JPH10204612A - Dehydrogenation for machine parts - Google Patents

Dehydrogenation for machine parts

Info

Publication number
JPH10204612A
JPH10204612A JP2192797A JP2192797A JPH10204612A JP H10204612 A JPH10204612 A JP H10204612A JP 2192797 A JP2192797 A JP 2192797A JP 2192797 A JP2192797 A JP 2192797A JP H10204612 A JPH10204612 A JP H10204612A
Authority
JP
Japan
Prior art keywords
hydrogen
treatment
vacuum
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2192797A
Other languages
Japanese (ja)
Inventor
Koji Ueda
光司 植田
Akihiro Kiuchi
昭広 木内
Shigeru Okita
滋 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2192797A priority Critical patent/JPH10204612A/en
Publication of JPH10204612A publication Critical patent/JPH10204612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dehydrogenating method for machine parts capable of reducing hydrogen infiltrated at the time of carburizing treatment or carbonitriding treatment. SOLUTION: Machine parts are subjected to carburizing treatment or carbonitriding treatment under prescribed conditions and are thereafter held under heating in a vacuum to release diffusible hydrogen and nondiffusible hydrogen from the steel. In this way, the formation of a surface abnormal layer and the generation of soot can be prevented, and furthermore, hydrogen in the steel can be removed in a short time only by the increase of vacuum equipment without requiring the remarkable change of the equipment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は機械部品の脱水素処
理方法に関し、より詳しくは、自動車、農業機械、建設
機械などに使用される軸受、歯車等の機械部品の脱水素
処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dehydrogenating mechanical parts, and more particularly to a method for dehydrogenating mechanical parts such as bearings and gears used in automobiles, agricultural machines, construction machines and the like.

【0002】[0002]

【従来の技術】従来より、耐摩耗性、疲労強度又は靱性
等が要求される機械部品、特に軸受や歯車等の高い耐摩
耗性や疲労強度が要求される機械部品は、機能性の向上
を図るため合金鋼にガス浸炭処理や浸炭窒化処理等の表
面硬化処理が施される。
2. Description of the Related Art Conventionally, mechanical parts which are required to have high wear resistance, fatigue strength or toughness, such as bearings and gears, are required to have improved functionality. To achieve this, the alloy steel is subjected to a surface hardening treatment such as a gas carburizing treatment or a carbonitriding treatment.

【0003】このようなガス浸炭処理等は、簡単に連続
炉を構成することができる一方、煤の発生により炉や処
理品が堆積するため、炉が汚れたり或いは浸炭ガスが空
気と接触しやすくなって製品の品質の安定性に欠けると
いう欠点があった。
[0003] In such gas carburizing treatment and the like, a continuous furnace can be easily constructed. On the other hand, since furnaces and processed products are deposited due to the generation of soot, the furnace is contaminated or carburizing gas easily comes into contact with air. As a result, there is a disadvantage that the stability of product quality is lacking.

【0004】このため、近年では、真空排気装置を設
け、処理品である機械部品の炉内への搬入や浸炭処理後
等の焼入時に真空置換を行なう方法が採用されており、
また実開平3−45946号公報では浸炭処理後に真空
下で拡散処理を施して酸素分圧を低下させることによ
り、処理材表面の酸化物を除去し、煤の付着を防止する
技術が提案されている。
For this reason, in recent years, a method has been adopted in which a vacuum exhaust device is provided, and vacuum replacement is performed at the time of quenching such as after carrying in a furnace of a machined part to be processed or after carburizing.
Japanese Utility Model Laid-Open Publication No. 3-45946 proposes a technique for removing oxides on the surface of the treated material and preventing the adhesion of soot by reducing the oxygen partial pressure by performing a diffusion treatment under vacuum after the carburizing treatment. I have.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の技術では、ガス浸炭処理時において機械部品が浸炭
雰囲気中に含まれる水素に晒されるため、水素ガスが該
機械部品の鋼中に拡散されて内部に侵入する。特に、長
時間の浸炭時間を要する超大型の機械部品を浸炭処理す
る場合は、熱処理後において機械部品の鋼中に残存する
水素量が高くなり、水素に起因した材料欠陥が生じる虞
がある。
However, in the above-mentioned conventional technology, the mechanical parts are exposed to hydrogen contained in the carburizing atmosphere during the gas carburizing treatment, so that the hydrogen gas is diffused into the steel of the mechanical parts. Get inside. In particular, when carburizing ultra-large mechanical parts requiring a long carburizing time, the amount of hydrogen remaining in the steel of the mechanical parts after the heat treatment increases, and there is a possibility that material defects due to hydrogen may occur.

【0006】ところで、水素に起因する材料欠陥として
は、白点性欠陥と呼称されるものと遅れ破壊と呼称され
るものがある。
[0006] As material defects caused by hydrogen, there are those called white spot defects and those called delayed fracture.

【0007】白点性欠陥は、熱処理後の冷却時や室温放
置時に毛割れ状の内部欠陥が生じる現象であって、該白
点性欠陥は、鋼中に高濃度の水素が存在する場合に、水
素が介在物等の材料欠陥近傍でガス化し、変態応力等の
応力が付加されることにより、割れが発生するものと考
えられる。
[0007] The white spot defect is a phenomenon in which hair-like internal defects occur during cooling after heat treatment or when left at room temperature. The white spot defect is caused when a high concentration of hydrogen is present in steel. It is considered that hydrogen is gasified in the vicinity of a material defect such as an inclusion and a crack is generated by applying a stress such as a transformation stress.

【0008】一方、遅れ破壊は、高張力鋼において鋼中
に残存する水素によって機械部品が脆化し、降伏点より
も遙かに低い応力で脆性破壊が生じる現象であって、該
遅れ破壊は所定の潜伏期間を経て広範囲の荷重にわたっ
て生じ得る。
[0008] On the other hand, delayed fracture is a phenomenon in a high-strength steel in which mechanical parts are embrittled by hydrogen remaining in the steel and brittle fracture occurs at a stress much lower than the yield point. Over a wide range of loads through an incubation period of.

【0009】そして、かかる水素に起因する材料欠陥
は、特に軸受のような高強度を有し、比較的大きな繰り
返し応力が作用する機械部品においては以下のような問
題点があった。すなわち、斯かる高強度材からなる機械
部品においては、高濃度の水素が鋼中に残存して脆化す
ると、マイクロクラックが発生して早期剥離(フレーキ
ング)を招来し、機械部品の寿命が大幅に低下するとい
う問題点があった。
[0009] Such material defects caused by hydrogen have the following problems particularly in mechanical parts such as bearings having high strength and subjected to relatively large repetitive stress. That is, in a mechanical part made of such a high-strength material, when high-concentration hydrogen remains in steel and becomes brittle, microcracks are generated, leading to early peeling (flaking), and the life of the mechanical part is shortened. There was a problem that it was greatly reduced.

【0010】本発明はこのような問題点に鑑みなされた
ものであって、浸炭処理時又は浸炭窒化処理時に侵入す
る水素の低減化を図ることができる機械部品の脱水素処
理方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for dehydrogenating mechanical parts capable of reducing hydrogen entering during carburizing or carbonitriding. With the goal.

【0011】[0011]

【課題を解決するための手段】本願出願人は、浸炭処理
時に機械部品に侵入する水素の低減化を図るべく鋭意研
究した結果、真空下で加熱保持することにより、鋼中に
存在する拡散性水素等の不純物を除去することができる
という知見を得た。
Means for Solving the Problems The applicant of the present invention has conducted intensive studies to reduce the amount of hydrogen entering into mechanical parts during carburizing, and as a result, it has been found that, by heating and holding under vacuum, the diffusivity existing in steel is reduced. It has been found that impurities such as hydrogen can be removed.

【0012】本発明は斯かる知見に基づき浸炭処理又は
浸炭窒化処理に真空置換を適用したものであって、本発
明に係る機械部品の脱水素処理方法は、所定条件下で浸
炭処理又は浸炭窒化処理をした後、真空下で加熱保持し
て脱水素処理を施すことを特徴としている。
The present invention is based on such findings and applies vacuum substitution to carburizing or carbonitriding. The method for dehydrogenating mechanical parts according to the present invention comprises the steps of carburizing or carbonitriding under predetermined conditions. After the treatment, a dehydrogenation treatment is performed by heating and holding under vacuum.

【0013】本発明によれば、表面異常層の形成や煤の
発生を防止することができると共に、大幅な設備の変更
を要せず真空設備の増設のみで鋼中の水素を短時間で除
去することが可能となる。
According to the present invention, the formation of an abnormal surface layer and the generation of soot can be prevented, and the hydrogen in steel is removed in a short time only by adding a vacuum equipment without requiring a major equipment change. It is possible to do.

【0014】[0014]

【発明の実施の形態】次に、本発明の実施の形態につい
て詳説する。
Next, embodiments of the present invention will be described in detail.

【0015】まず、本願出願人は、鋼中に水素が侵入し
た場合の機械部品の寿命特性に及ぼす影響を検討した。
[0015] First, the applicant of the present application examined the effect of hydrogen entering steel on the life characteristics of mechanical parts.

【0016】SCr440鋼についてφ65×6mmの
試験片を作製し、950℃で20時間浸炭処理した後、
室温に到達するまで放冷した。次いで、放冷後の試験片
を860℃で30分間加熱保持した後、焼入処理を行い
(硬化熱処理)、その後、160℃で2時間の焼戻処理
を行い、しかる後、表面研磨後電解法により電解時間を
変えて試験片中に水素をチャージし、その後寿命試験を
行なった。
A specimen of φ65 × 6 mm was prepared from SCr440 steel and carburized at 950 ° C. for 20 hours.
It was allowed to cool to room temperature. Next, the test piece after standing to cool is heated and held at 860 ° C. for 30 minutes, and then subjected to a quenching treatment (hardening heat treatment), and then to a tempering treatment at 160 ° C. for 2 hours. The test piece was charged with hydrogen by changing the electrolysis time according to the method, and then a life test was performed.

【0017】水素チャージ条件は以下の通りである。The hydrogen charging conditions are as follows.

【0018】〔水素チャージ条件〕 電解液:5%硫酸溶液 陽極:白金 陰極:試験片 電流密度:0.02A/cm2 電解時間:1、3、5時間 また、寿命試験は、特殊鋼便覧、第1版、第10〜21
頁(電気製鋼研究所編、理工学社:1969年5月25
日)に記載のスラスト形軸受鋼試験機を使用して行なっ
た。
[Hydrogen charging conditions] Electrolyte: 5% sulfuric acid solution Anode: Platinum Cathode: Test piece Current density: 0.02 A / cm 2 Electrolysis time: 1, 3, 5 hours 1st edition, 10th to 21st
Page (Electric Steel Research Institute, Science and Engineering, May 25, 1969)
The test was performed using the thrust bearing steel tester described in (1).

【0019】試験片の寿命は、各試験片について顕微鏡
又は肉眼で視認できるクラック又は剥離が約10%発生
した時点を寿命と判定し(L10寿命)、かかる時点に至
るまでの累積回転数でもって寿命を評価した。
The life of the test piece, each test piece was determined microscope or visible to the naked eye cracks or the time at which peeling occurs about 10% life (L 10 life), the cumulative number of revolutions up to such time The life was thus evaluated.

【0020】尚、寿命試験の試験条件は以下の通りであ
る。
The test conditions for the life test are as follows.

