JP2011157598A - Heat treatment method of steel material - Google Patents

Heat treatment method of steel material Download PDF

Info

Publication number
JP2011157598A
JP2011157598A JP2010020895A JP2010020895A JP2011157598A JP 2011157598 A JP2011157598 A JP 2011157598A JP 2010020895 A JP2010020895 A JP 2010020895A JP 2010020895 A JP2010020895 A JP 2010020895A JP 2011157598 A JP2011157598 A JP 2011157598A
Authority
JP
Japan
Prior art keywords
steel material
treatment
hydrogen
vacuum
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010020895A
Other languages
Japanese (ja)
Other versions
JP5593717B2 (en
Inventor
Naoki Umemori
直樹 梅森
Toshiyuki Morita
敏之 森田
Tetsuya Shimomura
哲也 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2010020895A priority Critical patent/JP5593717B2/en
Publication of JP2011157598A publication Critical patent/JP2011157598A/en
Application granted granted Critical
Publication of JP5593717B2 publication Critical patent/JP5593717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment method of a steel material in which an improvement in the strength of the steel material is achieved. <P>SOLUTION: When ammonia gas is used as a nitriding gas in vacuum carbonitriding treatment, hydrogen produced by the decomposition of the ammonia gas permeates into the steel material and inhibits the improvement in the strength. Therefore, in the heat treatment method of the steel material in which vacuum nitriding treatment is performed after vacuum carburizing treatment, a dehydrogenation treatment to reduce the partial pressure of hydrogen in the atmosphere to 10 Pa or less is performed after the completion of the vacuum nitriding treatment. Since the dehydrogenation treatment is performed by feeding nitrogen gas into the atmosphere, only hydrogen can be released from the steel material by reducing the partial pressure of hydrogen without releasing the nitrogen permeated into the steel material by the vacuum nitriding treatment. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は鋼材の熱処理方法に関し、特に、曲げ疲労強度と面疲労強度が共に向上した鋼材を得ることができる熱処理方法に関する。   The present invention relates to a heat treatment method for a steel material, and more particularly to a heat treatment method capable of obtaining a steel material having improved bending fatigue strength and surface fatigue strength.

近年、機械構造用部品の高強度化が要請されており、鋼材の曲げ疲労強度と面疲労強度をいずれも向上させることが可能な真空浸炭窒化処理が提案されている。なお、真空浸炭窒化処理の一例は特許文献1に示されている。   In recent years, there has been a demand for increasing the strength of machine structural components, and a vacuum carbonitriding process capable of improving both the bending fatigue strength and the surface fatigue strength of steel materials has been proposed. An example of the vacuum carbonitriding process is shown in Patent Document 1.

特開2007−262505JP2007-262505A

ところで、真空浸炭窒化処理では浸窒ガスとしてアンモニアガスを使用するが、発明者等の調査によると、アンモニアガスの分解で生じた水素が鋼材中に浸入してその強度向上を阻害していることが判明した。   By the way, in the vacuum carbonitriding process, ammonia gas is used as the nitriding gas, but according to the inventors' investigation, hydrogen generated by the decomposition of the ammonia gas penetrates into the steel material and hinders its strength improvement. There was found.

そこで、本発明は上記知見に基づいて鋼材の強度向上を実現する鋼材の熱処理方法を提供することを目的とする。   Then, this invention aims at providing the heat processing method of the steel materials which implement | achieves the strength improvement of steel materials based on the said knowledge.

上記目的を達成するために、本第1発明では、真空浸炭処理の後、真空窒化処理を行う鋼材の熱処理方法において、真空窒化処理の終了後に雰囲気中の水素分圧を10Pa以下に減少させる脱水素処理を行う。   In order to achieve the above object, according to the first aspect of the present invention, in a heat treatment method for a steel material in which vacuum nitriding is performed after vacuum carburizing, dehydration is performed to reduce the hydrogen partial pressure in the atmosphere to 10 Pa or less after the completion of vacuum nitriding. Perform raw processing.

本第1発明においては、真空窒化処理の終了によってアンモニアの供給が停止された後、脱水素処理によって雰囲気中の水素分圧を10Pa以下に減少させるから、鋼材に浸入した水素が雰囲気中に放出されて鋼材中の水素濃度が低下し、その強度が向上させられる。   In the first invention, after the supply of ammonia is stopped by the completion of the vacuum nitriding treatment, the hydrogen partial pressure in the atmosphere is reduced to 10 Pa or less by the dehydrogenation treatment, so that the hydrogen that has entered the steel material is released into the atmosphere. As a result, the hydrogen concentration in the steel material is lowered and the strength is improved.

本第2発明では、前記脱水素処理を雰囲気中に窒素ガスを供給することによって行なう。本第2発明においては、窒素ガスを供給することにより、真空窒化処理によって鋼材中に浸透させた窒素を放出させることなく、水素分圧を低下させて水素のみを鋼材中から放出させることができる。   In the second invention, the dehydrogenation process is performed by supplying nitrogen gas into the atmosphere. In the second aspect of the present invention, by supplying nitrogen gas, only hydrogen can be released from the steel material by reducing the hydrogen partial pressure without releasing nitrogen permeated into the steel material by vacuum nitriding. .

以上のように、本発明の鋼材の熱処理方法によれば、真空窒化処理中に鋼材に浸入した水素が、これに続く脱水素処理で雰囲気中に放出されるから、鋼材中の水素濃度が低下してその強度が向上する。   As described above, according to the steel material heat treatment method of the present invention, hydrogen that has entered the steel material during the vacuum nitriding treatment is released into the atmosphere by the subsequent dehydrogenation treatment, so that the hydrogen concentration in the steel material decreases. And the strength is improved.

本発明の熱処理方法を実施した際の熱処理炉の炉温等の経時変化を示す図である。It is a figure which shows a time-dependent change, such as the furnace temperature of the heat processing furnace at the time of implementing the heat processing method of this invention. 真空窒化処理における炉内圧力と鋼材中の窒素濃度の関係を示す図である。It is a figure which shows the relationship between the furnace pressure in a vacuum nitriding process, and the nitrogen concentration in steel materials. 脱水素処理における雰囲気中の水素分圧と曲げ疲労強度の関係を示す図である。It is a figure which shows the relationship between the hydrogen partial pressure in the atmosphere in a dehydrogenation process, and bending fatigue strength. 脱水素処理における雰囲気中の水素分圧と面疲労強度の関係を示す図である。It is a figure which shows the relationship between the hydrogen partial pressure in the atmosphere in a dehydrogenation process, and surface fatigue strength.

図1には本発明の熱処理方法を実施した際の熱処理炉の炉温、炉圧、炉内の水素分圧の経時変化を示す。炉温をT1に上げるとともに、炉圧をP1まで低下させてこれを維持し、その前半は浸炭ガスを供給して浸炭処理を行なう。後半は浸炭ガスに代えて窒素ガスを供給することにより浸炭した炭素の拡散処理を行なう。この後、炉温をT2に下げてアンモニアガスを供給することによって窒化処理を行なうが、この過程で、アンモニアガスの分解で水素が生じてその分圧が増大し、水素が鋼材中に浸入してその強度向上を阻害する。そこで、窒化処理を終えた後にその炉温と炉圧を保ちつつ、窒素ガスを供給して水素分圧が10Pa以下になるようにして、鋼材の脱水素処理を行なう。脱水素処理を終了した後は油冷等による焼入れを行なう。   FIG. 1 shows changes over time in the furnace temperature, furnace pressure, and hydrogen partial pressure in the furnace when the heat treatment method of the present invention is carried out. While raising the furnace temperature to T1 and lowering the furnace pressure to P1, this is maintained, and in the first half, carburizing gas is supplied to perform carburizing treatment. In the second half, the carburized carbon is diffused by supplying nitrogen gas instead of carburizing gas. Thereafter, nitriding is performed by lowering the furnace temperature to T2 and supplying ammonia gas. In this process, hydrogen is generated by decomposition of the ammonia gas and its partial pressure is increased, and hydrogen penetrates into the steel material. This hinders strength improvement. Therefore, after the nitriding process is finished, the steel material is dehydrogenated by supplying nitrogen gas so that the hydrogen partial pressure becomes 10 Pa or less while maintaining the furnace temperature and the furnace pressure. After the dehydrogenation process is completed, quenching is performed by oil cooling or the like.

ここで、炉温T1は900〜950℃の間とするのが良く、炉温T2は790〜890℃の間とするのが良い。炉圧P1は、図2に示すように、0.3、0.5、0.7、0.9、1.0、1.1、1.2、1.5、1.7kPaと変化させた時の鋼材中の窒素濃度変化が1.1kPa以上で飽和していることから1.1kPa以上にしておく必要がある。また、浸炭ガスは炭化水素系ガスであり、例えばアセチレンガスが使用できる。   Here, the furnace temperature T1 is preferably between 900 and 950 ° C., and the furnace temperature T2 is preferably between 790 and 890 ° C. As shown in FIG. 2, the furnace pressure P1 was changed to 0.3, 0.5, 0.7, 0.9, 1.0, 1.1, 1.2, 1.5, and 1.7 kPa. Since the change in the nitrogen concentration in the steel material is saturated at 1.1 kPa or more, it is necessary to keep it at 1.1 kPa or more. The carburizing gas is a hydrocarbon-based gas, and for example, acetylene gas can be used.

(実施例)
図1の炉温T1を930℃とし、炉温T2は790〜890℃の間で調整した。浸炭ガスとしてアセチレンガスを使用した。炉圧P1は1.2kPaとした。被処理鋼材としては、歯車用鋼であるJIS SCM420,SCr420、SNCM220のそれぞれ曲げ疲労強度を測定するための切欠き付小野式回転曲げ試験片および面疲労強度を測定するためのローラーピッチング試験片を使用した。小野式回転曲げ試験片は全長が210mm、外径が18mm、切欠きのRが1mm、応力集中係数が1.84であった。また、ローラーピッチング試験片は全長が130mm、外径が26mmであった。
(Example)
The furnace temperature T1 of FIG. 1 was 930 degreeC, and the furnace temperature T2 was adjusted between 790-890 degreeC. Acetylene gas was used as the carburizing gas. The furnace pressure P1 was 1.2 kPa. As steel materials to be treated, JIS SCM420, SCr420, SNCM220, which are gear steels, are each provided with a notched Ono type rotary bending test piece for measuring bending fatigue strength and a roller pitching test piece for measuring surface fatigue strength. used. The Ono rotary bending test piece had a total length of 210 mm, an outer diameter of 18 mm, a notch R of 1 mm, and a stress concentration factor of 1.84. The roller pitching test piece had a total length of 130 mm and an outer diameter of 26 mm.

浸炭処理と拡散処理の時間を調整することによって試験片の表層炭素濃度を変化させ、また窒化処理では炉温T2を上記範囲で調整することで試験片の表層窒素濃度を変化させた。なお、これら表層炭素濃度および表層窒素濃度は、試験片の断面をEPMA(Electron Probe Micro Analyzer)で測定することによって得た。   The surface carbon concentration of the test piece was changed by adjusting the time of the carburizing treatment and the diffusion treatment, and in the nitriding treatment, the surface temperature nitrogen concentration of the test piece was changed by adjusting the furnace temperature T2 within the above range. The surface carbon concentration and surface nitrogen concentration were obtained by measuring the cross section of the test piece with EPMA (Electron Probe Micro Analyzer).

図3、図4には、互いに異なる表層炭素濃度と表層窒素濃度を示す試験片について脱水素処理を行った場合の、それぞれ小野式回転曲げ試験による107回曲げ疲労強度およびローラピッチング試験による107回面疲労強度を測定した結果を示す。なお、図3、図4中、「C」の前の数字が各試験片の表層炭素濃度(小数)を示し、Nの前の数字が表層窒素濃度(小数)を示す。 FIGS. 3 and 4 show 10 7 times bending fatigue strength by the Ono-type rotating bending test and 10 by the roller pitching test, respectively, when dehydrogenation treatment is performed on test pieces having different surface carbon concentrations and surface nitrogen concentrations. The result of measuring the 7th surface fatigue strength is shown. 3 and 4, the number before “C” indicates the surface layer carbon concentration (decimal number) of each test piece, and the number before N indicates the surface layer nitrogen concentration (decimal number).

図3、図4より明らかなように、水素分圧を10Pa以下にすると小野式回転曲げ試験およびローラピッチング試験による107回疲労強度は、水素分圧を900Paや100Paとした時に比していずれも大きく向上し、曲げ疲労強度および面疲労強度のいずれも大きく改善されている。なお、水素分圧を100Paにするために実験では窒素ガスに加えて水素ガスも供給した。 As is clear from FIGS. 3 and 4, when the hydrogen partial pressure is set to 10 Pa or less, the 10 7 times fatigue strength by the Ono-type rotary bending test and the roller pitching test is less than that when the hydrogen partial pressure is 900 Pa or 100 Pa. The bending fatigue strength and the surface fatigue strength are both greatly improved. In addition, in order to make hydrogen partial pressure into 100 Pa, in addition to nitrogen gas, hydrogen gas was also supplied in experiment.

Claims (2)

真空浸炭処理の後、真空窒化処理を行う鋼材の熱処理方法において、真空窒化処理の終了後に雰囲気中の水素分圧を10Pa以下に減少させる脱水素処理を行うことを特徴とする鋼材の熱処理方法。 A steel material heat treatment method in which vacuum nitriding treatment is performed after vacuum carburizing treatment, and dehydrogenation treatment is performed to reduce a hydrogen partial pressure in the atmosphere to 10 Pa or less after completion of vacuum nitriding treatment. 前記脱水素処理を雰囲気中に窒素ガスを供給することによって行なう請求項1に記載の鋼材の熱処理方法。 The steel material heat treatment method according to claim 1, wherein the dehydrogenation treatment is performed by supplying nitrogen gas into an atmosphere.
JP2010020895A 2010-02-02 2010-02-02 Heat treatment method for steel Expired - Fee Related JP5593717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010020895A JP5593717B2 (en) 2010-02-02 2010-02-02 Heat treatment method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020895A JP5593717B2 (en) 2010-02-02 2010-02-02 Heat treatment method for steel

Publications (2)

Publication Number Publication Date
JP2011157598A true JP2011157598A (en) 2011-08-18
JP5593717B2 JP5593717B2 (en) 2014-09-24

Family

ID=44589795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020895A Expired - Fee Related JP5593717B2 (en) 2010-02-02 2010-02-02 Heat treatment method for steel

Country Status (1)

Country Link
JP (1) JP5593717B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010250A (en) * 2013-06-27 2015-01-19 愛知製鋼株式会社 Vacuum carbonitriding method
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US9617632B2 (en) 2012-01-20 2017-04-11 Swagelok Company Concurrent flow of activating gas in low temperature carburization
JP2017075359A (en) * 2015-10-14 2017-04-20 大同特殊鋼株式会社 Manufacturing method of vacuum carbonitrided part

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204612A (en) * 1997-01-22 1998-08-04 Nippon Seiko Kk Dehydrogenation for machine parts
JP2002339054A (en) * 2001-05-17 2002-11-27 Daido Steel Co Ltd High pressure-resistant member and manufacturing method
JP2007262505A (en) * 2006-03-29 2007-10-11 Aisin Seiki Co Ltd Heat treatment method of steel member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204612A (en) * 1997-01-22 1998-08-04 Nippon Seiko Kk Dehydrogenation for machine parts
JP2002339054A (en) * 2001-05-17 2002-11-27 Daido Steel Co Ltd High pressure-resistant member and manufacturing method
JP2007262505A (en) * 2006-03-29 2007-10-11 Aisin Seiki Co Ltd Heat treatment method of steel member

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US10156006B2 (en) 2009-08-07 2018-12-18 Swagelok Company Low temperature carburization under soft vacuum
US10934611B2 (en) 2009-08-07 2021-03-02 Swagelok Company Low temperature carburization under soft vacuum
US9617632B2 (en) 2012-01-20 2017-04-11 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US11035032B2 (en) 2012-01-20 2021-06-15 Swagelok Company Concurrent flow of activating gas in low temperature carburization
JP2015010250A (en) * 2013-06-27 2015-01-19 愛知製鋼株式会社 Vacuum carbonitriding method
JP2017075359A (en) * 2015-10-14 2017-04-20 大同特殊鋼株式会社 Manufacturing method of vacuum carbonitrided part

Also Published As

Publication number Publication date
JP5593717B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
Kulka et al. An alternative method of gas boriding applied to the formation of borocarburized layer
CN107245691B (en) Surface strengthening method for metal material composite heat treatment
JP2007046088A (en) Nitrided quenched part, and method for producing the same
JP5593717B2 (en) Heat treatment method for steel
JP5927018B2 (en) Manufacturing method of machine parts
JP2000129418A (en) Vacuum carburizing method for steel parts and apparatus therefor
JP2006028541A (en) Method for manufacturing components for high-strength mechanical structure and components for high-strength mechanical structure
JP2014520957A (en) Manufacturing method for drive belt ring parts
Wołowiec-Korecka et al. System of single-piece flow case hardening for high volume production
JP6228403B2 (en) Surface hardening method and surface hardening structure of carbon steel
WO2015125767A1 (en) Method for producing machine component
JP2015232164A (en) Manufacturing method for rolling bearing and heat treatment apparatus
JP2004332074A (en) Carburizing method
JP4169864B2 (en) Method of carburizing steel
JP2008260994A (en) Method for producing carburized product
CN111945103A (en) Low-pressure vacuum carbonitriding method for 16Cr3NiWMoVNbE material
JP6071365B2 (en) Manufacturing method of machine parts
JP2018028113A (en) Method for manufacturing steel material
JP2009270155A (en) Nitriding quenching method and nitrided quenched part
JP5837282B2 (en) Surface modification method
KR100526389B1 (en) Method for heat treatment in gasnitriding
JP4858071B2 (en) Steel surface treatment method and surface-treated steel material
JP3986995B2 (en) Metal ring nitriding equipment
JP2019026875A (en) Production method of workpiece
JP2012072430A (en) Method for gas nitrocarburizing treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5593717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees