JP2011157816A - Method of manufacturing variable vane - Google Patents

Method of manufacturing variable vane Download PDF

Info

Publication number
JP2011157816A
JP2011157816A JP2008262547A JP2008262547A JP2011157816A JP 2011157816 A JP2011157816 A JP 2011157816A JP 2008262547 A JP2008262547 A JP 2008262547A JP 2008262547 A JP2008262547 A JP 2008262547A JP 2011157816 A JP2011157816 A JP 2011157816A
Authority
JP
Japan
Prior art keywords
sintered product
wing
variable vane
product
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008262547A
Other languages
Japanese (ja)
Other versions
JP4317906B1 (en
Inventor
Yoshimitsu Sagawa
喜光 寒川
Katsunori Nakagawa
勝則 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNES CO Ltd
Original Assignee
TECHNES CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNES CO Ltd filed Critical TECHNES CO Ltd
Priority to JP2008262547A priority Critical patent/JP4317906B1/en
Application granted granted Critical
Publication of JP4317906B1 publication Critical patent/JP4317906B1/en
Priority to CN200980139862.XA priority patent/CN102177324B/en
Priority to PCT/JP2009/067621 priority patent/WO2010041735A1/en
Priority to EP09819268.5A priority patent/EP2343441B1/en
Priority to HUE09819268A priority patent/HUE028680T2/en
Publication of JP2011157816A publication Critical patent/JP2011157816A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Supercharger (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a variable vane, capable of setting the dimensions of a shaft part and a blade part with desired dimensional precisions without cutting work. <P>SOLUTION: A sinter is prepared such that, with respect to the target dimensions of a final product, the height of the blade part 2 ranges within +0.3% to +0.9%, the thickness of the blade part 2 ranges within -0.6% to -0.0%, the diameter of the shaft part 3 ranges within +0.3% to +0.9%, the length from the lower end of the blade part 2 to the lower end of the shaft part 3 ranges within -0.6% to -0.0%, and a sintering density is 95% or more of a relative density. In the sinter, the blade part 2 is set to desired product dimensions in the height direction and in the thickness direction at the same time in a first pressing process; the coaxiality between the blade part 2 and the shaft part 3 is set to a desired product dimension in a second pressing process; and the roundness of the shaft part 3 is set to a desired product dimension in a third pressing process. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は自動車エンジン等に用いられるターボチャージャに組み込まれる可変ベーンを製造する方法に関する。より詳しくは、金属粉末射出成形(MIM法)により得られた焼結品を、翼部の高さと厚みを修正する金型、翼部形状を修正する金型、及び軸部を修正する金型によりプレスし、切削加工無しで翼部、軸部共に所定の寸法とできる可変ベーンの製造方法に関する。   The present invention relates to a method of manufacturing a variable vane incorporated in a turbocharger used in an automobile engine or the like. More specifically, for a sintered product obtained by metal powder injection molding (MIM method), a mold for correcting the height and thickness of the wing part, a mold for correcting the shape of the wing part, and a mold for correcting the shaft part It is related with the manufacturing method of the variable vane which can be pressed by this and can make a wing | blade part and a shaft part into a predetermined dimension without cutting.

自動車エンジン等に用いられるターボチャージャは、低速回転時においてもエンジンが効率よく出力を得ることが出来るように排気ガスの流速を増幅させ、この排気エネルギーを利用して排気側のタービンが回転することで、排気側タービンに直結された吸気側のタービンを回転させ、強制的に空気をエンジン内に取り込むように設計されており、排気ガスの流量と流速を調節する部品として、複数の可変ベーンを備えている。
この可変ベーンは回転の中心軸と排気ガスの流量と流速を調整する翼部からなり、翼部は先端に行くほど薄肉になっている。
Turbochargers used in automobile engines, etc., amplify the exhaust gas flow rate so that the engine can efficiently obtain output even at low speed rotation, and the exhaust side turbine rotates using this exhaust energy. The engine is designed to rotate the intake side turbine directly connected to the exhaust side turbine to force air into the engine, and use multiple variable vanes as components to adjust the exhaust gas flow rate and flow velocity. I have.
This variable vane is composed of a central axis of rotation and a wing portion for adjusting the flow rate and flow velocity of exhaust gas, and the wing portion becomes thinner toward the tip.

従来からこの可変ベーンに関しては切削加工から製造される方法が採られてきたが、加工時間が非常にかかり、加工機1台あたり日産100〜500個程度と非常に効率の悪いものであった。   Conventionally, this variable vane has been manufactured by cutting, but the processing time is very long and the efficiency is as low as 100 to 500 per day per processing machine.

そのため、いくつかの製法が提示されている。特許文献1では材料となる鋼材を冷間鍛造工程及び研磨工程により製品を製造する。特許文献2ではロストワックス若しくはMIM法により製造された素材を用いて軸は転造方法、高さ方向はプレスにより製造する事により製品の製造を行っている。特許文献3ではMIM法の焼結品を用いて軸部を研磨加工する事により製品を製造している。   Therefore, several production methods are presented. In Patent Document 1, a steel material as a material is manufactured by a cold forging process and a polishing process. In Patent Document 2, a product is manufactured by using a lost wax or a material manufactured by the MIM method, using a rolling method for the shaft and a press in the height direction. In Patent Document 3, a product is manufactured by polishing a shaft portion using a sintered product of the MIM method.

特許文献1では鍛造工程と研磨加工工程を必要とするため、素材はステンレス合金の板材を用意すれば良いが、後加工にかかる時間と素材の有効活用の面では量産時の生産速度向上とコストダウンに限界がある。また、複雑薄肉形状になった場合には鍛造では所望する製品形状を作成することが困難である。   In Patent Document 1, since a forging process and a polishing process are required, it is sufficient to prepare a stainless steel plate material. However, in terms of time required for post-processing and effective use of the material, it is possible to improve production speed and cost during mass production. There is a limit to down. Moreover, when it becomes a complicated thin shape, it is difficult to produce a desired product shape by forging.

特許文献2ではロストワックス若しくはMIM法により作られた素材をプレスと転造工程により製造するものの、素材の加工方法が言及されておらず、軸方向転造工程で生じる後加工は避けられない。また、高さ方向を上部からの一軸プレスにより精度を向上させるが、特に従来のMIM法では、脱脂、焼結時に、製品寸法に対して±0.5%以上の寸法ばらつき・変形が発生するため、高さ方向をプレスにより寸法精度向上させても、ベーン部の変形を修正することは困難であり、結果として、多くの箇所を切削、研磨加工せざるを得ない。
具体的には翼部の高さが10mmであった場合には、従来のMIM製法により得られた製品の寸法ばらつきは±0.05mm発生する。しかしながら、翼部の幅方向にも±0.05mm程度の変形を生じるため、プレスで高さ方向の寸法を所望する寸法にできても、翼部の幅方向(厚み方向)ではプレスされた際に圧縮によりふくらみを生じるため、高さ方向だけでなく幅方向にも寸法精度に優れた焼結品でないと、計算通りの高さ、幅を有する翼部の形状を得ることが出来ない。また、翼部及び軸の同軸度においても、従来のMIM焼結品での同軸度のばらつきは±0.05mm程度発生するため、機械加工法及びプレスにより軸の寸法精度を寸法内に納めたとしても、同軸度を0.01mm以内に納めるためには翼部の機械加工は避けられない。
In Patent Document 2, a material made by lost wax or the MIM method is manufactured by pressing and a rolling process. However, a material processing method is not mentioned, and post-processing that occurs in the axial rolling process is inevitable. In addition, the accuracy is improved by uniaxial pressing from the top in the height direction. In particular, with the conventional MIM method, dimensional variations and deformations of more than ± 0.5% of the product dimensions occur during degreasing and sintering. Therefore, even if the dimensional accuracy is improved by pressing in the height direction, it is difficult to correct the deformation of the vane portion, and as a result, many places must be cut and polished.
Specifically, when the height of the wing portion is 10 mm, the dimensional variation of the product obtained by the conventional MIM manufacturing method occurs ± 0.05 mm. However, since deformation of about ± 0.05 mm occurs in the width direction of the wing, even if the height can be set to a desired size by pressing, when pressed in the width direction (thickness direction) of the wing Therefore, the shape of the blade portion having the calculated height and width cannot be obtained unless the sintered product has excellent dimensional accuracy not only in the height direction but also in the width direction. Also, in the coaxiality of the wing part and the shaft, the variation of the coaxiality in the conventional MIM sintered product occurs about ± 0.05 mm, so the dimensional accuracy of the shaft is kept within the dimensions by machining and pressing. However, in order to keep the coaxiality within 0.01 mm, machining of the wings is inevitable.

特許文献3も同様にMIM法による加工法については言及されておらず、最終的には軸部の研磨ベーン部との直角度の精度向上のためには研磨加工が避けられない。併せて翼部にねじれそりが発生した場合には精度の高い製品をプレス法においてのみ得ることは困難である。
特許第3833002号公報 特許第3944819号公報 特開2008−88849号公報
Similarly, Patent Document 3 does not mention a processing method by the MIM method, and polishing processing is unavoidable in order to improve the accuracy of the perpendicularity between the shaft portion and the polishing vane portion. In addition, it is difficult to obtain a highly accurate product only by the pressing method when twisting warpage occurs in the wing portion.
Japanese Patent No. 3833002 Japanese Patent No. 3944819 JP 2008-88849 A

したがって本発明は、前記問題を解決するため、切削加工を行わず、プレス加工法のみによって、寸法精度の高い可変ベーンを製造することができる方法を提供することを課題とする。   Therefore, in order to solve the above problem, an object of the present invention is to provide a method capable of manufacturing a variable vane with high dimensional accuracy only by a pressing method without performing a cutting process.

本発明者は、上記課題を解決するために鋭意検討した結果、最終製品と近似した形状を有する焼結品であって、所望する最終製品と一定の関係を有する焼結品を準備し、この焼結品をプレス第一工程において、翼部の高さ方向・厚み方向(幅方向)を同時に所望する製品の寸法とし、プレス第二工程において、翼部と軸部の同軸度を所望する製品の寸法とし、プレス第三工程において、軸の真円度を所望する製品の寸法とすることにより、切削加工無しで、軸部と翼部の寸法を所望する寸法精度(目標寸法±0.01mm〜0.05mm以下)に納めることに成功し、前記課題を解決した。   As a result of intensive studies to solve the above problems, the present inventor prepared a sintered product having a shape approximate to the final product, and having a certain relationship with the desired final product. In the first press process of sintered products, the height and thickness direction (width direction) of the wings are set to the desired product dimensions at the same time. In the second press process, the concentricity between the wings and the shaft is desired. In the third step of pressing, the roundness of the shaft is set to the desired product size, so that the desired dimensional accuracy (target size ± 0.01 mm) can be obtained without cutting. The above-mentioned problems have been solved by succeeding in being within a range of 0.05 mm or less.

すなわち本発明は、平板状の翼部と、前記翼部の下方に位置する円柱状の軸部を備えた可変ベーンを製造する方法であって、
所望する最終製品と近似した形状を有する焼結品をプレスする工程を含み、
前記焼結品が、翼部と軸部の一体形成品であって、最終製品の目標寸法に対して、翼部の高さが+0.3%〜+0.9%、翼部の厚みが−0.6%〜−0.0%、軸部の直径が+0.3%〜+0.9%、翼部の下端から軸部の下端までの長さが−0.6%〜−0.0%の範囲にあり、且つ焼結密度が相対密度95%以上であること、及び
前記プレス工程が、三段階の工程を含み、
プレス第一工程において、軸部挿通孔を有する下型と、翼部の下端面以外の形状を有する上型により、前記焼結品をプレスして、翼部の高さと厚みを整えること、
プレス第二工程において、前記翼部の厚みを2分割する面にて前記可変ベーンを分割した形状をそれぞれ有する上型と下型により、前記焼結品の翼部と軸部を同時にプレスして、翼部に対する軸部の角度並びに軸部の同軸度を整えること、
プレス第三工程において、前記可変ベーンの軸部に対応する半円柱体の形状をそれぞれ有する上型と下型により、前記焼結品の軸部を、前記プレス第二工程と90度異なる方向からプレスして、前記軸部の真円度を整えること
を特徴とする。
That is, the present invention is a method of manufacturing a variable vane having a flat wing portion and a cylindrical shaft portion located below the wing portion,
Pressing a sintered product having a shape close to the desired final product,
The sintered product is an integrally formed product of a blade portion and a shaft portion, and the height of the blade portion is + 0.3% to + 0.9% and the thickness of the blade portion is −− with respect to the target dimension of the final product. 0.6% to -0.0%, shaft diameter is + 0.3% to + 0.9%, length from lower end of wing to lower end of shaft is -0.6% to -0.0% %, And the sintered density is 95% or more, and the pressing step includes a three-stage process,
In the first pressing step, the sintered product is pressed by a lower die having a shaft portion insertion hole and an upper die having a shape other than the lower end surface of the wing portion, and the height and thickness of the wing portion are adjusted,
In the second pressing step, the blade portion and the shaft portion of the sintered product are simultaneously pressed by an upper die and a lower die each having a shape obtained by dividing the variable vane on a surface that divides the thickness of the blade portion into two. Adjusting the angle of the shaft portion with respect to the wing portion and the coaxiality of the shaft portion;
In the third press step, the upper die and the lower die each having the shape of a semi-cylindrical body corresponding to the shaft portion of the variable vane, the shaft portion of the sintered product from a direction 90 degrees different from the second press step. The roundness of the shaft portion is adjusted by pressing.

プレス第一工程で用いる金型は、翼部より下方の軸部を挿通することにより、焼結品を保持する下型と、翼部の下端面以外の形状を有する上型(すなわち、翼部の高さ方向と厚み方向の形状を同時に規定することができる)とからなる。なお、前記上型は、翼部の上側にも軸部が存在する可変ベーンを製造する場合は、翼部の形状に加えて、翼部より上側の軸部の形状も含む金型とする。上型を下型に向けてプレスすることにより、翼部は下側に圧縮されながら、翼部上面が圧縮されて側面部が膨らんで変形するとともに、側面部が金型形状に倣うことで、所望する翼部の高さと側面及び翼の形状並びに翼に対する軸の直角度を達成する。
プレス第二工程で用いる金型は、前記翼部の厚みを2分割する面にて可変ベーン(翼部および軸部)を分割した形状をそれぞれ有する上型と下型とからなり、製品を横方向に下型で固定し、上型を下側に圧縮し翼部と軸部を同時にプレスすることにより、翼部に対する軸部の垂直度並びに翼部に対する軸部の同軸度を得る。
さらにプレス第三工程で用いる金型は、可変ベーンの軸部に対応する半円柱体の形状をそれぞれ有する上型と下型からなり、前記焼結品の翼部より下方に位置する軸部をプレス第二工程から90度回転させた状態で、上下プレスを行う事により軸部の真円度を得る。
The mold used in the first press step is a lower mold for holding a sintered product by inserting a shaft part below the wing part, and an upper mold having a shape other than the lower end surface of the wing part (that is, the wing part) The shape in the height direction and the thickness direction can be defined simultaneously). In addition, when manufacturing the variable vane in which the shaft part also exists on the upper side of the wing part, the upper mold is a mold including the shape of the shaft part above the wing part in addition to the shape of the wing part. By pressing the upper mold toward the lower mold, while the wing is compressed downward, the upper surface of the wing is compressed and the side surface swells and deforms, and the side surface follows the mold shape, The desired wing height and sides and wing shape and axial squareness to the wing are achieved.
The mold used in the second press process consists of an upper mold and a lower mold each having a shape in which variable vanes (wing section and shaft section) are divided on a plane that divides the thickness of the wing section into two parts. By fixing the lower mold in the direction, compressing the upper mold downward, and simultaneously pressing the wing part and the shaft part, the perpendicularity of the shaft part with respect to the wing part and the coaxiality of the shaft part with respect to the wing part are obtained.
Furthermore, the mold used in the third press step is composed of an upper mold and a lower mold each having a semi-cylindrical shape corresponding to the shaft portion of the variable vane, and the shaft portion positioned below the blade portion of the sintered product is provided. The roundness of the shaft portion is obtained by pressing up and down while rotating 90 degrees from the second press step.

上記プレス加工を行うに際し、プレスされる焼結品として、所望する最終製品の寸法に対して翼部と軸部の各寸法が上記寸法範囲内にある焼結品を用いることにより、切削加工無しで、軸部と翼部の各寸法を所望する寸法精度(目標寸法±0.01〜0.05mm以下)に納めることができる。また、相対密度95%以上の焼結品を用いることにより、プレス後の寸法精度を所望する寸法精度に納めることができ、且つ、高温使用に耐える機械的強度を有する可変ベーンを製造することができる。   When performing the above-mentioned press working, there is no cutting work by using a sintered product in which each dimension of the blade part and the shaft part is within the above-mentioned dimension range as a sintered product to be pressed with respect to the desired final product size. Thus, each dimension of the shaft part and the wing part can be accommodated to a desired dimensional accuracy (target dimension ± 0.01 to 0.05 mm or less). Further, by using a sintered product having a relative density of 95% or more, it is possible to produce a variable vane having a mechanical strength that can withstand high-temperature use and can keep the dimensional accuracy after pressing to a desired dimensional accuracy. it can.

前記焼結品は、相対密度98%以上の焼結品であることがより好ましい。また、360度方向からプレス曲げ加工が出来るマルチフォーミングマシンを用いれば、前記プレス第一工程からプレス第三工程までを連続して行うことができ、プレス工程を省力化することができる。   The sintered product is more preferably a sintered product having a relative density of 98% or more. Further, if a multi-forming machine capable of press bending from the 360 degree direction is used, the first press process to the third press process can be performed continuously, and the press process can be saved.

前記プレス工程に使用する焼結品を製造するためには、
金属粉末(a)に有機バインダ(b)を添加し加熱混合した後、粉砕若しくはペレット化して射出成形材料を得、当該成形材料を射出成形して成形体を作製し、得られた成形体を加熱脱脂する工程を有する方法において、
前記金属粉末(a)として平均粒径1〜20μm、タップ密度が3.5g/m以上の金属粉末を用いること、
前記有機バインダ(b)としてポリアセタール(b1)を5〜40Vol%、及びポリプロピレン(b2)を5〜40Vol%含有する有機バインダを用いること、
前記金属粉末(a)に前記有機バインダ(b)を添加する工程において、(a+b)に対し、(b)が30〜60Vol%となるように添加すること、
により、上記可変ベーンの製造に適した焼結品を得ることができる。
In order to produce a sintered product used in the pressing process,
After adding an organic binder (b) to the metal powder (a) and heating and mixing, an injection molding material is obtained by pulverization or pelletization, and the molding material is produced by injection molding the molding material. In the method having the step of heat degreasing,
Using a metal powder having an average particle diameter of 1 to 20 μm and a tap density of 3.5 g / m 3 or more as the metal powder (a),
Using an organic binder containing 5-40 Vol% polyacetal (b1) and 5-40 Vol% polypropylene (b2) as the organic binder (b),
In the step of adding the organic binder (b) to the metal powder (a), adding (b) to 30 to 60 Vol% with respect to (a + b),
Thus, a sintered product suitable for manufacturing the variable vane can be obtained.

また、前記焼結品の製造工程において、
脱脂工程が減圧不活性ガス雰囲気、大気圧不活性ガス雰囲気及び大気圧水素雰囲気のいずれかで最高温度800℃以下で行われること、及び
焼結工程が減圧不活性ガス雰囲気、加圧不活性ガス雰囲気、大気圧不活性ガス雰囲気及び大気圧水素雰囲気のいずれかで1000℃以上1500℃以下で行われる事が好ましい。
In the manufacturing process of the sintered product,
The degreasing step is performed at a maximum temperature of 800 ° C. or less in any one of a reduced pressure inert gas atmosphere, an atmospheric pressure inert gas atmosphere and an atmospheric pressure hydrogen atmosphere, and the sintering step is performed under a reduced pressure inert gas atmosphere and a pressurized inert gas. It is preferably performed at 1000 ° C. or higher and 1500 ° C. or lower in any of an atmosphere, an atmospheric pressure inert gas atmosphere, and an atmospheric pressure hydrogen atmosphere.

さらに、前記焼結品の製造工程において、相対密度94%以上の第一次焼結品を作製した後、熱間等方圧加圧法により相対密度を98%以上とすることが好ましい。   Furthermore, in the manufacturing process of the sintered product, after producing a primary sintered product having a relative density of 94% or more, the relative density is preferably made 98% or more by a hot isostatic pressing method.

本発明によれば、機械加工を行なわず、焼結品をプレス加工することのみにより、寸法精度の高い可変ベーンを製造することが出来る。
また、焼結品の製造において、上記金属粉末の粒径、タップ密度、バインダ量、バインダ成分を採用することにより、従来よりも寸法精度の高い可変ベーン製造用の焼結品を、MIM法により製造することができる。
According to the present invention, a variable vane with high dimensional accuracy can be manufactured only by pressing a sintered product without performing machining.
Also, in the manufacture of sintered products, by adopting the particle size, tap density, binder amount, and binder component of the above metal powder, a sintered product for variable vane manufacturing with higher dimensional accuracy than conventional can be obtained by the MIM method. Can be manufactured.

ターボチャージャに使用される可変ベーンは図1に示すとおり、排気ガスの流量を調節する翼部(ノズルベーン部)と、翼部を回転可能に軸支する軸部(ベーンシャフト部)とを有し、軸部は翼部の中央付近の回転中心位置から少なくとも一方側(下側)に連接されている。軸部は円柱形であり、翼部は平板状であって、且つ先端に行くほど細くなるくさび形の形状をしている。また、翼部は排気ガスの流量を容易に調整するために細く非対称に湾曲している場合が多く、組み込みの安定性と動作時の安定性を向上することができる。
また、軸部において、翼部に連接されている反対側の端面は、成型面のままの平面形状をし、かつ当該端面と軸部の周壁面との境が曲面とされていることが好ましい。このようにすることにより、機構的に不必要な機械加工される部分がなく、且つ強度が向上する。また、軸部の端部が曲面とされているので、組み込みの安定性と回動の安定性を向上させることができる。
As shown in FIG. 1, the variable vane used in the turbocharger has a blade portion (nozzle vane portion) that adjusts the flow rate of exhaust gas and a shaft portion (vane shaft portion) that rotatably supports the blade portion. The shaft portion is connected to at least one side (lower side) from the rotation center position near the center of the wing portion. The shaft portion has a cylindrical shape, the wing portion has a flat plate shape, and has a wedge shape that becomes thinner toward the tip. Further, in many cases, the wing portion is thin and asymmetrically curved in order to easily adjust the flow rate of the exhaust gas, so that the stability of incorporation and the stability during operation can be improved.
Further, in the shaft portion, it is preferable that the opposite end surface connected to the wing portion has a planar shape as a molding surface, and the boundary between the end surface and the peripheral wall surface of the shaft portion is a curved surface. . By doing so, there is no mechanically unnecessary part to be machined, and the strength is improved. Further, since the end portion of the shaft portion is a curved surface, the stability of incorporation and the stability of rotation can be improved.

製品形状には翼の上面がフラット(図1A参照)のものと、上面にも回転軸を有するもの(図1B参照)の2種類に分けられる。製品の製造方法を図2(製造フローチャート)に示す。   There are two types of product shapes: those with a flat wing upper surface (see FIG. 1A) and those with a rotating shaft on the upper surface (see FIG. 1B). A product manufacturing method is shown in FIG. 2 (manufacturing flowchart).

可変ベーンの製造においては、所望の最終製品と近似した形状を有する焼結品をまず製造する必要があり、これは、原料となる金属を粉体としたものを使用し、これに必要量の有機バインダを添加して得られる成形材料を用いて、あらかじめ製品の焼結後の収縮率を考慮した金型で成型し成形体を作成する。   In the production of variable vanes, it is necessary to first produce a sintered product having a shape that approximates the desired final product. Using a molding material obtained by adding an organic binder, a molded body is prepared by molding in advance with a mold in consideration of the shrinkage rate after sintering of the product.

可変ベーンで用いられる金属は耐食性があり耐熱鋼の金属材料からなる。焼結品を製造するための好ましい金属材料として、Ni,Crの含有量がそれぞれNi:19.0〜22.0wt%,Cr:23.0〜27.0wt%であるSUS310,SCH21(HK30)が主に用いられる。その他、Ni基合金であるインコネル等が用いられる。
このような金属材料からなる金属粉末として、通常水アトマイズ若しくはガスアトマイズ法より製造された合金粉末を用いるが、これらアトマイズ法により作られた合金粉末以外に、焼結時に合金成分となるように調整し元素粉末を組成にあわせて添加して用いても良い。一般的には水アトマイズ粉末の方がガスアトマイズ粉末よりも大量に生産できるため、製造コストも安価になるが、粉末形状が異形状になりやすいために、タップ密度が低くなりやすく、また粉末中の酸素量も高くなる。これに対してガスアトマイズ粉末の製造コストは高くなるものの、球形の粉末を得ることが容易でタップ密度が高くなる特徴がある。このため、コストとタップ密度を勘案して、水アトマイズ粉末とガスアトマイズ粉末を混合して用いても良い。
The metal used in the variable vane has corrosion resistance and is made of a heat-resistant steel metal material. As preferred metal materials for producing sintered products, SUS310 and SCH21 (HK30) in which the contents of Ni and Cr are Ni: 19.0 to 22.0 wt% and Cr: 23.0 to 27.0 wt%, respectively. Is mainly used. In addition, Inconel, which is a Ni-based alloy, is used.
As a metal powder made of such a metal material, an alloy powder produced by a water atomization or gas atomization method is usually used. In addition to the alloy powder produced by the atomization method, the alloy powder is adjusted to be an alloy component during sintering. Element powders may be added according to the composition. In general, water atomized powder can be produced in a larger amount than gas atomized powder, so the manufacturing cost is also low, but because the powder shape tends to be irregular, the tap density tends to be low, and The amount of oxygen also increases. On the other hand, although the manufacturing cost of the gas atomized powder is increased, it is easy to obtain a spherical powder and the tap density is increased. For this reason, the water atomized powder and the gas atomized powder may be mixed and used in consideration of the cost and the tap density.

本発明にかかる金属粉末(a)の平均粒径は1〜20μmが好ましい。平均粒径が1μmを下回る場合には、粉末の表面積が増えることでバインダ添加量が増加し、脱脂時の変形が大きくなる。また、バインダ量が多くなると、焼結時の収縮率も大きくなり、焼結後の寸法ばらつきも大きくなり、後工程のプレス工程で寸法精度の高い製品を得ることは困難である。粉末粒径が20μmを越える場合には、焼結密度(相対密度)95%以上を安定して得ることが困難になり、強度が著しく低下し、製品として使用することができない。より好ましい平均粒径は、5〜12μmであり、さらに望ましくは8〜10μmである。本発明において、平均粒径とは、レーザー回折・散乱法を使用した粒度分布測定装置を用いて、測定した重量累積50%の平均径を意味する。このような粒度分布測定装置としては、島津製作所製 SALD−2000型を用いることができる。   As for the average particle diameter of the metal powder (a) concerning this invention, 1-20 micrometers is preferable. When the average particle size is less than 1 μm, the amount of binder added increases as the surface area of the powder increases, and deformation during degreasing increases. In addition, when the amount of the binder is increased, the shrinkage rate at the time of sintering is increased, the dimensional variation after the sintering is increased, and it is difficult to obtain a product with high dimensional accuracy in the subsequent pressing process. When the powder particle diameter exceeds 20 μm, it becomes difficult to stably obtain a sintered density (relative density) of 95% or more, the strength is remarkably lowered, and it cannot be used as a product. A more preferable average particle diameter is 5 to 12 μm, and more desirably 8 to 10 μm. In the present invention, the average particle diameter means an average diameter of 50% cumulative weight measured using a particle size distribution measuring apparatus using a laser diffraction / scattering method. As such a particle size distribution measuring apparatus, a SALD-2000 model manufactured by Shimadzu Corporation can be used.

また、本発明にかかる金属粉末(a)は、タップ密度が3.5g/m以上であることが好ましい。粉末のタップ密度が3.5g/m未満の場合には粉末の表面積が増えることで、添加するバインダ量を増やす必要があり、脱脂、焼結時での寸法ばらつきの原因になる。より好ましいタップ密度は4.0g/m以上であり、さらに好ましくは4.2g/m以上である。上限は特に限定されないが、タップ密度5.0g/m以下で十分な効果を得ることができる。
タップ密度は、日本粉末冶金工業会発行の「金属粉のタップ密度試験法」JPMA P 08に記載の測定方法により測定することができる。
The metal powder (a) according to the present invention preferably has a tap density of 3.5 g / m 3 or more. When the tap density of the powder is less than 3.5 g / m 3 , it is necessary to increase the amount of the binder to be added by increasing the surface area of the powder, which causes dimensional variation during degreasing and sintering. The tap density is more preferably 4.0 g / m 3 or more, and still more preferably 4.2 g / m 3 or more. The upper limit is not particularly limited, but a sufficient effect can be obtained at a tap density of 5.0 g / m 3 or less.
The tap density can be measured by a measuring method described in “Metal Powder Tap Density Test Method” JPMA P 08 published by Japan Powder Metallurgy Industry Association.

また、有機バインダ(b)として、ポリアセタール(b1)を5〜40Vol%、及びポリプロピレン(b2)を5〜40Vol%含有する有機バインダを用いる。有機バインダにおいて、ポリアセタール及びポリプロピレンを用いることで、ポリエチレン、エチレン酢酸ビニル、アクリル樹脂を用いた従来のバインダと比較して脱脂時の変形量が抑えられる。
ポリアセタールは成形体の強度を高め、焼結における600℃以下での成形体の変形を防止し、且つ焼結後において炭化物が残留しない物質として不可欠である。ポリプロピレンは成形体にじん性を付与し、焼結の割れ及び添加した低融点化合物の分離を阻止する。そして、ポリプロピレンもまた、焼結後において炭化物が残留しないという特質をもっている。
ポリアセタール、ポリプロピレンの添加量が各々有機バインダの全量(b)に対して5Vol%未満の場合には脱脂時の変形が大きくなり、規定する焼結後の寸法精度を得ることができない。またポリアセタール、ポリプロピレンの添加量が各々有機バインダの全量(b)に対して40Vol%を超えると、成形時の粘度が高くなり金型内に成形材料を完全に充填することができない。
より好ましいポリアセタールの含有量は10〜30Vol%であり、より好ましいポリプロピレンの含有量は10〜30Vol%である。
As the organic binder (b), an organic binder containing 5 to 40 Vol% of polyacetal (b1) and 5 to 40 Vol% of polypropylene (b2) is used. By using polyacetal and polypropylene in the organic binder, the amount of deformation during degreasing can be suppressed as compared with conventional binders using polyethylene, ethylene vinyl acetate, and acrylic resin.
Polyacetal is indispensable as a substance that increases the strength of the molded body, prevents deformation of the molded body at 600 ° C. or lower during sintering, and does not leave carbides after sintering. Polypropylene imparts toughness to the shaped body and prevents cracking of the sintering and separation of the added low melting point compound. Polypropylene also has the property that no carbides remain after sintering.
When the addition amount of polyacetal and polypropylene is less than 5 Vol% with respect to the total amount (b) of the organic binder, deformation during degreasing becomes large, and the prescribed dimensional accuracy after sintering cannot be obtained. On the other hand, when the addition amount of polyacetal and polypropylene exceeds 40 Vol% with respect to the total amount (b) of the organic binder, the viscosity at the time of molding increases and the molding material cannot be completely filled in the mold.
A more preferable polyacetal content is 10 to 30% by volume, and a more preferable polypropylene content is 10 to 30% by volume.

ポリアセタール及びポリプロピレン以外の材料としては下記の有機材料を用いる事ができる。
流動性を付与し、脱脂性を向上するために脂肪酸エステル、脂肪酸アミド、フタル酸エステル、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、ポリプロピレンワックス、カルナバワックス、モンタン系ワックス、ウレタン化ワックス、無水マレイン酸変性ワックス及びポリグリコール系化合物等が用いられる。特に好ましい材料としてパラフィンワックス、脂肪酸エステル、ポリプロピレンワックスが挙げられる。
As materials other than polyacetal and polypropylene, the following organic materials can be used.
Fatty acid ester, fatty acid amide, phthalic acid ester, paraffin wax, microcrystalline wax, polyethylene wax, polypropylene wax, carnauba wax, montan wax, urethanized wax, maleic anhydride to provide fluidity and improve degreasing Modified waxes and polyglycol compounds are used. Particularly preferred materials include paraffin wax, fatty acid ester, and polypropylene wax.

また、成形時の流動性並びに成形体に柔軟性を付与するためにポリエチレン、アモルファスポリオレフィン、エチレン酢酸ビニル共重合体、アクリル樹脂、ポリビニルブチラール樹脂、グリシジルメタクリレート樹脂等を用いることができる。特に好ましい材料として、ポリエチレン、アモルファスポリオレフィンが挙げられる。   In addition, polyethylene, amorphous polyolefin, ethylene vinyl acetate copolymer, acrylic resin, polyvinyl butyral resin, glycidyl methacrylate resin, and the like can be used to impart fluidity during molding and flexibility in the molded body. Particularly preferred materials include polyethylene and amorphous polyolefin.

上記流動性、脱脂性を向上させるために、併せて上記流動性並びに柔軟性を付与するために、前記金属粉末(a)と前記有機バインダ(b)の全量(a+b)に対し、前記有機バインダ(b)を30〜60体積%(Vol%)とすることが好ましく、35〜50体積%とすることがより好ましい。
上記割合とした有機バインダと金属粉末を160〜180℃程度で2時間程度加熱混練し、金属粉末を有機バインダと完全に分散混合させる。この後、取り出して押し出し機若しくは粉砕機で直径5mm程度のペレット状にしてこれを用いて成形材料にする。
In order to improve the fluidity and degreasing properties, the organic binder is added to the total amount (a + b) of the metal powder (a) and the organic binder (b) in order to provide the fluidity and flexibility. (B) is preferably 30 to 60% by volume (Vol%), more preferably 35 to 50% by volume.
The organic binder and metal powder having the above ratio are heated and kneaded at about 160 to 180 ° C. for about 2 hours to completely disperse and mix the metal powder with the organic binder. Then, it is taken out and formed into a pellet having a diameter of about 5 mm by an extruder or a pulverizer, and used as a molding material.

焼結品は、プレスによる寸法変化を考慮して、翼部については、高さ方向に最終製品として所望する寸法の+0.3%〜+0.9%、厚み方向に最終製品として所望する寸法の−0.6%〜−0.0%の範囲となるように、および、軸部については、直径が最終製品として所望する寸法の+0.3%〜+0.9%、翼部より下方の軸部の長さが最終製品として所望する寸法の−0.6%〜−0.0%の範囲となるように作成される必要がある。
そして、成形においては、焼結後の寸法を考慮して金型形状を決定する必要がある。これらの寸法は焼結後若しくは熱間等方圧加圧法後に得られる寸法であって、焼結密度により寸法が異なるため、金型設計は以後の寸法変化を十分に考慮する必要がある。このため、金型の寸法は上記寸法精度を考慮して設計する必要があり、さらに、成形から焼結への収縮率をあらかじめ計算しておく必要がある。
For sintered products, considering the dimensional change due to pressing, the wing part has a desired dimension as the final product in the height direction and + 0.3% to + 0.9% of the desired dimension as the final product. The shaft is in the range of −0.6% to −0.0%, and the shaft portion has a diameter of + 0.3% to + 0.9% of a desired size as a final product, and a shaft below the wing portion. It is necessary to make the length of the part to be in the range of -0.6% to -0.0% of the desired dimension as the final product.
And in shaping | molding, it is necessary to determine a metal mold | die shape in consideration of the dimension after sintering. These dimensions are dimensions obtained after sintering or after hot isostatic pressing, and the dimensions differ depending on the sintering density. Therefore, the mold design needs to fully consider the subsequent dimensional changes. For this reason, it is necessary to design the dimensions of the mold in consideration of the dimensional accuracy, and it is necessary to calculate in advance the shrinkage rate from molding to sintering.

従来の有機バインダ系では脱脂工程中で変形を生じ、上記焼結品の寸法範囲で製品を得ることは非常に困難であるが、上述した金属粉末の粒径、タップ密度、バインダ量、バインダ成分とすることにより、従来よりも寸法精度の高い焼結品をMIM法により製造することができる。   In the conventional organic binder system, deformation occurs during the degreasing process, and it is very difficult to obtain a product within the size range of the sintered product, but the above-mentioned metal powder particle size, tap density, binder amount, binder component By doing so, a sintered product with higher dimensional accuracy than the conventional one can be manufactured by the MIM method.

なお、可変ベーンの翼部の厚みは、図1に示すように、翼部の後端側(図1では左側)から先端側(図1では右側)にかけて次第に小さくなっているため、翼部の厚みは測定箇所によって異なる。本発明において、最終製品の目標寸法に対して翼部の厚みが−0.6%〜−0.0%の範囲にあるとは、最終製品と焼結品(最終製品と近似した形状を有する)とを対応する箇所で測定した場合に、その差が上記範囲にあることを意味する。
翼部の高さ、軸部の直径、翼部の下端から軸部の下端までの長さについても、それらが測定箇所によって変化する場合は、翼部の厚みと同様、最終製品と焼結品とをそれぞれ対応する箇所で測定した場合に、その差が上記範囲内にあることを意味する。
As shown in FIG. 1, the thickness of the wing portion of the variable vane gradually decreases from the rear end side (left side in FIG. 1) to the front end side (right side in FIG. 1). The thickness varies depending on the measurement location. In the present invention, the thickness of the wing portion in the range of −0.6% to −0.0% with respect to the target dimension of the final product means that the final product and the sintered product (having a shape approximate to the final product). ) Means that the difference is within the above range.
If the height of the wing part, the diameter of the shaft part, and the length from the lower end of the wing part to the lower end of the shaft part also vary depending on the measurement location, the final product and sintered product as well as the thickness of the wing part Means that the difference is within the above range.

金型は、射出成形機に取り付けて成形を行うが、得られる成形体の取り数は製品の大きさ、量産数量を勘案して、一つの金型で1個取りから8個取りまで行うことができる。金型の取り数、製品の大きさに合わせて、射出成形機の容量を適宜調節する。一般的には型締め力20トン〜100トン程度の成形機を用いて成形を行う。成形体に気泡、クラック等の不良が発生しないように射出速度、圧力を調整するとともに、金型には金型内の空気並びに成形材料から発生するガスを効果的に逃がすためのガス逃げを設ける必要がある。これら有効なガス逃げが無い場合には、成形体中に空気若しくは成形材料から発生するガスが取り込まれて、成形体に気泡が生じる。   Molds are mounted on an injection molding machine and molded, but the number of molded products obtained should be from 1 to 8 with a single mold, taking into account the size and mass production quantity of the product. Can do. The capacity of the injection molding machine is appropriately adjusted according to the number of molds to be taken and the size of the product. In general, molding is performed using a molding machine having a clamping force of about 20 to 100 tons. The injection speed and pressure are adjusted so that defects such as bubbles and cracks do not occur in the molded body, and the mold is provided with a gas escape to effectively release the air in the mold and the gas generated from the molding material. There is a need. If there is no effective gas escape, air or gas generated from the molding material is taken into the molded body, and bubbles are generated in the molded body.

得られた成形体を脱脂炉に入れ、添加した有機バインダを除去する。有機バインダを除去する脱脂炉は減圧不活性ガス雰囲気、大気圧不活性ガス雰囲気及び大気圧水素ガス雰囲気のいずれかを用いて行うが、脱脂機能を具備した焼結装置の場合には脱脂焼結を一貫して行うことができる。また、脱脂炉にはバッチ式の脱脂炉若しくは連続式(ベルト式、プッシャー式、ウォーキングビーム式)脱脂炉を用いることができる。特に脱脂の際には変形量が大きくなることを勘案して、変形を最小限に食い止めるように成形体の形状に沿った形状の治具を用いて脱脂を行うことが効果的である。   The obtained molded body is put into a degreasing furnace, and the added organic binder is removed. The degreasing furnace for removing the organic binder is performed using any one of a reduced pressure inert gas atmosphere, an atmospheric pressure inert gas atmosphere, and an atmospheric pressure hydrogen gas atmosphere. In the case of a sintering apparatus having a degreasing function, the degreasing sintering is performed. Can be done consistently. As the degreasing furnace, a batch type degreasing furnace or a continuous (belt type, pusher type, walking beam type) degreasing furnace can be used. In particular, it is effective to perform degreasing using a jig having a shape along the shape of the molded body so as to prevent deformation to a minimum in view of the fact that the amount of deformation increases during degreasing.

脱脂雰囲気は減圧不活性ガス雰囲気、大気圧不活性ガス雰囲気及び大気圧水素雰囲気のいずれかで最高温度800℃以下で行われる。
脱脂雰囲気が空気中の場合には300℃以上で粉末が酸化し、焼結後の酸素量が高くなることで、焼結品強度に大きな影響を及ぼす。このことから、脱脂雰囲気は減圧不活性ガス雰囲気、大気圧不活性ガス雰囲気及び大気圧水素雰囲気が用いられる。不活性ガスには窒素若しくはアルゴンが使用されるが、コストを考慮して窒素ガスの使用が望ましい。また、脱脂時の昇温速度は脱脂時の変形を考慮して室温から400℃以下においては50℃/hrが望ましい。また、脱脂時には成形体の変形を考慮した治具を用いることで、成形体の脱脂時の変形を抑える事ができる。
脱脂の温度は800℃以下であるが、300℃程度では有機バインダが30%程度残留しやすく、600℃以上では有機バインダが完全に除去されやすいため、焼結工程に移動させる際に成形体が崩れる恐れがあり、より好ましい脱脂温度は最高400℃〜500℃である。また、これらの成形体の崩れを防止する方法として、脱脂機能を具備した焼結炉を用いると効果的であり、脱脂終了後も温度を下げることなく焼結に移行することができる。また、連続式(ベルト式、プッシャー式、ウォーキングビーム式)脱脂炉と同じく連続式(ベルト式、プッシャー式、ウォーキングビーム式)焼結炉を連結させることで、脱脂から焼結を中断させることなく連続で処理を行うことができる。
The degreasing atmosphere is performed at any one of a reduced pressure inert gas atmosphere, an atmospheric pressure inert gas atmosphere, and an atmospheric pressure hydrogen atmosphere at a maximum temperature of 800 ° C. or less.
When the degreasing atmosphere is in the air, the powder is oxidized at 300 ° C. or higher, and the amount of oxygen after sintering increases, which greatly affects the strength of the sintered product. Therefore, a depressurized inert gas atmosphere, an atmospheric pressure inert gas atmosphere, and an atmospheric pressure hydrogen atmosphere are used as the degreasing atmosphere. Nitrogen or argon is used as the inert gas, but it is desirable to use nitrogen gas in consideration of cost. In addition, the temperature rising rate during degreasing is preferably 50 ° C./hr from room temperature to 400 ° C. in consideration of deformation during degreasing. Moreover, the deformation | transformation at the time of degreasing of a molded object can be suppressed by using the jig | tool which considered the deformation | transformation of a molded object at the time of degreasing.
The degreasing temperature is 800 ° C. or lower. However, when the temperature is about 300 ° C., the organic binder tends to remain about 30%, and when the temperature is 600 ° C. or higher, the organic binder is easily removed completely. There exists a possibility that it may collapse | crumble, and a more preferable degreasing temperature is 400 to 500 degreeC at maximum. Moreover, it is effective to use a sintering furnace having a degreasing function as a method for preventing the collapse of these molded products, and it is possible to shift to sintering without lowering the temperature even after the degreasing. In addition, by connecting a continuous (belt, pusher, walking beam) sintering furnace as well as a continuous (belt, pusher, walking beam) degreasing furnace, sintering is not interrupted by degreasing. Processing can be performed continuously.

焼結工程では焼結雰囲気に減圧不活性ガス雰囲気、大気圧不活性ガス雰囲気、加圧不活性ガス雰囲気及び大気圧水素雰囲気のいずれかが用いられる。不活性ガスには焼結時の材料にステンレス材料が多く用いられることから、材料の窒化を考慮してアルゴンガスを用いることが好ましい。また焼結温度は1000℃以上1500℃以下で行われるが1000℃未満では焼結が不十分であり、1500℃を超えると焼結時に溶融する。焼結密度が95%以上になるためには1200〜1400℃が望ましく、さらには1250℃〜1380℃が望ましい。また、焼結時の焼結密度の向上と焼結時の寸法ばらつきを考慮して最高温度で2〜4時間程度保持する事が望ましい。脱脂工程と同じく、焼結工程においても高温時に変形を生じるため、焼結品の変形を防止するための治具を用いると効果的である。   In the sintering process, any one of a reduced pressure inert gas atmosphere, an atmospheric pressure inert gas atmosphere, a pressurized inert gas atmosphere, and an atmospheric pressure hydrogen atmosphere is used as the sintering atmosphere. As the inert gas, a stainless material is often used as a material during sintering. Therefore, it is preferable to use argon gas in consideration of nitriding of the material. The sintering temperature is 1000 ° C. or higher and 1500 ° C. or lower. However, if the sintering temperature is lower than 1000 ° C., the sintering is insufficient. In order for the sintered density to be 95% or more, 1200 to 1400 ° C is desirable, and further 1250 to 1380 ° C is desirable. In addition, it is desirable to maintain the maximum temperature for about 2 to 4 hours in consideration of improvement of the sintering density during sintering and dimensional variation during sintering. As in the degreasing process, deformation occurs at high temperatures in the sintering process, so it is effective to use a jig for preventing deformation of the sintered product.

脱脂、焼結においては生産量を考慮して、多品種少量の場合にはバッチ式の脱脂炉、焼結炉を用い、数量が増加した場合には脱脂、焼結をプッシャー式連続炉、ウォーキングビーム式連続炉、ベルト式連続炉を用いて連続で処理する工程を用いる事で生産量を飛躍的に向上することができる。   In degreasing and sintering, considering the production volume, batch type degreasing furnaces and sintering furnaces are used for small quantities of various products, and degreasing and sintering are performed by pusher type continuous furnaces and walking when the number increases. By using a continuous process using a beam-type continuous furnace and a belt-type continuous furnace, production can be dramatically improved.

焼結品の密度を相対密度で95%以上にすることで、高温時での機械的強度、並びに硬度を保持することができる。相対密度が95%に満たない場合には高温時での機械的強度特に伸び及び硬度が低下し、高温時の連続使用が困難である。
焼結品の相対密度は、アルキメデス法によって測定することができる。
By setting the density of the sintered product to 95% or more in terms of relative density, the mechanical strength and hardness at high temperatures can be maintained. If the relative density is less than 95%, the mechanical strength at high temperatures, particularly the elongation and hardness, are lowered, and continuous use at high temperatures is difficult.
The relative density of the sintered product can be measured by the Archimedes method.

得られた焼結品は、さらに焼結密度を高めて機械的強度を向上させ、高温域での機械的強度の信頼性を向上させるために、さらに熱間等方圧加圧法(HIP法)で処理されることが効果的であり、焼結温度よりも10℃〜100℃程度低温で10MPa〜180MPa程度の高圧で処理を行うことで、内部にピンホールの無い、相対密度98%以上の焼結品を安定して得ることができる。また、焼結工程時に最高6MPa程度の加圧処理を行える焼結HIP装置を用いることで、後工程にHIP法を用いずに相対密度98%以上の焼結品を得ることが可能である。   The obtained sintered product is further subjected to a hot isostatic pressing method (HIP method) in order to further increase the sintered density to improve the mechanical strength and to improve the reliability of the mechanical strength in a high temperature range. It is effective to be treated at a low temperature of about 10 ° C. to 100 ° C. lower than the sintering temperature and at a high pressure of about 10 MPa to 180 MPa, so that there is no pinhole inside and a relative density of 98% or more. A sintered product can be obtained stably. In addition, by using a sintered HIP apparatus that can perform a pressure treatment of up to about 6 MPa during the sintering process, a sintered product having a relative density of 98% or more can be obtained without using the HIP method in the subsequent process.

焼結後若しくはHIP工程後の焼結品を図4及び図5に示すプレス工程で所望する最終製品寸法にする。
プレス第一工程で翼部の高さ方向、幅(厚み)方向を同時に所望する製品の寸法にし、プレス第二工程で翼部と軸部の同軸度を所望する製品の寸法にし、プレス第三工程で軸の真円度を所望する製品の寸法にすることにより、切削加工無しで、軸部と翼部の寸法を所望する形状に加工することができる。
以下、各プレス工程をより詳細に説明する。
The sintered product after sintering or after the HIP process is formed into a desired final product size by the pressing process shown in FIGS.
In the first press step, the height and width (thickness) direction of the wing are simultaneously set to the desired product dimensions, and in the second press step, the concentricity between the wing and the shaft is set to the desired product dimensions. By setting the roundness of the shaft to a desired product dimension in the process, the dimensions of the shaft portion and the wing portion can be processed into a desired shape without cutting.
Hereafter, each press process is demonstrated in detail.

プレス第一工程(翼部の寸法調整)
プレス第一工程では、金型は、焼結品を保持する下型と、翼部の高さ方向と幅方向を同時に規定する上型からなり、上型を下型に向けてプレスすることにより、翼部は下側に圧縮されながら、翼部上面が圧縮されて側面部が膨らんで変形するとともに、側面部が金型形状に倣うことで、所望する翼部の高さと側面及び翼の形状並びに翼に対する軸の直角度が達成される。
Press first process (dimension adjustment of wings)
In the first press process, the mold consists of a lower mold that holds the sintered product and an upper mold that simultaneously defines the height direction and width direction of the wings. By pressing the upper mold toward the lower mold, While the wing is compressed downward, the upper surface of the wing is compressed and the side surface swells and deforms, and the side surface follows the mold shape, so that the desired wing height and side and wing shape As well as the perpendicularity of the axis with respect to the wing.

プレス第二工程(翼部と軸部の同軸度調整)
プレス第二工程では、金型は、可変ベーンの翼部と軸部を2分割(翼部の厚みを2分割する面にて分割)した形状をそれぞれ有する上型と下型からなり、焼結品を横方向に下型で固定し、上型を下側に向けてプレスすることにより、翼部と軸部を同時に圧縮して、翼部に対する軸の垂直度並びに翼部に対する軸の同軸度を得る。
Second press step (Adjustment of coaxiality between blade and shaft)
In the second press process, the mold consists of an upper mold and a lower mold each having a shape obtained by dividing the wing part and the shaft part of the variable vane into two parts (dividing the wing part thickness into two parts) and sintering. The product is fixed in the horizontal direction with the lower die, and the upper die is pressed toward the lower side to compress the wing and shaft at the same time, so that the axis is perpendicular to the wing and the axis is coaxial with the wing. Get.

プレス第三工程(軸部の真円度調整)
プレス第三工程では、金型は、翼部より下方の軸部を軸方向に2分割した形状(半円柱形状)をそれぞれ有する上型と下型からなり、プレス第二工程から焼結品の軸部を90度回転させて上下プレスを行う事により軸部の真円度を得る。
Press third process (Adjusting the roundness of the shaft)
In the third press step, the mold is composed of an upper die and a lower die each having a shape (semi-columnar shape) obtained by dividing the shaft portion below the wing portion into two in the axial direction. The roundness of the shaft is obtained by rotating the shaft 90 degrees and pressing up and down.

上述した焼結品を、これら三段階のプレス工程で後加工することにより、切削加工を行わずに所望する可変ベーンを得ることができる。プレスに用いる金型材質は寿命を考慮してダイス鋼、ハイス鋼、超硬を用いる。プレス工程は省力化を図るためにパーツフィーダーと順送り装置を用いることで、時間当たりの処理能力を従来の機械加工と比較して大幅に向上させることができ、時間当たりの処理能力を300〜600個程度まで高めることができる。   By subjecting the above-described sintered product to post-processing in these three-stage pressing processes, a desired variable vane can be obtained without performing cutting. Die steel, high-speed steel, and cemented carbide are used as the die material used for the press in consideration of the life. The press process uses a parts feeder and a progressive feed device to save labor, so that the processing capacity per hour can be greatly improved compared to conventional machining, and the processing capacity per hour is 300 to 600. It can be increased to about one.

プレス工程をさらに省力化させるために、プレス工程に360度方向からプレス曲げ加工ができるマルチフォーミング機を用いることにより、工程の省力化が可能となり、切削加工では軸加工並びに翼部の加工に一台で時間当たり10〜50個程度の処理能力を、時間当たり500〜1000個程度まで飛躍的に向上させることができる。   In order to further save labor in the press process, it is possible to save labor in the process by using a multi-forming machine capable of press bending from the 360-degree direction in the press process. A processing capacity of about 10 to 50 per hour can be dramatically improved to about 500 to 1000 per hour.

さらに、必要に応じてプレス後の製品をバレル研磨、電解研磨により表面粗度を向上させるとともに、バリ除去を行うことができる。   Furthermore, the surface roughness of the product after pressing can be improved by barrel polishing and electrolytic polishing as needed, and burrs can be removed.

本発明によれば、MIM工程により得られた、寸法精度をあらかじめ制御した焼結品を素材に用いることにより、後加工では機械加工による切削工程、研磨工程を行わず、寸法精度に優れた所望する形状の可変ベーンを製造することが出来る。本発明では、特にMIM法の採用により、従来のロストワックス、板材の打ち抜き加工と比較しても、材料の製造ロスを5%以下に抑えることができるため、コストの削減効果が高く、プレスによる自動化処理により、製造効率は従来の機械加工による製法と比較して5〜10倍以上になる。また、MIM法の採用により、従来では容易に得ることが困難であったより薄肉複雑形状の可変ベーンの量産が可能になる。   According to the present invention, by using a sintered product obtained by the MIM process, in which the dimensional accuracy is controlled in advance, as a raw material, the post-processing does not perform a cutting process and a polishing process by machining, and the desired dimensional accuracy is excellent. A variable vane having a shape to be manufactured can be manufactured. In the present invention, particularly by adopting the MIM method, the production loss of the material can be suppressed to 5% or less even when compared with the conventional punching process of lost wax and plate material. By the automation process, the production efficiency is 5 to 10 times or more compared with the conventional manufacturing method by machining. In addition, by adopting the MIM method, it becomes possible to mass-produce variable vanes having a thinner and more complex shape, which was difficult to obtain easily in the past.

本発明にかかる焼結品を製造した。成型材料および加熱混練条件、射出成形条件、脱脂条件、焼結条件等は下記の通りとした。成形体は100個成形し、脱脂、焼結を行い寸法ばらつきの測定を行った。
・金属粉末:SUS310 平均粒径9.2μm タップ密度4.2g/m3
・有機バインダ組成:ポリアセタール15Vol%、ポリプロピレン25Vol%、アモルファスポリオレフィン10Vol%、パラフィンワックス35Vol%、アクリル樹脂10Vol%、脂肪酸エステル5Vol%
・金属粉末:60Vol% 有機バインダ40Vol%
・加熱混練:180℃ 2時間
・射出成形条件:180℃ 金型温度40℃
・脱脂条件:最高温度500℃(窒素)2時間保持 合計時間24時間
・焼結条件:最高温度1350℃(アルゴン、減圧雰囲気)2時間保持
A sintered product according to the present invention was produced. The molding material, heat-kneading conditions, injection molding conditions, degreasing conditions, sintering conditions, etc. were as follows. 100 compacts were molded, degreased and sintered, and dimensional variations were measured.
・ Metal powder: SUS310 Average particle size 9.2μm Tap density 4.2g / m 3
・ Organic binder composition: Polyacetal 15Vol%, Polypropylene 25Vol%, Amorphous polyolefin 10Vol%, Paraffin wax 35Vol%, Acrylic resin 10Vol%, Fatty acid ester 5Vol%
・ Metal powder: 60Vol% Organic binder 40Vol%
・ Heat kneading: 180 ℃ for 2 hours ・ Injection molding conditions: 180 ℃ Mold temperature: 40 ℃
Degreasing conditions: Maximum temperature 500 ° C (nitrogen) held for 2 hours Total time 24 hours Sintering conditions: Maximum temperature 1350 ° C (argon, reduced pressure atmosphere) held for 2 hours

射出成形用の金型は1個取りとし、図3Aに示す可変ベーンの形状とした。所望する最終製品の寸法は下記のとおりである。A1は翼部の高さ、B1は翼部の厚み、C1は軸部の直径、D1は翼部下方に位置する軸部の長さ(翼部の下端から軸部の下端までの長さ)を示す。
所望する最終製品の寸法
A1:6.0mm(目標寸法)±0.01mm(5.99mm〜6.01mm)
B1:2.5mm(目標寸法)±0.03mm(2.47mm〜2.53mm)
C1:4.0mm(目標寸法)±0.01mm(3.99mm〜4.01mm)
D1:10.0mm(目標寸法)±0.05mm(9.95mm〜10.05m)
軸と翼部の同軸度:0.03mm以内,垂直度:0.03mm以内 翼部の平行度:0.03mm以内
One mold for injection molding was taken, and the shape of the variable vane shown in FIG. 3A was adopted. The desired final product dimensions are as follows: A1 is the height of the wing, B1 is the thickness of the wing, C1 is the diameter of the shaft, D1 is the length of the shaft located below the wing (length from the lower end of the wing to the lower end of the shaft) Indicates.
Desired final product dimension A1: 6.0mm (target dimension) ± 0.01mm (5.99mm-6.01mm)
B1: 2.5mm (target dimension) ± 0.03mm (2.47mm to 2.53mm)
C1: 4.0mm (target dimension) ± 0.01mm (3.99mm to 4.01mm)
D1: 10.0mm (target dimension) ± 0.05mm (9.95mm to 10.05m)
Concentricity of shaft and wings: within 0.03mm, perpendicularity: within 0.03mm Parallelism of wings: within 0.03mm

成形機は30トンの型締め圧の成形機を用いた。製造された焼結品の寸法は下記の通りとなった。寸法測定は工具顕微鏡を用いて行った。
製造された焼結品の寸法
A1:6.024mm〜6.044mm(目標寸法+0.4%〜+0.73%)
B1:2.485mm〜2.494mm(目標寸法−0.60%〜−0.24%)
C1:4.018mm〜4.030mm(目標寸法+0.45%〜+0.75%)
D1:9.955mm〜9.980mm(目標寸法−0.45%〜−0.2%)
軸と翼部の同軸度:0.035mm,垂直度:0.042mm 翼部の平行度:0.038mm
焼結品密度:96.0%
The molding machine used was a molding machine with a clamping pressure of 30 tons. The dimensions of the manufactured sintered product were as follows. The dimension measurement was performed using a tool microscope.
Dimension A1: 6.024mm to 6.044mm (target dimension + 0.4% to + 0.73%)
B1: 2.485mm to 2.494mm (target dimension -0.60% to -0.24%)
C1: 4.018mm to 4.030mm (target size + 0.45% to + 0.75%)
D1: 9.955mm-9.980mm (target dimension -0.45%--0.2%)
Concentricity of shaft and wing: 0.035mm, perpendicularity: 0.042mm Parallelism of wing: 0.038mm
Sintered product density: 96.0%

図4に示す工程により、プレス工程を行った。プレス工程後の寸法は下記の通りとなった。
製造された最終製品の寸法
A1:5.994mm〜6.003mm B1:2.489mm〜2.515mm C1:3.996mm〜4.004mm D1:9.984mm〜10.029mm
軸と翼部の同軸度:0.017mm,垂直度:0.009mm 翼部の平行度:0.015mm
A pressing process was performed by the process shown in FIG. The dimensions after the pressing process were as follows.
Dimensions of manufactured final product A1: 5.994mm ~ 6.003mm B1: 2.489mm ~ 2.515mm C1: 3.996mm ~ 4.004mm D1: 9.984mm ~ 0.029mm
Concentricity of shaft and wings: 0.017mm, perpendicularity: 0.009mm Parallelism of wings: 0.015mm

焼結後においては最終製品寸法を得ることは出来ないが、プレス工程で最終製品寸法公差内の製品を得ることが出来た。   Although the final product size could not be obtained after sintering, the product within the final product size tolerance could be obtained in the pressing process.

本発明にかかる焼結品を製造した。成型材料および加熱混練条件、射出成形条件、脱脂条件、焼結条件等は下記の通りとした。成形体は100個成形し、脱脂、焼結を行い寸法ばらつきの測定を行った。
・金属粉末:HK30 平均粒径8.7μm タップ密度4.3g/m3
・有機バインダ組成:ポリアセタール20Vol%、ポリプロピレン20Vol%、アモルファスポリオレフィン10Vol%、パラフィンワックス35Vol%、アクリル樹脂10Vol%、脂肪酸エステル5Vol%
・金属粉末:60Vol% 有機バインダ40Vol%
・加熱混練:180℃ 2時間
・射出成形条件:180℃ 金型温度40℃
・脱脂条件:最高温度500℃(窒素)2時間保持 合計時間24時間
・焼結条件:最高温度1350℃(アルゴン、減圧雰囲気)2時間保持
・HIP処理:処理温度1200℃(アルゴン、100MPa)2時間保持
A sintered product according to the present invention was produced. The molding material, heat-kneading conditions, injection molding conditions, degreasing conditions, sintering conditions, etc. were as follows. 100 compacts were molded, degreased and sintered, and dimensional variations were measured.
・ Metal powder: HK30 Average particle size 8.7μm Tap density 4.3g / m 3
・ Organic binder composition: Polyacetal 20Vol%, Polypropylene 20Vol%, Amorphous polyolefin 10Vol%, Paraffin wax 35Vol%, Acrylic resin 10Vol%, Fatty acid ester 5Vol%
・ Metal powder: 60Vol% Organic binder 40Vol%
・ Heat kneading: 180 ℃ for 2 hours ・ Injection molding conditions: 180 ℃ Mold temperature: 40 ℃
・ Degreasing conditions: Maximum temperature 500 ° C (nitrogen) held for 2 hours Total time 24 hours ・ Sintering conditions: Maximum temperature 1350 ° C (argon, reduced pressure atmosphere) held for 2 hours ・ HIP treatment: Processing temperature 1200 ° C (argon, 100 MPa) 2 Time hold

射出成形用の金型は1個取りとし、図3Bに示す可変ベーンの形状とした。所望する最終製品の寸法は下記のとおりである。A2は翼部の高さ、B2は翼部の厚み、C2は軸部の直径、D2は翼部下方に位置する軸部の長さを示す。
所望する最終製品の寸法
A2:6.0mm(目標寸法)±0.01mm(5.99mm〜6.01mm)
B2:2.5mm(目標寸法)±0.03mm(2.47mm〜2.53mm)
C2:4.0mm(目標寸法)±0.01mm(3.99mm〜4.01mm)
D2:10.0mm(目標寸法)±0.05mm(9.95mm〜10.05m)
軸と翼部の同軸度:0.05mm以内,垂直度:0.03mm以内 翼部の平行度:0.03mm以内
One mold for injection molding was taken, and the shape of the variable vane shown in FIG. 3B was adopted. The desired final product dimensions are as follows: A2 is the height of the wing, B2 is the thickness of the wing, C2 is the diameter of the shaft, and D2 is the length of the shaft located below the wing.
Desired final product dimension A2: 6.0 mm (target dimension) ± 0.01 mm (5.99 mm to 6.01 mm)
B2: 2.5mm (target dimension) ± 0.03mm (2.47mm to 2.53mm)
C2: 4.0mm (target dimension) ± 0.01mm (3.99mm to 4.01mm)
D2: 10.0mm (target dimension) ± 0.05mm (9.95mm to 10.05m)
Concentricity of shaft and wings: within 0.05mm, perpendicularity: within 0.03mm Parallelism of wings: within 0.03mm

成形機は30トンの型締め圧の成形機を用いた。製造された焼結品の寸法は下記の通りとなった。寸法測定は工具顕微鏡を用いて行った。なお、C2aは翼部より下方に位置する軸部の直径を、C2bは翼部より上方に位置する軸部の直径を示す。
製造された焼結品の寸法
A2:6.024mm〜6.049mm(目標寸法+0.4%〜+0.82%)
B2:2.487mm〜2.494mm(目標寸法−0.52%〜−0.24%)
C2a:4.016mm〜4.028mm(目標寸法+0.4%〜+0.7%)
C2b:4.015mm〜4.031mm(目標寸法+0.38%〜+0.78%)
D2:9.961mm〜9.992mm(目標寸法−0.39%〜−0.08%)
軸と翼部の同軸度:0.062mm,垂直度:0.044mm 翼部の平行度0.035mm
焼結品密度:99.2%
The molding machine used was a molding machine with a clamping pressure of 30 tons. The dimensions of the manufactured sintered product were as follows. The dimension measurement was performed using a tool microscope. C2a indicates the diameter of the shaft portion located below the wing portion, and C2b indicates the diameter of the shaft portion located above the wing portion.
Dimension A2 of the manufactured sintered product : 6.024mm to 6.049mm (target size + 0.4% to + 0.82%)
B2: 2.487mm to 2.494mm (target dimension -0.52% to -0.24%)
C2a: 4.016mm to 4.028mm (target size + 0.4% to + 0.7%)
C2b: 4.015mm to 4.031mm (target size + 0.38% to + 0.78%)
D2: 9.961mm-9.92mm (target dimension -0.39%--0.08%)
Concentricity of shaft and wings: 0.062mm, perpendicularity: 0.044mm Parallelism of wings 0.035mm
Sintered product density: 99.2%

図5に示す工程により、プレス工程を行った。プレス工程後の寸法は下記の通りとなった。
製造された最終製品の寸法
A2:5.993mm〜6.005mm B2:2.479mm〜2.505mm C2a:3.995mm〜4.003mm C2b:3.996mm〜4.002mm D2:9.982mm〜10.023mm
軸と翼部の同軸度:0.031mm,垂直度:0.014mm 翼部の平行度:0.016mm
A pressing process was performed by the process shown in FIG. The dimensions after the pressing process were as follows.
Dimensions A2: 5.993mm to 6.005mm B2: 2.479mm to 2.505mm C2a: 3.993mm to 4.003mm C2b: 3.996mm to 4.002mm D2: 9.982mm to 10.023mm
Concentricity of shaft and wing: 0.031mm, perpendicularity: 0.014mm Parallelism of wing: 0.016mm

焼結後においては最終製品寸法を得ることは出来ないが、プレス工程で最終製品寸法公差内の製品を得ることが出来た。   Although the final product size could not be obtained after sintering, the product within the final product size tolerance could be obtained in the pressing process.

[比較例1]
実施例1と同様の条件にて、以下の焼結体を作製した。
製造された焼結品の寸法
A1:5.985mm〜6.005mm(最終製品の目標寸法−0.25%〜+0.08%)
B1:2.490mm〜2.505mm(最終製品の目標寸法−0.4%〜+0.2%)
C1:3.985mm〜4.006mm(最終製品の目標寸法−0.38%〜+0.15%)
D1:9.985mm〜10.005mm(最終製品の目標寸法−0.15%〜+0.05%)
軸と翼部の同軸度:0.040mm,垂直度0.044mm 翼部の平行度0.039mm
焼結品密度:96.0%
[Comparative Example 1]
The following sintered bodies were produced under the same conditions as in Example 1.
Dimension of sintered product manufactured A1: 5.985mm ~ 6.005mm (Target size of final product -0.25% ~ + 0.08%)
B1: 2.490mm to 2.505mm (Target size of final product -0.4% to + 0.2%)
C1: 3.985mm to 4.006mm (Target size of final product -0.38% to + 0.15%)
D1: 9.985mm ~ 10.005mm (Target size of final product -0.15% ~ + 0.05%)
Coaxiality of shaft and wings: 0.040mm, perpendicularity 0.044mm Parallelism of wings 0.039mm
Sintered product density: 96.0%

当該焼結体を用いて、実施例1と同じ条件にて3段階プレスを行った。プレス工程後の寸法は下記の通りとなった。
製造された最終製品の寸法
A1:5.985mm〜6.003mm B1:2.490mm〜2.515mm C1:3.986mm〜4.003mm D1:9.986mm〜10.009mm
軸と翼部の同軸度:0.032mm,垂直度:0.036mm 翼部の平行度:0.030mm
Three-stage pressing was performed using the sintered body under the same conditions as in Example 1. The dimensions after the pressing process were as follows.
Dimensions of manufactured final product A1: 5.985mm ~ 6.003mm B1: 2.490mm ~ 2.515mm C1: 3.986mm ~ 4.003mm D1: 9.986mm ~ 10.09mm
Concentricity of shaft and wing: 0.032mm, perpendicularity: 0.036mm Parallelism of wing: 0.030mm

焼結品寸法で最終製品寸法に近づけた製品を作成したが、A1、C1については最終製品の寸法公差内の製品を得ることが出来なかった。また、同軸度、垂直度を公差内にすることは出来なかった。
これは、プレス工程前の焼結品のA1およびC1と所望する最終製品の差が大きかったためと考えられる。
Although the product which made the sintered product size close to the final product size was created, a product within the dimensional tolerance of the final product could not be obtained for A1 and C1. Also, the coaxiality and verticality could not be within tolerance.
This is presumably because the difference between the sintered products A1 and C1 before the pressing step and the desired final product was large.

さらに、焼結品のA〜Dの寸法と最終製品の目標寸法との差が最終製品の公差に与える影響を調べるため、実施例1と同様の条件において、様々な焼結品を作成し、プレス後の最終製品とプレス前の焼結品の関係を調べた。結果を表1に示す。   Furthermore, in order to investigate the influence of the difference between the dimensions A to D of the sintered product and the target size of the final product on the tolerance of the final product, various sintered products were created under the same conditions as in Example 1. The relationship between the final product after pressing and the sintered product before pressing was examined. The results are shown in Table 1.

Figure 2011157816
Figure 2011157816

実施例3の結果から、プレス前の焼結品は、所望する最終製品の寸法(目標寸法)に対して、翼部の高さが+0.3%〜+0.9%、翼部の厚みが−0.6%〜−0.0%、軸部の直径が+0.3%〜+0.9%、翼部の下端から軸部の下端までの長さが−0.6%〜−0.0%の範囲にあり、且つ焼結密度が相対密度95%以上である場合に、所望する寸法公差の最終製品がプレス工程のみで得られることが分かった。   From the results of Example 3, the sintered product before pressing had a blade height of + 0.3% to + 0.9% and a blade thickness of the desired final product dimensions (target dimensions). -0.6% to -0.0%, shaft diameter is + 0.3% to + 0.9%, and the length from the lower end of the wing portion to the lower end of the shaft portion is -0.6% to -0. It has been found that when it is in the range of 0% and the sintered density is 95% or higher, the final product with the desired dimensional tolerance can be obtained only by the pressing process.

[比較例2]
実施例1の有機バインダ成分のうち、ポリアセタールをエチレン酢酸ビニル樹脂に置き換えた有機バインダを用いた他は、実施例1と同様にして焼結品の製造を試みた。
しかし、脱脂後、成形体は図6に示すように翼部が30度以上傾き、大きな変形を生じたため以後の焼結、プレス工程に進むことは出来なかった。
[Comparative Example 2]
Of the organic binder components of Example 1, an attempt was made to produce a sintered product in the same manner as in Example 1 except that an organic binder in which polyacetal was replaced with ethylene vinyl acetate resin was used.
However, after degreasing, the molded body was not able to proceed to the subsequent sintering and pressing processes because the wing portion was tilted by 30 degrees or more as shown in FIG.

また、ポリプロピレンをポリエチレンに置き換えた有機バインダを用いた場合は、脱脂後、成形体は図6に示すように翼部が10度以上傾き、大きな変形を生じたため以後の焼結、プレス工程に進むことは出来なかった。   Also, when an organic binder in which polypropylene is replaced with polyethylene is used, after degreasing, the molded body is inclined more than 10 degrees as shown in FIG. I couldn't.

その他、種々の射出成形材料により成形体を作成し、脱脂・焼結を試みた結果、平均粒径が1〜20μmであって、タップ密度が3.5g/m以上である金属粉末を用い、ポリアセタールを5〜40Vol%、及びポリプロピレンを5〜40Vol%含有する有機バインダを用い、且つ、前記金属粉末と前記有機バインダの合計量に対して、有機バインダの量を30〜60体積%とした場合に、本発明にかかるプレス工程に使用するのに好適な焼結品が得られることが分かった。 In addition, as a result of creating molded bodies from various injection molding materials and attempting degreasing and sintering, metal powder having an average particle diameter of 1 to 20 μm and a tap density of 3.5 g / m 3 or more is used. In addition, an organic binder containing 5 to 40% by volume of polyacetal and 5 to 40% by volume of polypropylene was used, and the amount of the organic binder was set to 30 to 60% by volume with respect to the total amount of the metal powder and the organic binder. In some cases, it was found that a sintered product suitable for use in the pressing step according to the present invention was obtained.

Aは翼部の上面がフラットな可変ベーンを、Bは翼部の上側にも軸部が存在する可変ベーンを示す。それぞれにおいて、(a)は正面図、(b)は右側面図、(c)は底面図、(d)は斜視図である。A indicates a variable vane having a flat upper surface of the wing portion, and B indicates a variable vane having a shaft portion on the upper side of the wing portion. In each, (a) is a front view, (b) is a right side view, (c) is a bottom view, and (d) is a perspective view. 本発明にかかる可変ベーンの製造方法の一実施例を示すフローチャートである。It is a flowchart which shows one Example of the manufacturing method of the variable vane concerning this invention. Aは翼部の上面がフラットな可変ベーンを、Bは翼部の上側にも軸部が存在する可変ベーンを示す。A indicates a variable vane having a flat upper surface of the wing portion, and B indicates a variable vane having a shaft portion on the upper side of the wing portion. 翼部の上面がフラットな可変ベーンを三段階にプレスする工程を示す。The process which presses the variable vane whose upper surface of a wing | blade part is flat in three steps is shown. 翼部の上側にも軸部が存在する可変ベーンを三段階にプレスする工程を示す。The process of pressing the variable vane having the shaft portion on the upper side of the wing portion in three stages is shown. 比較例2の成形体が脱脂後に変形した状態を示す。The state which the molded object of the comparative example 2 deform | transformed after degreasing is shown.

符号の説明Explanation of symbols

1 可変ベーン
2 翼部
3 軸部(翼部より下側に位置する軸部)
3’軸部(翼部より上側に位置する軸部)
1 variable vane 2 wing part 3 shaft part (shaft part located below the wing part)
3 'shaft (shaft located above the wing)

Claims (6)

平板状の翼部と、前記翼部の下方に位置する円柱状の軸部を備えた可変ベーンを製造する方法であって、
所望する最終製品と近似した形状を有する焼結品をプレスする工程を含み、
前記焼結品が、翼部と軸部の一体形成品であって、最終製品の目標寸法に対して、翼部の高さが+0.3%〜+0.9%、翼部の厚みが−0.6%〜−0.0%、軸部の直径が+0.3%〜+0.9%、翼部の下端から軸部の下端までの長さが−0.6%〜−0.0%の範囲にあり、且つ焼結密度が相対密度95%以上であること、及び
前記プレス工程が、三段階の工程を含み、
プレス第一工程において、軸部挿通孔を有する下型と、翼部の下端面以外の形状を有する上型により、前記焼結品をプレスして、翼部の高さと厚みを整えること、
プレス第二工程において、前記翼部の厚みを2分割する面にて前記可変ベーンを分割した形状をそれぞれ有する上型と下型により、前記焼結品の翼部と軸部を同時にプレスして、翼部に対する軸部の角度並びに軸部の同軸度を整えること、
プレス第三工程において、前記可変ベーンの軸部に対応する半円柱体の形状をそれぞれ有する上型と下型により、前記焼結品の軸部を、前記プレス第二工程と90度異なる方向からプレスして、前記軸部の真円度を整えること
を特徴とする可変ベーンの製造方法。
A method of manufacturing a variable vane having a flat blade portion and a cylindrical shaft portion located below the blade portion,
Pressing a sintered product having a shape close to the desired final product,
The sintered product is an integrally formed product of a blade portion and a shaft portion, and the height of the blade portion is + 0.3% to + 0.9% and the thickness of the blade portion is −− with respect to the target dimension of the final product. 0.6% to -0.0%, shaft diameter is + 0.3% to + 0.9%, length from lower end of wing to lower end of shaft is -0.6% to -0.0% %, And the sintered density is 95% or more, and the pressing step includes a three-stage process,
In the first pressing step, the sintered product is pressed by a lower die having a shaft portion insertion hole and an upper die having a shape other than the lower end surface of the wing portion, and the height and thickness of the wing portion are adjusted,
In the second pressing step, the blade portion and the shaft portion of the sintered product are simultaneously pressed by an upper die and a lower die each having a shape obtained by dividing the variable vane on a surface that divides the thickness of the blade portion into two. Adjusting the angle of the shaft portion with respect to the wing portion and the coaxiality of the shaft portion;
In the third press step, the upper die and the lower die each having the shape of a semi-cylindrical body corresponding to the shaft portion of the variable vane, the shaft portion of the sintered product from a direction 90 degrees different from the second press step. A method for producing a variable vane, wherein the roundness of the shaft portion is adjusted by pressing.
前記焼結品が、相対密度98%以上の焼結品であることを特徴とする、請求項1に記載の可変ベーンの製造方法。   The method for producing a variable vane according to claim 1, wherein the sintered product is a sintered product having a relative density of 98% or more. 360度方向からプレス曲げ加工が出来るマルチフォーミングマシンを用いて前記プレス第一工程からプレス第三工程までを連続して行うことを特徴とする、請求項1または2に記載の可変ベーンの製造方法。   The variable vane manufacturing method according to claim 1, wherein the first press process to the third press process are continuously performed using a multi-forming machine capable of press bending from a 360-degree direction. . さらに、前記焼結品を製造する工程を含み、当該焼結品製造工程が
金属粉末(a)に有機バインダ(b)を添加し加熱混合した後、粉砕若しくはペレット化して射出成形材料を得、当該成形材料を射出成形して成形体を作製し、得られた成形体を加熱脱脂する工程を有するものであって、
前記金属粉末(a)が、平均粒径1〜20μm、タップ密度3.5g/m以上の粉末であること、
前記有機バインダ(b)が、ポリアセタール(b1)を5〜40Vol%、及びポリプロピレン(b2)を5〜40Vol%含有すること、
前記金属粉末(a)に前記有機バインダ(b)を添加する工程において、金属粉末と有機バインダの全量(a+b)に対し、有機バインダ(b)が30〜60Vol%となるように添加すること、
を特徴とする、請求項1〜3に記載の可変ベーンの製造方法。
Further, the method includes a step of manufacturing the sintered product, and after the sintered product manufacturing step adds and heat-mixes the organic binder (b) to the metal powder (a), an injection molding material is obtained by pulverization or pelletization. The molding material is injection-molded to produce a molded body, and the obtained molded body is heated and degreased,
The metal powder (a) is a powder having an average particle diameter of 1 to 20 μm and a tap density of 3.5 g / m 3 or more;
The organic binder (b) contains 5-40 Vol% polyacetal (b1) and 5-40 Vol% polypropylene (b2),
In the step of adding the organic binder (b) to the metal powder (a), the organic binder (b) is added so as to be 30 to 60 Vol% with respect to the total amount of the metal powder and the organic binder (a + b).
The manufacturing method of the variable vane of Claims 1-3 characterized by these.
前記焼結品の製造工程において、
脱脂工程が減圧不活性ガス雰囲気、大気圧不活性ガス雰囲気及び大気圧水素雰囲気のいずれかで最高温度800℃以下で行われること、及び
焼結工程が減圧不活性ガス雰囲気、加圧不活性ガス雰囲気、大気圧不活性ガス雰囲気及び大気圧水素雰囲気のいずれかで1000℃以上1500℃以下で行われる事を特徴とする請求項4に記載の可変ベーンの製造方法。
In the manufacturing process of the sintered product,
The degreasing step is performed at a maximum temperature of 800 ° C. or less in any one of a reduced pressure inert gas atmosphere, an atmospheric pressure inert gas atmosphere and an atmospheric pressure hydrogen atmosphere, and the sintering step is performed under a reduced pressure inert gas atmosphere and a pressurized inert gas. 5. The method for producing a variable vane according to claim 4, wherein the method is performed at 1000 ° C. or more and 1500 ° C. or less in any one of an atmosphere, an atmospheric inert gas atmosphere, and an atmospheric hydrogen atmosphere.
前記焼結品の製造工程において、相対密度94%以上の第一次焼結品を作製した後、熱間等方圧加圧法により相対密度98%以上の焼結品とすることを特徴とする、請求項4または5に記載の可変ベーンの製造方法。   In the manufacturing process of the sintered product, after producing a primary sintered product having a relative density of 94% or more, a sintered product having a relative density of 98% or more is obtained by a hot isostatic pressing method. The method for producing a variable vane according to claim 4 or 5.
JP2008262547A 2008-10-09 2008-10-09 Method for manufacturing variable vanes Expired - Fee Related JP4317906B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008262547A JP4317906B1 (en) 2008-10-09 2008-10-09 Method for manufacturing variable vanes
CN200980139862.XA CN102177324B (en) 2008-10-09 2009-10-09 Method of manufacturing variable vane
PCT/JP2009/067621 WO2010041735A1 (en) 2008-10-09 2009-10-09 Method of manufacturing variable vane
EP09819268.5A EP2343441B1 (en) 2008-10-09 2009-10-09 Method of manufacturing variable vane
HUE09819268A HUE028680T2 (en) 2008-10-09 2009-10-09 Method of manufacturing variable vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262547A JP4317906B1 (en) 2008-10-09 2008-10-09 Method for manufacturing variable vanes

Publications (2)

Publication Number Publication Date
JP4317906B1 JP4317906B1 (en) 2009-08-19
JP2011157816A true JP2011157816A (en) 2011-08-18

Family

ID=41076630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262547A Expired - Fee Related JP4317906B1 (en) 2008-10-09 2008-10-09 Method for manufacturing variable vanes

Country Status (5)

Country Link
EP (1) EP2343441B1 (en)
JP (1) JP4317906B1 (en)
CN (1) CN102177324B (en)
HU (1) HUE028680T2 (en)
WO (1) WO2010041735A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050530A1 (en) * 2012-09-28 2014-04-03 株式会社Ihi Variable nozzle unit, variable-capacity supercharger, and manufacturing method for power transmission members
KR20170085127A (en) * 2014-11-21 2017-07-21 제네럴 일렉트릭 컴퍼니 Turbomachine including a vane and method of assembling such turbomachine
JP2017534749A (en) * 2014-08-28 2017-11-24 ローベルト ボッシュ オートモーティブ ステアリング ゲゼルシャフト ミット ベシュレンクテル ハフツングRobert Bosch Automotive Steering GmbH Manufacturing method for components of swing motor used in steering system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196583A (en) * 2009-02-25 2010-09-09 Ihi Corp Fabrication method for nozzle vane
JP5970794B2 (en) 2011-11-30 2016-08-17 セイコーエプソン株式会社 Composition for injection molding and method for producing sintered body
JP5857688B2 (en) * 2011-11-30 2016-02-10 セイコーエプソン株式会社 Composition for injection molding and method for producing sintered body
EP2817115B1 (en) 2012-02-24 2019-06-26 Hoeganaes Corporation Improved lubricant system for use in powder metallurgy
CN104117677B (en) * 2013-04-23 2017-02-08 昆山广兴电子有限公司 Manufacturing method of metal fan wheel
KR101649584B1 (en) * 2015-12-28 2016-08-19 한국피아이엠(주) Method of heat-resistant parts manufacturing using metal granule powder
CN106735236A (en) * 2016-12-06 2017-05-31 江苏精研科技股份有限公司 Metal injection molded post processing tumbling technique
JP7049149B2 (en) * 2018-03-28 2022-04-06 三菱重工航空エンジン株式会社 How to make wings
US11661861B2 (en) 2021-03-03 2023-05-30 Garrett Transportation I Inc. Bi-metal variable geometry turbocharger vanes and methods for manufacturing the same using laser cladding

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62280303A (en) * 1986-05-29 1987-12-05 Ofic Co Method and apparatus for isostatic hot press
JP3833002B2 (en) 1999-04-14 2006-10-11 株式会社安来製作所 Manufacturing method of exhaust vane blade for supercharger for automobile and vane blade
JP3944819B2 (en) * 2001-08-03 2007-07-18 株式会社アキタファインブランキング Method of manufacturing variable wing blade portion applied to exhaust guide assembly in VGS type turbocharger
EP1422400B1 (en) * 2001-08-03 2011-12-21 Akita Fine Blanking Co., Ltd. Variable blade manufacturing method for a vgs type turbo charger
JP2008088849A (en) * 2006-09-29 2008-04-17 Itou Parts Kogyo:Kk Nozzle vane member manufacturing method and nozzle vane member
JP4952912B2 (en) * 2007-01-25 2012-06-13 株式会社Ihi Method for manufacturing sintered body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050530A1 (en) * 2012-09-28 2014-04-03 株式会社Ihi Variable nozzle unit, variable-capacity supercharger, and manufacturing method for power transmission members
JPWO2014050530A1 (en) * 2012-09-28 2016-08-22 株式会社Ihi Variable nozzle unit, variable capacity supercharger, and method of manufacturing power transmission member
US9759086B2 (en) 2012-09-28 2017-09-12 Ihi Corporation Variable nozzle unit, variable geometry system turbocharger, and power transmission member manufacturing method
JP2017534749A (en) * 2014-08-28 2017-11-24 ローベルト ボッシュ オートモーティブ ステアリング ゲゼルシャフト ミット ベシュレンクテル ハフツングRobert Bosch Automotive Steering GmbH Manufacturing method for components of swing motor used in steering system
KR20170085127A (en) * 2014-11-21 2017-07-21 제네럴 일렉트릭 컴퍼니 Turbomachine including a vane and method of assembling such turbomachine
JP2017535719A (en) * 2014-11-21 2017-11-30 ゼネラル・エレクトリック・カンパニイ Turbomachines including vanes and methods of assembling such turbomachines
KR102429194B1 (en) * 2014-11-21 2022-08-03 제네럴 일렉트릭 컴퍼니 Turbomachine including a vane and method of assembling such turbomachine

Also Published As

Publication number Publication date
EP2343441A1 (en) 2011-07-13
CN102177324A (en) 2011-09-07
CN102177324B (en) 2013-06-19
EP2343441A4 (en) 2014-09-17
WO2010041735A1 (en) 2010-04-15
EP2343441B1 (en) 2015-12-23
JP4317906B1 (en) 2009-08-19
HUE028680T2 (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP4317906B1 (en) Method for manufacturing variable vanes
JP4240512B1 (en) Turbine wheel manufacturing method
JP6342844B2 (en) Turbine wheel manufacturing method
JP6372498B2 (en) Metal powder for powder metallurgy, compound, granulated powder, sintered body and heat-resistant parts
WO2010090329A1 (en) Process for producing sintered sialon ceramic
CN109848419B (en) Method for preparing nickel-based high-temperature alloy complex part by adopting powder injection molding
WO2014148463A1 (en) Method of producing ring-rolling blank
CN102717081A (en) Method for preparing miniature mold by powder micro injection forming method
JP4269091B1 (en) Manufacturing method of shaft for turbine rotor
CN106282625A (en) A kind of near-net-shape method of ultra-fine cemented carbide
JP6555679B2 (en) Manufacturing method of iron-based sintered parts and iron-based sintered parts
JP2009299106A (en) Method for producing composite sintered compact, and composite sintered compact
JP4952912B2 (en) Method for manufacturing sintered body
US9631635B2 (en) Blades for axial flow compressor and method for manufacturing same
Levy et al. On the use of SLS tools in sheet metal stamping
JP5470955B2 (en) Metal powder and sintered body
JPH11315304A (en) Manufacture of sintered body
CN114086015B (en) Copper-tungsten alloy part and manufacturing method thereof
JP2005154848A (en) Nickel-titanium based sintering material excellent in wear resistance , and its producing method
Zhang et al. Studies on the fabrication of tool steel components with micro-features by PIM
JP2006265590A (en) Method for producing injection-molded sintered compact and movable part supporting component for supercharger
Rabilah et al. Effect of sintering temperature on mechanical properties of injection moulded 316L stainless steel using natural waste rubber binder
JP2009101409A (en) Method of manufacturing cylindrical extruded material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140605

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees