JP2011158258A - Analyzer - Google Patents

Analyzer Download PDF

Info

Publication number
JP2011158258A
JP2011158258A JP2010017598A JP2010017598A JP2011158258A JP 2011158258 A JP2011158258 A JP 2011158258A JP 2010017598 A JP2010017598 A JP 2010017598A JP 2010017598 A JP2010017598 A JP 2010017598A JP 2011158258 A JP2011158258 A JP 2011158258A
Authority
JP
Japan
Prior art keywords
flow path
bubble
analyzer
measuring
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010017598A
Other languages
Japanese (ja)
Inventor
Shinya Matsuoka
晋弥 松岡
Taku Sakazume
卓 坂詰
Shahed Sarwar
シャヘッド サルワル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010017598A priority Critical patent/JP2011158258A/en
Publication of JP2011158258A publication Critical patent/JP2011158258A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an analyzer equipped with a means for measuring a pressure loss accompanied by an abnormality of a flow channel without installing a pressure sensor to evaluate a flow channel state. <P>SOLUTION: In a flow cell type detector equipped with a flow cell 202 for detecting a target component, a solution introducing flow channel 205 and a solution discharging flow channel 209, a mechanism for measuring the time required in the passage of air bubbles introduced into the flow channel is provided at the flow cell or the flow channel connected to the flow cell, and the presence of the abnormality of the flow channel is determined from comparison with the air bubble passing time in the case that the flow channel is normal. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、一定内容積を有する容器(フローセル)に測定対象サンプルを含む流体を流すことができる機構と、フローセル中で測定対象サンプルを測定する機構とを備えた分析装置に関する。   The present invention relates to an analyzer including a mechanism capable of flowing a fluid containing a measurement target sample in a container (flow cell) having a constant internal volume, and a mechanism for measuring the measurement target sample in the flow cell.

一定内容積を有する容器(フローセル)に測定対象サンプルを含む流体を流すことができる機構と、フローセル中で測定対象サンプルを測定する機構とを備えた分析装置がある。分析装置の測定機構としては、1)サンプルをシースフローと呼ばれる液体で包んで流し、サンプル中に含まれる粒子状物質を光学的に測定するもの(画像を撮影し、当該画像を解析するものや、色の状態を測定するものなど)、例えば尿沈渣分析装置など、2)フローセル中で官能膜と測定対象を接触させ、測定対象成分の濃度に応じた起電力を測定する電解質測定がある。このようなフローセル方式の検出器はバッチ式に比べて、ひとつの測定手段を再利用可能で繰り返し測定できるという特徴がある。このような分析装置には、例えば特許文献2に記載された化学分析装置のようなものがある。特許文献2に記載された化学分析装置では、血液や尿などの検体を検体吸引ノズルでイオン検知器に吸引し、イオン検知器で電解質の定量を行う。   There is an analyzer including a mechanism that allows a fluid containing a measurement target sample to flow in a container (flow cell) having a constant internal volume, and a mechanism that measures the measurement target sample in the flow cell. As the measurement mechanism of the analyzer, 1) a sample is wrapped in a liquid called a sheath flow, and the particulate matter contained in the sample is optically measured (the image is taken and analyzed) 2) There is an electrolyte measurement that measures an electromotive force according to the concentration of a component to be measured by bringing the functional membrane into contact with the measurement object in a flow cell. Such a flow cell type detector is characterized in that one measurement means can be reused and can be repeatedly measured as compared with a batch type detector. Such an analyzer includes, for example, a chemical analyzer described in Patent Document 2. In the chemical analyzer described in Patent Document 2, a specimen such as blood or urine is sucked into an ion detector by a specimen suction nozzle, and the electrolyte is quantified by the ion detector.

特開平10−332590号公報JP-A-10-332590 特開平10−300651号公報Japanese Patent Laid-Open No. 10-300651

フローセル方式では、測定対象の溶液を測定部まで輸送し、また排出するための流路が必要である。再現性よく分析を行うためには、溶液が再現性よくフローセル検出部に輸送される必要がある。フローセル流路およびフローセルに接続する流路は、溶液中の成分の付着,流路材の折れ曲がり,流路材の変形等の理由によりその形状が設計時から変化する可能性がある。閉塞や屈曲,溶液成分の付着などの原因により、フローセルまたはフローセルに接続する流路形状が変化すると、溶液が設計意図どおりの流速で流れず検出部に到達する反応液量やタイミングが変化し、再現性低下など分析性能の低下の原因となる。流路状態を監視し正常に保つことが、フローセル方式の検出器にとって一般的な課題である。   In the flow cell system, a flow path for transporting and discharging the solution to be measured to the measurement unit is necessary. In order to perform analysis with high reproducibility, the solution needs to be transported to the flow cell detection unit with high reproducibility. The shape of the flow cell flow channel and the flow channel connected to the flow cell may change from the design time due to adhesion of components in the solution, bending of the flow channel material, deformation of the flow channel material, and the like. When the flow cell or the shape of the flow path connected to the flow cell changes due to clogging, bending, or adhesion of solution components, the amount and timing of the reaction solution that reaches the detection unit without the solution flowing at the designed flow rate changes, It causes a decrease in analytical performance such as a decrease in reproducibility. Monitoring the flow path state and keeping it normal is a common problem for flow cell type detectors.

ここで流路の状態を反映する指標である圧力損失について説明する。流路中の2点間の圧力差である圧力損失は、当該流路に屈曲部や狭隘部等があると増大するため、流路中にこのような変化が生じているかどうかの評価に用いることが可能である。   Here, the pressure loss that is an index reflecting the state of the flow path will be described. Since the pressure loss, which is the pressure difference between two points in the flow path, increases when the flow path has a bent portion or a narrowed portion, it is used to evaluate whether such a change has occurred in the flow path. It is possible.

圧力損失を測定して流路性能を評価する方法としては、例えば特許文献1に記載のようなものがある。特許文献1に記載された方法では、圧力センサにより圧力損失を評価している。圧力センサは圧力を測定したい流路に直接接続し、当該点の流体の圧力を測定する。圧力センサは一般に狭隘部等の複雑な流路構造を有している。これをフローセルまたはフローセルに接続された流路内に設置すると、圧力センサ自体が圧力損失の要因となり、正しく目的の圧力を測定することができない。また溶液が圧力センサ内部の流路に入り込み、この溶液成分が圧力センサ内に残留することで、分析値のキャリーオーバ(前回測定の残留物の影響で分析値が正しく得られないこと)の原因となりうる。また流路の圧力損失を測定するための圧力センサは、本来の分析目的に対しては不必要な部品であり、部品点数増加によるコスト増加・故障リスクの増大というデメリットがある。   As a method of measuring the pressure loss and evaluating the channel performance, there is a method as described in Patent Document 1, for example. In the method described in Patent Document 1, pressure loss is evaluated by a pressure sensor. The pressure sensor is directly connected to the flow path whose pressure is to be measured, and measures the pressure of the fluid at that point. The pressure sensor generally has a complicated flow path structure such as a narrow portion. If this is installed in a flow cell or a flow path connected to the flow cell, the pressure sensor itself causes a pressure loss, and the target pressure cannot be measured correctly. Also, the solution enters the flow path inside the pressure sensor, and this solution component remains in the pressure sensor, causing the analysis value to carry over (the analysis value cannot be obtained correctly due to the influence of the residue of the previous measurement). It can be. In addition, the pressure sensor for measuring the pressure loss in the flow path is an unnecessary part for the original analysis purpose, and has a demerit of an increase in cost and an increase in failure risk due to an increase in the number of parts.

本発明の目的は、流路の圧力損失を、圧力センサを設置せずに測定することができる分析装置を提供することにある。   The objective of this invention is providing the analyzer which can measure the pressure loss of a flow path, without installing a pressure sensor.

上記目的を達成するための本発明の構成は以下の通りである。   The configuration of the present invention for achieving the above object is as follows.

本発明は、フローセル内またはフローセルに接続された流路中での、気泡の通過時間を測定する機構を備えたことを最も主要な特徴とする。   The main feature of the present invention is that a mechanism for measuring the passage time of bubbles in a flow cell or in a flow channel connected to the flow cell is provided.

本発明のフローセル方式の検出器は、圧力センサを付加せずに圧力損失を測定可能であるため、流路の状態を変えることなく、本来の分析目的に必要な流路構成に対して変更を加えることなく流路状態を評価可能であるという利点がある。   Since the flow cell type detector of the present invention can measure pressure loss without adding a pressure sensor, the flow path configuration necessary for the original analysis purpose can be changed without changing the flow path state. There is an advantage that the flow path state can be evaluated without adding.

圧力損失と流路異常の関係について説明した概念図。The conceptual diagram explaining the relationship between pressure loss and flow path abnormality. 本発明の圧力損失測定機構のうち電流測定による気泡の通過時間測定手段を備えた分析装置の概略図。The schematic of the analyzer provided with the passage time measuring means by the current measurement among the pressure loss measuring mechanisms of the present invention. 実施例1による流路異常検出の実験結果。The experiment result of flow path abnormality detection by Example 1. FIG.

流体力学に関する一般的な教科書、例えば「水力学(宮井善弘,木田輝彦,仲谷仁志共著、森北出版)」によると、流路の圧力損失は管摩擦によるものと形状によるものがある。円管内の層流では数式1のハーゲン・ポアズイユの法則で表される。   According to general textbooks related to fluid dynamics such as “Hydrodynamics (Yoshihiro Miyai, Teruhiko Kida, Hitoshi Nakatani, Morikita Publishing)”, the pressure loss in the flow path is due to pipe friction and due to shape. The laminar flow in the circular pipe is expressed by Hagen-Poiseuille's law of Equation 1.

Figure 2011158258

ハーゲン・ポアズイユの式
Figure 2011158258

Hagen Poiseuille's formula

数式1において、ΔPは圧力損失、μは溶液の粘度、lは流路長さ、Qは流量、dは管径である。数式1から流量が一定の場合圧力損失は流路の長さに比例する。一方形状のよる圧力損失に対応する損失水頭は一般に数式2で表される。   In Equation 1, ΔP is the pressure loss, μ is the viscosity of the solution, l is the channel length, Q is the flow rate, and d is the tube diameter. From Equation 1, when the flow rate is constant, the pressure loss is proportional to the length of the flow path. On the other hand, the loss head corresponding to the pressure loss due to the shape is generally expressed by Equation 2.

Figure 2011158258

形状損失の式
Figure 2011158258

Form loss formula

数式2においてhは損失水頭でこれに溶液の密度と重力加速度をかけると圧力損失が得られる。ζは損失係数、Vは流速である。フローセルあるいはフローセルに接続された流路の一部に、設計意図外の狭隘部・閉塞部・屈曲部などがあると、正常な流路に対して圧力損失の要因が追加される。図1にこのことを模式的に示す。図1(A)は流路が正常な場合の流路入口部からの距離と圧力の関係、(B)は流路の一部に閉塞部がある場合の流路入口部からの距離と圧力の関係を表す。101,103は流路、102は検出部、104は流路の閉塞部を示す。(A)の場合、流路入口での圧力をP0とし、直管部では圧力損失105が生じるため、検出部での圧力はP1(108)となる。一方(B)の場合、入口での圧力を同じくP0とし直管部で圧力損失に加え、閉塞部104での圧力損失106が追加され、検出部での圧力はP1に比べて低いP2(109)となる。以上に例示したとおり、流路の圧力損失を測定すれば流路の状態を評価することが可能である。気体の状態方程式より、検出部での圧力と気泡の体積は比例する。気泡を一定量導入していれば、気体の体積から圧力損失を算出することが可能である。気泡の体積は気泡の通過時間と流量から算出できるため、結局気泡の通過時間を測定すれば、流路の圧力損失を推算することができる。本発明が対象としている分析装置は、一定内容積を有する容器(フローセル)に測定対象サンプルを含む流体を流すことができる機構と、フローセル中で測定対象サンプルを測定する機構とを備えたものである。測定する機構としては、1)サンプルをシースフローと呼ばれる液体で包んで流し、サンプル中に含まれる粒子状物質を光学的に測定するもの(画像を撮影し、当該画像を解析するものや、色の状態を測定するものなど)、例えば尿沈渣分析装置など、2)フローセル中で化学反応を起こさせ、当該反応を電気的方法や光学的方法などで測定するもの(抗原,抗体反応でサンプルに結合している試薬に設けられた標識体を化学反応,電気化学反応などで発光させ、その発光量を測定する免疫分析装置など)があるが、流体を流して測定するセルを備える分析装置であればどのようなものにも適用可能である。 In Expression 2, h is a loss head, and when pressure is applied to the density and gravity acceleration of the solution, pressure loss is obtained. ζ is a loss factor, and V is a flow velocity. If the flow cell or a part of the flow path connected to the flow cell has a narrow part, a closed part, a bent part, etc. that are not designed, a factor of pressure loss is added to the normal flow path. FIG. 1 schematically shows this. FIG. 1 (A) shows the relationship between the distance from the channel inlet when the channel is normal and the pressure, and FIG. 1 (B) shows the distance and pressure from the channel inlet when the channel has a closed portion. Represents the relationship. Reference numerals 101 and 103 denote flow paths, reference numeral 102 denotes a detection unit, and reference numeral 104 denotes a closed part of the flow path. In the case of (A), the pressure at the flow path inlet is P 0, and a pressure loss 105 occurs in the straight pipe portion, so the pressure at the detection portion is P 1 (108). On the other hand, in the case of (B), the pressure at the inlet is also P 0, and in addition to the pressure loss at the straight pipe portion, the pressure loss 106 at the closing portion 104 is added, and the pressure at the detection portion is lower than P 1. 2 (109). As exemplified above, the state of the flow path can be evaluated by measuring the pressure loss of the flow path. From the gas equation of state, the pressure at the detector and the volume of the bubble are proportional. If a certain amount of bubbles is introduced, the pressure loss can be calculated from the volume of the gas. Since the bubble volume can be calculated from the passage time and flow rate of the bubbles, the pressure loss of the flow path can be estimated by measuring the passage time of the bubbles. An analysis apparatus targeted by the present invention includes a mechanism that allows a fluid containing a measurement target sample to flow through a container (flow cell) having a constant internal volume, and a mechanism that measures the measurement target sample in the flow cell. is there. The measurement mechanism is as follows: 1) A sample is wrapped in a liquid called a sheath flow, and the particulate matter contained in the sample is optically measured (images taken and analyzed, For example, urine sediment analyzer, etc.) 2) A chemical reaction is caused in the flow cell, and the reaction is measured by an electric method or an optical method (antigen, antibody reaction to sample) There are immunoanalyzers that measure the amount of light emitted by chemical reaction, electrochemical reaction, etc. by illuminating the label provided on the bound reagent. It can be applied to anything.

図2は本発明装置の一実施例のうち、気泡の通過時間の検出を流体に流れる電流の測定によって行うものの構成図である。201は電流測定を行うフローセルで、少なくとも2つの電極202,203を備える。電流測定を行うフローセルは、主たる目的成分の測定を行うもの、例えば電解質測定においてはイオン検知電極,電気化学測定においては電気化学測定用電極など、と共通であっても、気泡の通過時間の検出専用のものを設置してもよい。フローセルには、フローセルまで溶液204を送液するための流路205とこれらの溶液を容器206から吸引するためのノズル207が接続部208によって接続されている。また溶液を排出するための流路209とシリンジポンプ210等の流体を送液する手段が設置される。さらに電極に印加する電圧を制御するポテンシオスタットなどの印加電圧制御手段211と、電極部に流れる電流を解析する手段212,得られた結果を処理する演算装置213を備える。   FIG. 2 is a block diagram of an embodiment of the apparatus of the present invention in which the bubble passage time is detected by measuring the current flowing through the fluid. Reference numeral 201 denotes a flow cell that performs current measurement, and includes at least two electrodes 202 and 203. The flow cell that measures current is used to measure the main target component, for example, the ion detection electrode for electrolyte measurement, the electrode for electrochemical measurement for electrochemical measurement, etc. A dedicated one may be installed. A flow path 205 for feeding the solution 204 to the flow cell and a nozzle 207 for sucking these solutions from the container 206 are connected to the flow cell by a connecting portion 208. In addition, means for sending fluid such as a flow path 209 and a syringe pump 210 for discharging the solution are installed. Furthermore, an applied voltage control means 211 such as a potentiostat for controlling the voltage applied to the electrode, a means 212 for analyzing the current flowing in the electrode section, and an arithmetic unit 213 for processing the obtained result are provided.

シリンジポンプにより溶液を吸引し、あるタイミングでノズルを容器から空中に上昇させる。このときシリンジポンプは一定の速度で吸引し続けており、空気が吸引される。さらに一定時間経過後にノズルを溶液内に再度下降させる。以上の動作により、流路内に溶液,空気(気泡),溶液の順に流体が流れる気液二相流が形成される。検出部に気体と液体の境界部が到達するタイミングで、電極対間に1.2Vの直流電圧を印加する。溶液は電解質を含んでおり、溶液が電極対部を通過するときには電極間に電流が流れる。一方空気は電流が流れないため、電極対部を空気が通過するときには電流値がほぼ0になる。溶液・気泡・溶液の順で電極対部を通過させれば、溶液から空気に切り替わって電流が0になる時点から、空気から溶液に切り替わって再び電流が流れる時点までの時間差と、シリンジの吸引速度から気泡の体積を求めることができる。流路内に導入した空気の大気圧中での体積は、シリンジの吸引速度とノズルが空中に上昇していた時間から算出できる。   The solution is sucked by a syringe pump, and the nozzle is raised from the container into the air at a certain timing. At this time, the syringe pump continues to suck at a constant speed, and air is sucked. Further, the nozzle is lowered again into the solution after a predetermined time has elapsed. By the above operation, a gas-liquid two-phase flow in which fluid flows in the order of solution, air (bubbles), and solution is formed in the flow path. A DC voltage of 1.2 V is applied between the electrode pair at the timing when the boundary between the gas and the liquid reaches the detection unit. The solution contains an electrolyte, and an electric current flows between the electrodes when the solution passes through the electrode pair. On the other hand, since no current flows through the air, the current value becomes almost zero when the air passes through the electrode pair. If the electrode pair is passed in the order of solution, bubble, and solution, the time difference from the point when the current is switched from air to zero when the solution is switched to air and the point when the current flows again when switching from the air to the solution and the suction of the syringe The bubble volume can be determined from the velocity. The volume of air introduced into the flow path in the atmospheric pressure can be calculated from the suction speed of the syringe and the time during which the nozzle has been raised in the air.

流路の状態が正常なときにあらかじめ気泡の通過時間を測定しておきこれを基準値として記録しておく。メンテナンス時等に上記の方法により気泡の通過時間を測定し、この通過時間が基準値に対してあらかじめ定めた割合以上に変動した場合は、流路の変化に由来する圧力損失要因が存在する可能性があると判断し、流路の洗浄や交換を促すアラームを表示する。従来ユーザが分析結果から推測していた装置の流路性能について、明確な評価値を表示することが可能となり、装置メンテナンスの効率化を図ることができる。   When the flow path state is normal, the passage time of bubbles is measured in advance and recorded as a reference value. When the passage time of bubbles is measured by the above method at the time of maintenance, etc., and this passage time fluctuates more than a predetermined ratio with respect to the reference value, there may be a pressure loss factor due to the change in the flow path The alarm that prompts cleaning and replacement of the flow path is displayed. It is possible to display a clear evaluation value for the flow path performance of the apparatus that has been estimated by the user from the analysis result, and the efficiency of apparatus maintenance can be improved.

図3は本発明による流路異常の検出の実験例である。図3で横軸は経過時間、縦軸は電極間に流れる電流である。図3の301は流路が正常な状態での測定結果であり、302はフローセルへの入口側流路の一部に折り曲げた部分を作り、流路が閉塞した状態を再現した場合の測定結果である。シリンジの吸引速度は42.5μL/sで一定とし、ノズルを2.35秒間空中に上昇させて100μLの気泡を導入している。図3で303の時点で電圧印加を開始する。この領域304では電極間を電解質を含む溶液が流れているため電流が流れている。電極間に気泡が到達すると、空気は電気伝導度が極めて小さいため電流値が減少し、電極間が完全に空気に置換されると電流は0になる。その後再び溶液が電極間に到達すると、再度電流が流れる(307)。308は電圧印加を終了した時点である。305と306はそれぞれの場合での気泡が電極間を通過していた時間である。流路が正常な場合(A)では気泡の通過時間は約2.2秒であるのに対し、流路に閉塞部がある場合(B)では気泡の通過時間は約2.5秒と0.3秒程度増加した。この通過時間の増加はフローセル上流の圧力損失要因により、電極部通過時の気泡の圧力が低下し、体積が膨張したためである。この実験結果から、本発明の方法によって流路の異常を検出する例を示した。   FIG. 3 is an example of an experiment for detecting a flow path abnormality according to the present invention. In FIG. 3, the horizontal axis represents the elapsed time, and the vertical axis represents the current flowing between the electrodes. 301 in FIG. 3 is a measurement result in a state where the flow path is normal, and 302 is a measurement result in a case where a folded portion is formed in a part of the flow path on the inlet side to the flow cell and the state where the flow path is closed is reproduced. It is. The suction speed of the syringe is constant at 42.5 μL / s, and the nozzle is lifted into the air for 2.35 seconds to introduce 100 μL of air bubbles. In FIG. 3, voltage application is started at 303. In this region 304, a current flows because a solution containing an electrolyte flows between the electrodes. When bubbles reach between the electrodes, the current value of air decreases because the electrical conductivity of the air is extremely small. When the space between the electrodes is completely replaced with air, the current becomes zero. Thereafter, when the solution reaches again between the electrodes, a current flows again (307). Reference numeral 308 denotes a point in time when the voltage application is finished. Reference numerals 305 and 306 denote the time during which bubbles in each case have passed between the electrodes. When the flow path is normal (A), the bubble passage time is about 2.2 seconds, whereas when the flow path has a blockage (B), the bubble passage time is about 2.5 seconds and zero. Increased by about 3 seconds. This increase in passage time is due to the pressure loss factor upstream of the flow cell, resulting in a decrease in the pressure of the bubbles when passing through the electrode section, and an increase in volume. From this experimental result, an example of detecting an abnormality of the flow path by the method of the present invention was shown.

本実施例では気泡はノズルの昇降により導入したが、空気の導入は三方電磁弁の切り替えによって行うこともできる。また本実施例では直流電圧を印加したが、電圧は交流であっても、パルス状の電圧であってもよい。   In this embodiment, the bubbles are introduced by raising and lowering the nozzle, but the introduction of air can also be performed by switching the three-way solenoid valve. In this embodiment, a DC voltage is applied, but the voltage may be an AC voltage or a pulsed voltage.

気泡通過時間の測定は電流測定以外にも、以下に挙げるような方法が可能である。   In addition to the current measurement, the bubble passage time can be measured by the following methods.

光センサを用いる方法では、空気と溶液の吸光度あるいは反射率の相違を利用し、センサ部分を通過している流体がいずれであるかを判断することで、気泡の通過時間を測定する。画像解析による方法では、流路内の画像を撮影し画像解析により通過中の流体が気泡か溶液のいずれであるかを判断することで、気泡の通過時間を測定する。いずれの方法においても、実施例と同様に気泡の通過時間から流路の状態を評価する。気泡通過時間の測定手段については、装置の目的とする分析で使用する方法を流用することが望ましい。例えば電解質や電気化学など電極を用いる検出手段を用いる免疫分析装置では、気泡の通過時間測定は電流測定方式で行うことが望ましい。これは追加的な測定機構を必要としないため、流路構成が複雑にならないこととコストを増加させないためである。   In the method using an optical sensor, the passage time of bubbles is measured by using the difference in absorbance or reflectance between air and solution and determining which fluid is passing through the sensor portion. In the method based on image analysis, the passage time of bubbles is measured by taking an image in the flow path and determining whether the fluid passing through the image analysis is bubbles or solutions. In any method, the state of the flow path is evaluated from the passage time of the bubbles as in the example. As a means for measuring the bubble passage time, it is desirable to use the method used in the intended analysis of the apparatus. For example, in an immunoassay apparatus using detection means using electrodes such as an electrolyte and electrochemical, it is desirable to measure the passage time of bubbles by a current measurement method. This is because an additional measurement mechanism is not required, so that the flow path configuration is not complicated and the cost is not increased.

101,103 流路
102 検出部
104 流路に生じた閉塞部
105 直管部での圧力損失
106 閉塞部での圧力損失
107 流路入口での圧力
108 流路が正常な場合の検出部での圧力
109 流路に閉塞部が生じている場合の検出部での圧力
201 電流測定フローセル
202,203 電極
204 溶液
205 導入用流路
206 溶液用容器
207 ノズル
208 流路接続部
209 排出用流路
210 シリンジポンプ
211 電圧制御手段
212 電流解析手段
213 演算装置
301 流路が正常な場合の気泡導入からの経過時間と電流の関係
302 流路に異常がある場合の気泡導入からの経過時間と電流の関係
303 電圧印加開始時点
304 電極間を溶液が流れている領域
305 流路が正常な場合の気泡通過時間
306 流路に異常がある場合の気泡通過時間
307 電極間を溶液が流れている領域
308 電圧印加終了時点
101, 103 Flow path 102 Detection section 104 Blocking section 105 generated in the flow path Pressure loss 106 in the straight pipe section Pressure loss 106 in the blocking section Pressure 108 at the flow path inlet In the detection section when the flow path is normal Pressure 109 Pressure at detection section when flow path is closed 201 Current measurement flow cell 202, 203 Electrode 204 Solution 205 Introduction flow path 206 Solution container 207 Nozzle 208 Flow path connection section 209 Discharge flow path 210 Syringe pump 211 Voltage control means 212 Current analysis means 213 Arithmetic unit 301 Relationship between time elapsed from bubble introduction and current when flow path is normal 302 Relationship between current elapsed time from bubble introduction and current when flow path is abnormal 303 Voltage application start time 304 Area where the solution flows between the electrodes 305 Bubble passage time when the flow path is normal 306 When the flow path is abnormal Region 308 voltage application end of the inter-cell passage time 307 electrode solution is flowing

Claims (7)

一定の内容積を有する容器と、該容器に測定対象サンプルを含む流体を少なくとも流入および流出する流路と、を備えた分析装置において、
前記流路、または前記容器を、通過する気泡の速度を測定する気泡速度計測手段を備えたことを特徴とする分析装置。
In an analyzer comprising: a container having a constant internal volume; and a flow path through which at least a fluid containing a sample to be measured flows in and out of the container.
An analyzer comprising bubble velocity measuring means for measuring the velocity of bubbles passing through the flow path or the container.
請求項1記載の分析装置において、
前記気泡速度計測手段と計測結果を記録する手段を備え、計測された気泡の速度を予め定めた正常値と比較する比較手段と、該比較手段により、計測された気泡の速度が正常値にないと判断された場合は、その旨を報知する報知機構とを備えたことを特徴とする分析装置。
The analyzer according to claim 1,
Comparing with the bubble speed measuring means and means for recording the measurement result, the comparison means for comparing the measured bubble speed with a predetermined normal value, and the bubble speed measured by the comparison means is not at the normal value. When it is judged, it is provided with the alerting | reporting mechanism which alert | reports that, The analyzer characterized by the above-mentioned.
請求項1記載の分析装置において、
前記気泡速度計測手段は、前記流路内に設置した少なくとも2つの電極間に電圧を印加し、気泡が該電極間を通過するときの電流の変化に基づいて測定するものであることを特徴とする分析装置。
The analyzer according to claim 1,
The bubble velocity measuring means applies a voltage between at least two electrodes installed in the flow path, and measures based on a change in current when the bubble passes between the electrodes. Analysis equipment.
請求項1記載の分析装置において、
前記気泡速度計測手段は、前記流路内に設置した光センサにより、気泡が通過するときの光の反射率あるいは吸光度の変化に基づいて測定するものであることを特徴とする分析装置。
The analyzer according to claim 1,
The said bubble speed measurement means measures based on the change of the reflectance or the light absorbency of light when a bubble passes by the optical sensor installed in the said flow path, The analyzer characterized by the above-mentioned.
請求項1記載の分析装置において、
前記気泡速度計測手段は、前記流路内の画像を撮影し、撮影された画像の解析に基づき測定するものであることを特徴とする分析装置。
The analyzer according to claim 1,
The said bubble velocity measurement means image | photographs the image in the said flow path, and measures based on the analysis of the image | photographed image, The analyzer characterized by the above-mentioned.
請求項1から5に記載の分析装置において、
サンプルの測定に供せられる測定手段の信号を用いて気泡の速度を測定することを特徴とする分析装置。
The analyzer according to any one of claims 1 to 5,
An analyzer characterized by measuring a bubble velocity using a signal of a measuring means used for measuring a sample.
請求項1から6に記載の分析装置において、
測定プロセス中の時刻と気泡の有無に関する評価を行い、予め定められた情報との比較により、各々の測定プロセスが正常に行われたか否かに関する情報を測定結果と関連付けて出力することを特徴とする分析装置。
The analyzer according to any one of claims 1 to 6,
It is characterized by evaluating the time during the measurement process and the presence or absence of bubbles, and outputting information related to whether or not each measurement process was normally performed in association with the measurement result by comparing with predetermined information. Analysis equipment.
JP2010017598A 2010-01-29 2010-01-29 Analyzer Pending JP2011158258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010017598A JP2011158258A (en) 2010-01-29 2010-01-29 Analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010017598A JP2011158258A (en) 2010-01-29 2010-01-29 Analyzer

Publications (1)

Publication Number Publication Date
JP2011158258A true JP2011158258A (en) 2011-08-18

Family

ID=44590346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017598A Pending JP2011158258A (en) 2010-01-29 2010-01-29 Analyzer

Country Status (1)

Country Link
JP (1) JP2011158258A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8807309B2 (en) 2009-09-03 2014-08-19 Conductix-Wampfler Ag Device and method for inductively transmitting electric energy to displaceable consumers
JP2015010894A (en) * 2013-06-27 2015-01-19 シスメックス株式会社 Sample treatment device, and abnormality detection method of sample treatment device
JP2020529585A (en) * 2017-08-01 2020-10-08 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft How to monitor the detection behavior of a sample in a liquid sample
CN113544518A (en) * 2019-04-26 2021-10-22 株式会社日立高新技术 Automatic analyzer
JP7520053B2 (en) 2019-06-07 2024-07-22 ライフ テクノロジーズ コーポレーション Line volume calibration system and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181953A (en) * 1985-02-08 1986-08-14 Hitachi Ltd Flow-through type electrochemical analyzer
JPS61181347U (en) * 1985-04-29 1986-11-12
JPH0792092A (en) * 1993-08-13 1995-04-07 Miles Inc Device and method for detecting interface of liquid/gas flowing in pipe
JPH11218437A (en) * 1998-02-03 1999-08-10 Mitsubishi Kagaku Bio Clinical Laboratories Inc Trace amount of liquid discriminating device
JP2002519704A (en) * 1998-07-06 2002-07-02 バイエル コーポレイション Method and apparatus for monitoring a suction and dispensing system
JP2007064759A (en) * 2005-08-30 2007-03-15 Hoyutec Kk Fluid transfer device
JP2007245038A (en) * 2006-03-17 2007-09-27 Ebara Corp Air bubble removing device in microfluid device and method used for the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181953A (en) * 1985-02-08 1986-08-14 Hitachi Ltd Flow-through type electrochemical analyzer
JPS61181347U (en) * 1985-04-29 1986-11-12
JPH0792092A (en) * 1993-08-13 1995-04-07 Miles Inc Device and method for detecting interface of liquid/gas flowing in pipe
JPH11218437A (en) * 1998-02-03 1999-08-10 Mitsubishi Kagaku Bio Clinical Laboratories Inc Trace amount of liquid discriminating device
JP2002519704A (en) * 1998-07-06 2002-07-02 バイエル コーポレイション Method and apparatus for monitoring a suction and dispensing system
JP2007064759A (en) * 2005-08-30 2007-03-15 Hoyutec Kk Fluid transfer device
JP2007245038A (en) * 2006-03-17 2007-09-27 Ebara Corp Air bubble removing device in microfluid device and method used for the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8807309B2 (en) 2009-09-03 2014-08-19 Conductix-Wampfler Ag Device and method for inductively transmitting electric energy to displaceable consumers
JP2015010894A (en) * 2013-06-27 2015-01-19 シスメックス株式会社 Sample treatment device, and abnormality detection method of sample treatment device
JP2020529585A (en) * 2017-08-01 2020-10-08 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft How to monitor the detection behavior of a sample in a liquid sample
JP7110320B2 (en) 2017-08-01 2022-08-01 エフ.ホフマン-ラ ロシュ アーゲー Method for monitoring the operation of detecting an analyte in a liquid sample
US11726044B2 (en) 2017-08-01 2023-08-15 Roche Diagnostics Operations, Inc. Method of monitoring an operation of detection of an analyte in a liquid sample
CN113544518A (en) * 2019-04-26 2021-10-22 株式会社日立高新技术 Automatic analyzer
JP7520053B2 (en) 2019-06-07 2024-07-22 ライフ テクノロジーズ コーポレーション Line volume calibration system and method

Similar Documents

Publication Publication Date Title
US8507279B2 (en) System and method of verification of a prepared sample for a flow cytometer
US8821791B2 (en) Monitoring method, monitoring apparatus and liquid sample analyzer
US8511888B2 (en) Reagent preparing apparatus, sample processing apparatus and reagent preparing method
US9482682B2 (en) Reagent preparation apparatus and sample processing apparatus
JP5097657B2 (en) Analysis method
US7389679B2 (en) Measurement cell and method for the analysis of liquids
CN112654862B (en) Electrolyte concentration measuring device
JP2011158258A (en) Analyzer
US20110061471A1 (en) System and method of verification of a sample for a flow cytometer
CN108519479B (en) On-line self-diagnosis device for biochip reaction process
JP2015215274A (en) Automatic analysis device and analysis method
CN105229450B (en) Colorimetric analyzer with deaeration function
US20030013200A1 (en) Liquid sample take-up device
JP2005055446A (en) Method of detecting gas bubbles in liquid
JP4966752B2 (en) Fluid measurement substrate, analyzer, and analysis method
US11573118B2 (en) Line volume calibration systems and methods
JP2007017302A (en) Measuring instrument of number of particles
JP3909050B2 (en) Blood cell counter
JP4428985B2 (en) Analyzer with self-diagnosis function
WO2013042551A1 (en) Automatic analysis apparatus
US7807041B2 (en) Method for detecting the presence or absence of a gas bubble in an aqueous liquid
JP2011047838A (en) Automatic analysis device
KR100874261B1 (en) Apparatus for supplying system of the precisely measured micro-volume liquid sample for biosensor and method of measuring biosubstances using the same apparatus
JP2010145215A (en) System and method for monitoring introduction situation
JP2011153867A (en) Reagent preparation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130723