JP2011157598A - Heat treatment method of steel material - Google Patents
Heat treatment method of steel material Download PDFInfo
- Publication number
- JP2011157598A JP2011157598A JP2010020895A JP2010020895A JP2011157598A JP 2011157598 A JP2011157598 A JP 2011157598A JP 2010020895 A JP2010020895 A JP 2010020895A JP 2010020895 A JP2010020895 A JP 2010020895A JP 2011157598 A JP2011157598 A JP 2011157598A
- Authority
- JP
- Japan
- Prior art keywords
- steel material
- treatment
- hydrogen
- vacuum
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
Description
本発明は鋼材の熱処理方法に関し、特に、曲げ疲労強度と面疲労強度が共に向上した鋼材を得ることができる熱処理方法に関する。 The present invention relates to a heat treatment method for a steel material, and more particularly to a heat treatment method capable of obtaining a steel material having improved bending fatigue strength and surface fatigue strength.
近年、機械構造用部品の高強度化が要請されており、鋼材の曲げ疲労強度と面疲労強度をいずれも向上させることが可能な真空浸炭窒化処理が提案されている。なお、真空浸炭窒化処理の一例は特許文献1に示されている。
In recent years, there has been a demand for increasing the strength of machine structural components, and a vacuum carbonitriding process capable of improving both the bending fatigue strength and the surface fatigue strength of steel materials has been proposed. An example of the vacuum carbonitriding process is shown in
ところで、真空浸炭窒化処理では浸窒ガスとしてアンモニアガスを使用するが、発明者等の調査によると、アンモニアガスの分解で生じた水素が鋼材中に浸入してその強度向上を阻害していることが判明した。 By the way, in the vacuum carbonitriding process, ammonia gas is used as the nitriding gas, but according to the inventors' investigation, hydrogen generated by the decomposition of the ammonia gas penetrates into the steel material and hinders its strength improvement. There was found.
そこで、本発明は上記知見に基づいて鋼材の強度向上を実現する鋼材の熱処理方法を提供することを目的とする。 Then, this invention aims at providing the heat processing method of the steel materials which implement | achieves the strength improvement of steel materials based on the said knowledge.
上記目的を達成するために、本第1発明では、真空浸炭処理の後、真空窒化処理を行う鋼材の熱処理方法において、真空窒化処理の終了後に雰囲気中の水素分圧を10Pa以下に減少させる脱水素処理を行う。 In order to achieve the above object, according to the first aspect of the present invention, in a heat treatment method for a steel material in which vacuum nitriding is performed after vacuum carburizing, dehydration is performed to reduce the hydrogen partial pressure in the atmosphere to 10 Pa or less after the completion of vacuum nitriding. Perform raw processing.
本第1発明においては、真空窒化処理の終了によってアンモニアの供給が停止された後、脱水素処理によって雰囲気中の水素分圧を10Pa以下に減少させるから、鋼材に浸入した水素が雰囲気中に放出されて鋼材中の水素濃度が低下し、その強度が向上させられる。 In the first invention, after the supply of ammonia is stopped by the completion of the vacuum nitriding treatment, the hydrogen partial pressure in the atmosphere is reduced to 10 Pa or less by the dehydrogenation treatment, so that the hydrogen that has entered the steel material is released into the atmosphere. As a result, the hydrogen concentration in the steel material is lowered and the strength is improved.
本第2発明では、前記脱水素処理を雰囲気中に窒素ガスを供給することによって行なう。本第2発明においては、窒素ガスを供給することにより、真空窒化処理によって鋼材中に浸透させた窒素を放出させることなく、水素分圧を低下させて水素のみを鋼材中から放出させることができる。 In the second invention, the dehydrogenation process is performed by supplying nitrogen gas into the atmosphere. In the second aspect of the present invention, by supplying nitrogen gas, only hydrogen can be released from the steel material by reducing the hydrogen partial pressure without releasing nitrogen permeated into the steel material by vacuum nitriding. .
以上のように、本発明の鋼材の熱処理方法によれば、真空窒化処理中に鋼材に浸入した水素が、これに続く脱水素処理で雰囲気中に放出されるから、鋼材中の水素濃度が低下してその強度が向上する。 As described above, according to the steel material heat treatment method of the present invention, hydrogen that has entered the steel material during the vacuum nitriding treatment is released into the atmosphere by the subsequent dehydrogenation treatment, so that the hydrogen concentration in the steel material decreases. And the strength is improved.
図1には本発明の熱処理方法を実施した際の熱処理炉の炉温、炉圧、炉内の水素分圧の経時変化を示す。炉温をT1に上げるとともに、炉圧をP1まで低下させてこれを維持し、その前半は浸炭ガスを供給して浸炭処理を行なう。後半は浸炭ガスに代えて窒素ガスを供給することにより浸炭した炭素の拡散処理を行なう。この後、炉温をT2に下げてアンモニアガスを供給することによって窒化処理を行なうが、この過程で、アンモニアガスの分解で水素が生じてその分圧が増大し、水素が鋼材中に浸入してその強度向上を阻害する。そこで、窒化処理を終えた後にその炉温と炉圧を保ちつつ、窒素ガスを供給して水素分圧が10Pa以下になるようにして、鋼材の脱水素処理を行なう。脱水素処理を終了した後は油冷等による焼入れを行なう。 FIG. 1 shows changes over time in the furnace temperature, furnace pressure, and hydrogen partial pressure in the furnace when the heat treatment method of the present invention is carried out. While raising the furnace temperature to T1 and lowering the furnace pressure to P1, this is maintained, and in the first half, carburizing gas is supplied to perform carburizing treatment. In the second half, the carburized carbon is diffused by supplying nitrogen gas instead of carburizing gas. Thereafter, nitriding is performed by lowering the furnace temperature to T2 and supplying ammonia gas. In this process, hydrogen is generated by decomposition of the ammonia gas and its partial pressure is increased, and hydrogen penetrates into the steel material. This hinders strength improvement. Therefore, after the nitriding process is finished, the steel material is dehydrogenated by supplying nitrogen gas so that the hydrogen partial pressure becomes 10 Pa or less while maintaining the furnace temperature and the furnace pressure. After the dehydrogenation process is completed, quenching is performed by oil cooling or the like.
ここで、炉温T1は900〜950℃の間とするのが良く、炉温T2は790〜890℃の間とするのが良い。炉圧P1は、図2に示すように、0.3、0.5、0.7、0.9、1.0、1.1、1.2、1.5、1.7kPaと変化させた時の鋼材中の窒素濃度変化が1.1kPa以上で飽和していることから1.1kPa以上にしておく必要がある。また、浸炭ガスは炭化水素系ガスであり、例えばアセチレンガスが使用できる。 Here, the furnace temperature T1 is preferably between 900 and 950 ° C., and the furnace temperature T2 is preferably between 790 and 890 ° C. As shown in FIG. 2, the furnace pressure P1 was changed to 0.3, 0.5, 0.7, 0.9, 1.0, 1.1, 1.2, 1.5, and 1.7 kPa. Since the change in the nitrogen concentration in the steel material is saturated at 1.1 kPa or more, it is necessary to keep it at 1.1 kPa or more. The carburizing gas is a hydrocarbon-based gas, and for example, acetylene gas can be used.
(実施例)
図1の炉温T1を930℃とし、炉温T2は790〜890℃の間で調整した。浸炭ガスとしてアセチレンガスを使用した。炉圧P1は1.2kPaとした。被処理鋼材としては、歯車用鋼であるJIS SCM420,SCr420、SNCM220のそれぞれ曲げ疲労強度を測定するための切欠き付小野式回転曲げ試験片および面疲労強度を測定するためのローラーピッチング試験片を使用した。小野式回転曲げ試験片は全長が210mm、外径が18mm、切欠きのRが1mm、応力集中係数が1.84であった。また、ローラーピッチング試験片は全長が130mm、外径が26mmであった。
(Example)
The furnace temperature T1 of FIG. 1 was 930 degreeC, and the furnace temperature T2 was adjusted between 790-890 degreeC. Acetylene gas was used as the carburizing gas. The furnace pressure P1 was 1.2 kPa. As steel materials to be treated, JIS SCM420, SCr420, SNCM220, which are gear steels, are each provided with a notched Ono type rotary bending test piece for measuring bending fatigue strength and a roller pitching test piece for measuring surface fatigue strength. used. The Ono rotary bending test piece had a total length of 210 mm, an outer diameter of 18 mm, a notch R of 1 mm, and a stress concentration factor of 1.84. The roller pitching test piece had a total length of 130 mm and an outer diameter of 26 mm.
浸炭処理と拡散処理の時間を調整することによって試験片の表層炭素濃度を変化させ、また窒化処理では炉温T2を上記範囲で調整することで試験片の表層窒素濃度を変化させた。なお、これら表層炭素濃度および表層窒素濃度は、試験片の断面をEPMA(Electron Probe Micro Analyzer)で測定することによって得た。 The surface carbon concentration of the test piece was changed by adjusting the time of the carburizing treatment and the diffusion treatment, and in the nitriding treatment, the surface temperature nitrogen concentration of the test piece was changed by adjusting the furnace temperature T2 within the above range. The surface carbon concentration and surface nitrogen concentration were obtained by measuring the cross section of the test piece with EPMA (Electron Probe Micro Analyzer).
図3、図4には、互いに異なる表層炭素濃度と表層窒素濃度を示す試験片について脱水素処理を行った場合の、それぞれ小野式回転曲げ試験による107回曲げ疲労強度およびローラピッチング試験による107回面疲労強度を測定した結果を示す。なお、図3、図4中、「C」の前の数字が各試験片の表層炭素濃度(小数)を示し、Nの前の数字が表層窒素濃度(小数)を示す。 FIGS. 3 and 4 show 10 7 times bending fatigue strength by the Ono-type rotating bending test and 10 by the roller pitching test, respectively, when dehydrogenation treatment is performed on test pieces having different surface carbon concentrations and surface nitrogen concentrations. The result of measuring the 7th surface fatigue strength is shown. 3 and 4, the number before “C” indicates the surface layer carbon concentration (decimal number) of each test piece, and the number before N indicates the surface layer nitrogen concentration (decimal number).
図3、図4より明らかなように、水素分圧を10Pa以下にすると小野式回転曲げ試験およびローラピッチング試験による107回疲労強度は、水素分圧を900Paや100Paとした時に比していずれも大きく向上し、曲げ疲労強度および面疲労強度のいずれも大きく改善されている。なお、水素分圧を100Paにするために実験では窒素ガスに加えて水素ガスも供給した。 As is clear from FIGS. 3 and 4, when the hydrogen partial pressure is set to 10 Pa or less, the 10 7 times fatigue strength by the Ono-type rotary bending test and the roller pitching test is less than that when the hydrogen partial pressure is 900 Pa or 100 Pa. The bending fatigue strength and the surface fatigue strength are both greatly improved. In addition, in order to make hydrogen partial pressure into 100 Pa, in addition to nitrogen gas, hydrogen gas was also supplied in experiment.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010020895A JP5593717B2 (en) | 2010-02-02 | 2010-02-02 | Heat treatment method for steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010020895A JP5593717B2 (en) | 2010-02-02 | 2010-02-02 | Heat treatment method for steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011157598A true JP2011157598A (en) | 2011-08-18 |
JP5593717B2 JP5593717B2 (en) | 2014-09-24 |
Family
ID=44589795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010020895A Expired - Fee Related JP5593717B2 (en) | 2010-02-02 | 2010-02-02 | Heat treatment method for steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5593717B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015010250A (en) * | 2013-06-27 | 2015-01-19 | 愛知製鋼株式会社 | Vacuum carbonitriding method |
US9212416B2 (en) | 2009-08-07 | 2015-12-15 | Swagelok Company | Low temperature carburization under soft vacuum |
US9617632B2 (en) | 2012-01-20 | 2017-04-11 | Swagelok Company | Concurrent flow of activating gas in low temperature carburization |
JP2017075359A (en) * | 2015-10-14 | 2017-04-20 | 大同特殊鋼株式会社 | Manufacturing method of vacuum carbonitrided part |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10204612A (en) * | 1997-01-22 | 1998-08-04 | Nippon Seiko Kk | Dehydrogenation for machine parts |
JP2002339054A (en) * | 2001-05-17 | 2002-11-27 | Daido Steel Co Ltd | High pressure-resistant member and manufacturing method |
JP2007262505A (en) * | 2006-03-29 | 2007-10-11 | Aisin Seiki Co Ltd | Heat treatment method of steel member |
-
2010
- 2010-02-02 JP JP2010020895A patent/JP5593717B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10204612A (en) * | 1997-01-22 | 1998-08-04 | Nippon Seiko Kk | Dehydrogenation for machine parts |
JP2002339054A (en) * | 2001-05-17 | 2002-11-27 | Daido Steel Co Ltd | High pressure-resistant member and manufacturing method |
JP2007262505A (en) * | 2006-03-29 | 2007-10-11 | Aisin Seiki Co Ltd | Heat treatment method of steel member |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9212416B2 (en) | 2009-08-07 | 2015-12-15 | Swagelok Company | Low temperature carburization under soft vacuum |
US10156006B2 (en) | 2009-08-07 | 2018-12-18 | Swagelok Company | Low temperature carburization under soft vacuum |
US10934611B2 (en) | 2009-08-07 | 2021-03-02 | Swagelok Company | Low temperature carburization under soft vacuum |
US9617632B2 (en) | 2012-01-20 | 2017-04-11 | Swagelok Company | Concurrent flow of activating gas in low temperature carburization |
US10246766B2 (en) | 2012-01-20 | 2019-04-02 | Swagelok Company | Concurrent flow of activating gas in low temperature carburization |
US11035032B2 (en) | 2012-01-20 | 2021-06-15 | Swagelok Company | Concurrent flow of activating gas in low temperature carburization |
JP2015010250A (en) * | 2013-06-27 | 2015-01-19 | 愛知製鋼株式会社 | Vacuum carbonitriding method |
JP2017075359A (en) * | 2015-10-14 | 2017-04-20 | 大同特殊鋼株式会社 | Manufacturing method of vacuum carbonitrided part |
Also Published As
Publication number | Publication date |
---|---|
JP5593717B2 (en) | 2014-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kulka et al. | An alternative method of gas boriding applied to the formation of borocarburized layer | |
CN107245691B (en) | Surface strengthening method for metal material composite heat treatment | |
JP2007046088A (en) | Nitrided quenched part, and method for producing the same | |
JP5593717B2 (en) | Heat treatment method for steel | |
JP5927018B2 (en) | Manufacturing method of machine parts | |
JP2000129418A (en) | Vacuum carburizing method for steel parts and apparatus therefor | |
JP2006028541A (en) | Method for manufacturing components for high-strength mechanical structure and components for high-strength mechanical structure | |
JP2014520957A (en) | Manufacturing method for drive belt ring parts | |
Wołowiec-Korecka et al. | System of single-piece flow case hardening for high volume production | |
JP6228403B2 (en) | Surface hardening method and surface hardening structure of carbon steel | |
WO2015125767A1 (en) | Method for producing machine component | |
JP2015232164A (en) | Manufacturing method for rolling bearing and heat treatment apparatus | |
JP2004332074A (en) | Carburizing method | |
JP4169864B2 (en) | Method of carburizing steel | |
JP2008260994A (en) | Method for producing carburized product | |
CN111945103A (en) | Low-pressure vacuum carbonitriding method for 16Cr3NiWMoVNbE material | |
JP6071365B2 (en) | Manufacturing method of machine parts | |
JP2018028113A (en) | Method for manufacturing steel material | |
JP2009270155A (en) | Nitriding quenching method and nitrided quenched part | |
JP5837282B2 (en) | Surface modification method | |
KR100526389B1 (en) | Method for heat treatment in gasnitriding | |
JP4858071B2 (en) | Steel surface treatment method and surface-treated steel material | |
JP3986995B2 (en) | Metal ring nitriding equipment | |
JP2019026875A (en) | Production method of workpiece | |
JP2012072430A (en) | Method for gas nitrocarburizing treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140708 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140721 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5593717 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |