JP2011119201A - Electrochemical device - Google Patents

Electrochemical device Download PDF

Info

Publication number
JP2011119201A
JP2011119201A JP2010019912A JP2010019912A JP2011119201A JP 2011119201 A JP2011119201 A JP 2011119201A JP 2010019912 A JP2010019912 A JP 2010019912A JP 2010019912 A JP2010019912 A JP 2010019912A JP 2011119201 A JP2011119201 A JP 2011119201A
Authority
JP
Japan
Prior art keywords
sealing
battery
sealing part
control valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010019912A
Other languages
Japanese (ja)
Inventor
Kenichi Hata
憲一 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010019912A priority Critical patent/JP2011119201A/en
Publication of JP2011119201A publication Critical patent/JP2011119201A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein, in a liquid injection sealing structure of a conventional electrochemical device such as a battery or a capacitor, sealing component mounting and sealing are synonymous, a sealing component can not be mounted at the optimum time point, and sealing in a gas substitution state or a depression state is difficult, so that there has been a limit in the VA on this premise. <P>SOLUTION: In the liquid injection sealing structure, liquid injection, gas substitution, and decompression are carried out by making a sealing component with a simple and low-cost sealing tap and with the tap in a held state, and sealing is also carried out in a gas substitution state or a depression state. By the VA of the injection liquid sealing through the structure, cost reduction and performance improvement are achieved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、極板・セパレーター等の発電・蓄電要素を内蔵した容器に電解液が注液された後に容器用蓋等で封口される製造工程を又は、前記発電・蓄電要素を内蔵して封口された容器に設けられた注液口より電解液が注液された後に、該注液口が封口部品で封口される製造工程を持つ電池又はキャパシター等の電気化学装置に関する。  The present invention provides a manufacturing process in which an electrolytic solution is injected into a container containing a power generation / storage element such as an electrode plate / separator, and then sealed with a container lid or the like, or the power generation / storage element is embedded and sealed. The present invention relates to an electrochemical device such as a battery or a capacitor having a manufacturing process in which an electrolyte is injected from a liquid injection port provided in a sealed container, and then the liquid injection port is sealed with a sealing component.

従来の前記電気化学装置の封口構造は、前記容器の本体に注液後に前記容器用蓋等で封口する構造か、前記容器用蓋に設けられた前記注液口又は前記容器用蓋に設けられた封口部品保持用部材の前記注液口から注液後に前記封口部品を前記注液口に装着して封口する構造かのいずれかとなっている。封口形式には、装置の種類により密閉型と内部ガスが常時放出可能な開放型があり、密閉型には内圧によって動作する非復帰型の安全弁又は復帰型の圧力制御弁が設けられる。また、封口部品の装着状態には、取り外し不能型と補水・補液のための着脱可能型とがある。当然ながら前記封口部品の材質や構造も、前記電気化学装置の種類により異なる。このように、従来の注液口封口方法には「発明の効果」や「発明を実施するための形態」の項にも示すように前記電気化学装置の種類に応じて各種のタイプがあり、前記電気化学装置の注液口封口構造、注液方法、注液口封口方法、関連する製造工程や装置の保守方法について特許文献1〜7に示すような種々の改善方法が提案されている。   The conventional sealing structure of the electrochemical device is a structure in which the container body is sealed with the container lid after the liquid is injected, or the liquid injection port provided on the container lid or the container lid is provided. In addition, after the liquid is injected from the liquid injection port of the sealing part holding member, the sealing part is attached to the liquid injection port and sealed. As the sealing type, there are a sealed type and an open type capable of always releasing the internal gas depending on the type of the device, and the sealed type is provided with a non-returnable safety valve or a resettable pressure control valve that operates by internal pressure. In addition, there are a non-removable type and an attachable / detachable type for replenishing and replenishing the sealing parts. Of course, the material and structure of the sealing part also differ depending on the type of the electrochemical device. Thus, there are various types of conventional liquid injection port sealing methods depending on the type of the electrochemical device as shown in the section of “Effects of the Invention” and “Mode for Carrying Out the Invention” Various improvement methods as shown in Patent Documents 1 to 7 have been proposed for the injection port sealing structure of the electrochemical device, the injection method, the injection port sealing method, and the related manufacturing processes and apparatus maintenance methods.

特開2002-298832 密閉型電池およびその注液孔の封止方法Patent application title: Sealed battery and method for sealing liquid injection hole thereof 特開2001-102026 密閉型鉛蓄電池とその製造方法Patent application title: Sealed lead-acid battery and method for manufacturing the same 特開2003-142148 鉛蓄電池JP 2003-142148 lead acid battery 特開2003-142151 即用式鉛蓄電池およびその使用方法JP2003-142151 IMMEDIATE TYPE LEAD BATTERY AND METHOD OF USING THE SAME 特許4224762 制御弁式鉛蓄電池Patent 4422762 Controlled valve storage battery 特開2008-146895 鉛蓄電池JP2008-146895 Lead acid battery 特開2008-186690 鉛蓄電池JP 2008-186690 Lead acid battery

従来の容器に設けられた前記注液口又は前記封口部品保持用部材の前記注液口から注液する注液口封口構造を持つ前記電気化学装置は、いずれも注液後の製造工程で前記封口部品を前記注液口に装着することによって封口することが前提条件である。すなわち前記封口部品の装着と封口は、ほぼ同義で同時に行われる。したがって、前記封口部品を装着した状態では注液や装置内部のガス置換・減圧が出来ない構造となっており、前記封口部品を封口前の最適の時点で予め装着することが出来ないため、装置の性能改善等に有効なガス置換状態での封口や減圧封口が困難である。また、封口関連部品のVA(価値分析)も前記封口部品の装着と封口は同義が前提条件となっており、改善効果もこの範囲に限定されている。さらに注液後の製造ラインに封口部品装着装置の設置と管理が必要で、封口部品装着装置トラブルによる製造ライン全体の稼働率低下の原因にもなっている。   The electrochemical device having a liquid inlet sealing structure for injecting from the liquid inlet provided in a conventional container or the liquid inlet of the sealing part holding member is the manufacturing process after the liquid injection. It is a precondition that sealing is performed by attaching a sealing part to the liquid injection port. That is, the mounting and sealing of the sealing part are performed simultaneously with substantially the same meaning. Therefore, in a state where the sealing part is mounted, it has a structure in which liquid injection or gas replacement / decompression inside the apparatus cannot be performed, and the sealing part cannot be mounted in advance at the optimal time before sealing, It is difficult to perform sealing and decompression sealing in a gas replacement state effective for improving the performance of the gas. In addition, the VA (value analysis) of the sealing-related parts is premised on the same meaning for the mounting and sealing of the sealing parts, and the improvement effect is also limited to this range. Furthermore, it is necessary to install and manage the sealing component mounting device in the production line after the liquid injection, which causes a reduction in the operating rate of the entire manufacturing line due to the trouble of the sealing component mounting device.

本発明は、上記のような課題に鑑みその課題を解決すべく創案されたものであって、前記電解液注液用通路を設けるための前記封口部品保持用部材に前記封口部品を装着した状態で注液や内部のガス置換・減圧が出来る注液口封口構造という新たな視点でのVA(価値分析)により、コストダウンを行うとともに性能と安全性とが向上した前記電気化学装置を提供することを目的とする。即ち、最適な時点で前記封口部品が装着可能であることにより部品コスト及び、設備関連コスト並びに、労務コストの最適配分化によるトータルコストダウンされた前記電気化学装置を提供することを目的とする。また、前記容器用蓋で封口する場合も含め、既設製造ラインにおいても簡易な設備改造でガス置換状態での封口や減圧封口を可能にし、性能と安全性とが向上した前記電気化学装置を提供することを目的とする。前記トータルコストダウンには、前記封口部品装着済の封口部品保持用部材を購入したり、オフラインで又はサブ製造ラインで前記封口部品を前記封口部品保持用部材に装着したり、封口が圧入・挿着・ねじ込み・当接等に単純化されたりすることにより前記封口部品装着装置のトラブルによる製造ライン全体の稼働率低下を解消することを含む。 The present invention was devised in view of the above-described problems to solve the problem, and the sealing component is mounted on the sealing component holding member for providing the electrolyte injection passage. Provides the above-mentioned electrochemical device with reduced cost and improved performance and safety by VA (value analysis) from a new viewpoint of the injection port sealing structure that can be used for liquid injection and internal gas replacement / decompression For the purpose. That is, it is an object of the present invention to provide the electrochemical device that is reduced in total cost by optimally allocating component costs, facility-related costs, and labor costs because the sealing components can be mounted at an optimal time. In addition, including the case of sealing with the container lid, it is possible to perform sealing and decompression sealing in a gas replacement state with simple equipment modifications in the existing production line, and provide the electrochemical device with improved performance and safety The purpose is to do. To reduce the total cost, the sealing part holding member with the sealing part mounted may be purchased, or the sealing part may be mounted on the sealing part holding member offline or in a sub-production line, or the sealing may be press-fitted / inserted. This includes eliminating the decrease in the operating rate of the entire production line due to troubles in the sealing part mounting device by simplifying the mounting, screwing and contact.

これらの課題を解決するために成した第一の発明は、前記電解液注液用通路又は、外部通気路兼用の前記電解液注液用通路又は、該外部通気路のうちのいずれかの経路と該経路を封口するための封口部品とを備えた前記電気化学装置において、前記経路を設けるとともに前記封口部品を保持するための前記封口部品保持用部材に前記封口部品を封口前に装着可能な封口構造とし、前記封口部品保持用部材と前記封口部品とで前記経路を構成する第一の装着状態と前記経路が前記封口部品で封口される第二の装着状態とが、選択的に維持可能に構成されたことを特徴とする電気化学装置である。 In order to solve these problems, a first aspect of the present invention is directed to any one of the electrolyte injection passage, the electrolyte injection passage also serving as an external ventilation path, or the external ventilation path. And a sealing part for sealing the path, the sealing part can be mounted on the sealing part holding member for holding the sealing part and before sealing the sealing part holding member for holding the sealing part A first mounting state in which the path is constituted by the sealing part holding member and the sealing part and a second mounting state in which the path is sealed by the sealing part can be selectively maintained. The electrochemical device is characterized in that it is configured as follows.

第二の発明は、封口部品保持用リブを前記封口部品保持用部材又は前記封口部品のいずれかに設けるとともに前記封口部品保持用部材に前記経路の封口用通路部を設け、前記封口部品を前記封口部品保持用リブで保持させる前記の第一の装着状態と、前記封口用通路部に前記封口部品を装着して封口する前記の第二の装着状態とが、選択的に維持可能に構成されたことを特徴とする第一の発明にかかる電気化学装置である。   According to a second aspect of the present invention, a sealing part holding rib is provided on either the sealing part holding member or the sealing part, and the sealing part holding member is provided with a sealing passage portion of the path, and the sealing part is The first mounting state held by the sealing component holding rib and the second mounting state in which the sealing component is mounted and sealed in the sealing passage portion can be selectively maintained. An electrochemical device according to a first invention characterized by the above.

第三の発明は、前記封口部品保持用部材に装着された前記封口部品の回動により、前記の第一の装着状態と第二の装着状態とが、選択的に維持可能に構成されたことを特徴とする第一の発明にかかる電気化学装置である。 According to a third aspect of the present invention, the first mounting state and the second mounting state can be selectively maintained by rotation of the sealing component mounted on the sealing component holding member. An electrochemical device according to a first aspect of the invention.

第四の発明は、複数の電池セルを持つ鉛蓄電池において、隣接する複数の電池セルに対し、前記隣接する複数の電池セル共通の封口部品装着部を設け、該封口部品装着部に電池セル毎の電解液注液用通路及び、電池セル毎又は前記隣接する複数の電池セル共通の外部通気路を備え、前記封口部品装着部に装着された前記隣接する複数の電池セル共通の封口部品を回動することにより、前記封口部品装着部と前記封口部品とで前記電解液注液用通路を構成する第一の装着状態と、前記電解液注液用通路が前記封口部品で封口される第二の装着状態とが、選択的に維持可能に構成されることを特徴とする第三の発明にかかる鉛蓄電池である。前記封口部品の装着方法には、前記封口部品と前記封口部品装着部の形状に対応して圧入・当接等の種々の方法があるが、キャップ状の前記封口部品を前記封口部品装着部に外嵌する方法が最も簡便で安全弁機能も持たせることが可能な方法である。また、前記外部通気路は、排気又は吸気又は双方に使用され、必要な場合は防爆用フィルターが設けられる。 According to a fourth aspect of the present invention, in a lead-acid battery having a plurality of battery cells, a sealing part mounting portion common to the plurality of adjacent battery cells is provided for the plurality of adjacent battery cells, and each battery cell is provided in the sealing part mounting part. An electrolyte solution injection path and an external air passage common to each of the battery cells or the plurality of adjacent battery cells, and the sealing parts common to the plurality of adjacent battery cells mounted on the sealing component mounting portion are rotated. The first mounting state in which the electrolyte injection passage is constituted by the sealing component mounting portion and the sealing component, and the second passage in which the electrolyte injection passage is sealed by the sealing component. The lead storage battery according to the third aspect of the present invention is characterized in that the mounting state of is configured to be selectively maintainable. The sealing component mounting method includes various methods such as press-fitting and abutting according to the shape of the sealing component and the sealing component mounting portion, but the cap-shaped sealing component is used as the sealing component mounting portion. The method of external fitting is the simplest and can provide a safety valve function. The external air passage is used for exhaust or intake or both, and an explosion-proof filter is provided if necessary.

第五の発明は、電池セル内で発生したガス中の水分を凝縮し結露させるとともに前記外部通気路に接続された電池セル毎の排気室を、前記封口部品装着部にさらに設けたことを特徴とする第四の発明にかかる鉛蓄電池である。前記排気室は、凝縮・結露能力を向上するため可能な限り分割した小室を経由するようにするとともに凝縮し結露した水分が電池セル内に還流するように底面に段差・勾配を設ける。また、前記排気室は、電槽蓋と一体成形される前記封口部品装着部に設けられるため上面が開放した状態で成形されるが、該上面は前記封口部品で封口する構造とする方がよい。 According to a fifth aspect of the present invention, the sealing component mounting portion further includes an exhaust chamber for each battery cell that condenses and condenses moisture in the gas generated in the battery cell and is connected to the external air passage. The lead storage battery according to the fourth invention. The exhaust chamber passes through small chambers divided as much as possible in order to improve the condensation / condensation capability, and is provided with a step / gradient on the bottom so that the condensed and condensed water flows back into the battery cell. Further, the exhaust chamber is provided in the sealing part mounting portion that is integrally formed with the battery case lid, so that the upper surface is formed in an open state, but the upper surface is preferably sealed with the sealing part. .

第六の発明は、前記外部通気路を開閉することによって電池セル内の圧力を制御する圧力制御弁を、前記封口部品装着部に追加して設けたことを特徴とする第四又は第五の発明にかかる鉛蓄電池である。前記圧力制御弁には、電池内の上昇圧力を制御する加圧制御弁と電池内の減圧を制御する減圧制御弁があり、いずれか又は双方を用いる。 A sixth invention is characterized in that a pressure control valve for controlling the pressure in the battery cell by opening and closing the external air passage is additionally provided in the sealing part mounting portion. It is the lead acid battery concerning invention. The pressure control valve includes a pressurization control valve for controlling the rising pressure in the battery and a pressure reduction control valve for controlling the pressure reduction in the battery. Either one or both are used.

第七の発明は、第六の発明の構成において前記加圧制御弁のみを設けた場合に、常時通気可能な微小通気路が外部に開口していることを特徴とする第六の発明にかかる鉛蓄電池である。前記微小通気路は、電解液の水分消失量にほとんど影響を与えないようなわずかな通気量によって、電池セル内の内圧を大気圧に収束させるために設ける。最終的に全ての電池セルが同一圧力(大気圧)に収束し、電槽の外壁や電池セル間の隔壁の圧力差による塑性変形が防止される。 A seventh invention according to the sixth invention is characterized in that, in the configuration of the sixth invention, when only the pressurization control valve is provided, a micro-ventilation passage that can be constantly ventilated opens to the outside. Lead acid battery. The micro air passage is provided in order to converge the internal pressure in the battery cell to the atmospheric pressure by a slight air amount that hardly affects the water loss of the electrolyte solution. Finally, all the battery cells converge to the same pressure (atmospheric pressure), and plastic deformation due to the pressure difference between the outer wall of the battery case and the partition walls between the battery cells is prevented.

第八の発明は、電池セル間の隔壁の肉厚の最適化を図るため、前記圧力制御弁が共通の電池セル間の隔壁の肉厚を、他の電池セル間の隔壁の肉厚より薄くしたことを特徴とする第六の発明にかかる鉛蓄電池である。前記圧力制御弁が共通でない電槽ケースの電池セル間の隔壁には、前記圧力制御弁間の開閉動作圧力のバラツキで発生する差圧が働くため該差圧を考慮して肉厚を厚くする必要があるが、前記圧力制御弁が共通な隔壁には差圧が発生しないので肉厚を薄く出来る。前記圧力制御弁が共通でない電槽蓋の電池セル間の隔壁については、受圧面積も小さく電槽蓋で補強されているので必ずしも厚くする必要は無い。 In an eighth aspect of the invention, in order to optimize the thickness of the partition walls between the battery cells, the pressure control valve makes the partition wall thickness between the common battery cells thinner than the thickness of the partition walls between the other battery cells. A lead-acid battery according to a sixth aspect of the present invention. The partition wall between the battery cells of the battery case where the pressure control valve is not common is subjected to a differential pressure generated due to variation in the opening / closing operation pressure between the pressure control valves, so the thickness is increased in consideration of the differential pressure. Although it is necessary, since the differential pressure does not occur in the partition wall where the pressure control valve is common, the wall thickness can be reduced. The partition walls between battery cells of the battery case lid that do not share the pressure control valve need not necessarily be thick because the pressure receiving area is small and reinforced with the battery case cover.

第九の発明は、前記圧力制御弁間の開閉動作圧力のバラツキで発生する前記圧力制御弁が共通でない電池セル間の隔壁変形を抑制するため、前記圧力制御弁が共通でない電池セル間の隔壁に微小通気口を設けたことを特徴とする第六又は第八の発明にかかる鉛蓄電池である。前記微小通気口は電槽蓋の隔壁に微小穴を設けるか、電槽蓋の電槽との熱融着部に微小な三角形等の切込みを設けて熱融着しない部分を設ける。切込みの形状は、微小通気口を形成できればよく三角形にはこだわらない。 According to a ninth aspect of the present invention, there is provided a partition wall between battery cells not sharing the pressure control valve in order to suppress partition wall deformation between the battery cells not sharing the pressure control valve, which is generated due to a variation in opening / closing operation pressure between the pressure control valves. A lead storage battery according to the sixth or eighth aspect of the present invention, characterized in that a micro vent is provided in the battery. The minute ventilation hole is provided with a minute hole in the partition wall of the battery case lid, or a portion that is not thermally fused by providing a notch such as a small triangle in a heat fusion part between the battery case and the battery case. The shape of the cut is not particularly limited to a triangle as long as a minute vent can be formed.

第十の発明は、前記外部通気路又は、前記圧力制御弁で開閉される前記外部通気路又は、前記微小通気路を備え前記加圧制御弁で開閉される前記外部通気路のうちの少なくとも一つを、前記封口部品装着部に設けず前記封口部品に設けたことを特徴とする第四〜第九のいずれかの発明にかかる鉛蓄電池である。前記封口部品装着部の機能の一部を前記封口部品に移行するこの構造は、前記封口部品装着部の形状の単純化とともに、前記排気室の面積をより多く確保するための構造である。 In a tenth aspect of the invention, at least one of the external ventilation path, the external ventilation path opened and closed by the pressure control valve, or the external ventilation path provided with the minute ventilation path and opened and closed by the pressurization control valve. The lead storage battery according to any one of the fourth to ninth inventions, wherein the battery is not provided in the sealing part mounting portion but is provided in the sealing part. This structure in which a part of the function of the sealing part mounting part is transferred to the sealing part is a structure for simplifying the shape of the sealing part mounting part and securing a larger area of the exhaust chamber.

本発明によれば、以下に示す通り性能と安全性とが向上した前記電気化学装置をより低コストで提供出来る。効果には、各種類の前記電気化学装置に共通な効果と種類ごとに異なる個別効果があり、種類ごとに異なる個別効果については代表的な種類の前記電気化学装置について以下に示す。また、類似の構造を持つ前記電気化学装置に対しても以下の代表的な種類の前記電気化学装置と同様な効果がある。(代表的な種類の前記電気化学装置に対する個別効果は、「発明を実施するための形態」の項に記載した内容を参照)   According to the present invention, the electrochemical device having improved performance and safety as described below can be provided at a lower cost. The effect includes an effect common to each type of the electrochemical device and an individual effect different for each type. The individual effect different for each type is described below for a typical type of the electrochemical device. In addition, the electrochemical device having a similar structure has the same effect as the following typical types of electrochemical devices. (For the individual effects on typical types of the electrochemical devices, see the description in the section “Description of Embodiments”)

1)各種類の装置に共通な効果
前記電気化学装置に前記の第一の発明を採用した場合の共通効果を以下に記載する。
a)前記封口部品保持用部材に前記封口部品を装着した状態で注液や前記電気化学装置内 部のガス置換・減圧が可能な注液口封口構造という新たな視点での封口構造の機能系統 の再検討により、前記電気化学装置の性能と安全性の向上とともにコストダウンが可能 となる。
b)前記容器用蓋で封口する前記電気化学装置を含め、既設製造ラインにおいても簡易な 設備改造で減圧状態やガス置換状態での注液と封口を容易にし、前記電気化学装置の性 能と安全性の向上とが図れる。
c)前記封口部品が最適な時点で装着可能となるため、部品コスト(部品代・管理コスト )、設備関連コスト(償却費、維持管理費用)及び、直接・間接労務コスト並びに、製 造ライン全体の稼働率を含めたコスト配分の最適化によるトータルコストダウンが可能 となる。
また、複数の電池セルを持つ各種類の前記鉛蓄電池についての共通効果は、前記効果に加 え以下の通りとなる。
a)各種類の前記鉛蓄電池について、電池セル毎に前記注液口と液栓が設けられる個別排 気方式に比べ、前記封口部品及び前記封口部品装着部の個数が半数以下に削減されると ともに、封口構造と封口関連部品の共通化と標準化が可能となり、トータルコストダウ ンされる。
b)製品在庫・流通・保管・使用中のいずれの段階においても、電槽の外壁と電池セル隔 壁の変形が抑制され、電槽の塑性変形による各種の不具合と電槽亀裂による電解液漏出 が防止される。これにより電槽の使用材質と肉厚の設計条件が緩和されて重量軽減とコ ストダウンが可能となる。
c)キャップ状の前記封口部品を前記封口部品装着部に着脱可能に外嵌すれば、電池内圧 が異常上昇したときに内部ガスを放出する緊急ガス放出弁にも代用出来るので、該緊急 ガス放出弁を別途設ける必要が無く安全性が向上する。
1) Effects common to each type of apparatus The following describes common effects when the first invention is applied to the electrochemical apparatus.
a) Functional system of the sealing structure from a new point of view, that is, a liquid inlet sealing structure in which liquid injection and gas replacement / decompression of the inside of the electrochemical device can be performed with the sealing part mounted on the sealing part holding member This review makes it possible to improve the performance and safety of the electrochemical device and reduce the cost.
b) In addition to the electrochemical device sealed with the container lid, it is possible to easily inject and seal liquids in a reduced pressure state or gas replacement state with simple equipment modifications in the existing production line. Safety can be improved.
c) Since the sealing parts can be installed at the optimal time, parts costs (parts costs / management costs), equipment-related costs (depreciation costs, maintenance costs), direct / indirect labor costs, and the entire production line It is possible to reduce the total cost by optimizing the cost distribution including the operation rate of the system.
In addition to the above effects, the common effects for each type of the lead storage battery having a plurality of battery cells are as follows.
a) For each type of lead-acid battery, when the number of sealing parts and sealing part mounting parts is reduced to less than half compared to the individual exhaust system in which the liquid injection port and the liquid stopper are provided for each battery cell. In both cases, it becomes possible to standardize and standardize the sealing structure and sealing-related parts, reducing the total cost.
b) At any stage during product inventory / distribution / storage / use, deformation of the outer wall of the battery case and the battery cell partition wall is suppressed, and various problems due to plastic deformation of the battery case and electrolyte leakage due to battery case cracking Is prevented. This relaxes the design conditions for the material and thickness of the battery and enables weight reduction and cost reduction.
c) If the cap-shaped sealing part is detachably fitted to the sealing part mounting part, it can be used as an emergency gas release valve that releases internal gas when the battery internal pressure rises abnormally. There is no need to provide a separate valve, improving safety.

2)密閉型電池への個別効果
非水電解液(有機溶媒系電解液)を注液し、その後に前記電解液注液用通路が密閉されるとともに、非復帰型の安全弁が設けられるリチウムイオン電池等の密閉型電池に対して前記の第二の発明を採用した実施例1における効果を以下に記載する。
a)窒素ガス置換状態又は減圧状態での注液が容易に行えるので、電池内の極板やセパレーター等の発電・蓄電要素の空隙部の空気と気泡を容易かつ確実に排出したり窒素ガス置換したりすることにより電気的性能が向上する。減圧状態で注液すれば高粘度の電解液でも注液が容易になるとともに内部の浸透拡散も均質に促進され、生産性が向上するだけでなく極板化成のバラツキが解消されて電池性能が安定するとともに寿命改善される。
b)適度な圧力で減圧封口した場合、大気圧による容器経由の極板やセパーレーターへの圧迫が行われるので、使用中の電極活物質の脱落減少、機械的強度と電気的性能の向上、内部発生熱の電池表面への熱放散増大による局部上昇温度の低下等の効果がある。前記容器用蓋等で封口する既設製造ラインでも外部端子を封口部品保持用部材兼用とすれば、簡易な設備改造で窒素ガス置換状態又は減圧状態での封口が容易となる。
c)前記容器用蓋の外部端子を前記封口部品保持用部材兼用とし、前記封口部品の容器外方側への抜け抵抗力を前記容器の破裂強度以下に設定すれば、安全弁の不要化によるコストダウン又は、第2の安全弁としての機能を持たせることによる安全性の向上が出来る。この場合、前記封口部品を電池内圧が異常上昇した時に動作する内圧検出部品として兼用することが出来るので、内圧異常上昇時の電流遮断回路を容易に装着できる。
2) Individual effect on sealed battery Lithium ion that injects a non-aqueous electrolyte (organic solvent-based electrolyte) and then seals the electrolyte injection passage and is provided with a non-returnable safety valve The effect in Example 1 which employ | adopted said 2nd invention with respect to sealed batteries, such as a battery, is described below.
a) Nitrogen gas replacement or reduced pressure can be easily injected, so air and bubbles in the voids of power generation / storage elements such as electrode plates and separators in the battery can be easily and reliably discharged or nitrogen gas replacement The electrical performance is improved. Injection under reduced pressure facilitates injection even with high-viscosity electrolytes and promotes uniform penetration and internal diffusion, not only improving productivity but also eliminating variations in electrode plate formation and improving battery performance. Stable and improved lifespan.
b) When sealing under reduced pressure at an appropriate pressure, pressure is applied to the electrode plate and separator via the container due to atmospheric pressure, reducing the dropout of the electrode active material during use, improving mechanical strength and electrical performance, There is an effect such as lowering of the locally raised temperature due to increased heat dissipation of the generated heat to the battery surface. Even in an existing production line that is sealed with the container lid or the like, if the external terminal is also used as a sealing part holding member, sealing in a nitrogen gas replacement state or a reduced pressure state is facilitated by a simple equipment modification.
c) If the external terminal of the container lid is also used as the sealing part holding member, and the resistance of the sealing part to the outer side of the container is set to be less than the bursting strength of the container, the cost due to the need for a safety valve is eliminated. Safety can be improved by providing a function as a down or second safety valve. In this case, since the sealing component can be used as an internal pressure detecting component that operates when the internal pressure of the battery is abnormally increased, a current interrupt circuit when the internal pressure is abnormally increased can be easily attached.

3)制御弁付の始動用鉛蓄電池への個別効果。
自動車始動用の液式鉛蓄電池は、充分な量の電解液を持ち内部発生ガス(水の電気分解ガス・水蒸気・電解液ミスト)のガス放出口が常時開放されている鉛蓄電池である。しかし使用期間中に電解液の水分消失があるため補水が必要である。これに対して内圧が上昇したときにのみ動作する前記加圧制御弁を前記外部通気路に装着して水分消失を抑制し、ほぼ補水不要とした制御弁式始動用鉛蓄電池や制御弁付の始動用鉛蓄電池が提案されている。これに対して前記の第四〜第七の発明を採用した実施例2及び前記の第四・第五・第六・第八・第九の発明を採用した実施例3と実施例4における効果を以下に記載する。
a)従来の前記液栓を使用せず極板より上部の高さを低く出来るため、隣接する2個の電 池セルの発生ガスをまとめて排気する小型化が可能な分割排気式の鉛蓄電池を提供出来 る。また、小型化のためにも採用される全ての電池セルの発生ガスを一括して排気する 一括排気方式鉛蓄電池と比較して、前記一括排気方式に必要な電槽上蓋や該電槽上蓋の 電槽蓋への熱融着を必要とせず、補水のための各電池セルに対する前記注液口や前記液 栓も別途設ける必要が無く、これらに必要な部品代及び成型金型費用並びに装着コスト が削減される。
b)電解液の水分消失量が従来の制御弁式鉛蓄電池と同等又はこれ以下となり、補水不要 の長寿命な始動用鉛蓄電池を低コストで提供出来る。特に実施例3と実施例4では大幅 に長寿命化される。また、もし補水が必要な時は随時に車載状態でも出来る。
c)保管期間中に電槽変形防止のための補充電等の保守業務が不要で、これが必要な現状 と比較し製品在庫・流通・保管、特に輸出入において受け入れ側の設備負担及び保管コ ストの削減効果が大きい。
3) Individual effects on starting lead-acid batteries with control valves.
A liquid lead-acid battery for starting an automobile is a lead-acid battery that has a sufficient amount of electrolyte and has a gas discharge port for an internally generated gas (water electrolysis gas, water vapor, electrolyte mist) always open. However, water replenishment is necessary due to the loss of water in the electrolyte during the period of use. On the other hand, the pressure control valve that operates only when the internal pressure rises is attached to the external vent passage to suppress the loss of moisture, and the control valve type start lead storage battery and control valve with no need for rehydration Lead acid batteries for starting have been proposed. On the other hand, the effect in the second embodiment adopting the fourth to seventh inventions and the third and fourth embodiments adopting the fourth, fifth, sixth, eighth and ninth inventions. Is described below.
a) Split exhaust type lead-acid battery that can reduce the height of the upper part of the electrode plate without using the above-mentioned conventional liquid stopper, so that the gas generated by two adjacent battery cells can be exhausted together. Can be provided. In addition, compared to a package exhaust type lead-acid battery that exhausts all gas generated from all battery cells, which is also used for miniaturization, the battery case top cover required for the package exhaust method and the battery case top cover There is no need for heat fusion to the battery case lid, and there is no need to provide the liquid injection port and the liquid stopper separately for each battery cell for replenishing water. Is reduced.
b) The amount of water lost in the electrolyte solution is equal to or less than that of conventional control valve type lead acid batteries, and it is possible to provide a long-lasting lead acid battery for start-up that does not require rehydration at low cost. Especially in Example 3 and Example 4, the service life is significantly extended. Also, if rehydration is necessary, it can be done on-board at any time.
c) Maintenance work such as supplementary charging to prevent battery case deformation is not required during the storage period, and compared with the current situation where this is necessary, the equipment burden and storage cost on the receiving side in product inventory, distribution and storage, especially in import and export. The reduction effect is great.

4)制御弁付の即用式鉛蓄電池への個別効果。
即用式鉛蓄電池は自動車等の始動用等に用いられるが、電槽化成後に電解液を排出し密封を行った状態で製品在庫・流通・保管され、使用前に電解液を注液すれば使用可能となる鉛蓄電池である。これに対して実施例3とほぼ同様の構成を採用した実施例5と実施例4とほぼ同様の構成を採用した実施例6における効果を以下に記載する。
a)前記の制御弁付の始動用鉛蓄電池への個別効果のa)項と同じ効果がある。
b)前記の制御弁付の始動用鉛蓄電池への個別効果のb)項と同じ効果がある。
c)前記の制御弁付の始動用鉛蓄電池への個別効果のc)項と同じ効果がある。さらに、即用化のための前記液栓の別途添付や脱着作業が不要で、注液作業が非常に簡略化される。
4) Individual effects on ready-to-use lead-acid batteries with control valves.
Ready-to-use lead-acid batteries are used for starting automobiles, etc., but if the electrolyte is discharged and sealed after the battery is formed, the product is stocked, distributed and stored, and if the electrolyte is injected before use It is a lead-acid battery that can be used. On the other hand, the effect in Example 5 which employ | adopted the structure substantially the same as Example 5 and Example 4 which employ | adopted the structure substantially the same as Example 3 is described below.
a) The same effect as the item a) of the individual effect on the starting lead-acid battery with the control valve is obtained.
b) The same effect as the item b) of the individual effect on the starting lead-acid battery with the control valve is obtained.
c) It has the same effect as the item c) of the individual effect on the starting lead-acid storage battery with the control valve. Furthermore, it is not necessary to separately attach or remove the liquid stopper for immediate use, and the liquid injection work is greatly simplified.

5)制御弁式鉛蓄電池への個別効果。
負極吸収式の制御弁式鉛蓄電池は自動車始動用等に用いられるが、電解液量を抑制して極板を一部露出させ充電時に正極極板から発生した酸素ガスを負極極板に吸収させることにより水分消失が抑制される密閉型鉛蓄電池で、内部ガス圧が上昇した時に内部ガスを放出する前記加圧制御弁が注液口に設けられる。これに対して実施例3又は実施例4とほぼ同様の構成を採用した実施例7における効果を以下に記載する。
a)前記液栓を使用せず極板より上部の高さを低く出来るため、小型化が可能な前記分割排気式の鉛蓄電池を提供出来る。従来必要であった制御弁押さえ蓋及び該押さえ蓋の電槽蓋への熱融着等の装着工程が不要となり、コストダウンされる。また、前記押さえ蓋のため従来出来なかった補水が随時に出来るのでさらに寿命延長が出来る。
b)前記の制御弁付の始動用鉛蓄電池への個別効果のb)項と同じ効果がある。
c)前記の制御弁付の始動用鉛蓄電池への個別効果のc)項と同じ効果がある。
d)減圧注液方法により正・負極板内及び電池セル間の化成ばらつきの減少による放電容量の安定化と鉛蓄電池の寿命改善の効果がある。
5) Individual effects on control valve type lead acid batteries.
The negative electrode absorption control valve type lead acid battery is used for starting automobiles, etc., but the negative electrode plate absorbs oxygen gas generated from the positive electrode plate during charging by suppressing the amount of electrolyte and partially exposing the electrode plate. Thus, in the sealed lead-acid battery in which the disappearance of moisture is suppressed, the pressurization control valve for releasing the internal gas when the internal gas pressure increases is provided in the liquid injection port. On the other hand, the effect in Example 7 which employ | adopted the structure substantially the same as Example 3 or Example 4 is described below.
a) Since the height above the electrode plate can be lowered without using the liquid stopper, the split exhaust lead-acid battery capable of being miniaturized can be provided. Installation steps such as heat-sealing the control valve pressing lid and the pressing lid to the battery case lid, which have been necessary in the past, become unnecessary, and the cost is reduced. In addition, since the water can be replenished at any time due to the presser lid, the life can be further extended.
b) The same effect as the item b) of the individual effect on the starting lead-acid battery with the control valve is obtained.
c) It has the same effect as the item c) of the individual effect on the starting lead-acid storage battery with the control valve.
d) The reduced pressure injection method has the effect of stabilizing the discharge capacity and improving the life of the lead-acid battery by reducing the variation in formation within the positive and negative electrode plates and between the battery cells.

6)24V系又は36V系の鉛蓄電池への個別効果。
24V系や36V系の鉛蓄電池は、電池セルが格子状に配置される。これに対して前記の前記の第四〜第九の発明を採用した実施例8における効果を以下に記載する。
a)前記個別排気方式の24V系又は36V系の鉛蓄電池に比べ、前記封口部品及び前記封口部品装着部の個数が大幅に削減され、部品コスト(部品代・管理コスト)及び装着コストが削減される。24V系では12セットから3セットに、36V系では18セットから5セット(4電池セル共通4セット及び2電池セル共通1セット)又は6セット(4電池セル共通3セット及び2電池セル共通3セット)に削減される。
b)12V系の各種の鉛蓄電池と同様の効果がある。
6) Individual effects on 24V or 36V lead acid batteries.
In 24V and 36V lead acid batteries, the battery cells are arranged in a grid. On the other hand, the effect in Example 8 which employ | adopted the said 4th-9th invention is described below.
a) Compared to the individual exhaust type 24V or 36V lead acid battery, the number of the sealing parts and the sealing part mounting part is greatly reduced, and the part cost (part cost / management cost) and the mounting cost are reduced. The 24V series from 12 sets to 3 sets, 36V series from 18 sets to 5 sets (4 sets common to 4 battery cells and 1 set common to 2 battery cells) or 6 sets (3 sets common to 4 battery cells and 3 sets common to 2 battery cells) ).
b) It has the same effect as various 12V lead acid batteries.

実施例1の密閉式電池の第一の装着状態を示す説明図である。電解液は矢印の経 路で注液される。図1−3は封口栓を金属薄板プレス品とした場合の一例を示す。FIG. 3 is an explanatory view showing a first mounting state of the sealed battery of Example 1. The electrolyte is injected through the arrowed path. FIG. 1-3 shows an example when the sealing plug is a metal sheet press product. 実施例1の容器用蓋にカシメ装着された封口栓保持用部材と、封口栓の第一の装 着状態を示す説明図である。ガス置換及び注液方法についても説明する。想像線の 封口栓は第二の装着状態を示す。FIG. 6 is an explanatory view showing a sealing plug holding member caulked to the container lid of Example 1 and a first mounting state of the sealing plug. Gas replacement and liquid injection methods are also described. An imaginary seal plug indicates the second wearing state. 実施例1の封口栓保持用リブを封口栓に設ける場合の第一の装着状態を示す説明 図である。図3−3と図3−4はダブルDカットしたときの封口栓を示す説明図 である。電解液は、矢印の経路で注液される。It is explanatory drawing which shows the 1st mounting state in the case of providing the sealing stopper holding rib of Example 1 in a sealing stopper. FIGS. 3-3 and 3-4 are explanatory views showing the sealing plug when the double D cut is performed. The electrolytic solution is injected through the path indicated by the arrow. 実施例1の封口栓を内圧検出部品に兼用した場合の内圧異常上昇時の電流遮断回 路の一例を示す説明図である。It is explanatory drawing which shows an example of the electric current interruption circuit at the time of abnormal rise of internal pressure at the time of using the sealing stopper of Example 1 also as internal pressure detection components. 実施例2、3、5、7の鉛蓄電池の第二の装着状態の外観説明図。External appearance explanatory drawing of the 2nd mounting state of the lead acid battery of Example 2, 3, 5, 7. 実施例2、3、5、7の鉛畜電池の第一、第二の装着状態を示す説明図で、注液 経路とガス放出経路についても説明する。図6−1、3は第一の装着状態を示す 説明図(平面図、断面図)、図6−5、6は封口部品を180度回動した第二の 装着状態を示す説明図(平面図、断面図)、図6−2、4は封口部品、加圧制御 弁、及び防爆フィルターを除いた封口部品装着部の説明図(平面図、断面図)で ある。It is explanatory drawing which shows the 1st, 2nd mounting state of the lead livestock battery of Example 2, 3, 5 and 7, It demonstrates also about a liquid injection path | route and a gas discharge | release path | route. 6-1 and 3 are explanatory views (plan view, cross-sectional view) showing the first mounting state, and FIGS. 6-5 and 6 are explanatory views (plan view) showing the second mounting state in which the sealing part is rotated 180 degrees. FIGS. 6-2 and 4 are explanatory views (plan view, cross-sectional view) of the sealing part mounting portion excluding the sealing part, the pressurization control valve, and the explosion-proof filter. 実施例4、6、7の鉛蓄電池の第二の装着状態の外観説明図。External appearance explanatory drawing of the 2nd mounting state of the lead acid battery of Example 4, 6, 7. FIG. 実施例4、6、7の鉛畜電池の第一、第二の装着状態を示す説明図で、注液経路 とガス放出経路についても説明する。図8−1、3は第一の装着状態を示す説明 図(平面図、断面図)、図8−5、6は封口部品を180度回動した第二の装着 状態を示す説明図(平面図、断面図)、図8−2、4は封口部品を除いた封口部 品装着部の説明図(平面図、断面図)である。It is explanatory drawing which shows the 1st, 2nd mounting state of the lead livestock battery of Example 4, 6, and 7, and demonstrates a liquid injection path | route and a gas discharge | release path | route. FIGS. 8-1 and 3 are explanatory diagrams showing the first mounting state (plan view, cross-sectional view), and FIGS. 8-5 and 6 are explanatory diagrams showing the second mounting state in which the sealing part is rotated 180 degrees (plan view). FIGS. 8-2 and 4 are explanatory views (a plan view and a sectional view) of the sealing part mounting part excluding the sealing part. 実施例2〜7の制御弁装着部の説明図で、排気経路と吸気経路についても説明す る。図9−1、2は加圧制御弁装着部、図9−3は減圧制御弁装着部の説明図で ある。Exhaust paths and intake paths will also be described with reference to the control valve mounting portions of Examples 2-7. FIGS. 9-1 and 2 are explanatory views of the pressurizing control valve mounting portion, and FIGS. 9-3 are explanatory views of the pressure-reducing control valve mounting portion. 実施例2と実施例3の加圧制御弁装着部8jを電池セル毎に設けた場合の鉛畜 電池の第一、第二の装着状態を示す説明図で、ガス放出経路についても説明する 。図10−1は第一の装着状態を示す説明図、図10−3は封口部品を180度 回動した第二の装着状態を示す説明図、図10−2は封口部品を除いた封口部品 装着部の説明図である。The gas discharge path will also be described with reference to the first and second mounting states of the lead-acid battery when the pressurization control valve mounting portion 8j of the second and third embodiments is provided for each battery cell. FIG. 10-1 is an explanatory view showing a first mounting state, FIG. 10-3 is an explanatory view showing a second mounting state in which the sealing part is rotated 180 degrees, and FIG. 10-2 is a sealing part excluding the sealing part. It is explanatory drawing of a mounting part. 実施例4の加圧制御弁装着部8jと減圧調整弁装着部8tを電池セル毎に設け た場合の鉛畜電池の第一、第二の装着状態を示す説明図で、ガス放出経路につい ても説明する。図11−1は第一の装着状態を示す説明図、図11−3は封口部 品を180度回動した第二の装着状態を示す説明図、図11−2は封口部品を除 いた封口部品装着部の説明図である。FIG. 6 is an explanatory diagram showing first and second mounting states of a lead-acid battery when the pressurization control valve mounting portion 8j and the pressure reducing valve mounting portion 8t of Example 4 are provided for each battery cell. Also explained. Fig. 11-1 is an explanatory diagram showing the first mounting state, Fig. 11-3 is an explanatory diagram showing the second mounting state in which the sealing part is rotated 180 degrees, and Fig. 11-2 is the sealing member excluding the sealing parts. It is explanatory drawing of a component mounting part. 加圧制御弁及び常時通気用微小溝を封口部品装着部に設けず、封口部品に設け た場合の説明図である。FIG. 5 is an explanatory diagram when the pressurizing control valve and the micro-groove for continuous ventilation are not provided in the sealing part mounting portion but are provided in the sealing part. 減圧制御弁を封口部品装着部に設けず、封口部品に設けた場合の説明図である 。It is explanatory drawing at the time of not providing a pressure-reduction control valve in a sealing component mounting part, but providing in a sealing component. 実施例8の24V系の鉛蓄電池の第一、第二の装着状態の外観説明図である。FIG. 9 is an external explanatory diagram of first and second mounting states of a 24V lead-acid battery of Example 8.

具体的な封口構造は、電気化学装置の種類によって異なるので代表的な種類の電気化学装置について本発明の封口構造を以下に記載する。ただし、以下の記載事項は代表例を示すもので、類似の構造となる電池やキャパシター等の電気化学装置にも適用され、記載例に限定されるものではない。また、符号は、同一の機能を持つものに対しては同一又は類似の符号を極力使用して説明する。   Since the specific sealing structure varies depending on the type of electrochemical device, the sealing structure of the present invention will be described below for typical types of electrochemical devices. However, the following description items show typical examples, and are also applied to electrochemical devices such as batteries and capacitors having similar structures, and are not limited to the description examples. In addition, the same reference numerals are used for those having the same function as much as possible.

1)密閉型電池
前記第二の発明を採用した前記封口部品保持用リブが前記封口部品保持用部材に設けられた密閉型電池に対する実施例を以下に記載する。急速に使用量が拡大している代表的な前記電気化学装置のリチウムイオン電池は、前記容器の本体に注液後に前記容器用蓋で封口する構造があるが、前記封口部品保持用部材に設けられた注液口より注液する注液口封口構造例をまず説明し、次に前記容器用蓋で封口する場合のガス置換又は減圧状態で封口する方法について記載する。各構成要素の構成と作用は以下の通りである。(図1〜4参照)
1) Sealed battery An embodiment for a sealed battery in which the sealing part holding rib adopting the second invention is provided on the sealing part holding member will be described below. The lithium ion battery of a typical electrochemical device whose usage is rapidly expanding has a structure in which the container lid is sealed with the container lid after being injected into the container body, but is provided on the sealing component holding member. An example of a liquid inlet sealing structure in which liquid is injected from the liquid inlet is first described, and then a method of sealing in a gas replacement or reduced pressure state when sealing with the container lid is described. The configuration and operation of each component are as follows. (See Figures 1-4)

a)リチウムイオン電池の注液口封口構造以外は従来のもので、電極を兼ねる金属製の容 器本体に正・負極板とセパレーターが内蔵され、もう一方の電極が設けられた前記容 器用蓋で封口される。正・負極板と正・負電極は封口前に電気接続されている。電解 液は前記容器用蓋の前記封口部品保持用部材に設けられた注液口から注液され、その 後に注液口が封口される。本実施例では、前記容器用蓋に設けた注液口封口構造関連 についてのみ詳述する。
b)注液用通路21は、アルミ製容器を封口する容器用蓋1にカシメ装着された封口栓(封 口部品)保持用部材又は外部端子のいずれかに設けるが、外部端子を封口栓保持用部 材兼用とする方がコスト的に当然有利である。容器用蓋1に必要な成形加工をして封 口栓保持用部材兼用としてもよい。外部端子兼用の封口栓保持用部材2は、外部端子 となる頭部2a、中心軸穴2eに封口栓3を保持する封口栓(封口部品)保持用リブ2fと 封口栓保持用リブ2fの間に通路2gとを持つ封口栓(封口部品)保持部2b、封口栓保持 部2bの容器内方側に同一軸線上に連続して設けられ注液後に封口栓(封口部品)3の 圧入によって封口される封口用穴2hを持つ封口用通路部2c、及び、カシメ装着用の薄 肉部2jで構成される。封口栓保持部2bの注液口入り口には、注液時のオーバーフロー 防止用凹部2dを設ける。封口用通路部2cの封口用穴2hの容器内方側の部分は容器内方 側が大径の円錐状穴2iとし、ストレート穴の場合より小さな圧入力で封口栓の容器外 方側への抜けに対する抵抗力を増加させる。封口栓3に大径の頭部を設ければ、封口 用通路部2cをオーバーフロー防止用凹部2dに設けることも出来る。
c)封口栓3は、合成ゴム又は熱可塑性エラストマー又は合成樹脂等の弾性体又はアルミ 等の軟質金属や金属薄板プレス品で作られ、容器内方側にのみ開口した凹部3aを持つ 柱状体で、封口栓保持用部材2に封口栓保持用リブ2fで保持された状態で製造ライン に投入される。このユニット化した状態で購入してもよい。表面に防食用又は潤滑用 の皮膜処理をしてもよい。
d)封口栓3を保持した封口栓保持用部材2は、絶縁材4a、4bと内側端子5とともにアル ミ製封口蓋1にカシメ装着される。さらに発電要素等が接続された容器蓋1をアルミ製 容器へレーザー溶接する。次に以下に示す電解液注液を経て、封口栓3を封口栓保持部 2bから封口用通路部2cに圧入する。封口栓3は電池内圧が上昇した時、摩擦力と変形抵 抗でも保持されるが、凹部3aの内面に働く圧力による前記封口用穴2h又は/及び円錐状 穴2iへの押圧による摩擦力よっても保持される。
e)注液は、合成ゴム製の弾性先端部6aを装着したガス置換ノズル6を容器蓋1に押圧 密封し、これを経由して電池内を減圧後に注液ノズル7より注液し、次に注液ノズル7 を窒素ガス置換又は大気圧開放する。これにより電池内の極板やセパレーター等の発電 ・蓄電要素の空隙部の空気や気泡を容易かつ確実に排出したり窒素ガス置換したりする ことにより電気的性能が向上する。また、高粘度の電解液でも注液が容易になるととも に内部の浸透拡散も均質に促進され、生産性が向上するだけでなく極板化成のバラツキ が解消されて電池性能が安定するとともに寿命改善される。
f)封口は、次のステージで同様に所定圧まで減圧後に封口栓3を封口用通路部2cに圧入 して行う。注液後に前記減圧封口を連続して行ってもよい。適度な圧力で前記減圧封口 した場合、大気圧による容器経由の極板やセパーレーターへの圧迫が行われるので、使 用中の電極活物質の脱落減少及び、機械的強度と電気的性能の向上並びに、内部発生熱 の電池表面への熱放散増大による局部上昇温度の低下等の効果がある。また、注液後開 口状態で充電処理等を行った後に同様の方法で窒素ガス置換又は、窒素ガス置換状態又 は減圧状態での封口を行ってもよい。これにより充電処理による発生ガス・気泡が排出 され性能がより安定する。ガス置換ノズル6を容器用蓋1でなく生産設備の電池積載面 に押圧密封し、電池の内外を同時にガス置換してもよい。封口をより確実にする場合は 、Oリング、パッキン等の封口用弾性材を封口栓保持用部材2又は封口栓3の封口用部 位に装着又はコーティングする。また、封口栓3を完全固着する場合は、圧入後に封口 栓3の上に接着剤等を注入してもよい。
g)以上は、注液口から注液する場合の方法であるが、前記容器に注液後に容器用蓋1で 封口する場合は、封口栓保持用部材2兼用の外部端子を設けた容器用蓋1で封口後、前 記と同様にガス置換又は減圧した状態で封口する。これにより容器用蓋等で封口する既 設製造ラインでも外部端子を封口栓保持用部材兼用とすれば、簡易な設備改造で窒素ガ ス置換状態又は減圧状態での封口が容易となる。
h)封口栓保持用リブ3fを封口栓3側に設ける場合は、図3に示す構成となる。また、図 3−3及び図3−4に示すように封口栓保持用リブ3fを設けず、ダブルDカット形状 とすることも出来る。
なお,封口栓3に封口栓保持用リブ3fより大径の頭部を設ければ、封口用通路部2cを オーバーフロー防止用凹部2dに設けることも出来る。
i)容器用蓋1の外部端子を封口栓保持用部材兼用とし、封口栓3の容器外方側への抜け 抵抗力を前記容器の破裂強度以下に設定すれば、内圧の異常上昇に対するガス放出用 安全弁として利用できる。
j)封口栓3を電池内圧が異常上昇した時に動作する内圧検出部品として利用すれば、異 常上昇時の電流遮断回路を容易に装着できる。図4で示す一例を以下に説明する。可動 接点52aを設けた可動接点用バネ板52に固定した連結ピン55を封口栓3で押圧し、可動 接点52aと固定接点53aを接触させ通電回路を構成する。内圧が異常上昇し封口栓3が 電池外方に移動すれば接点部は開放され、電流が遮断される。
a) The lid for a container having a positive and negative electrode plate and a separator built in a metal container body which also serves as an electrode, and the other electrode, except for a conventional liquid-injection sealing structure of a lithium ion battery It is sealed with. The positive / negative electrode plate and the positive / negative electrode are electrically connected before sealing. The electrolyte is injected from a liquid inlet provided in the sealing part holding member of the container lid, and the liquid inlet is then sealed. In this example, only the liquid inlet sealing structure related to the container lid will be described in detail.
b) The injection passage 21 is provided in either the sealing plug (sealing part) holding member caulked to the container lid 1 for sealing the aluminum container or the external terminal, but the external terminal is held by the sealing plug. It is of course more advantageous in terms of cost to use it as a structural component. The container lid 1 may be molded as necessary to be used as a sealing plug holding member. The sealing plug holding member 2 also serving as an external terminal is between the sealing plug (sealing part) holding rib 2f and the sealing plug holding rib 2f that hold the sealing plug 3 in the head 2a and the central shaft hole 2e serving as the external terminals. Sealing plug (sealing part) holding part 2b with passage 2g on the inside of the container of sealing plug holding part 2b is continuously provided on the same axis, and sealed by press-fitting sealing plug (sealing part) 3 after pouring A sealing passage portion 2c having a sealing hole 2h and a thin portion 2j for caulking. A recess 2d for preventing overflow at the time of liquid injection is provided at the inlet of the liquid inlet of the sealing plug holder 2b. The portion inside the container of the sealing hole 2h of the sealing passage portion 2c is a conical hole 2i having a large diameter on the inner side of the container, and the sealing plug is pulled out to the outer side of the container with a smaller pressure input than in the case of the straight hole. Increases resistance to If the sealing plug 3 is provided with a large-diameter head, the sealing passage portion 2c can be provided in the overflow preventing recess 2d.
c) The sealing plug 3 is a columnar body made of an elastic body such as a synthetic rubber, a thermoplastic elastomer or a synthetic resin, or a soft metal such as aluminum, or a metal thin plate press, and having a recess 3a opened only on the inner side of the container. The sealing plug holding member 2 is put into the production line while being held by the sealing plug holding rib 2f. You may purchase in this unitized state. The surface may be coated with anticorrosion or lubrication.
d) The sealing plug holding member 2 holding the sealing plug 3 is caulked and attached to the aluminum sealing lid 1 together with the insulating materials 4 a and 4 b and the inner terminal 5. Further, the container lid 1 to which the power generation elements and the like are connected is laser welded to the aluminum container. Next, through the electrolyte pouring described below, the sealing plug 3 is press-fitted from the sealing plug holding portion 2b into the sealing passage portion 2c. When the internal pressure of the battery rises, the sealing plug 3 is retained even by frictional force and deformation resistance, but by the frictional force due to the pressure on the sealing hole 2h and / or the conical hole 2i due to the pressure acting on the inner surface of the recess 3a. Is also retained.
e) As for the injection, the gas replacement nozzle 6 equipped with the elastic tip 6a made of synthetic rubber is pressed and sealed against the container lid 1, and after the pressure inside the battery is reduced, the liquid is injected from the injection nozzle 7 and then injected. The liquid injection nozzle 7 is replaced with nitrogen gas or opened to atmospheric pressure. This improves the electrical performance by easily and reliably discharging air and air bubbles in the voids of the power generation / storage element such as the electrode plate and separator in the battery and replacing it with nitrogen gas. In addition, even high-viscosity electrolytes can be easily injected, and internal osmotic diffusion is also uniformly promoted, which not only improves productivity but also eliminates variations in electrode plate formation, stabilizes battery performance, and provides a long service life. Improved.
f) The sealing is performed by pressing the sealing plug 3 into the sealing passage 2c after the pressure is reduced to a predetermined pressure in the next stage. The vacuum sealing may be continuously performed after the injection. When the decompression seal is performed at an appropriate pressure, pressure is applied to the electrode plate and the separator via the container due to atmospheric pressure, so that the electrode active material during use is reduced and mechanical strength and electrical performance are improved. In addition, there is an effect such as lowering of locally raised temperature due to increased heat dissipation of internally generated heat to the battery surface. In addition, after performing the charging process in the open state after the injection, the sealing may be performed in the same manner as described above with nitrogen gas replacement, nitrogen gas replacement state or reduced pressure state. As a result, the gas and bubbles generated by the charging process are discharged and the performance becomes more stable. The gas replacement nozzle 6 may be pressed and sealed not on the container lid 1 but on the battery mounting surface of the production facility, so that the inside and outside of the battery are replaced with gas simultaneously. In order to secure the sealing, an elastic material for sealing such as an O-ring or packing is attached or coated on the sealing portion of the sealing plug holding member 2 or the sealing plug 3. When the sealing plug 3 is completely fixed, an adhesive or the like may be injected onto the sealing plug 3 after press-fitting.
g) The above is a method in the case of pouring from the liquid filling port, but when the container is sealed with the container lid 1 after pouring into the container, the container is provided with an external terminal also serving as a sealing plug holding member 2 After sealing with the lid 1, the sealing is performed in a gas-replaced or depressurized state as described above. Thus, even in an existing production line that seals with a container lid or the like, if the external terminal is also used as a member for holding a sealing plug, sealing in a nitrogen gas replacement state or a reduced pressure state is facilitated by a simple facility modification.
h) When the sealing plug holding rib 3f is provided on the sealing plug 3 side, the structure shown in FIG. Further, as shown in FIGS. 3-3 and 3-4, the sealing plug holding rib 3f is not provided, and a double D-cut shape may be used.
If the sealing plug 3 is provided with a head having a diameter larger than that of the sealing plug holding rib 3f, the sealing passage 2c can be provided in the overflow preventing recess 2d.
i) If the external terminal of the container lid 1 is also used as a member for holding the sealing plug, and the resistance of the sealing plug 3 to the outside of the container is set to be less than the bursting strength of the container, the gas release against the abnormal increase in internal pressure Can be used as a safety valve.
j) If the sealing plug 3 is used as an internal pressure detecting component that operates when the internal pressure of the battery rises abnormally, it is possible to easily attach a current interruption circuit during abnormal rise. An example shown in FIG. 4 will be described below. The connecting pin 55 fixed to the movable contact spring plate 52 provided with the movable contact 52a is pressed by the sealing plug 3, and the movable contact 52a and the fixed contact 53a are brought into contact to constitute an energization circuit. If the internal pressure rises abnormally and the sealing plug 3 moves to the outside of the battery, the contact portion is opened and the current is cut off.

2)制御弁付の始動用鉛蓄電池(1)
前記の第四〜第七の発明を採用した前記の制御弁付の始動用鉛蓄電池に対する実施例を以下に記載する。従来の制御弁式始動用鉛蓄電池では電解液量が抑制されており注液口は各電池セルに設けられ加圧制御弁又は加圧制御弁付液栓で各々が封口されるが、本実施例では注液口封口構造以外は従来の充分な電解液量を持つ液式の始動用鉛蓄電池とし、隣接する電池セル2個に対して、前記隣接する電池セル2個共通の封口部品装着部を設け、これに前記の電池セル毎の電解液注液用通路(注液口)及び、電池セル内で発生したガス中の水分を凝縮し結露させる前記の電池セル毎の排気室並びに、前記の常時通気用の微小通気路を持ち前記加圧制御弁が装着された前記共通の外部通気口を設ける。前記共通の封口部品は、キャップ状とし電池セル毎の注液口と前記共通のガス放出口を設ける。
各構成要素の構成と作用は以下の通りである。(図5、6、9参照)
2) Lead-acid storage battery with control valve (1)
Examples of the lead-acid battery for starting with the control valve adopting the fourth to seventh inventions will be described below. In the conventional lead-acid battery for control valve type starting, the amount of electrolyte is suppressed, and the injection port is provided in each battery cell, and each is sealed with a pressure control valve or a liquid stopper with a pressure control valve. In the example, a liquid type lead storage battery having a sufficient amount of electrolytic solution is used except for the liquid inlet sealing structure, and the sealing part mounting portion common to the two adjacent battery cells is used for two adjacent battery cells. An electrolyte solution injection passage (injection port) for each battery cell, an exhaust chamber for each battery cell for condensing and condensing moisture in the gas generated in the battery cell, and The common external vent hole having the micro-ventilation passage for continuous ventilation and having the pressurization control valve attached thereto is provided. The common sealing part has a cap shape and is provided with a liquid injection port for each battery cell and the common gas discharge port.
The configuration and operation of each component are as follows. (See FIGS. 5, 6, and 9)

a)本実施例の注液口封口構造以外は前記の従来の液式の始動用鉛蓄電池のもので、6電 池セルのモノブロック式電槽に正・負極板とセパレーターが内蔵されており電槽蓋が熱 融着され外部端子が形成される。正・負極板及び正・負外部端子は、電槽蓋の熱融着前 に電気接続されている。本実施例では、電槽蓋に設けた注液口封口構造関連についての み詳述する。
b)封口部品装着部8aは、合成樹脂製の電槽蓋8と一体成形される。封口部品装着部8 aは、電池セル隔壁8b上に中心を持つわずかに円錐形の円盤状で、上面中心部にタッ ピングネジ11の下穴8cを持つ。内部には電池セル毎に注液口8h及び排気室隔壁8e で区分され連続した排気室8d並びに第二の装着状態で封口部品10の注液口10hを封口 する柱状部8gを、底面にはガス流入口8fを、電池セル隔壁8b上には電池セル共通 の加圧制御弁装着部8jを設ける。ガス流入口8fの形状は1〜3mm×2〜4mmの 長方形が良い。封口部品10の内面と接触する排気室隔壁8eの上端面等は、貼り付きを 回避するため接触面積の極力少ないU形等の形状とする。各電池セルの排気室8dと加 圧制御弁装着部8jの間には、排気絞り用細幅縦溝8iを設ける。発生ガス中の水分・ 電解液ミストは、排気絞り用細幅縦溝8iに到達するまでにほとんど排気室8dで凝縮 し結露されて電池セル内に還流し、電解液や水分が隣接する電池セルにガス体として移 動することは少ないが、排気絞り用細幅縦溝8iにより各電池セルの発生ガスが直接的 に隣接する電池セルに流入するのを出来るだけ防止する。加圧制御弁装着部8jには、 中心部に円錐状の封口面8mを持つ柱状突起部8kを、周辺部に通気用の縦溝8pを設 ける。封口面8mには常時通気用微小溝8nを2〜3個設ける。常時通気用微小溝8n の寸法は、高さ1mm、幅0.4mm程度とする。排気室8dの底面はガス流入口8fの ある排気室の底面を最下位に順次高くして凝縮し結露した水分・電解液がガス流入口8 fより電池セル内に還流するようにする。ガス流入口8fの下部には電解液や電解液飛 沫がガス流入口8fに直接流入し難くするための下側筒状部8qを設け、内部には階段 状の排出経路8rを、その側壁には細幅の通気用スリット8sを設ける。排出経路8r は、電解液が排気室8dに直接流入し難くするため経路の断面を変化させる。排出経路 8rに替えて下側筒状部8qの内部に従来の前記液栓内部に装着されるような防沫体を 装着してもよい。
c)5〜15kPaで開弁する加圧制御弁13を加圧制御弁装着部8jに、防爆用フィルター 12を加圧制御弁13の円筒状部13aに気密に圧入する。加圧制御弁13は、合成ゴム又は熱 可塑性エラストマー又は合成樹脂等の弾性体で作られ、円筒状部13aと薄肉弁13bで構 成され、薄肉弁13bの中心にガス放出口13cを持つ。加圧制御弁13と防爆用フィルター 12は圧入により保持されるだけでなく、封口部品10の頭部10aにより脱落しないように 押さえられている。また、加圧制御弁13と防爆用フィルター12とのいずれかは、気密に 頭部10aの内面に押圧されている。薄肉弁13bの封口面の貼り付きが懸念される場合に は封口面にシリコンオイル又はグリス等のシール剤を塗布する方がよい。または、フッ 素樹脂等のコーティングをしてもよい。
d)前記緊急ガス放出弁ともなるキャップ状の封口部品10は、合成ゴム又は熱可塑性エラ ストマー又は合成樹脂等の弾性体で作られ、頭部10aと外周部の薄肉リブ10bで構成さ れる。頭部10aには、中心部に回動用の六角頭部10dとタッピングネジ11の取り付け穴 10cが、外周部に2個の注液口10hと前記共通のガス放出口10jが設けられる。封口部 品10の開弁圧は、電槽が亀裂しない圧力以下、例えば25〜35kPaに設定する。封口部 品10は、加圧制御弁13と防爆用フィルター12とが装着された電槽蓋8の封口部品装着部 8aに気密に着脱可能に外嵌するとともに、タッピングネジ11で回動可能に固定する。 タッピングネジ11を使用せず、鍔付圧入ピンを圧入してもよい。また、密封性の向上と 封口時の回転抵抗の減少を行うため、少なくとも薄肉リブ10bの内面にはシリコンオイ ル又はグリス等の潤滑シール剤を塗布する。または、フッ素樹脂等のコーティングをし てもよい。
e)封口部品10が装着された電槽蓋8は、正・負極板とセパレーターが組み込まれた電槽 に熱融着され、注液口10hより注液可能となる。電槽蓋8は封口部品10が第一の装着状 態で購入・保管し、製造ラインに投入する方がよい。この場合は、ガス放出口10j3個 を連続した接着テープで密封すれば、封口工程の回動時に剥離し易く、保管中に防爆用 フィルター12に塵埃が沈積することが無く、注液や電槽化成等の工程で電解液等により 汚染されない。封口部品10を装着しない状態で製造ラインに投入する場合は、加圧制御 弁13と防爆用フィルター12とは、電槽蓋に装着した状態で購入・保管するか、封口部品 10の装着前に装着するかのいずれかとなるが、電槽蓋に装着した状態で購入・保管する 方がよい。封口部品10を装着せずに購入すれば、電解液の注液や電槽化成等の工程で封 口部品10を電解液等で汚染させない長所があるが、製造ラインへの封口部品等の装着装 置の設置・管理が必要で封口部品10等の供給作業も必要となる短所がある。
f)電槽化成中の発生ガスは電池セル毎に注液口10hより直接外部に放出される。次に、 必要な場合は電解液の濃度と液量を調整した後、封口部品10を半回転して封口する。封 口部品10は薄肉リブ10bと封口部品装着部8aの外周壁との摩擦力とタッピングネジ11 とで保持され、注液口10hは柱状部8gで封口され、ガス放出口10jは防爆用フィルタ ー12の上方に位置する。
g)内部発生ガス(水の電気分解ガス・水蒸気・電解液ミスト)は、下側筒状部8qの階 段状の排出経路8rよりガス流入口8fを通過して排気室8dに流入する。排気室8d で凝縮・結露した水分・電解液はガス流入口8fから各電池セル内に還流し、その他は 排気絞り用細幅縦溝8iを経由してガス排気用縦溝8pより加圧制御弁装着部8jに流 入する。自己放電時等のわずかなガス量であれば封口面8mの常時通気用微小溝8nよ り加圧制御弁13のガス放出口13cと防爆用フィルター12を経て、ガス排出口10jより電 池外に放出される。
h)図6に示したガス放出経路は一例であってこれに限定されるものではないが、鉛蓄電 池を反転して注液口8hより電解液を排出する必要がある場合は注液口8hとガス流入 口8fとは鉛蓄電池の幅方向に極力離して配置し、ガス流入口8fに電解液が流入しな いようにすることが必要である。また、外部端子も反転時に上方となる様に配置し電解 液で汚染されないようにする。ガス放出口10jは、同様に上方となる様に配置するか又 は前記のように連続テープで密封する。
i)大電流充電等により多量のガスが発生し内圧が加圧制御弁13の開弁圧より上昇したと きは、薄肉弁10bを外方に変形させ封口面8mとの間に出来た空隙部からも内部ガスを 放出する。このガス排出方法は、従来の液栓装着方式に比較し極板より上部の高さを低 く出来るため、小型化が可能な分割排気式鉛蓄電池を提供出来る。また、小型化のため に採用される一括排気方式鉛蓄電池に必要な上蓋や上蓋の電槽蓋への熱融着を必要とせ ず、各電池セルに対する注液口や封口栓も別途設ける必要が無く、これらに必要な部品 代及び成型金型費用並びに装着コストが削減される。
j)前記「特許文献6 特開2008−146895 鉛蓄電池」で記載されているよう に、常時通気用微小溝8nにより鉛蓄電池は常に外部にわずかではあるが開放されてお りどの電池セルの内圧も大気圧に収束するので、電池セル間に差圧も発生しない。この ため電槽の外壁・電池セル隔壁には塑性変形を起こすような圧力が常時加圧されること は無い。したがって、製品在庫・流通・保管・使用中のいずれの段階においても、電槽 の外壁や電池セル隔壁への加圧・減圧が抑制され電槽の塑性変形による各種の不具合と 亀裂による電解液漏出が防止される。これにより、電槽の材質を安価な材質とし肉厚を 薄くすることが出来るので、鉛蓄電池の重量軽減とコストダウンに有効となる。
k)電池使用中に内部短絡等により内圧が封口部品10の開弁圧以上に異常上昇したときは 、封口部品10の頭部10aと外周部の薄肉リブ10bが変形する。これにより隣接する電池 セル側の封口部品装着部8aにも流入するとともに、封口部品装着部8aの外周壁との 間に出来た空隙部と注液口10hとから内部ガスを放出する。この場合は鉛蓄電池の継続 使用は考慮する必要がなく電槽の亀裂・破裂による電解液の漏洩・飛散だけを防止すれ ばよいが、従来のキャップ状の小さな防爆弁と異なり大きな受圧面積に対する圧力によ り開弁するので、多少の封口弁貼りつきがあっても確実に動作し、開弁圧の変化も少な い。薄肉リブ10bに部分的な薄肉部又は小さな切り欠き部を設け、薄肉リブ10bが確実 に拡大・破断される様にしてもよい。封口部品10はタッピングネジ11で保持されており 封口部品装着部8aとの位置関係が変わらないため、動作後も脱落せずほぼ元の装着状 態に復帰する。
l)常時通気用微小溝8nによる非常にわずかな通気があるものの加圧制御弁13の装着に より電解液の水分消失は前記「特許文献6 特開2008−146895 鉛蓄電池」 で記載されているように非常に抑制されるため電池への補水は通常ほとんど必要とせず 鉛蓄電池も長寿命化されるが、封口部品10を半回転すれば何時でも封口部品10を脱着せ ずに補水可能で、鉛蓄電池を車体に装着した状態で補水出来る。
m)図5に示すようにガス排出口10j共通の連続シート15を貼付すれば、鉛蓄電池周辺の 気流による影響が無くなり水分消失量が削減されるとともに、ガス排出口10i内への塵 芥の沈積も無くなる。ガス排出経路を確保するため、連続シートの接着剤は斜線部のみ とする。
n)以上は加圧調整弁13を前記共通とした場合であるが、図10に示すように封口部品装着 部8aの内部を電池セル毎に分離し、加圧調整弁装着部8jを電池セル毎に設けてもよ い。この場合は、封口部品10のガス排出口10iは注液口10hで兼用する。始動用鉛蓄電 池は高温になるエンジンルーム内に装着されることがほとんどで、両端の電池セルの温 度が高くなり内側の電池セルより電解液の水分蒸発が多くなる傾向にある。したがって 、端部の電池セルと内側の電池セルに共通の加圧調整弁13を使用したとき、使用条件に よっては排気絞り用細幅縦溝8iがあっても端部の電池セルから内側の電池セルに水分 を含んだガスが一方的に流入し、長期使用によって内側の電池セルの電解液が増加し溢 液する可能性がある。これに対しては、封口部品装着部8aの内部を電池セル毎に分離 する本構造を使用し、加圧調整弁13の開弁圧力を内側の電池セルより端部の電池セルを 高くした方が好ましく、電池セル隔壁の肉厚も厚くする。
o)前記の第十の発明を採用し、加圧調整弁13と常時通気用微小溝8nとを封口部品装着 部8aに設けずに、封口部品10に設けることも出来る。加圧調整弁13と常時通気用微小 溝8nとの機能を封口部品頭部10aの内部に設けるために以下の構造とする。封口部品 頭部10aに圧力調整弁軸16を装着するための圧力調整弁軸装着部10kを設ける。圧力調 整弁軸装着部10kには、封口部品の頭部10aの上下両端面に円板状の凹部10lを、凹部 10lの間に封口部品10と一体成型された薄肉弁10nを、薄肉弁10nの中心に圧力調整弁 中心軸16bより大径の貫通穴10mを設ける。薄肉弁10nは、フランジ部16aの封口面に 押圧される。薄肉弁10nを封口部品10と一体成型しないリング状の薄肉弁とし、圧力調 整弁軸装着部10kに気密に装着してもよい。圧力調整弁軸16は、フランジ部16aと中心 軸16bとで構成される。リング状防爆フィルター12は、フランジ部16aが圧力調整弁軸 装着部10kに気密に装着されるように中心軸16bに固着される。また、フランジ部16a の薄肉弁10nとの封口面の外周にリング状溝16dを、前記の封口面の一部に複数の常時 通気用微小溝16nを、また、リング状溝16dと排気室8dを接続する通気用穴16eを設 ける。通気用穴16eは、排気絞り用細幅縦溝8iを経由したガスが流入するように配置 する。圧力調整弁軸16の材質は、外部スパークによる封口弁装着部8aの引火・爆発を 防止するため合成樹脂等の非導電材とする。薄肉弁10nは、封口部品装着部8aの圧力 が減圧時はフランジ部16aに気密に押圧され、加圧時には外側に変形する。これにより 開閉弁圧以上の内部発生ガスは、通気用穴16eよりリング状溝16d、薄肉弁10nとフラ ンジ部16aとの間の空隙、貫通穴10m、リング状防爆フィルター12を経由して外部へ排 出される。この構造は、封口部品装着部8aの形状が単純化され成型金型費用が削減さ れるとともに、排気室8dの面積をより多く確保できるので凝縮・結露能力が向上し、 電解液中の水分消失量が減少する効果がある。(図12参照)
p)前記の第四の発明の構成において封口部品10に注液口10hを設けない場合は、第一の 装着状態と第二の装着状態を選択的に維持出来ず、封口部品10の装着と封口は同義とな り、前記のコスト配分の最適化によるトータルコストダウンという共通効果と封口部品 10を脱着せずに補水可能という個別効果は無いが、これら以外の効果はすべて可能であ る。この場合は注液口10hを封口する柱状部8gは当然不要である。また、封口部品装 着部8aの形状も封口部品10の回動を考慮しない長方形にすることが出来るので、排気 室8dの面積拡大により凝縮・結露能力を向上させることが可能となる。
a) Except for the injection hole sealing structure of this example, the conventional liquid type lead storage battery for start-up was used, and the positive / negative electrode plate and separator were built in the monoblock battery case of 6 battery cells. The battery case lid is heat-sealed to form external terminals. The positive and negative electrode plates and the positive and negative external terminals are electrically connected before heat-sealing the battery case lid. In this example, only the liquid inlet sealing structure related to the battery case lid will be described in detail.
b) The sealing part mounting portion 8a is integrally formed with the battery case lid 8 made of synthetic resin. The sealing part mounting portion 8a has a slightly conical disk shape having a center on the battery cell partition wall 8b, and has a pilot hole 8c for the tapping screw 11 at the center of the upper surface. Inside is a continuous exhaust chamber 8d divided by a liquid injection port 8h and an exhaust chamber partition wall 8e for each battery cell, and a columnar portion 8g for sealing the liquid injection port 10h of the sealing part 10 in the second mounted state, and on the bottom surface. The gas inlet 8f is provided on the battery cell partition wall 8b with a pressure control valve mounting portion 8j common to the battery cells. The shape of the gas inlet 8f is preferably a rectangle of 1 to 3 mm × 2 to 4 mm. The upper end surface of the exhaust chamber partition wall 8e that comes into contact with the inner surface of the sealing part 10 has a U-shaped shape with a minimal contact area in order to avoid sticking. A narrow vertical groove 8i for exhaust throttling is provided between the exhaust chamber 8d of each battery cell and the pressure control valve mounting portion 8j. Moisture / electrolyte mist in the generated gas is mostly condensed and condensed in the exhaust chamber 8d until it reaches the narrow vertical groove 8i for exhaust throttling, and then recirculates into the battery cell. However, the gas generated in each battery cell is prevented from flowing directly into the adjacent battery cell as much as possible by the narrow vertical groove 8i for exhaust throttling. The pressurizing control valve mounting portion 8j is provided with a columnar projection 8k having a conical sealing surface 8m at the center and a vertical groove 8p for ventilation at the periphery. Two to three micro-grooves 8n for ventilation are always provided on the sealing surface 8m. The dimensions of the constant ventilation micro-groove 8n are about 1 mm in height and about 0.4 mm in width. The bottom surface of the exhaust chamber 8d is formed so that the bottom surface of the exhaust chamber having the gas inlet 8f is sequentially raised to the lowest position so that the condensed moisture and electrolyte are recirculated into the battery cell from the gas inlet 8f. A lower cylindrical portion 8q is provided below the gas inlet 8f to make it difficult for electrolyte or droplets to flow directly into the gas inlet 8f. Is provided with a narrow ventilation slit 8s. The discharge path 8r changes the cross section of the path to make it difficult for the electrolyte to flow directly into the exhaust chamber 8d. Instead of the discharge path 8r, a splash-proof body that is mounted inside the conventional liquid stopper may be mounted inside the lower cylindrical portion 8q.
c) Pressurize and pressurize the pressurization control valve 13 that opens at 5 to 15 kPa into the pressurization control valve mounting portion 8j and the explosion-proof filter 12 into the cylindrical portion 13a of the pressurization control valve 13. The pressurization control valve 13 is made of an elastic body such as synthetic rubber, thermoplastic elastomer, or synthetic resin, and includes a cylindrical portion 13a and a thin valve 13b, and has a gas discharge port 13c at the center of the thin valve 13b. The pressurization control valve 13 and the explosion-proof filter 12 are not only held by press-fitting, but also pressed by the head portion 10a of the sealing part 10 so as not to fall off. In addition, either the pressurization control valve 13 or the explosion-proof filter 12 is pressed against the inner surface of the head 10a in an airtight manner. If there is a concern about sticking of the sealing surface of the thin valve 13b, it is better to apply a sealing agent such as silicone oil or grease to the sealing surface. Alternatively, a coating such as a fluorine resin may be applied.
d) The cap-shaped sealing part 10 that also serves as the emergency gas release valve is made of an elastic body such as synthetic rubber, thermoplastic elastomer, or synthetic resin, and includes a head 10a and thin ribs 10b on the outer periphery. The head 10a is provided with a hexagonal head 10d for rotation and a mounting hole 10c for the tapping screw 11 at the center, and two liquid injection ports 10h and the common gas discharge port 10j at the outer periphery. The valve opening pressure of the sealing component 10 is set to a pressure that does not crack the battery case, for example, 25 to 35 kPa. The sealing part 10 is airtightly detachably fitted to the sealing part mounting part 8a of the battery case lid 8 on which the pressurization control valve 13 and the explosion-proof filter 12 are mounted, and can be rotated by a tapping screw 11. Fix it. Instead of using the tapping screw 11, a press-fitting pin with a flange may be press-fitted. In order to improve the sealing performance and reduce the rotational resistance during sealing, a lubricating sealant such as silicon oil or grease is applied at least to the inner surface of the thin rib 10b. Or you may coat fluororesin etc.
e) The battery case lid 8 fitted with the sealing part 10 is heat-sealed to the battery case in which the positive and negative electrode plates and the separator are incorporated, and can be injected from the injection port 10h. It is better to purchase and store the battery case lid 8 with the sealing part 10 in the first mounted state and put it into the production line. In this case, if the gas outlets 10j3 are sealed with a continuous adhesive tape, they will be easily peeled off during the sealing process, and dust will not accumulate on the explosion-proof filter 12 during storage. It is not polluted by electrolytes in chemical conversion processes. If the sealing part 10 is not installed in the production line, the pressurization control valve 13 and the explosion-proof filter 12 can be purchased and stored in the battery case cover, or before the sealing part 10 is installed. It is better to purchase and store the battery while it is attached to the battery case lid. If it is purchased without mounting the sealing part 10, there is an advantage that the sealing part 10 is not contaminated with the electrolytic solution in the process of injecting electrolyte or forming a battery case. There is a disadvantage that installation and management of the equipment is necessary and the supply work of the sealing parts 10 and the like is also necessary.
f) The generated gas during the formation of the battery case is directly discharged to the outside from the liquid injection port 10h for each battery cell. Next, if necessary, after adjusting the concentration and amount of the electrolytic solution, the sealing component 10 is half-turned and sealed. The sealing part 10 is held by the friction force between the thin rib 10b and the outer peripheral wall of the sealing part mounting part 8a and the tapping screw 11, the liquid injection port 10h is sealed by the columnar part 8g, and the gas discharge port 10j is an explosion-proof filter. -Located above 12
g) The internally generated gas (water electrolysis gas / water vapor / electrolyte mist) flows from the stepped discharge path 8r of the lower cylindrical portion 8q through the gas inlet 8f to the exhaust chamber 8d. Moisture / electrolyte condensed / condensed in the exhaust chamber 8d flows back into each battery cell from the gas inlet 8f, and the others are pressurized from the gas exhaust vertical groove 8p via the narrow exhaust vertical groove 8i. Pour into the valve mounting part 8j. If the amount of gas is small, such as during self-discharge, it passes through the gas vent 13c of the pressurization control valve 13 and the explosion-proof filter 12 through the micro-groove 8n for continuous ventilation on the sealing surface 8m, and from the gas outlet 10j to the outside of the battery. To be released.
h) The gas discharge path shown in FIG. 6 is an example and is not limited to this. However, if it is necessary to invert the lead battery and discharge the electrolyte from the injection port 8h, the injection port It is necessary to arrange 8h and gas inlet 8f as far apart as possible in the width direction of the lead-acid battery so that the electrolyte does not flow into gas inlet 8f. In addition, the external terminals are also arranged so that they are at the top when they are reversed so that they are not contaminated by the electrolyte. Similarly, the gas discharge port 10j is arranged so as to be on the upper side or sealed with a continuous tape as described above.
i) When a large amount of gas is generated due to large current charging, etc., and the internal pressure rises above the opening pressure of the pressurization control valve 13, the thin valve 10b is deformed outward and a gap is formed between the sealing surface 8m. Internal gas is also released from the section. This gas discharge method can provide a split exhaust type lead-acid battery that can be downsized because the height above the electrode plate can be made lower than the conventional liquid stopper mounting method. In addition, it is not necessary to heat seal the top cover or top cover to the battery case cover, which is necessary for the package exhaust type lead-acid battery adopted for miniaturization, and it is necessary to provide a liquid injection port and a sealing plug for each battery cell. In addition, the necessary part cost, mold cost, and mounting cost are reduced.
j) As described in the above-mentioned “Patent Document 6 Japanese Unexamined Patent Application Publication No. 2008-146895 Lead Acid Battery”, the lead-acid battery is always slightly opened to the outside by the micro-groove 8n for constant ventilation, and the internal pressure of which battery cell Since it converges to atmospheric pressure, no differential pressure is generated between the battery cells. For this reason, pressure that causes plastic deformation is not constantly applied to the outer wall of the battery case or the battery cell partition wall. Therefore, at any stage during product inventory, distribution, storage, or use, pressurization / decompression of the outer wall of the battery case and the battery cell partition is suppressed, and various problems due to plastic deformation of the battery case and electrolyte leakage due to cracks Is prevented. As a result, the battery case can be made of an inexpensive material and the thickness can be reduced, which is effective in reducing the weight and cost of the lead-acid battery.
k) When the internal pressure abnormally rises above the valve opening pressure of the sealing component 10 during use of the battery due to an internal short circuit or the like, the head 10a of the sealing component 10 and the thin rib 10b on the outer peripheral portion are deformed. As a result, the gas flows into the sealing part mounting part 8a on the adjacent battery cell side, and the internal gas is released from the gap formed between the sealing part mounting part 8a and the outer peripheral wall of the sealing part mounting part 8a and the liquid injection port 10h. In this case, it is not necessary to consider the continued use of lead-acid batteries, and it is only necessary to prevent leakage and scattering of the electrolyte due to cracking or rupture of the battery case. However, unlike conventional cap-shaped small explosion-proof valves, Therefore, even if there is some sticking of the sealing valve, it operates reliably and there is little change in the valve opening pressure. The thin rib 10b may be provided with a partial thin wall portion or a small notch so that the thin rib 10b is reliably expanded or broken. Since the sealing component 10 is held by the tapping screw 11 and the positional relationship with the sealing component mounting portion 8a does not change, it does not drop off after the operation and returns to the original mounting state.
l) Although there is very slight ventilation due to the always fine ventilation groove 8n, the loss of water in the electrolyte due to the attachment of the pressurization control valve 13 is described in the above-mentioned “Patent Document 6 Japanese Patent Application Laid-Open No. 2008-146895 Lead Acid Battery”. As a result, the lead-acid battery usually has a long service life.However, if the sealing part 10 is rotated halfway, it can be refilled without removing the sealing part 10 at any time. Water can be replenished with the lead-acid battery mounted on the vehicle body.
m) If the continuous sheet 15 common to the gas outlet 10j is attached as shown in FIG. 5, the influence of the air current around the lead storage battery is eliminated, the amount of water loss is reduced, and the dust inside the gas outlet 10i is reduced. There is no sinking. In order to secure a gas discharge route, the adhesive on the continuous sheet is limited to the shaded area.
n) The above is the case where the pressure adjusting valve 13 is shared, but as shown in FIG. 10, the inside of the sealing part mounting portion 8a is separated for each battery cell, and the pressure adjusting valve mounting portion 8j is connected to the battery cell. May be provided for each. In this case, the gas discharge port 10i of the sealing part 10 is also used as the liquid injection port 10h. The lead storage battery for start-up is often installed in the engine room where the temperature is high, and the temperature of the battery cells at both ends becomes higher, and the moisture evaporation of the electrolyte solution tends to increase more than the inner battery cells. Therefore, when the pressurization regulating valve 13 common to the battery cell at the end and the battery cell at the inside is used, depending on the use conditions, even if there is a narrow vertical groove 8i for exhaust throttle, There is a possibility that gas containing moisture will flow into the battery cell unilaterally, and the electrolyte in the inner battery cell will increase and overflow due to long-term use. For this, use this structure that separates the inside of the sealing part mounting part 8a for each battery cell, and the opening pressure of the pressure regulating valve 13 is made higher than the inner battery cell. Is preferable, and the thickness of the battery cell partition is also increased.
o) According to the tenth aspect of the present invention, the pressure adjusting valve 13 and the constant ventilation micro groove 8n may be provided in the sealing component 10 without being provided in the sealing component mounting portion 8a. In order to provide the functions of the pressurization regulating valve 13 and the constant ventilation micro groove 8n inside the sealing part head 10a, the following structure is adopted. Sealing part A pressure adjusting valve shaft mounting portion 10k for mounting the pressure adjusting valve shaft 16 on the head 10a is provided. The pressure adjusting valve shaft mounting portion 10k includes a disk-shaped recess 10l on both upper and lower end surfaces of the sealing part head 10a, and a thin valve 10n integrally formed with the sealing part 10 between the recesses 10l. A through hole 10m having a diameter larger than that of the central shaft 16b is provided at the center of 10n. The thin valve 10n is pressed against the sealing surface of the flange portion 16a. The thin-walled valve 10n may be a ring-shaped thin-walled valve that is not integrally molded with the sealing part 10, and may be airtightly attached to the pressure regulating valve shaft attaching portion 10k. The pressure regulating valve shaft 16 is composed of a flange portion 16a and a central shaft 16b. The ring-shaped explosion-proof filter 12 is fixed to the center shaft 16b so that the flange portion 16a is airtightly attached to the pressure adjusting valve shaft attachment portion 10k. Also, a ring-shaped groove 16d is formed on the outer periphery of the sealing surface of the flange portion 16a with the thin valve 10n, a plurality of constant ventilation microgrooves 16n are formed on a part of the sealing surface, and the ring-shaped groove 16d and the exhaust chamber 8d. Make a ventilation hole 16e to connect the. The ventilation hole 16e is arranged so that gas flows through the exhaust throttle narrow vertical groove 8i. The material of the pressure regulating valve shaft 16 is a non-conductive material such as a synthetic resin in order to prevent ignition and explosion of the sealing valve mounting portion 8a due to external spark. The thin valve 10n is hermetically pressed against the flange portion 16a when the pressure of the sealing part mounting portion 8a is reduced, and is deformed outward when pressurized. As a result, the internally generated gas exceeding the on-off valve pressure is externally passed through the ventilation hole 16e through the ring groove 16d, the gap between the thin valve 10n and the flange 16a, the through hole 10m, and the ring explosion-proof filter 12. Is discharged. This structure simplifies the shape of the sealing part mounting part 8a, reduces the cost of the molding die, and secures a larger area of the exhaust chamber 8d, thereby improving the condensation / condensation capacity and eliminating water in the electrolyte. The amount is reduced. (See Figure 12)
p) If the liquid injection port 10h is not provided in the sealing component 10 in the configuration of the fourth invention, the first mounting state and the second mounting state cannot be selectively maintained, and the sealing component 10 is mounted. Sealing is synonymous, and there is no common effect of reducing the total cost by optimizing the cost allocation mentioned above, and there is no individual effect of water replenishment without removing the sealing part 10, but all other effects are possible. In this case, the columnar portion 8g for sealing the liquid injection port 10h is naturally unnecessary. In addition, since the shape of the sealing part mounting portion 8a can be a rectangle that does not consider the rotation of the sealing part 10, it is possible to improve the condensation / condensation capability by expanding the area of the exhaust chamber 8d.

3)制御弁付の始動用鉛蓄電池(2)
常時通気可能な微小通気路を持たない前記の第四・第五・第六・第八・第九の発明を採用した制御弁付の液式の始動用鉛蓄電池に対する実施例を以下に記載する。本実施例は、常時通気用微小溝8nが無く電池セル隔壁8bが一部異なること以外は実施例2の封口構造であるので、同一構成の部分については説明を省略し、異なる構成の部分についてのみ記載する。(図5、6、9参照)
3) Lead-acid storage battery with control valve (2)
Embodiments for a liquid-type lead-acid storage battery with a control valve adopting the above fourth, fifth, sixth, eighth, and ninth inventions that do not have a micro-ventilation passage that can be continuously ventilated are described below. . Since the present embodiment is the sealing structure of the second embodiment except that there is no micro-groove 8n for constant ventilation and the battery cell partition wall 8b is partially different, the description of the same configuration part is omitted, and the different configuration part. Only listed. (See FIGS. 5, 6, and 9)

本実施例では常時通気用微小溝8nが無いため、電池セルは加圧制御弁13毎に密封されている。このため以下に記載するように鉛蓄電池がさらに長寿命化される長所と電槽が変形し易い短所があり短所には以下に記載する対策を採る。
a)長所は、電池セルが加圧制御弁で密封されているため電解液の減液がさらに抑制され 長寿命化されるだけでなく、減液して極板が露出しても制御弁式鉛蓄電池として動作す ることになり、 前記「特許文献3 特開2003−142148 鉛蓄電池」に示す ように大幅に長寿命化される。電解液の凝縮・結露用の排気室を持つ本実施例の鉛蓄電 池は、これを持たない前記特許文献3の鉛蓄電池よりさらに電解液の減液が抑制され長 寿命化されている。
b)第一の短所は、保管期間中に発生する内部減圧に対応できず前記「特許文献5 特許 4224762 制御弁式鉛蓄電池」に記載されている様に電槽が変形したり亀裂した りし、電解液の漏洩や性能(放電能力・寿命)低下の危険性があることである。電槽化 成後の鉛蓄電池内は、水蒸気及び電解液ミスト並びに正・負極板で発生した酸素ガス・ 水素ガスの分圧が高くこの状態で封口(密封)すると、保管期間中に酸素ガスは負極に 吸収され、水素ガスは電槽等を透過して外部に放出され、水蒸気・電解液ミストは凝縮 する。したがって、保管期間中に鉛蓄電池内は減圧され、電槽のクリープ変形による亀 裂発生・電解液漏洩や、電池セル隔壁変形によるセパレーターの非可逆変形による性能 低下の原因となる場合がある。対策としては、封口(密封)前に鉛蓄電池内の空間を窒 素ガス置換し保管中の減圧を防止する。本実施例の場合、制御弁が装着されていない十 分な口径の注液口10hが各電池セルに開口しているので、ここに窒素ガス用ノズルを挿 入すれば十分なレベルの窒素ガス置換が容易に出来る。その後に封口部品10を半回転し て封口する。ノズルは先端部の側方に開口し、窒素ガスを側方に噴出して電解液に直接 吹き付けない。
c)第二の短所は、内圧が大気圧に収束せず、封口部品10が共通でない電池セルの間に加 圧制御弁13間の開閉圧力のバラツキによる差圧が発生し継続することである。この差圧 は小さいが受圧面積が大きいため極板群に群圧をかけず電槽ケース部隔壁が極板群で反 発支持されない場合は隔壁が一方に大きく変形する可能性がある。隔壁が大きく変形す ると電池セルの容積変化により電解液面が一方は高く他方は低くなり、電解液の溢液や ストラップ腐食等を発生する危険がある。これに対しては前記の第八又は/及び前記の 第九の発明による対策を実施する。
d)前記の第八の発明により前記の不具合を防止しながらコストダウンと重量軽減を図る 。また、加圧調整弁13が共通でない電池セル間の前記隔壁の両面には、複数の細幅薄形 縦溝を設けて前記隔壁と極板が密着しても電解液の通路が確保できる様にした方がよい 。
e)前記の第九の発明により前記の第八の発明と同様に前記の不具合を防止しながらコス トダウンと重量軽減を図る。前記の第八と前記の第九の発明による対策を並行実施して もよい。前記微小通気口の面積は前記ガス流入口8fの面積の10%以下とする方が良 い。前記微小通気口は隣接する電池セルの圧力を同圧に収束させるためのものであり、 高圧側の電池セルで発生したガスのほとんどを自己の排気室8dへ流入させ凝縮し結露 させて水分と電解液を還流させる。全ての電池セルは封口弁10と前記微小通気口により 連通しているので、最終的に同一圧力に収束する。前記微小通気口の面積を大きくする と高圧側の電池セルから低圧側に発生ガスが直接多量に流入し、前記隔壁の変形はなく ても最終的に電解液量の不均衡による電解液面の不均衡が発生するので避けなければな らない。この方法は、電槽ケースの仕様変更が不要で電槽蓋の仕様変更のみとなり、こ のための新たな成型金型費用が発生しない利点がある。
f)以上により製品在庫・流通・保管・使用中のいずれの段階においても、電槽の外壁と 電池セル隔壁の変形が抑制される制御弁付の始動用鉛蓄電池となり電槽の塑性変形によ る各種の不具合と亀裂による電解液漏出が防止される。これにより、電槽の材質を安価 な材質とし肉厚を薄くすることが出来るので、鉛蓄電池の重量軽減とコストダウンに有 効である。また、制御弁式又は制御弁付の始動用鉛蓄電池に従来必要であった保管中の 前記保守業務が不要となり、製品の在庫・流通・保管、特に輸出入において受け入れ側 の設備負担と保管コストの削減に効果が大きい。また、本実施例の始動用鉛蓄電池は、 実施例2とほぼ同様のコストで実施例2より大幅に寿命延長された制御弁付の始動用鉛 蓄電池となる。また、この構成は始動用鉛蓄電池以外の鉛蓄電池にも適用可能である。
g)以上は加圧調整弁13を前記共通とした場合であるが、実施例2と同じく封口弁装着部 8aの内部を電池セル毎に分離し、加圧調整弁装着部8jを電池セル毎に設けてもよい 。この場合は、電池セル毎に密封状態となるので、前記電池セル隔壁に前記微小通気口 を設けたほうがよい。(図10参照)
h)前記の第四の発明の構成において封口部品10に注液口10hを設けない場合については 、実施例2と同様である。
In the present embodiment, since there is no always fine ventilation groove 8n, the battery cell is sealed for each pressurization control valve 13. For this reason, as described below, there are advantages in that the lead-acid battery has a longer life and disadvantages that the battery case is easily deformed, and the measures described below are taken in the disadvantages.
a) The advantage is that the battery cell is sealed with a pressurization control valve, so that not only the electrolyte can be reduced, but the life can be extended. It will operate as a lead storage battery, and as shown in the above-mentioned “Patent Document 3, Japanese Patent Application Laid-Open No. 2003-142148, lead storage battery”, the life is significantly extended. The lead storage battery of this embodiment having an exhaust chamber for condensation / condensation of the electrolyte has a longer life because the electrolyte is reduced more than the lead storage battery of Patent Document 3 that does not have the exhaust chamber.
b) The first disadvantage is that it cannot cope with the internal decompression that occurs during the storage period, and the battery case is deformed or cracked as described in “Patent Document 5 Patent 4224762 Controlled lead-acid battery”. There is a risk of leakage of electrolyte and performance (discharge capacity / lifetime). In the lead-acid battery after the formation of the battery case, if the partial pressure of water vapor, electrolyte mist, and oxygen gas / hydrogen gas generated in the positive and negative electrode plates is high, sealing (sealing) in this state will result in oxygen gas being stored during the storage period. Absorbed by the negative electrode, hydrogen gas passes through the battery case and is released to the outside, and water vapor and electrolyte mist are condensed. Therefore, the pressure inside the lead-acid battery is reduced during the storage period, which may cause cracking and electrolyte leakage due to creep deformation of the battery case, and performance deterioration due to irreversible deformation of the separator due to battery cell partition deformation. As a countermeasure, the space inside the lead-acid battery is replaced with nitrogen gas before sealing (sealing) to prevent decompression during storage. In the case of the present embodiment, the injection port 10h having a sufficient diameter, which is not equipped with a control valve, is open to each battery cell, so that a sufficient level of nitrogen gas can be obtained by inserting a nitrogen gas nozzle here. Replacement is easy. Thereafter, the sealing part 10 is sealed by half-turning. The nozzle opens to the side of the tip and blows nitrogen gas to the side and does not spray it directly onto the electrolyte.
c) The second disadvantage is that the internal pressure does not converge to the atmospheric pressure, and the differential pressure due to the variation in the switching pressure between the pressure control valves 13 is generated between the battery cells where the sealing parts 10 are not common, and continues. . Although this differential pressure is small, the pressure receiving area is large, so if the group pressure is not applied to the electrode plate group and the battery case case partition wall is not supported by the electrode plate group, the partition wall may be greatly deformed to one side. If the partition wall is deformed greatly, the electrolyte cell level will be higher and the other will be lower due to the volume change of the battery cell, and there is a risk of electrolyte overflow or strap corrosion. For this, the measures according to the eighth and / or the ninth invention are implemented.
d) According to the eighth invention, cost reduction and weight reduction are achieved while preventing the above problems. In addition, a plurality of narrow thin vertical grooves are provided on both surfaces of the partition between battery cells where the pressurization regulating valve 13 is not common, so that an electrolyte passage can be secured even if the partition and the electrode plate are in close contact with each other. It is better to
e) As with the eighth aspect of the invention, the ninth aspect of the invention is intended to reduce costs and reduce weight while preventing the above-described problems. The measures according to the eighth and ninth inventions may be implemented in parallel. The area of the micro vent is preferably 10% or less of the area of the gas inlet 8f. The minute vent is for converging the pressure of adjacent battery cells to the same pressure, and most of the gas generated in the high-pressure battery cell flows into its own exhaust chamber 8d to condense and condense it with moisture. Reflux the electrolyte. Since all the battery cells communicate with each other through the sealing valve 10 and the minute vent, they finally converge to the same pressure. When the area of the micro vent is increased, a large amount of generated gas flows directly from the battery cell on the high-pressure side to the low-pressure side. An imbalance occurs and must be avoided. This method has the advantage that there is no need to change the specifications of the battery case, only the specifications of the battery case cover are changed, and there is no need for new mold costs.
f) As described above, at any stage of product inventory, distribution, storage, or use, the lead-acid storage battery with a control valve that suppresses the deformation of the outer wall of the battery case and the battery cell partition wall becomes a plastic deformation of the battery case. Electrolytic leakage due to various defects and cracks is prevented. As a result, the battery case can be made of an inexpensive material and the wall thickness can be reduced, which is effective in reducing the weight and cost of lead-acid batteries. In addition, the maintenance work required during storage, which was previously required for a start-up lead-acid battery with a control valve type or control valve, is no longer necessary, and the equipment burden and storage cost on the receiving side in inventory / distribution / storage of products, especially import / export. Greatly effective in reducing In addition, the starting lead-acid battery of this example is a starting lead-acid battery with a control valve whose life is significantly extended from that of Example 2 at substantially the same cost as that of Example 2. Moreover, this structure is applicable also to lead acid batteries other than the starting lead acid battery.
g) The above is the case where the pressure adjusting valve 13 is the same as the above, but as in the second embodiment, the inside of the sealing valve mounting portion 8a is separated for each battery cell, and the pressure adjusting valve mounting portion 8j is set for each battery cell. May be provided. In this case, since each battery cell is hermetically sealed, it is better to provide the micro vent in the battery cell partition wall. (See Figure 10)
h) In the configuration of the fourth aspect of the invention, the case where the sealing member 10 is not provided with the liquid injection port 10h is the same as that of the second embodiment.

4)制御弁付の始動用鉛蓄電池(3)
前記の第四・第五・第六・第八・第九の発明を採用した制御弁付の液式の始動用鉛蓄電池に対する実施例を以下に記載する。本実施例は実施例3の封口構造とほぼ同様であるが、電池セル共通の制御弁装着部が2箇所となり前記加圧制御弁と前記減圧制御弁が装着される。また、第二の装着状態で注液口10hが制御弁装着部の上方に位置しガス排出口ともなるので、前記共通のガス排出口10jが無いことも異なる。また、電槽化成後の窒素ガス置換は行わない。(図7〜9参照)
各構成要素の構成と作用は以下の通りであり、実施例3と同様の場合は説明を簡略化又は省略する。
4) Lead-acid storage battery with control valve (3)
Embodiments for liquid start lead-acid storage batteries with control valves adopting the fourth, fifth, sixth, eighth and ninth inventions will be described below. The present embodiment is almost the same as the sealing structure of the third embodiment, but there are two control valve mounting portions common to the battery cells, and the pressurization control valve and the pressure reduction control valve are mounted. Further, in the second mounting state, the liquid injection port 10h is located above the control valve mounting portion and also serves as a gas discharge port, so that the common gas discharge port 10j is not provided. Moreover, nitrogen gas substitution after battery case formation is not performed. (See Figures 7-9)
The configuration and operation of each component are as follows. In the same manner as in the third embodiment, the description is simplified or omitted.

a)本実施例の注液口封口構造以外は前記の従来の始動用鉛蓄電池のもので、6電池セル のモノブロック式合成樹脂製電槽に正・負極板とセパレーターが内蔵されており電槽蓋 が熱融着され外部端子が形成される。本実施例でも、電槽蓋に設けた注液口封口構造関 連についてのみ詳述する。
b)封口部品装着部8aは、図8に示すように前記制御弁装着部が加圧制御弁装着部8j と減圧制御弁装着部8tの2箇所となり、注液口8hと制御弁装着部8j、8tとの位 置関係が回動に対応する位置とする以外は実施例3とほぼ同様である。ただし、封口用 柱状部8gが無く、加圧制御弁装着部8jには常時通気用溝8nを設けない。
c)防爆用フィルター12を気密に圧入した加圧制御弁13を加圧制御弁装着部8jに、減圧 制御弁14を減圧制御弁装着部8tに気密に圧入する。開閉弁圧は、双方とも大気圧より 5〜15kPaとする。減圧制御弁14も、合成ゴム又は熱可塑性エラストマー又は合成樹 脂等の弾性体で作られ、円筒状部14aと筒状弁14bで構成され、筒状弁14bの中心にガ ス放出口14cを持つ。筒状弁14bの封口面の貼り付きが懸念される場合には、封口面に シリコンオイル又はグリス等のシール剤を塗布する方がよい。または、フッ素樹脂等の コーティングをしてもよい。
d)キャップ状の封口部品10は、注液口10hが通気口ともなるためガス放出口10jが無い こと以外は実施例3と同一である。
e)注液方法及び電槽化成及び必要な場合の電解液の濃度と液量の調整並びに封口方法は 、電槽化成後の窒素ガス置換を行わないことを除き実施例3と同様である。ただし、第 二の装着状態において注液口10hは加圧制御弁装着部8jと減圧制御弁装着部8tの上 方に位置する。
f)以上により、内部発生ガスは加圧制御弁装着部8jの注液口10hより外部に放出され 、内部減圧に対しては減圧制御弁14の筒状弁14bが拡大し注液口10hから吸気口14cを 経由して外部空気を吸入するので、加圧・減圧によって電槽が塑性変形することは無い 。
g)圧力調整弁の開閉圧力のバラツキによる差圧に対しては前記の実施例3と同様に第八 又は/及び第九の発明による対策を実施する。
h)以上により、本実施例の効果は実施例3と同一となる。
i)図7に示すように注液口10hに共通の連続シート15を貼付すれば、電池周辺の気流に よる影響が無くなり水分消失量が削減されるとともに、注液口10h内への塵芥の沈積も 無くなる。通気経路を確保するため、連続シートへの接着剤は斜線部のみとする。
j)以上は加圧調整弁13と減圧調整弁14とを前記共通とした場合であるが、実施例3と同 じく封口部品装着部8aの内部を電池セル毎に分離し、加圧調整弁装着部8jと減圧調 整弁装着部8tとを電池セル毎に設けてもよい。この場合は、電池セル毎に密封状態と なるので、電池セル隔壁に前記微小通気口を設けたほうがよい。(図11参照)
k)前記の第十の発明を採用し、加圧調整弁13と減圧調整弁14を封口部品装着部8aに設 けず封口部品10に設けることも出来る。減圧調整弁14の機能を封口部品頭部10aの内部 に設けるために以下の構造とする。加圧調整弁13については実施例1と同様である。封 口部品頭部10aに圧力調整弁軸16を装着する圧力調整弁軸装着部10kを設ける。圧力調 整弁軸装着部10kには、封口部品頭部10aの上下両端面に円板状の凹部10lを、凹部10 lの間に封口部品10と一体成型された薄肉弁10nを、薄肉弁10nの中心に圧力調整弁中 心軸16bより大径の貫通穴10mを設ける。薄肉弁10nは、フランジ部16aの封口面に押 圧される。薄肉弁10nを封口部品10と一体成型しないリング状の薄肉弁とし、圧力調整 弁軸装着部10kに気密に装着してもよい。圧力調整弁軸16は、フランジ部16a及び中心 軸16b並びにリング部16cで構成され、リング部16cは圧力調整弁軸16が圧力調整弁軸 装着部10kに気密に装着されるように中心軸16bに固着される。また、フランジ部16a には通気用切り欠き部16fを、中心軸16bには通気用縦溝16gを設ける。通気用縦溝16 gの代わりにリング部16cに通気用穴16eを設けてもよい。通気用縦溝16g又は通気用 穴16eは、外部空気が排気絞り用細幅縦溝8iを経由して排気室8dに流入するように 配置する。リング部16cを防爆フィルター12とした場合は、通気用縦溝16g又は通気用 穴16eのいずれも設けない。圧力調整弁軸16の材質は、外部スパークによる封口弁装着 部8aの引火・爆発を防止するため合成樹脂等の非導電材とする。薄肉弁10nは、封口 部品装着部8aの圧力が大気圧より高いときはフランジ部16aに気密に押圧され、減圧 時には内側に変形し通気用切り欠き部16fより薄肉弁10nとフランジ部16aの空隙、貫 通穴10m、通気用縦溝16gを経由して外部より吸気する。この構造は、加圧調整弁13を 封口部品10に設ける場合と同様に、封口部品装着部8aの形状が単純化され成型金型費 用が削減されるとともに、排気室8dの面積をより多く確保できるので凝縮・結露能力 が向上し電解液中の水分消失量が減少する効果がある。(図13参照)
l)前記の第四の発明の構成において封口部品10に注液口10hを設けない場合については 、実施例3と同様である。ただし、封口部品10の加圧制御弁装着部8jに対応する位置 にガス放出口を設け、減圧制御弁装着部8tに対応する位置に空気吸入口を設ける。
なお、本実施例の構成は、制御弁付の始動用鉛蓄電池だけでなく、他の制御弁式鉛蓄電池に対しても適用でき、同様の効果がある。
a) Except for the injection hole sealing structure of this example, the conventional lead-acid storage battery for start-up described above is used, and a positive / negative electrode plate and a separator are built into a 6-cell monoblock synthetic resin battery case. The tank lid is heat-sealed to form external terminals. Also in this example, only the injection port sealing structure related to the battery case lid will be described in detail.
b) As shown in FIG. 8, the sealing component mounting portion 8a has two control valve mounting portions, a pressurization control valve mounting portion 8j and a pressure reduction control valve mounting portion 8t, and a liquid injection port 8h and a control valve mounting portion 8j. , 8t is substantially the same as the third embodiment except that the positional relationship with the rotation is a position corresponding to the rotation. However, there is no columnar portion 8g for sealing, and the pressure control valve mounting portion 8j is not always provided with the ventilation groove 8n.
c) The pressurization control valve 13 in which the explosion-proof filter 12 is press-fitted in an airtight manner is press-fitted in the pressurization control valve mounting portion 8j, and the pressure-reduction control valve 14 is press-fitted in the pressure-reduction control valve mounting portion 8t in an airtight manner. The on-off valve pressure is 5-15 kPa from atmospheric pressure. The decompression control valve 14 is also made of an elastic body such as synthetic rubber, thermoplastic elastomer, or synthetic resin, and includes a cylindrical portion 14a and a cylindrical valve 14b. A gas discharge port 14c is formed at the center of the cylindrical valve 14b. Have. If there is a concern about sticking of the sealing surface of the cylindrical valve 14b, it is better to apply a sealing agent such as silicone oil or grease to the sealing surface. Or you may coat with fluororesin.
d) The cap-shaped sealing part 10 is the same as that of Example 3 except that the liquid injection port 10h also serves as a ventilation port and therefore there is no gas discharge port 10j.
e) The liquid injection method, the formation of the battery case, the adjustment of the concentration and the amount of the electrolyte when necessary, and the sealing method are the same as in Example 3 except that the nitrogen gas replacement after the formation of the battery case is not performed. However, in the second mounting state, the liquid injection port 10h is located above the pressurizing control valve mounting portion 8j and the pressure reducing control valve mounting portion 8t.
f) As described above, the internally generated gas is discharged to the outside from the injection port 10h of the pressurization control valve mounting portion 8j, and the cylindrical valve 14b of the pressure reduction control valve 14 expands from the injection port 10h for internal decompression. Since the external air is sucked through the intake port 14c, the battery case is not plastically deformed by pressurization / decompression.
g) For the differential pressure due to the variation in the opening / closing pressure of the pressure regulating valve, the measures according to the eighth and / or ninth invention are implemented as in the third embodiment.
h) As described above, the effect of the present embodiment is the same as that of the third embodiment.
i) If a common continuous sheet 15 is affixed to the injection port 10h as shown in FIG. 7, the effect of the air current around the battery is eliminated, the amount of water lost is reduced, and the amount of dust in the injection port 10h is reduced. There will be no sedimentation. In order to secure the ventilation path, the adhesive to the continuous sheet is only the hatched portion.
j) The above is the case where the pressure adjusting valve 13 and the pressure reducing valve 14 are the same, but the inside of the sealing part mounting portion 8a as in the third embodiment is separated for each battery cell to adjust the pressure. A valve mounting portion 8j and a pressure reducing valve mounting portion 8t may be provided for each battery cell. In this case, since each battery cell is hermetically sealed, it is better to provide the micro vent in the battery cell partition wall. (See Figure 11)
k) By adopting the tenth aspect of the present invention, the pressurizing regulating valve 13 and the pressure reducing regulating valve 14 can be provided in the sealing component 10 without being provided in the sealing component mounting portion 8a. In order to provide the function of the pressure reducing control valve 14 inside the sealing part head 10a, the following structure is adopted. The pressurizing adjustment valve 13 is the same as that in the first embodiment. A pressure adjusting valve shaft mounting portion 10k for mounting the pressure adjusting valve shaft 16 is provided on the sealing component head portion 10a. The pressure adjusting valve shaft mounting portion 10k includes a disk-shaped recess 10l on both upper and lower end surfaces of the sealing component head 10a, and a thin valve 10n integrally formed with the sealing component 10 between the recesses 101. A through hole 10m having a diameter larger than that of the pressure adjusting valve center shaft 16b is provided at the center of 10n. The thin valve 10n is pressed against the sealing surface of the flange portion 16a. The thin-walled valve 10n may be a ring-shaped thin-walled valve that is not integrally molded with the sealing part 10, and may be mounted airtight on the pressure adjusting valve shaft mounting portion 10k. The pressure regulating valve shaft 16 is composed of a flange portion 16a, a central shaft 16b, and a ring portion 16c. The ring portion 16c has a central shaft 16b so that the pressure regulating valve shaft 16 is airtightly mounted on the pressure regulating valve shaft mounting portion 10k. It is fixed to. The flange portion 16a is provided with a ventilation notch portion 16f, and the central shaft 16b is provided with a ventilation vertical groove 16g. A ventilation hole 16e may be provided in the ring portion 16c instead of the ventilation vertical groove 16g. The ventilation vertical groove 16g or the ventilation hole 16e is arranged so that external air flows into the exhaust chamber 8d through the exhaust throttle narrow vertical groove 8i. When the ring part 16c is the explosion-proof filter 12, neither the ventilation vertical groove 16g nor the ventilation hole 16e is provided. The material of the pressure regulating valve shaft 16 is a non-conductive material such as a synthetic resin in order to prevent ignition and explosion of the sealing valve mounting portion 8a due to external spark. The thin valve 10n is hermetically pressed by the flange 16a when the pressure of the sealing part mounting portion 8a is higher than the atmospheric pressure, and is deformed inward when the pressure is reduced, so that the gap between the thin valve 10n and the flange 16a is less than the ventilation notch 16f. The air is sucked in from the outside through the through hole 10m and the vertical groove 16g for ventilation. Similar to the case where the pressurizing regulating valve 13 is provided in the sealing part 10, this structure simplifies the shape of the sealing part mounting portion 8a, reduces the molding die cost, and increases the area of the exhaust chamber 8d. Since it can be secured, the condensation / condensation capacity is improved, and the amount of water lost in the electrolyte is reduced. (See Figure 13)
l) The case where the sealing part 10 is not provided with the liquid injection port 10h in the configuration of the fourth invention is the same as in Example 3. However, a gas discharge port is provided at a position corresponding to the pressurization control valve mounting portion 8j of the sealing component 10, and an air suction port is provided at a position corresponding to the pressure reduction control valve mounting portion 8t.
In addition, the structure of a present Example is applicable not only to the start lead acid battery with a control valve but to other control valve type lead acid batteries, and has the same effect.

5)制御弁付の即用式鉛蓄電池(1)
前記の実施例3の封口構造を採用した制御弁付の液式の即用式鉛蓄電池に対する実施例を以下に記載する。本実施例は実施例3と同様の封口構造であるが、製造工程・流通・保管の方法が一部異なる。実施例3と同様の場合は説明を簡略化又は省略する。(図5、6、9参照)
5) Ready-to-use lead acid battery with control valve (1)
An example of a liquid type lead acid storage battery with a control valve that employs the sealing structure of Example 3 will be described below. The present embodiment has a sealing structure similar to that of the third embodiment, but the manufacturing process, distribution, and storage method are partially different. In the case similar to the third embodiment, the description is simplified or omitted. (See FIGS. 5, 6, and 9)

a)電槽化成までの製造工程は、実施例3と同様である。電槽化成後に注液口より電解液 を排出し、窒素ガス置換後に封口部品10を半回転して封口する。製品在庫・流通・保管 はこの状態で行い、使用前に封口部品10を半回転して開口し、所定の電解液を注液後に 再度半回転して封口し完成品とする。これにより従来必要であった電槽変形防止のため の保管中の保守業務が不要となるだけでなく、液栓の別途添付や脱着作業も不要となり 使用前の注液作業が非常に簡略化される。
b)鉛蓄電池の長寿命化効果を含め、製品在庫・流通・保管・使用中の内圧変化への対応 とその効果は、実施例3と同様である。
c)ガス排出口10j共通の連続シート15についても実施例3と同様である。
d)実施例3と同じく封口部品装着部8aの内部を電池セル毎に分離してもよい。(図1 0参照)
e)加圧調整弁13等を封口部品10に設ける場合は、実施例3と同様である。
f)前記の第四の発明の構成において封口部品10に注液口10hを設けない場合については 、実施例3と同様である。
a) The production process up to the formation of the battery case is the same as in Example 3. After the formation of the battery case, the electrolytic solution is discharged from the injection port, and after the replacement with nitrogen gas, the sealing part 10 is sealed by half rotation. Product inventory, distribution, and storage are performed in this state, and the sealing part 10 is opened by half-turning before use, and a predetermined electrolytic solution is injected and then half-turned again to make a finished product. This eliminates the need for maintenance work during storage to prevent battery case deformation, which was necessary in the past, and also eliminates the need to attach or remove a liquid stopper separately, which greatly simplifies the liquid injection work before use. The
b) Responding to changes in internal pressure during product inventory, distribution, storage, and use, including the effect of extending the life of lead-acid batteries, and the effect are the same as in Example 3.
c) The same applies to the continuous sheet 15 common to the gas discharge port 10j.
d) As in Example 3, the inside of the sealing component mounting portion 8a may be separated for each battery cell. (See Fig. 10)
e) When the pressurizing regulating valve 13 and the like are provided in the sealing part 10, the same as in the third embodiment.
f) The case where the sealing part 10 is not provided with the liquid injection port 10h in the configuration of the fourth invention is the same as in Example 3.

5)制御弁付の即用式鉛蓄電池(2)
前記の実施例4の封口構造を採用した制御弁付の液式の即用式鉛蓄電池に対する実施例を以下に記載する。本実施例は実施例4と同様の封口構造であるが、製造工程・流通・保管の方法が一部異なる。実施例4と同様の場合は説明を簡略化又は省略する。(図7〜9参照)
5) Ready-to-use lead acid battery with control valve (2)
An example of a liquid type lead acid storage battery with a control valve that employs the sealing structure of Example 4 will be described below. The present embodiment has a sealing structure similar to that of the fourth embodiment, but the manufacturing process, distribution, and storage method are partially different. In the case similar to the fourth embodiment, the description is simplified or omitted. (See Figures 7-9)

a)電槽化成までの製造工程は、実施例4と同様である。電槽化成後に前記窒素ガス置換 を行わないことを除けば実施例4と同様である。
b)鉛蓄電池の長寿命化効果を含め、製品在庫・流通・保管・使用中の内圧変化への対応 とその効果は、実施例4と同様である。
c)注液口10h共通の連続シート15についても実施例4と同様である。
d)加圧調整弁13等を封口部品10に設ける場合は、実施例4と同様である。
e)前記の第四の発明の構成において封口部品10に注液口10hを設けない場合については 、実施例4と同様である。
a) The manufacturing process up to the formation of the battery case is the same as in Example 4. Example 4 is the same as Example 4 except that the nitrogen gas replacement is not performed after the formation of the battery case.
b) Responding to changes in internal pressure during product inventory, distribution, storage, and use, including the effect of extending the life of lead-acid batteries, and the effect are the same as in Example 4.
c) The continuous sheet 15 common to the liquid injection port 10h is the same as in Example 4.
d) The case where the pressurizing regulating valve 13 and the like are provided in the sealing part 10 is the same as in the fourth embodiment.
e) The case where the sealing part 10 is not provided with the liquid injection port 10h in the configuration of the fourth invention is the same as in Example 4.

7)制御弁式鉛蓄電池
従来の負極吸収式の制御弁式鉛蓄電池は、注液口を各電池セルに設け、加圧制御弁で各々を封口(密封)するとともに加圧制御弁押さえ蓋を電槽蓋に固定するか加圧制御弁付液栓で封口(密封)するので、保管中の前記保守業務が必要である。前記「特許文献5 特許4224762 制御弁式鉛蓄電池」の加圧・減圧兼用制御弁により保管中の前記保守業務を不要としたものもある。これらの短所は、前記液栓で封口する場合は極板より上部の高さを低く出来ず鉛蓄電池の小型化には限界があり、前記制御弁で封口する場合は押さえ蓋のため注液が事実上出来ないことにある。これに対し、実施例3又は実施例4とほぼ同様の封口構造を採用した制御弁式鉛蓄電池に対する実施例を以下に記載する。実施例3又は実施例4と同様の場合は説明を簡略化又は省略する。(図5〜9参照)
7) Control valve type lead acid battery The conventional negative electrode absorption type control valve type lead acid battery has a liquid injection port provided in each battery cell, and each pressure cell is sealed (sealed) with a pressure control valve holding lid. Since it is fixed to the battery case lid or sealed with a liquid stopper with a pressure control valve, the maintenance work during storage is necessary. In some cases, the maintenance work during storage is not required by the pressurization / decompression control valve of the “Patent Document 5 Patent 4224762 Control Valve Lead Acid Battery”. These disadvantages are that when sealing with the liquid stopper, the height above the electrode plate cannot be lowered, and there is a limit to downsizing the lead-acid battery. It is in fact impossible. On the other hand, the Example with respect to the control valve type lead acid battery which employ | adopted the sealing structure substantially the same as Example 3 or Example 4 is described below. In the case similar to the third embodiment or the fourth embodiment, the description is simplified or omitted. (See Figures 5-9)

a)制御弁式鉛蓄電池の封口構造以外は従来のもので、6電池セルのモノブロック式合成 樹脂製電槽に正負極板とセパレーターが内蔵されており電槽蓋が熱融着され外部端子が 形成される。本実施例でも、電槽蓋に設けた封口構造関連についてのみ詳述する。
b)封口部品装着部8aは、実施例3又は実施例4とほぼ同様であるが、電解液量が抑制 されているため下側筒状部8qは不要である。また、排気室8dへ流入した水蒸気は凝 縮・結露した後に各電池セルに還流するので、水蒸気分圧による加圧制御弁への加圧が 小さくなり開弁確率が低下し、従来の排気室8dの無い制御弁式鉛蓄電池より水分消失 量は抑制され、長寿命化される。
c)封口部品10は、実施例3又は実施例4と同様である。封口部品10は、タッピングネジ 11で固定されており脱落することは無いので従来必要であった前記押さえ蓋は不要とな り、前記押さえ蓋の電槽蓋への熱融着等の固定も不要となる。これによりコストダウン されるだけでなく、前記押さえ蓋のため従来出来なかった補水がいつでも可能となり鉛 蓄電池の寿命延長が出来る。
d)電池全体を覆う減圧用ノズルを電池載置台に押圧密封し電池内外を真空排気後、電解 液を正負極板が完全に埋没するように注液し、次に、減圧用ノズル内を大気開放する。 この注液方法によれば、正・負極板とセパレーター内の空気も含め電池内の空気が注液 前にほぼ完全に排出され、その後に大気圧で電解液が正負極板・セパレーターに押し込 まれる。これによって正・負極板とセパレーター内の電解液の浸透拡散の速度向上と気 泡解消による均質化及び正・負極板やセパレーターの見掛け体積減少による注液可能量 の増加並びに、正・負極板内及び電池セル間の化成ばらつきの減少による放電容量の安 定化と鉛蓄電池の寿命改善等の効果がある。
e)電解液注液後の電槽化成は、充電電流を抑制した繰り返し充放電により電槽化成時の 正・負極板から発生するガスを抑制した方式で行う。電槽化成後に電解液の濃度と液量 を調整する。電槽化成中の発生ガスは注液口10hより外部に放出される。
f)制御弁式鉛蓄電池は極板が一部露出しており、酸化防止のため密封状態での保管が必 要である。密封された鉛蓄電池の内部で発生する加圧・減圧に対する対策とその効果は 、実施例3又は実施例4と同様である。ただし、極板群に所定の群圧が加えられる制御 弁式鉛蓄電池は、電池セル隔壁が極板群で反発支持され電解液量も抑制されているため 、前記の第八又は第九の発明による対策は不要である。
g)以上により、保管中の保守業務が不要で小型化・重量削減・コストダウンが可能であ り、かつ従来のいずれの制御弁式鉛蓄電池より電解液の減液が少なく長寿命な負極吸収 式の制御弁式鉛蓄電池を提供できる。また、前記「特許文献3 特開2003−142 148 鉛蓄電池」に示すように、当初より電解液量を抑制せず十分な電解液量とすれ ば、当初は液式鉛蓄電池に電解液が減少すれば制御弁式鉛蓄電池になり、さらに長寿命 化される。
h)以上の構成には、水分を凝縮・結露させる電池セル毎の排気室8dが含まれているが 、制御弁式鉛蓄電池には必須の構成条件ではなく、排気室8dが無くてもよい。ただし 、電解液の水分消失量は従来の制御弁式鉛蓄電池と同程度なり、寿命延長効果は無い。
i)実施例3の封口構造を採用した場合は、同じく封口部品装着部8aの内部を電池セル 毎に分離してもよい。(図10参照)
j)加圧調整弁13等を封口部品10に設ける場合は、実施例3又は実施例4と同様である。
k)前記の第四の発明の構成において封口部品10に注液口10hを設けない場合については 、実施例3又は実施例4と同様である。
a) Other than the sealed structure of the control valve type lead-acid battery, it is a conventional one, and a 6-cell monoblock synthetic resin battery case has a positive and negative electrode plate and a separator built in, and the battery case lid is heat-sealed to external terminals. Is formed. Also in this example, only the sealing structure related to the battery case lid will be described in detail.
b) The sealing part mounting part 8a is substantially the same as in Example 3 or Example 4, but the lower cylindrical part 8q is unnecessary because the amount of the electrolyte is suppressed. Further, since the water vapor flowing into the exhaust chamber 8d is condensed and condensed and then returned to each battery cell, the pressurization to the pressurization control valve due to the partial pressure of water vapor is reduced, and the valve opening probability is lowered. The amount of water loss is suppressed and the life is extended compared to the control valve type lead storage battery without 8d.
c) The sealing part 10 is the same as in Example 3 or Example 4. Since the sealing part 10 is fixed by the tapping screw 11 and does not fall off, the pressing cover, which has been necessary in the past, is unnecessary, and it is not necessary to fix the pressing cover to the battery case cover by heat fusion or the like. It becomes. This not only reduces the cost, but also makes it possible to replenish water at any time because of the presser cover, which can extend the life of the lead-acid battery.
d) A pressure reducing nozzle covering the entire battery is pressed and sealed on the battery mounting table, the inside and outside of the battery are evacuated, and then the electrolyte is injected so that the positive and negative electrode plates are completely buried. Open. According to this injection method, the air in the battery, including the air in the positive / negative electrode plate and separator, is almost completely discharged before injection, and then the electrolyte is pushed into the positive / negative electrode plate / separator at atmospheric pressure. Be turned. As a result, the penetration and diffusion speed of the electrolyte in the positive and negative electrode plates and the separator is improved, homogenization is achieved by eliminating bubbles, and the amount of liquid that can be injected is increased by reducing the apparent volume of the positive and negative plates and separator. In addition, it has the effect of stabilizing discharge capacity and improving the life of lead-acid batteries by reducing the variation in chemical formation between battery cells.
e) Battery formation after electrolyte injection is performed in a manner that suppresses the gas generated from the positive and negative electrode plates during battery formation by repeated charging and discharging while suppressing the charging current. Adjust the concentration and volume of the electrolyte after forming the battery case. The gas generated during the formation of the battery case is discharged to the outside through the injection port 10h.
f) The control valve type lead-acid battery has a part of the electrode plate exposed and must be kept sealed to prevent oxidation. The measures against pressure and pressure reduction generated in the sealed lead-acid battery and the effects thereof are the same as those in the third or fourth embodiment. However, in the control valve type lead-acid battery in which a predetermined group pressure is applied to the electrode plate group, the battery cell partition wall is repelled and supported by the electrode plate group, and the amount of the electrolyte is suppressed. No countermeasure is required.
g) By the above, maintenance work during storage is unnecessary, and it is possible to reduce the size, weight, and cost, and the negative electrode absorption has a longer life with less electrolyte reduction than any conventional control valve type lead-acid battery. Type control valve type lead acid battery can be provided. In addition, as shown in the above-mentioned “Patent Document 3 Japanese Patent Application Laid-Open No. 2003-142148 lead acid battery”, if the amount of the electrolyte is not suppressed from the beginning and the amount of the electrolyte is sufficient, the amount of the electrolyte is reduced in the liquid lead acid battery at the beginning. If this is done, it will become a control valve type lead-acid battery, and the life will be further extended.
h) The above configuration includes an exhaust chamber 8d for each battery cell that condenses and condenses moisture. However, the control valve type lead-acid battery is not an essential component and may not have the exhaust chamber 8d. . However, the amount of water lost in the electrolyte is about the same as that of a conventional control valve type lead storage battery, and there is no life extension effect.
i) When the sealing structure of Example 3 is adopted, the inside of the sealing component mounting portion 8a may be separated for each battery cell. (See Figure 10)
j) When the pressure adjusting valve 13 or the like is provided in the sealing part 10, it is the same as in the third or fourth embodiment.
k) In the configuration of the fourth aspect of the invention, the case where the sealing part 10 is not provided with the liquid injection port 10h is the same as in Example 3 or Example 4.

8)24V系又は36V系の鉛蓄電池
前記の第四〜第九の発明を採用した24V系又は36V系の鉛蓄電池は、格子状に配置され隣接する4個の電池セルに共通の封口部品10及び封口部品装着部8aとなるところが12V系の鉛蓄電池と異なる。前記外部通気口は、電池セル毎の前記外部通気口又は、隣接する2個の電池セル共通の前記外部通気口又は、隣接する4個の電池セル共通の前記外部通気口のいずれかとなる。ただし、電池セルの配置によっては隣接する2個の電池セルに共通の封口部品10及び封口部品装着部8aも使用する。前記の封口部品10及び前記の封口部品装着部8aの内部構造は、前記の鉛蓄電池の種類に応じて実施例2〜7とほぼ同様となるが、封口部品装着部8aの電池セル当りの面積が半減するので、前記圧力制御弁は封口部品装着部8aでなく封口部品10に設け、排気室8dの面積を確保したほうがよい。24V系の鉛蓄電池に対する加圧制御弁13を封口部品10に設けた実施例の外観説明図を図14にて示す。






8) 24V or 36V lead acid battery The 24V or 36V lead acid battery adopting the above fourth to ninth inventions is a sealing part 10 that is arranged in a grid and is common to four adjacent battery cells. And the place which becomes sealing part mounting part 8a differs from 12V type lead acid battery. The external vent is either the external vent for each battery cell, the external vent common to two adjacent battery cells, or the external vent common to four adjacent battery cells. However, depending on the arrangement of the battery cells, the sealing component 10 and the sealing component mounting portion 8a common to two adjacent battery cells are also used. The internal structures of the sealing component 10 and the sealing component mounting portion 8a are substantially the same as those in Examples 2 to 7 depending on the type of the lead storage battery, but the area of the sealing component mounting portion 8a per battery cell is the same. Therefore, it is preferable that the pressure control valve is provided not in the sealing part mounting portion 8a but in the sealing part 10 to secure the area of the exhaust chamber 8d. FIG. 14 shows an external view of an embodiment in which a pressurizing control valve 13 for a 24V lead acid battery is provided in the sealing part 10.






9)実施例対比表
前記の実施例1〜8の対比を、以下に表で示す。
9) Example Comparison Table The comparison of Examples 1 to 8 is shown in the table below.

Figure 2011119201
Figure 2011119201

1 容器用蓋
2 (外部端子兼用)封口栓保持用部材
21 注液用通路
2a 封口栓保持用部材の頭部
2b 封口栓保持用部材の封口栓保持部(2d〜2g)
2c 封口栓保持用部材の封口用通路部(2h〜2i)
2d 封口栓保持用部材の封口栓保持部のオーバーフロー防止用凹部
2e 封口栓保持用部材の封口栓保持部の中心軸穴
2f 封口栓保持用部材の封口栓保持部の封口栓保持用リブ
2g 封口栓保持用部材の封口栓保持部の通路
2h 封口栓保持用部材の封口部の封口用穴
2i 封口栓保持用部材の封口部の円錐状穴
2j 封口栓保持用部材の薄肉部
3 封口栓
3a 封口栓の容器内方側にのみ開口した凹部
3f 封口栓の封口栓保持用リブ
3g 封口栓の通路
3m 封口栓の円錐状当接面
4a,4b 絶縁材
5 内側端子
51 電気リード板
52 可動接点用バネ板
52a 可動接点
53 端子板
53a 固定接点
54 絶縁ブロック
55 連接ピン
6 ガス置換用ノズル
6a ガス置換用ノズルの合成ゴム製先端部
7 注液用ノズル
8 電槽蓋
8a 電槽蓋の封口部品装着部
8b 電槽蓋の電池セル隔壁
8c 封口部品装着部のタッピングネジ下穴
8d 封口部品装着部の排気室
8e 封口部品装着部の排気室隔壁
8f 封口部品装着部のガス流入口
8g 封口部品装着部の封口用柱状部
8h 封口部品装着部の注液口
8i 封口部品装着部の排気絞り用細幅縦溝
8j 封口部品装着部の加圧制御弁装着部
8k 制御弁装着部の柱状突起部
8m 制御弁装着部の柱状突起部の円錐状封口面
8n 制御弁装着部の柱状突起部の常時通気用微小溝
8p 制御弁装着部の通気用縦溝
8q 封口部品装着部の下側筒状部
8r 下側筒状部の階段状の排出経路
8s 下側筒状部の通気用スリット
8t 封口部品装着部の減圧制御弁装着部
10 封口部品
10a 封口部品の頭部
10b 封口部品の外周部の薄肉リブ
10c 封口部品のタッピングネジ取り付け穴
10d 封口部品の頭部の六角頭部
10h 封口部品の注液口
10j 封口部品のガス排出口
10k 封口部品の減圧調整弁軸装着部
10l 封口部品の減圧調整弁軸装着部の円板状凹部
10m 封口部品の減圧調整弁軸装着部の貫通穴
10n 封口部品の減圧調整弁軸装着部の薄肉弁
11 タッピングネジ
12 防爆用フィルター
13 加圧制御弁
13a 加圧制御弁の円筒状部
13b 加圧制御弁の薄肉弁
13c 加圧制御弁のガス放出口
14減圧制御弁
14a 減圧制御弁の円筒状部
14b 減圧制御弁の筒状弁
14c 減圧制御弁の吸気口
15ガス放出口用連続シール
16 減圧調整弁軸
16a 減圧調整弁軸のフランジ部
16b 減圧調整弁軸の中心軸
16c 減圧調整弁軸のリング部
16d 減圧調整弁軸のフランジ部の通気用切り欠き部
16e 減圧調整弁軸の中心軸の通気用縦溝



1 Container lid 2 (also used as external terminal) Sealing plug retaining member
21 Injection channel
2a Head of the member for holding the sealing plug
2b Seal plug holding part of the seal plug holding member (2d ~ 2g)
2c Sealing passage part (2h to 2i)
2d Overflow-preventing recess in the sealing plug holder of the sealing plug holder
2e Center shaft hole of the sealing plug holding part of the sealing plug holding member
2f Seal plug holding rib of the seal plug holding part of the seal plug holding member
2g Passage of the sealing plug holding part of the sealing plug holding member
2h Sealing hole in the sealing part of the sealing plug retaining member
2i Conical hole in the sealing part of the sealing plug retaining member
2j Thin part of the sealing plug retaining member 3 Sealing plug
3a Concave part opened only on the inner side of the container of the sealing plug
3f Seal plug retention rib of the seal plug
3g Seal plug passage
3m conical contact surface of sealing plug
4a, 4b Insulation material
5 Inner terminal
51 Electrical lead plate
52 Spring plate for movable contacts
52a Movable contact
53 Terminal board
53a Fixed contact
54 Insulation block
55 Connecting pin
6 Gas replacement nozzle
6a Synthetic rubber tip of the gas replacement nozzle
7 Injection nozzle
8 Battery case lid
8a Sealing part mounting part of battery case lid
8b Battery cell partition of battery case lid
8c Tapping screw pilot hole in sealing part mounting part
8d Exhaust chamber of sealing part mounting part
8e Exhaust chamber partition wall for sealing parts
8f Gas inlet for sealing part mounting part
8g Sealing column part of sealing part mounting part
8h Injection port for sealing parts
8i Narrow vertical groove for exhaust throttling at sealing part mounting part
8j Pressure control valve mounting part of sealing part mounting part
8k Columnar projection of control valve mounting part
8m Conical sealing surface of columnar protrusion of control valve mounting part
8n Micro-grooves for continuous ventilation in the columnar protrusions of the control valve mounting part
8p Vertical groove for ventilation of control valve mounting part
8q Lower cylindrical part of sealing part mounting part
8r Stepped discharge path of lower cylindrical part
8s Ventilation slit in the lower cylindrical part
8t Pressure reducing valve mounting part of sealing part mounting part
10 Sealing parts
10a Sealing part head
10b Thin ribs on the outer periphery of the sealing part
10c Tapping screw mounting hole for sealing parts
10d Hexagon head of sealing part head
10h Injection port for sealing parts
10j Gas outlet for sealing parts
10k Sealing parts decompression adjustment valve shaft mounting part
10 l Disc-shaped recess on the pressure reducing valve shaft mounting part of the sealing part
10m Through hole in the pressure reducing valve shaft mounting part of the sealing part
10n Thin valve on the pressure reducing adjustment valve shaft mounting part of the sealing part
11 Tapping screw
12 Explosion-proof filter
13 Pressure control valve
13a Cylindrical part of pressurizing control valve
13b Thin valve of pressurization control valve
13c Gas outlet of pressurization control valve
14 Depressurization control valve
14a Cylindrical part of pressure reducing control valve
14b Cylindrical valve of pressure reducing control valve
14c Inlet of pressure reducing control valve
15 Continuous seal for gas outlet
16 Depressurization adjusting valve stem
16a Flange part of pressure reducing adjustment valve shaft
16b Center axis of pressure reducing adjustment valve shaft
16c Ring part of pressure reducing valve shaft
16d Ventilation notch in the flange of the pressure reducing valve shaft
16e Ventilation longitudinal groove on the central axis of the pressure reducing valve shaft



Claims (10)

電解液注液用通路又は、外部通気路兼用の該電解液注液用通路又は、該外部通気路のうちのいずれかの経路と該経路を封口するための封口部品とを備えた電気化学装置において、前記経路を設けるとともに前記封口部品を保持するための封口部品保持用部材に前記封口部品を封口前に装着可能な封口構造とし、前記封口部品保持用部材と前記封口部品とで前記経路を構成する第一の装着状態と前記経路が前記封口部品で封口される第二の装着状態とが、選択的に維持可能に構成されたことを特徴とする電気化学装置。 Electrochemical apparatus provided with a path for electrolyte injection, a path for electrolyte injection also serving as an external ventilation path, or a path of the external ventilation path and a sealing part for sealing the path The sealing part is provided with a sealing structure in which the sealing part can be attached to the sealing part holding member for holding the sealing part before sealing, and the path is defined by the sealing part holding member and the sealing part. An electrochemical device characterized in that a first mounting state to be configured and a second mounting state in which the path is sealed by the sealing component can be selectively maintained. 封口部品保持用リブを前記封口部品保持用部材又は前記封口部品のいずれかに設けるとともに前記封口部品保持用部材に前記経路の封口用通路部を設け、前記封口部品を前記封口部品保持用リブで保持させる前記の第一の装着状態と、前記封口用通路部に前記封口部品を装着して封口する前記の第二の装着状態とが、選択的に維持可能に構成されたことを特徴とする請求項1記載の電気化学装置。 A sealing part holding rib is provided on either the sealing part holding member or the sealing part, and the sealing part holding member is provided with a sealing passage portion of the path, and the sealing part is provided with the sealing part holding rib. The first mounting state to be held and the second mounting state in which the sealing component is mounted and sealed in the sealing passage portion are configured to be selectively maintainable. The electrochemical device according to claim 1. 前記封口部品保持用部材に装着された前記封口部品の回動により、前記の第一の装着状態と前記の第二の装着状態とが、選択的に維持可能に構成されたことを特徴とする請求項1記載の電気化学装置。 The first mounting state and the second mounting state can be selectively maintained by rotating the sealing component mounted on the sealing component holding member. The electrochemical device according to claim 1. 複数の電池セルを持つ鉛蓄電池において、隣接する複数の電池セルに対し、前記隣接する複数の電池セル共通の封口部品装着部を設け、該封口部品装着部に、電池セル毎の前記電解液注液用通路及び、電池セル毎又は前記隣接する複数の電池セル共通の前記外部通気路を備え、前記封口部品装着部に装着された前記隣接する複数の電池セル共通の封口部品を回動することにより、前記封口部品装着部と前記封口部品とで前記電解液注液用通路を構成する第一の装着状態と、前記電解液注液用通路が前記封口部品で封口される第二の装着状態とが、選択的に維持可能に構成されることを特徴とする請求項3記載の鉛蓄電池。 In a lead-acid battery having a plurality of battery cells, a sealing component mounting portion common to the plurality of adjacent battery cells is provided for a plurality of adjacent battery cells, and the electrolytic solution injection for each battery cell is provided in the sealing component mounting portion. The liquid passage and the external vent passage common to the plurality of adjacent battery cells or each battery cell are provided, and the sealing parts common to the plurality of adjacent battery cells mounted on the sealing part mounting portion are rotated. Accordingly, the first mounting state in which the electrolyte injection passage is constituted by the sealing component mounting portion and the sealing component, and the second mounting state in which the electrolyte injection passage is sealed by the sealing component. The lead acid battery according to claim 3, which is configured to be selectively maintainable. 電池セル内で発生したガス中の水分を凝縮し結露させるとともに前記外部通気路に接続された電池セル毎の排気室を、前記封口部品装着部にさらに設けたことを特徴とする請求項4記載の鉛蓄電池。 5. The sealing part mounting portion further includes an exhaust chamber for each battery cell that condenses and condenses moisture in the gas generated in the battery cell and is connected to the external air passage. Lead acid battery. 前記外部通気路を開閉することによって電池セル内の圧力を制御する圧力制御弁を、前記封口部品装着部にさらに設けたことを特徴とする請求項4又は請求項5記載の鉛蓄電池。 The lead storage battery according to claim 4 or 5, further comprising a pressure control valve for controlling a pressure in the battery cell by opening and closing the external air passage in the sealing part mounting portion. 請求項6の構成において、電池セル内の上昇圧力を制御する加圧制御弁のみを設けた場合に、常時通気可能な微小通気路が外部に開口していることを特徴とする請求項6記載の鉛蓄電池。 7. The configuration according to claim 6, wherein when only the pressurization control valve for controlling the rising pressure in the battery cell is provided, a micro-ventilation passage that can be continuously vented is opened to the outside. Lead acid battery. 前記圧力制御弁が共通の電池セル間の隔壁の肉厚を、他の電池セル間の隔壁の肉厚より薄くしたことを特徴とする請求項6記載の鉛蓄電池。 7. The lead-acid battery according to claim 6, wherein the pressure control valve has a wall thickness between the battery cells that is common to the pressure control valve thinner than a wall thickness between the other battery cells. 前記圧力制御弁が共通でない電池セル間の隔壁に、微小通気口を設けたことを特徴とする請求項6又は請求項8記載の鉛蓄電池。 The lead storage battery according to claim 6 or 8, wherein a minute vent is provided in a partition wall between battery cells not sharing the pressure control valve. 前記外部通気路又は、前記圧力制御弁で開閉される前記外部通気路又は、前記微小通気路を備え前記加圧制御弁で開閉される前記外部通気路のうちの少なくとも一つを、前記封口部品装着部に設けず前記封口部品に設けたことを特徴とする請求項4〜9のいずれかに記載の鉛蓄電池。 At least one of the external ventilation path, the external ventilation path that is opened and closed by the pressure control valve, or the external ventilation path that is provided with the minute ventilation path and is opened and closed by the pressurization control valve is used as the sealing component. The lead storage battery according to claim 4, wherein the lead storage battery is provided in the sealing part without being provided in the mounting portion.
JP2010019912A 2009-09-29 2010-02-01 Electrochemical device Pending JP2011119201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010019912A JP2011119201A (en) 2009-09-29 2010-02-01 Electrochemical device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009224846 2009-09-29
JP2009224846 2009-09-29
JP2009247851 2009-10-28
JP2009247851A JP2010027621A (en) 2009-09-29 2009-10-28 Electrochemical device
JP2010019912A JP2011119201A (en) 2009-09-29 2010-02-01 Electrochemical device

Publications (1)

Publication Number Publication Date
JP2011119201A true JP2011119201A (en) 2011-06-16

Family

ID=41733211

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009247851A Pending JP2010027621A (en) 2009-09-29 2009-10-28 Electrochemical device
JP2010019912A Pending JP2011119201A (en) 2009-09-29 2010-02-01 Electrochemical device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009247851A Pending JP2010027621A (en) 2009-09-29 2009-10-28 Electrochemical device

Country Status (1)

Country Link
JP (2) JP2010027621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002359A1 (en) * 2011-06-29 2013-01-03 住友電気工業株式会社 Manufacturing method for molten salt battery and molten salt battery
JP2014002865A (en) * 2012-06-15 2014-01-09 Gs Yuasa Corp Exterior container, power storage element, manufacturing method for power storage element, liquid plug for power storage element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105280875B (en) * 2015-09-17 2017-11-21 东莞市德瑞精密设备有限公司 Priming device
CN105355961A (en) * 2015-11-17 2016-02-24 深圳市誉辰自动化设备有限公司 Automatic formed-nail nailing machine for square power battery and work flow thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002359A1 (en) * 2011-06-29 2013-01-03 住友電気工業株式会社 Manufacturing method for molten salt battery and molten salt battery
CN103636056A (en) * 2011-06-29 2014-03-12 住友电气工业株式会社 Manufacturing method for molten salt battery and molten salt battery
JPWO2013002359A1 (en) * 2011-06-29 2015-02-23 住友電気工業株式会社 Method for manufacturing molten salt battery and molten salt battery
US9391341B2 (en) 2011-06-29 2016-07-12 Sumitomo Electric Industries, Ltd. Manufacturing method for molten salt battery and molten salt battery
JP2014002865A (en) * 2012-06-15 2014-01-09 Gs Yuasa Corp Exterior container, power storage element, manufacturing method for power storage element, liquid plug for power storage element

Also Published As

Publication number Publication date
JP2010027621A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
WO2009130740A1 (en) Lead storage battery
KR20080003784A (en) Lead-acid battery
US6110617A (en) Flooded lead acid battery with roll-over capability
CN101682010B (en) Electronic parts pressure regulating valve, and electronic parts using valve
US7923140B2 (en) Fluid regulating microvalve assembly for fluid consuming cells
JP6142532B2 (en) Secondary battery manufacturing method, secondary battery and assembled battery
JP5127258B2 (en) Gas permeable safety valve and electrochemical element
JP2011119201A (en) Electrochemical device
CN112820987A (en) Battery cell, manufacturing method and manufacturing system thereof, battery and electric device
EP3706194A1 (en) Secondary battery
CN101510621B (en) Lead-acid rechargeable battery
JP5145707B2 (en) Lead acid battery
JP2008235055A (en) Lead acid storage cell
KR20090095334A (en) Apparatus of Removing Gas and Cylinder type Secondary Battery using the same
JP2003045380A (en) Battery
JP2011159501A (en) Lead-acid battery
JP5473183B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2008034167A (en) Lead acid storage battery
JP5125041B2 (en) Lead acid battery
JP6289909B2 (en) A fuel cell stack comprising an anode chamber, an area for condensing and removing water in the anode chamber, and a method for condensing water in the chamber and removing the formed water
JP2008071692A (en) Lead storage battery
JP4887649B2 (en) Control valve type lead acid battery
RU2449424C2 (en) Gasket, bipolar battery and method of gasket manufacturing
JP5563490B2 (en) Battery module
WO2022071200A1 (en) Lead storage battery