成要素の構成と作用は以下の通りであり、実施例2と同様の場合は説明を簡略化又は省略する。
3) Lead-acid storage battery with control valve (3)
Examples of the liquid type lead acid storage battery with a control valve adopting the second, third, fifth, sixth and seventh inventions will be described below. The present embodiment is substantially the same as the sealing structure of the second embodiment, but the common control valve mounting portion has two places, and the pressurization control valve and the pressure reduction control valve are mounted. Further, since the liquid injection port 10h is located above the control valve mounting portion and also serves as a gas discharge port in the second mounting state, the common gas discharge port 10j is not provided. Moreover, the nitrogen gas replacement after the battery case formation is not performed. (See Figures 3-5)
The configuration and operation of each component are as follows. In the same manner as in the second embodiment, the description is simplified or omitted.

a)本実施例の注液口封口構造以外は前記の従来の始動用鉛蓄電池のもので、6電池セルのモノブロック式合成樹脂製電槽に正・負極板とセパレーターが内蔵されており電槽蓋が熱融着され外部端子が形成される。本実施例でも、電槽蓋に設けた注液口封口構造関連についてのみ詳述する。
b)封口部品装着部8aは、図4に示すように前記制御弁装着部が加圧制御弁装着部8jと減圧制御弁装着部8tの2箇所となり、注液口8hと制御弁装着部8j、8tとの位置関係が回動に対応する位置とする以外は実施例2とほぼ同様である。
ただし、封口用柱状部8gが無く、加圧制御弁装着部8jには常時通気用溝8nを設けない。
c)防爆用フィルター12を気密に圧入した加圧制御弁13を加圧制御弁装着部8jに、減圧制御弁14を減圧制御弁装着部8tに気密に圧入する。開閉弁圧は、双方とも大気圧より5〜15kPaとする。減圧制御弁14も、合成ゴム又は熱可塑性エラストマー又は合成樹脂等の弾性体で作られ、円筒状部14aと筒状弁14bで構成され、筒状弁14bの中心にガス放出口14cを持つ。筒状弁14bの封口面の貼り付きが懸念される場合には、封口面にシリコンオイル又はグリス等のシール剤を塗布する方がよい。または、フッ素樹脂等のコーティングをしてもよい。
d)キャップ状の封口部品10は、注液口10hが通気口ともなるためガス放出口10jが無いこと以外は実施例2と同一である。
e)注液方法及び電槽化成及び必要な場合の電解液の濃度と液量の調整並びに封口方法は、電槽化成後の前記窒素ガス置換を行わないことを除き実施例2と同様である。ただし、第二の装着状態において注液口10hは加圧制御弁装着部8jと減圧制御弁装着部8tの上方に位置する。
f)以上により、内部発生ガスは加圧制御弁装着部8jの注液口10hより外部に放出され、内部減圧に対しては減圧制御弁14の筒状弁14bが拡大し注液口10hから吸気口14cを経由して外部空気を吸入するので、加圧や減圧によって電槽が塑性変形することは無い。
g)圧力調整弁間の開閉圧力のバラツキによる差圧に対しては、実施例2と同様に第五又は/及び第六の発明による対策を実施する。
h)以上により、本実施例の効果は実施例2と同一となる。
i)図3に示すように注液口10hに共通の連続シート15を貼付すれば、電池周辺の気流による影響が無くなり水分消失量が削減されるとともに、注液口10h内への塵芥の沈積も無くなる。通気経路を確保するため、連続シートへの接着剤は斜線部のみとする。
j)以上は加圧調整弁13と減圧調整弁14とを前記共通とした場合であるが、実施例1と同じく封口部品装着部8aの内部を電池セル毎に分離し、加圧調整弁装着部8jと減圧調整弁装着部8tとを電池セル毎に設けてもよい。この場合は、電池セル毎に密封状態となるので、電池セル隔壁に前記微小通気口を設けたほうがよい。(図7参照)
k)前記の第八の発明を採用し、加圧調整弁13と減圧調整弁14を封口部品装着部8aに設けず封口部品10に設けることも出来る。減圧調整弁14の機能を封口部品頭部10aの内部に設けるために以下の構造とする。加圧調整弁13については実施例1と同様である。封口部品頭部10aに圧力調整弁軸16を装着する圧力調整弁軸装着部10kを設ける。圧力調整弁軸装着部10kには、封口部品頭部10aの上下両端面に円板状の凹部10lを、凹部10lの間に封口部品10と一体成型された薄肉弁10nを、薄肉弁10nの中心に圧力調整弁中心軸16bより大径の貫通穴10mを設ける。薄肉弁10nは、フランジ部16aの封口面に押圧される。薄肉弁10nを封口部品10と一体成型しないリング状の薄肉弁とし、圧力調整弁軸装着部10kに気密に装着してもよい。圧力調整弁軸16は、フランジ部16a及び中心軸16b並びにリング部16cで構成され、リング部16cは圧力調整弁軸16が圧力調整弁軸装着部10kに気密に装着されるように中心軸16bに固着される。また、フランジ部16aには通気用切り欠き部16fを、中心軸16bには通気用縦溝16gを設ける。通気用縦溝16gの代わりにリング部16cに通気用穴16eを設けてもよい。通気用縦溝16g又は通気用穴16eは、外部空気が排気絞り用細幅縦溝8iを経由して排気室8dに流入するように配置する。リング部16cを防爆フィルター12とした場合は、通気用縦溝16g又は通気用穴16eのいずれも設けない。圧力調整弁軸16の材質は、外部スパークによる封口弁装着部8aの引火・爆発を防止するため合成樹脂等の非導電材とする。薄肉弁10nは、封口部品装着部8aの圧力が大気圧より高いときはフランジ部16aに気密に押圧され、減圧時には内側に変形し通気用切り欠き部16fより薄肉弁10nとフランジ部16aの空隙、貫通穴10m、通気用縦溝16gを経由して外部より吸気する。この構造は、加圧調整弁13を封口部品10に設ける場合と同様に、封口部品装着部8aの形状が単純化され成型金型費用が削減されるとともに、排気室8dの面積をより多く確保できるので凝縮・結露能力が向上し電解液中の水分消失量が減少する効果がある。(図9参照)
l)前記の第七の発明の構成において封口部品10に注液口10hを設けない場合については、実施例1と同様である。ただし、封口部品10の加圧制御弁装着部8jに対応する位置にガス放出口を設け、減圧制御弁装着部8tに対応する位置に空気吸入口を設ける。
なお、本実施例の構成は、制御弁付の始動用鉛蓄電池だけでなく、他の制御弁式鉛蓄電池に対しても適用でき、同様の効果がある。
a) Except for the injection hole sealing structure of this embodiment, the conventional lead-acid storage battery for starting is a monoblock type synthetic resin battery case with 6 battery cells, and a positive / negative electrode plate and a separator are built in. The tank lid is heat-sealed to form external terminals. Also in the present embodiment, only the injection port sealing structure related to the battery case lid will be described in detail.
b) As shown in FIG. 4, the sealing component mounting portion 8a has two control valve mounting portions, a pressurization control valve mounting portion 8j and a pressure reduction control valve mounting portion 8t, and a liquid injection port 8h and a control valve mounting portion 8j. , 8t is substantially the same as the second embodiment except that the positional relationship with respect to the rotation is a position corresponding to the rotation.
However, there is no sealing columnar portion 8g, and the pressurizing control valve mounting portion 8j is not always provided with the ventilation groove 8n.
c) The pressurization control valve 13 in which the explosion-proof filter 12 is press-fitted in an airtight manner is press-fitted in an airtight manner into the pressurization control valve mounting portion 8j, and the pressure-reduction control valve 14 is press-fitted in a pressure-reduction control valve mounting portion 8t. Both on-off valve pressures are 5-15 kPa from atmospheric pressure. The decompression control valve 14 is also made of an elastic body such as synthetic rubber, thermoplastic elastomer, or synthetic resin, and includes a cylindrical portion 14a and a cylindrical valve 14b, and has a gas discharge port 14c at the center of the cylindrical valve 14b. When there is a concern about sticking of the sealing surface of the cylindrical valve 14b, it is better to apply a sealing agent such as silicon oil or grease to the sealing surface. Or you may coat a fluororesin etc.
d) The cap-shaped sealing part 10 is the same as that of the second embodiment except that the liquid injection port 10h also serves as a ventilation port and therefore there is no gas discharge port 10j.
e) The liquid injection method, the formation of the battery case, the adjustment of the concentration and the amount of the electrolyte when necessary, and the sealing method are the same as in Example 2 except that the nitrogen gas replacement after the formation of the battery case is not performed. . However, in the second mounting state, the liquid injection port 10h is located above the pressurizing control valve mounting portion 8j and the pressure reducing control valve mounting portion 8t.
f) As described above, the internally generated gas is discharged to the outside from the liquid injection port 10h of the pressurization control valve mounting portion 8j, and the cylindrical valve 14b of the pressure reduction control valve 14 expands from the liquid injection port 10h for internal pressure reduction. Since the external air is sucked through the air inlet 14c, the battery case is not plastically deformed by pressurization or decompression.
g) For the differential pressure due to the variation in the open / close pressure between the pressure regulating valves, the measures according to the fifth and / or sixth invention are implemented as in the second embodiment.
h) As described above, the effect of the present embodiment is the same as that of the second embodiment.
i) If a common continuous sheet 15 is affixed to the injection port 10h as shown in FIG. 3, the influence of the air current around the battery is eliminated, the amount of water lost is reduced, and dust is deposited in the injection port 10h. Will also disappear. In order to secure the ventilation path, the adhesive to the continuous sheet is only the hatched portion.
j) The above is the case where the pressure adjusting valve 13 and the pressure reducing valve 14 are made common, but as in the first embodiment, the inside of the sealing part mounting portion 8a is separated for each battery cell, and the pressure adjusting valve is mounted. The portion 8j and the pressure reducing adjustment valve mounting portion 8t may be provided for each battery cell. In this case, since each battery cell is in a sealed state, it is better to provide the micro vent in the battery cell partition wall. (See Figure 7)
k) By adopting the above-mentioned eighth invention, it is also possible to provide the pressure adjusting valve 13 and the pressure reducing adjusting valve 14 in the sealing component 10 without providing them in the sealing component mounting portion 8a. In order to provide the function of the pressure reducing control valve 14 inside the sealing part head 10a, the following structure is adopted. The pressurizing adjustment valve 13 is the same as that in the first embodiment. A pressure adjusting valve shaft mounting portion 10k for mounting the pressure adjusting valve shaft 16 is provided on the sealing part head portion 10a. The pressure regulating valve shaft mounting portion 10k includes a disk-shaped recess 101 on both upper and lower end surfaces of the sealing part head 10a, a thin valve 10n integrally formed with the sealing part 10 between the recesses 101, and a thin valve 10n. A through hole 10m having a diameter larger than that of the pressure adjusting valve central shaft 16b is provided at the center. The thin valve 10n is pressed against the sealing surface of the flange portion 16a. The thin-walled valve 10n may be a ring-shaped thin-walled valve that is not integrally molded with the sealing part 10, and may be airtightly mounted on the pressure adjusting valve shaft mounting portion 10k. The pressure regulating valve shaft 16 is composed of a flange portion 16a, a central shaft 16b, and a ring portion 16c. The ring portion 16c has a central shaft 16b so that the pressure regulating valve shaft 16 is airtightly mounted on the pressure regulating valve shaft mounting portion 10k. It is fixed to. The flange portion 16a is provided with a ventilation cutout portion 16f, and the central shaft 16b is provided with a ventilation vertical groove 16g. A ventilation hole 16e may be provided in the ring portion 16c instead of the ventilation vertical groove 16g. The ventilation vertical groove 16g or the ventilation hole 16e is arranged so that external air flows into the exhaust chamber 8d via the exhaust throttle narrow vertical groove 8i. When the ring part 16c is the explosion-proof filter 12, neither the ventilation vertical groove 16g nor the ventilation hole 16e is provided. The material of the pressure regulating valve shaft 16 is a non-conductive material such as a synthetic resin in order to prevent ignition and explosion of the sealing valve mounting portion 8a due to external spark. The thin valve 10n is hermetically pressed against the flange portion 16a when the pressure of the sealing part mounting portion 8a is higher than the atmospheric pressure, and is deformed inward when the pressure is reduced, so that the gap between the thin valve 10n and the flange portion 16a is less than the ventilation cutout portion 16f. The air is sucked from the outside through the through hole 10m and the vertical groove 16g for ventilation. Similar to the case where the pressurizing adjustment valve 13 is provided in the sealing part 10, this structure simplifies the shape of the sealing part mounting portion 8a, reduces the molding die cost, and secures a larger area of the exhaust chamber 8d. As a result, the condensation / condensation ability is improved, and the amount of water lost in the electrolyte is reduced. (See Figure 9)
l) The case where the sealing part 10 is not provided with the liquid injection port 10h in the configuration of the seventh invention is the same as in the first embodiment. However, a gas discharge port is provided at a position corresponding to the pressurization control valve mounting portion 8j of the sealing component 10, and an air suction port is provided at a position corresponding to the pressure reduction control valve mounting portion 8t.
In addition, the structure of a present Example is applicable not only to the start lead acid battery with a control valve but to other control valve type lead acid batteries, and has the same effect.

4)制御弁付の即用式鉛蓄電池(1)
実施例2の封口構造を採用した制御弁付の液式の即用式鉛蓄電池に対する実施例を以下に記載する。本実施例は実施例2と同様の封口構造であるが、製造工程・流通・保管の方法が一部異なる。実施例2と同様の場合は説明を簡略化又は省略する。(図1、2、5参照)
4) Ready-to-use lead acid battery with control valve (1)
An example of a liquid type lead acid storage battery with a control valve adopting the sealing structure of Example 2 will be described below. The present embodiment has a sealing structure similar to that of the second embodiment, but the manufacturing process / distribution / storage method is partially different. In the case similar to the second embodiment, the description is simplified or omitted. (See Figures 1, 2, and 5)

a)電槽化成までの製造工程は、実施例2と同様である。電槽化成後に注液口より電解液を排出し、前記窒素ガス置換を実施後に封口部品10を半回転して封口する。製品在庫・流通・保管はこの状態で行い、使用前に封口部品10を半回転して開口し、所定の電解液を注液後に再度半回転して封口し完成品とする。これにより従来必要であった電槽変形防止のための保管中の前記保守業務が不要となるだけでなく、前記液栓の別途添付や脱着作業も不要となり使用前の注液作業が非常に簡略化される。
b)鉛蓄電池の長寿命化効果を含め、製品在庫・流通・保管・使用中の内圧変化への対応とその効果は、実施例2と同様である。
c)ガス排出口10j共通の連続シート15についても実施例2と同様である。
d)実施例2と同じく封口部品装着部8aの内部を電池セル毎に分離してもよい。(図6参照)
e)加圧調整弁13等を封口部品10に設ける場合は、実施例2と同様である。
f)前記の第七の発明の構成においてを採用せず封口部品10に注液口10hを設けない場合については、実施例2と同様である。
a) The manufacturing process up to the formation of the battery case is the same as in Example 2. After the formation of the battery case, the electrolytic solution is discharged from the injection port, and after the nitrogen gas replacement is performed, the sealing component 10 is half-turned and sealed. Product inventory, distribution, and storage are performed in this state, and the sealing part 10 is opened by half-turning before use, and a predetermined electrolytic solution is injected and then half-turned again to make a finished product. This eliminates the need for maintenance work during storage to prevent battery case deformation, which was necessary in the past, and also eliminates the need to attach or remove the liquid stopper separately, making the injection work before use very simple. It becomes.
b) Responding to changes in internal pressure during product inventory, distribution, storage, and use, including effects of extending the life of lead-acid batteries, and the effects thereof are the same as in Example 2.
c) The continuous sheet 15 common to the gas discharge port 10j is the same as in the second embodiment.
d) As in the second embodiment, the inside of the sealing component mounting portion 8a may be separated for each battery cell. (See Figure 6)
e) When the pressurizing regulating valve 13 and the like are provided in the sealing part 10, the same as in the second embodiment.
f) The case of not adopting the configuration of the seventh invention and not providing the liquid injection port 10h in the sealing part 10 is the same as that of the second embodiment.

5)制御弁付の即用式鉛蓄電池(2)
実施例3の封口構造を採用した制御弁付の液式の即用式鉛蓄電池に対する実施例を以下に記載する。本実施例は実施例3と同様の封口構造であるが、製造工程・流通・保管の方法が一部異なる。実施例3と同様の場合は説明を簡略化又は省略する。(図3〜5参照)
5) Ready-to-use lead acid battery with control valve (2)
An example of a liquid type lead acid battery with a control valve that employs the sealing structure of Example 3 will be described below. The present embodiment has a sealing structure similar to that of the third embodiment, but the manufacturing process, distribution, and storage method are partially different. In the case similar to the third embodiment, the description is simplified or omitted. (See Figures 3-5)

a)電槽化成までの製造工程は、実施例3と同様である。電槽化成後に前記窒素ガス置換を行わないことを除けば、実施例4と同様である。
b)鉛蓄電池の長寿命化効果を含め、製品在庫・流通・保管・使用中の内圧変化への対応とその効果は、実施例3と同様である。
c)注液口10h共通の連続シート15についても実施例3と同様である。
d)加圧調整弁13等を封口部品10に設ける場合は、実施例3と同様である。
e)前記の第七の発明の構成において封口部品10に注液口10hを設けない場合については、実施例3と同様である。
a) The production process up to the formation of the battery case is the same as in Example 3. Example 4 is the same as Example 4 except that the nitrogen gas replacement is not performed after the formation of the battery case.
b) Responding to changes in internal pressure during product inventory / distribution / storage / use and effects, including the effect of extending the life of lead-acid batteries, are the same as in Example 3.
c) The continuous sheet 15 common to the liquid injection port 10h is the same as in Example 3.
d) When the pressurizing regulating valve 13 or the like is provided in the sealing part 10, it is the same as in the third embodiment.
e) In the configuration of the seventh invention, the case where the sealing member 10 is not provided with the liquid injection port 10h is the same as that of the third embodiment.

6)制御弁式鉛蓄電池
従来の負極吸収式の制御弁式鉛蓄電池は、注液口を各電池セルに設け、加圧制御弁で各々を封口(密封)するとともに前記加圧制御弁押さえ蓋を電槽蓋に固定するか前記加圧制御弁付液栓で封口(密封)するので、保管中の前記保守業務が必要である。前記「特許文献4 特許4224762 制御弁式鉛蓄電池」の加圧・減圧兼用制御弁により保管中の前記保守業務を不要としたものもある。これらの短所は、前記液栓で封口する場合は極板より上部の高さを低く出来ず鉛蓄電池の小型化には限界があり、前記制御弁で封口する場合は前記押さえ蓋のため注液が事実上出来ないことにある。これに対し、実施例2又は実施例3とほぼ同様の封口構造を採用した制御弁式鉛蓄電池に対する実施例を以下に記載する。実施例2又は実施例3と同様の場合は説明を簡略化又は省略する。(図1〜5参照)
6) Control valve type lead acid battery
A conventional negative electrode absorption control valve type lead-acid battery is provided with a liquid injection port in each battery cell, and each pressure cell is sealed (sealed) and the pressure control valve holding lid is fixed to the battery case lid. Or the above-mentioned maintenance work during storage is necessary. In some cases, the maintenance work during storage is not required by the pressurization / decompression control valve of the “Patent Document 4 Patent 4224762 Control Valve Lead Acid Battery”. These disadvantages are that when sealing with the liquid stopper, the height above the electrode plate cannot be lowered, and there is a limit to downsizing the lead-acid battery, and when sealing with the control valve, the liquid is injected for the holding lid. Is in fact not possible. On the other hand, the Example with respect to the control valve type lead acid battery which employ | adopted the sealing structure substantially the same as Example 2 or Example 3 is described below. In the case similar to the second embodiment or the third embodiment, the description is simplified or omitted. (See Figures 1-5)

a)制御弁式鉛蓄電池の封口構造以外は従来のもので、6電池セルのモノブロック式合成樹脂製電槽に正負極板とセパレーターが内蔵されており電槽蓋が熱融着され外部端子が形成される。本実施例でも、電槽蓋に設けた封口構造関連についてのみ詳述する。
b)封口部品装着部8aは、実施例2又は実施例3とほぼ同様であるが、電解液量が抑制されているため下側筒状部8qは不要である。また、排気室8dへ流入した水蒸気は凝縮し結露した後に各電池セルに還流するので、水蒸気分圧による加圧制御弁への加圧が小さくなり開弁確率が低下し、従来の排気室8dの無い制御弁式鉛蓄電池より水分消失量は抑制され、長寿命化される。
c)封口部品10は、実施例2又は実施例3と同様である。封口部品10は、タッピングネジ11で固定されており脱落することは無いので従来必要であった前記押さえ蓋は不要となり、前記押さえ蓋の電槽蓋への熱融着等の固定も不要となる。これによりコストダウンされるだけでなく、前記押さえ蓋のため従来出来なかった補水がいつでも可能となり鉛蓄電池の寿命延長が出来る。
d)電池全体を覆う減圧用ノズルを電池載置台に押圧密封し電池内外を真空排気後、電解液を正負極板が完全に埋没するように注液し、次に、前記減圧用ノズル内を大気開放する。この注液方法によれば、正・負極板とセパレーター内の空気も含め電池内の空気が注液前にほぼ完全に排出され、その後に大気圧で電解液が正負極板・セパレーターに押し込まれる。これによって正・負極板とセパレーター内の電解液の浸透拡散の速度向上と気泡解消による均質化及び正・負極板やセパレーターの見掛け体積減少による注液可能量の増加並びに、正・負極板内及び電池セル間の化成ばらつきの減少による放電容量の安定化と鉛蓄電池の寿命改善等の効果がある。
e)電解液注液後の電槽化成は充電電流を抑制した繰り返し充放電により電槽化成時の正・負極板から発生するガスを抑制した方式で行う。電槽化成後に電解液の濃度・液量を調整する。電槽化成中の発生ガスは注液口10hより外部に放出される。
f)制御弁式鉛蓄電池は極板が一部露出しており、酸化防止のため密封状態での保管が必要である。密封された鉛蓄電池の内部で発生する加圧・減圧に対する対策とその効果は、実施例2、実施例3と同様である。ただし、極板群に所定の群圧が加えられる制御弁式鉛蓄電池は、電池セル隔壁が極板群で反発支持され電解液量も抑制されているため、前記の第五又は第六の発明による対策は不要である。
g)以上により、保管中の前記保守業務が不要で小型化・重量削減・コストダウンが可能であり、かつ従来のいずれの制御弁式鉛蓄電池より電解液の減液が少なく長寿命な負極吸収式の制御弁式鉛蓄電池を提供できる。また、前記「特許文献2 特開2003−142148 鉛蓄電池」に示すように、当初より電解液量を抑制せず十分な電解液量とすれば、当初は液式鉛蓄電池に電解液が減少すれば制御弁式鉛蓄電池になり、さらに長寿命化される。
h)以上の構成には、水分を凝縮し結露させる電池セル毎の排気室8dが含まれているが、制御弁式鉛蓄電池には必須の構成条件ではなく、排気室8dが無くてもよい。ただし、電解液の水分消失量は従来の制御弁式鉛蓄電池と同程度なり、寿命延長効果は無い。
i)実施例2の封口構造を採用した場合は、同じく封口部品装着部8aの内部を電池セル毎に分離してもよい。(図6参照)
j)加圧調整弁13等を封口部品10に設ける場合は、実施例2又は実施例3と同様である。
k)前記の第七の発明の構成において封口部品10に注液口10hを設けない場合については、実施例2又は実施例3と同様である。
a) Other than the sealing structure of the control valve type lead-acid battery, it is a conventional one, and a positive and negative electrode plate and a separator are built in a monoblock type synthetic resin battery case with 6 battery cells, and the battery case lid is heat-sealed to external terminals. Is formed. Also in this example, only the sealing structure related to the battery case lid will be described in detail.
b) The sealing part mounting portion 8a is substantially the same as in the second or third embodiment, but the lower cylindrical portion 8q is unnecessary because the amount of the electrolyte is suppressed. Further, since the water vapor flowing into the exhaust chamber 8d is condensed and condensed and then returned to each battery cell, the pressurization to the pressurization control valve due to the partial pressure of water vapor is reduced, and the valve opening probability is lowered. The amount of water loss is suppressed and the life is extended compared to a control valve type lead-acid battery without a battery.
c) The sealing part 10 is the same as in Example 2 or Example 3. Since the sealing part 10 is fixed by the tapping screw 11 and does not fall off, the presser cover, which has been necessary in the past, is unnecessary, and fixing of the presser cover to the battery case cover is not required. . This not only reduces the cost, but also makes it possible to replenish water at any time, which has not been possible with the use of the presser lid, so that the life of the lead-acid battery can be extended.
d) A pressure reducing nozzle covering the whole battery is pressed and sealed on the battery mounting table, and the inside and outside of the battery are evacuated, and then the electrolyte is injected so that the positive and negative electrode plates are completely buried. Open to atmosphere. According to this injection method, the air in the battery, including the positive and negative electrode plates and the air in the separator, is almost completely discharged before the injection, and then the electrolyte is pushed into the positive and negative electrode plates and the separator at atmospheric pressure. . This improves the rate of penetration and diffusion of electrolyte in the positive and negative electrode plates and the separator, homogenizes by eliminating bubbles, increases the amount of liquid that can be injected by reducing the apparent volume of the positive and negative plates and separator, There are effects such as stabilization of discharge capacity and reduction in the life of lead-acid batteries due to reduction of chemical variation between battery cells.
e) Battery case formation after electrolyte injection is performed by a method in which gas generated from the positive and negative electrode plates during battery case formation is suppressed by repeated charging and discharging while suppressing charging current. Adjust the concentration and volume of the electrolyte after forming the battery case. The gas generated during the formation of the battery case is discharged to the outside through the injection port 10h.
f) A part of the electrode plate of the control valve type lead-acid battery is exposed and must be stored in a sealed state to prevent oxidation. Countermeasures against pressure and pressure reduction generated in the sealed lead-acid battery and the effects thereof are the same as those in the second and third embodiments. However, in the control valve type lead storage battery in which a predetermined group pressure is applied to the electrode plate group, the battery cell partition wall is repelled and supported by the electrode plate group, and the amount of the electrolyte is suppressed. No countermeasure is required.
g) By the above, the maintenance work during storage is unnecessary, and it is possible to reduce the size, weight, and cost, and the negative electrode absorption has a longer electrolyte life than any conventional control valve type lead-acid battery. Type control valve type lead acid battery can be provided. Moreover, as shown in the above-mentioned “Patent Document 2 Japanese Patent Application Laid-Open No. 2003-142148 lead-acid battery”, if the amount of the electrolyte is not suppressed from the beginning and the amount of the electrolyte is sufficient, the electrolyte is initially reduced to the liquid lead-acid battery. For example, it becomes a control valve type lead-acid battery, and the life is further extended.
h) The above configuration includes an exhaust chamber 8d for each battery cell that condenses and condenses moisture. However, the control valve type lead storage battery is not an essential component, and the exhaust chamber 8d may be omitted. . However, the amount of water lost in the electrolyte is about the same as that of a conventional control valve type lead-acid battery, and there is no life extension effect.
i) When the sealing structure of Example 2 is adopted, the inside of the sealing part mounting portion 8a may be separated for each battery cell. (See Figure 6)
j) When the pressure adjusting valve 13 or the like is provided in the sealing part 10, it is the same as in the second or third embodiment.
k) The case of not providing the liquid injection port 10h in the sealing part 10 in the configuration of the seventh aspect of the invention is the same as in Example 2 or Example 3.

7)24V系又は36V系の鉛蓄電池
前記の第一〜第七の発明を採用した24V系又は36V系の鉛蓄電池は、格子状に配置され隣接する4個の電池セルに共通の封口部品10及び封口部品装着部8aとなるところが12V系の鉛蓄電池と異なる。前記外部通気口は、電池セル毎の外部通気口又は、隣接する2個の電池セルに共通の外部通気口又は、隣接する4個の電池セルに共通の外部通気口のいずれかとなる。ただし、電池セルの配置によっては隣接する2個の電池セルに共通の封口部品10及び封口部品装着部8aも使用する。封口部品10及び封口部品装着部8aの内部構造は、前記の鉛蓄電池の種類に応じて実施例1〜6とほぼ同様となるが、封口部品装着部8aの電池セル当りの面積が半減するので、前記圧力制御弁は封口部品装着部8aでなく封口部品10に設け、排気室8dの面積を確保したほうがよい。24V系の鉛蓄電池に対する加圧制御弁13を封口部品10に設けた実施例の外観説明図を図10にて示す。
7) 24V or 36V lead acid battery
In the 24V or 36V lead acid battery adopting the first to seventh inventions, the sealing component 10 and the sealing component mounting portion 8a that are common to four adjacent battery cells are arranged in a grid shape and 12V. Different from lead-acid batteries. The external vent is either an external vent for each battery cell, an external vent common to two adjacent battery cells, or an external vent common to four adjacent battery cells. However, depending on the arrangement of the battery cells, the sealing component 10 and the sealing component mounting portion 8a common to two adjacent battery cells are also used. The internal structure of the sealing component 10 and the sealing component mounting portion 8a is substantially the same as that of Examples 1 to 6 depending on the type of the lead storage battery, but the area per battery cell of the sealing component mounting portion 8a is halved. The pressure control valve should be provided not in the sealing part mounting portion 8a but in the sealing part 10 to ensure the area of the exhaust chamber 8d. FIG. 10 shows an external appearance explanatory view of an embodiment in which the pressurizing control valve 13 for the 24V lead acid battery is provided in the sealing part 10.

8)実施例対比表
前記の実施例1〜7の対比を、以下に表で示す。
8) Example Comparison Table The comparison of Examples 1 to 7 is shown in the table below.

Figure 2011159501
Figure 2011159501

8 電槽蓋
8a 電槽蓋の封口部品装着部
8b 電槽蓋の電池セル隔壁
8c 封口部品装着部のタッピングネジ下穴
8d 封口部品装着部の排気室
8e 封口部品装着部の排気室隔壁
8f 封口部品装着部のガス流入口
8g 封口部品装着部の封口用柱状部
8h 封口部品装着部の注液口
8i 封口部品装着部の排気絞り用細幅縦溝
8j 封口部品装着部の加圧制御弁装着部
8k 制御弁装着部の柱状突起部
8m 制御弁装着部の柱状突起部の円錐状封口面
8n 制御弁装着部の柱状突起部の常時通気用微小溝
8p 制御弁装着部の通気用縦溝
8q 封口部品装着部の下側筒状部
8r 下側筒状部の階段状の排出経路
8s 下側筒状部の通気用スリット
8t 封口部品装着部の減圧制御弁装着部
10 封口部品
10a 封口部品の頭部
10b 封口部品の外周部の薄肉リブ
10c 封口部品のタッピングネジ取り付け穴
10d 封口部品の頭部の六角頭部
10h 封口部品の注液口
10j 封口部品のガス排出口
10k 封口部品の減圧調整弁軸装着部
10l 封口部品の減圧調整弁軸装着部の円板状凹部
10m 封口部品の減圧調整弁軸装着部の貫通穴
10n 封口部品の減圧調整弁軸装着部の薄肉弁
11 タッピングネジ
12 防爆用フィルター
13 加圧制御弁
13a 加圧制御弁の円筒状部
13b 加圧制御弁の薄肉弁
13c 加圧制御弁のガス放出口
14 減圧制御弁
14a 減圧制御弁の円筒状部
14b 減圧制御弁の筒状弁
14c 減圧制御弁の吸気口
15 ガス放出口用連続シール
16 減圧調整弁軸
16a 減圧調整弁軸のフランジ部
16b 減圧調整弁軸の中心軸
16c 減圧調整弁軸のリング部
16d 減圧調整弁軸のフランジ部の通気用切り欠き部
16e 減圧調整弁軸の中心軸の通気用縦溝





8 Battery case lid
8a Sealing part mounting part of battery case lid
8b Battery cell partition of battery case lid
8c Tapping screw pilot hole in sealing part mounting part
8d Exhaust chamber of sealing part mounting part
8e Exhaust chamber partition wall for sealing parts
8f Gas inlet for sealing part mounting part
8g Sealing column part of sealing part mounting part
8h Injection port for sealing parts
8i Narrow vertical groove for exhaust throttling at sealing part mounting part
8j Pressure control valve mounting part of sealing part mounting part
8k Columnar projection of control valve mounting part
8m Conical sealing surface of columnar protrusion of control valve mounting part
8n Micro-grooves for continuous ventilation in the columnar protrusions of the control valve mounting part
8p Vertical groove for ventilation of control valve mounting part
8q Lower cylindrical part of sealing part mounting part
8r Stepped discharge path of lower cylindrical part
8s Ventilation slit in the lower cylindrical part
8t Pressure reducing valve mounting part of sealing part mounting part
10 Sealing parts
10a Sealing part head
10b Thin ribs on the outer periphery of the sealing part
10c Tapping screw mounting hole for sealing parts
10d Hexagon head of sealing part head
10h Injection port for sealing parts
10j Gas outlet for sealing parts
10k Sealing parts decompression adjustment valve shaft mounting part
10 l Disc-shaped recess on the pressure reducing valve shaft mounting part of the sealing part
10m Through hole in the pressure reducing valve shaft mounting part of the sealing part
10n Thin valve on the pressure reducing adjustment valve shaft mounting part of the sealing part
11 Tapping screw
12 Explosion-proof filter
13 Pressure control valve
13a Cylindrical part of pressurizing control valve
13b Thin valve of pressurization control valve
13c Gas outlet of pressurization control valve
14 Pressure reducing valve
14a Cylindrical part of pressure reducing control valve
14b Cylindrical valve of pressure reducing control valve
14c Inlet of pressure reducing control valve
15 Continuous seal for gas outlet
16 Depressurization adjusting valve stem
16a Flange part of pressure reducing adjustment valve shaft
16b Center axis of pressure reducing adjustment valve shaft
16c Ring part of pressure reducing valve shaft
16d Ventilation notch in the flange of the pressure reducing valve shaft
16e Ventilation longitudinal groove on the central axis of the pressure reducing valve shaft





Claims (8)

複数の電池セルを持つ鉛蓄電池において、隣接する複数の電池セルに対し、前記隣接する複数の電池セル共通の封口部品装着部を設け、該封口部品装着部に、電池セル毎の電解液注液用通路及び、電池セル毎又は前記隣接する複数の電池セル共通の外部通気路を備え、前記隣接する複数の電池セル共通の封口部品を、前記封口部品装着部に装着することにより前記電解液注液用通路を封口することを特徴とする鉛蓄電池。 In a lead storage battery having a plurality of battery cells, a sealing component mounting portion common to the plurality of adjacent battery cells is provided for the plurality of adjacent battery cells, and an electrolyte solution injection for each battery cell is provided in the sealing component mounting portion. And an external air passage common to each of the battery cells or the plurality of adjacent battery cells, and mounting the sealing component common to the plurality of adjacent battery cells on the sealing component mounting portion. A lead-acid battery, wherein the liquid passage is sealed. 電池セル内で発生したガス中の水分を凝縮し結露させるとともに前記外部通気路に接続された電池セル毎の排気室を、前記封口部品装着部にさらに設けたことを特徴とする請求項1記載の鉛蓄電池。 2. The sealing part mounting portion further includes an exhaust chamber for each battery cell that condenses and condenses moisture in the gas generated in the battery cell and is connected to the external air passage. Lead acid battery. 前記外部通気路を開閉することによって電池セル内の圧力を制御する圧力制御弁を、前記封口部品装着部にさらに設けたことを特徴とする請求項1又は請求項2記載の鉛蓄電池。 The lead storage battery according to claim 1 or 2, further comprising a pressure control valve for controlling a pressure in the battery cell by opening and closing the external air passage in the sealing part mounting portion. 請求項3の構成において、電池セル内の上昇圧力を制御する加圧制御弁のみを設けた場合に、常時通気可能な微小通気路が外部に開口していることを特徴とする請求項3記載の鉛蓄電池。 4. The structure according to claim 3, wherein when only a pressurization control valve for controlling the rising pressure in the battery cell is provided, a micro-ventilation passage that can be continuously vented is opened to the outside. Lead acid battery. 前記圧力制御弁が共通の電池セル間の隔壁の肉厚を、他の電池セル間の隔壁の肉厚より薄くしたことを特徴とする請求項3記載の鉛蓄電池。 4. The lead-acid battery according to claim 3, wherein the pressure control valve has a wall thickness between the battery cells that is common to the pressure control valve thinner than a wall thickness between the other battery cells. 前記圧力制御弁が共通でない電池セル間の隔壁に、微小通気口を設けたことを特徴とする請求項3又は請求項5記載の鉛蓄電池。 The lead storage battery according to claim 3 or 5, wherein a minute vent is provided in a partition between battery cells not sharing the pressure control valve. 前記封口弁装着部に装着された前記封口部品を回動することにより、前記封口部品装着部と前記封口部品とで前記電解液注液用通路を構成する第一の装着状態と、前記電解液注液用通路が前記封口部品で封口される第二の装着状態とが、選択的に維持可能に構成されることを特徴とする請求項1〜6のいずれかに記載の鉛蓄電池。 A first mounting state in which the sealing component mounting portion and the sealing component constitute the electrolyte injection passage by rotating the sealing component mounted on the sealing valve mounting portion, and the electrolytic solution The lead storage battery according to any one of claims 1 to 6, wherein the second mounting state in which the liquid injection passage is sealed with the sealing component is configured to be selectively maintained. 前記外部通気路又は、前記圧力制御弁で開閉される前記外部通気路又は、前記微小通気路を備え前記加圧制御弁で開閉される前記外部通気路のうちの少なくとも一つを、前記封口部品装着部に設けず前記封口部品に設けたことを特徴とする請求項1〜7のいずれかに記載の鉛蓄電池。

At least one of the external ventilation path, the external ventilation path that is opened and closed by the pressure control valve, or the external ventilation path that is provided with the minute ventilation path and is opened and closed by the pressurization control valve is used as the sealing component. The lead storage battery according to claim 1, wherein the lead storage battery is provided in the sealing part without being provided in the mounting portion.

JP2010020358A 2010-02-01 2010-02-01 Lead-acid battery Pending JP2011159501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010020358A JP2011159501A (en) 2010-02-01 2010-02-01 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020358A JP2011159501A (en) 2010-02-01 2010-02-01 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2011159501A true JP2011159501A (en) 2011-08-18

Family

ID=44591281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020358A Pending JP2011159501A (en) 2010-02-01 2010-02-01 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2011159501A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243126A (en) * 2015-02-26 2022-03-25 达拉米克有限责任公司 Method for providing a vapor pressure barrier, associated lead-acid battery and vehicle
CN116404324A (en) * 2023-06-05 2023-07-07 厦门海辰储能科技股份有限公司 End cover unit, energy storage device, electric equipment and assembly method of energy storage device
CN116706109A (en) * 2023-05-16 2023-09-05 浙江恒威电池股份有限公司 Sealing device and sealing process for alkaline battery production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243126A (en) * 2015-02-26 2022-03-25 达拉米克有限责任公司 Method for providing a vapor pressure barrier, associated lead-acid battery and vehicle
CN116706109A (en) * 2023-05-16 2023-09-05 浙江恒威电池股份有限公司 Sealing device and sealing process for alkaline battery production
CN116706109B (en) * 2023-05-16 2024-03-26 浙江恒威电池股份有限公司 Sealing device and sealing process for alkaline battery production
CN116404324A (en) * 2023-06-05 2023-07-07 厦门海辰储能科技股份有限公司 End cover unit, energy storage device, electric equipment and assembly method of energy storage device
CN116404324B (en) * 2023-06-05 2023-08-01 厦门海辰储能科技股份有限公司 End cover unit, energy storage device, electric equipment and assembly method of energy storage device

Similar Documents

Publication Publication Date Title
US6686720B2 (en) Vented-type leak resistant motor cycle battery
EP2293364A1 (en) Lead storage battery
EP2683017B1 (en) Lead storage battery and method for manufacturing same
US7951475B2 (en) Vent valve for acid batteries
US8034142B2 (en) Gas/liquid separator
JP2011119201A (en) Electrochemical device
CN101510621B (en) Lead-acid rechargeable battery
JP2011159501A (en) Lead-acid battery
JP5145707B2 (en) Lead acid battery
CA2748355C (en) Low profile manifold for single point watering system for lead-acid batteries
RU2273917C2 (en) Sealing and exhaust valve assembly for storage batteries
JP2003045380A (en) Battery
JP2013004436A (en) Lead battery
JP5099415B2 (en) Control valve type lead acid battery
WO2022071200A1 (en) Lead storage battery
CN200956376Y (en) Flooded type maintenance-free battery cover
CN1072843C (en) Sealing and maintainable accumulator casing
CN216143245U (en) Exhaust valve of oil tank
JP2016081678A (en) Discharge structure of oxidant gas
WO2011110668A1 (en) Lid for a vrla battery
US20230381700A1 (en) Gas-liquid separator
JP2012022927A (en) Liquid plug for storage battery, and formation method of the same
JP2007258044A (en) Lead-acid battery
JP7451153B2 (en) Liquid spout plug for lead acid battery
WO2022110533A1 (en) Sealing structure of valve body, valve and cflvv valve