【0021】〔寿命試験の試験条件〕 面圧:4900MPa 回転数:3000cpm 潤滑油:#68タービン油(日本石油(株)製) 混入異物: 組成:Fe3C(セメンタイト)系粉末 ロックウェル硬さ:HRC52 粒径:74〜147mμ 混入量:潤滑油中に300ppm また、水素分析は浸炭放冷後の試験片(以下、「浸炭放
冷品」という)及び寿命試験後の剥離の生じた試験片
(以下、「寿命試験品」という)について行い、試験片
の鋼中水素濃度を測定した。具体的には、水素分析は浸
炭放冷品及び寿命試験品の双方について、真空加熱法に
より試験片から水素を放出して質量分析計で水素重量を
測定し、その後数式(1)にしたがって水素濃度を算出
した。
[Test conditions for life test] Surface pressure: 4900 MPa Rotational speed: 3000 cpm Lubricating oil: # 68 turbine oil (manufactured by Nippon Oil Co., Ltd.) Contaminant foreign matter: Composition: Fe 3 C (cementite) powder Rockwell hardness : HRC52 Particle size: 74 to 147 mμ Incorporation amount: 300 ppm in lubricating oil In the hydrogen analysis, a test piece after carburizing and cooling (hereinafter referred to as “carburized and cooled product”) and a test piece with peeling after the life test were used. (Hereinafter referred to as "life test specimen"), and the hydrogen concentration in steel of the test piece was measured. Specifically, in the hydrogen analysis, hydrogen was released from the test piece by a vacuum heating method and the weight of hydrogen was measured by a mass spectrometer for both the carburized and cooled product and the life test product. The concentration was calculated.

【0022】 水素濃度(ppm)=水素重量/試験片の重量 …(1) 尚、浸炭放冷品については、これら浸炭放冷品を直ちに
ドライアイス入りのジュワー瓶中に保存して水素成分が
試験片から離脱するのを避け、さらにジュワー瓶から試
験片を取り出して1時間以内に表面研磨、脱脂、冷風乾
燥を行って水素分析の測定を開始した。
Hydrogen concentration (ppm) = hydrogen weight / weight of test piece (1) For the carburized and cooled products, these carburized and cooled products were immediately stored in a dewar containing dry ice to reduce the hydrogen component. The test piece was removed from the dewar bottle while avoiding detachment from the test piece, and the surface was polished, degreased, and dried with cold air within one hour, and measurement of hydrogen analysis was started.

【0023】水素分析の測定条件は以下の通りである。The measurement conditions for hydrogen analysis are as follows.

【0024】〔水素分析の測定条件〕 加熱炉:赤外線イメージ炉 加熱温度:室温〜700℃ 昇温速度:10℃/min 図1は、試験片の水素濃度(ppm)と試験片の寿命
(L10寿命)との関係を示したものである。
[Measurement conditions for hydrogen analysis] Heating furnace: infrared image furnace Heating temperature: room temperature to 700 ° C. Heating rate: 10 ° C./min FIG. 1 shows the hydrogen concentration (ppm) of the test piece and the life (L) of the test piece. 10 life).

【0025】この図1から明らかなように、試験片の水
素濃度が減少するに伴い、L10寿命が向上し、水素濃度
が1ppm以下になるとL10寿命が飛躍的に向上する。
しかも、水素濃度が0.8ppm以下になると水素濃度
1ppm以上の場合に比べ、L10寿命は2倍以上になる
のが判る。これは水素濃度が高くなると水素脆化によっ
てマイクロクラックが発生し易くなり、その結果早期剥
離を起こすためであり、この図1の寿命特性図より水素
濃度を1ppm、好ましくは0.8ppm以下にすれば
飛躍的な耐久性向上を図ることができることが判明し
た。
[0025] FIG from 1 apparent from, along with a decrease in the hydrogen concentration of the test piece, improves the L 10 life, L 10 life is improved dramatically when the hydrogen concentration is 1ppm or less.
Moreover, compared with the case of the above hydrogen concentration 1ppm of hydrogen concentration is below 0.8 ppm, L 10 life seen that more than double. This is because when the hydrogen concentration becomes high, microcracks tend to occur due to hydrogen embrittlement, and as a result, premature peeling occurs. According to the life characteristic diagram of FIG. 1, the hydrogen concentration becomes 1 ppm, preferably 0.8 ppm or less. It has been found that durability can be drastically improved.

【0026】次に、上述のように950℃で20時間浸
炭処理を施した浸炭放冷品、及び浸炭処理後、950℃
で30分間、真空度1Torrで加熱保持して脱水素処理を
施した後放冷した試験片(以下、「脱水素処理品」とい
う)について上述した真空加熱法で水素量を測定した際
の加熱温度と水素放出速度の関係を測定した。
Next, as described above, a carburized cooled product subjected to carburizing treatment at 950 ° C. for 20 hours, and after carburizing treatment, at 950 ° C.
Heating for 30 minutes at a degree of vacuum of 1 Torr, followed by dehydrogenation treatment, followed by cooling of a test piece (hereinafter referred to as "dehydrogenated product") when the amount of hydrogen was measured by the vacuum heating method described above. The relationship between temperature and hydrogen release rate was measured.

【0027】図2は、斯かる加熱温度と水素放出速度と
の関係を示す特性図であって、図2中、特性Aは浸炭放
冷品の水素放出特性であり、特性Bは脱水素処理品の水
素放出特性を示している。
FIG. 2 is a characteristic diagram showing the relationship between the heating temperature and the hydrogen release rate. In FIG. 2, characteristic A is the hydrogen release characteristic of the carburized and cooled product, and characteristic B is the dehydrogenation treatment. It shows the hydrogen release characteristics of the product.

【0028】浸炭放冷品及び脱水素処理品共に、室温か
ら昇温してゆくと、水素放出のピークは200〜250
℃、及び450〜500℃の2箇所に認められる。この
図2において、低温側で放出される水素が拡散性水素で
あり、高温側で放出される水素が非拡散性水素である。
そして、白点性欠陥や遅れ破壊等の材料欠陥を惹起させ
るのは低温側で放出される拡散性水素であるとされてい
る。
As the temperature of both the carburized cooled product and the dehydrogenated product increases from room temperature, the peak of hydrogen release reaches 200 to 250.
° C and 450-500 ° C. In FIG. 2, hydrogen released on the low temperature side is diffusible hydrogen, and hydrogen released on the high temperature side is non-diffusible hydrogen.
It is said that diffusible hydrogen released on the low temperature side causes material defects such as white spot defects and delayed fracture.

【0029】本願出願人は、高温真空融解法(JIS
Z 2614)によって試験片の総水素量を計測し、該
総水素量から試験片に対する水素濃度を計測したとこ
ろ、浸炭放冷品の水素濃度は3.3ppmと高かったの
に対し、脱水素処理品の水素濃度は0.73ppmと大
幅に減少することが判った。しかも、本実施の形態にお
ける脱水素処理品は、試験片中の総水素濃度を1ppm
以下とすることにより、短時間の処理で拡散性水素のみ
ならず非拡散性水素をも同時に除去することができ、浸
炭及び浸炭窒化時に試験片中に侵入した水素に起因する
白点性欠陥や遅れ破壊等の材料欠陥を防止することがで
きることが判明した。
The applicant of the present application has proposed a high-temperature vacuum melting method (JIS
The total hydrogen content of the test piece was measured according to Z2614), and the hydrogen concentration of the test piece was measured from the total hydrogen content. As a result, the hydrogen concentration of the carburized and cooled product was as high as 3.3 ppm. The hydrogen concentration of the product was found to be significantly reduced to 0.73 ppm. Moreover, the dehydrogenated product in the present embodiment has a total hydrogen concentration of 1 ppm in the test piece.
By doing the following, not only diffusible hydrogen but also non-diffusible hydrogen can be simultaneously removed in a short time treatment, and white spot defects caused by hydrogen penetrating into the test piece during carburizing and carbonitriding, It has been found that material defects such as delayed fracture can be prevented.

【0030】次に、加熱保持温度及び真空度の臨界値に
ついて検討する。
Next, critical values of the heating holding temperature and the degree of vacuum will be examined.

【0031】〔加熱保持温度〕水素の拡散速度はいわゆ
るA1 変態点の温度以下、すなわち組織が(フェライト
+パーライト)である場合が最も速いため、加熱保持温
度としてはA1 変態点直下に恒温保持して(フェライト
+パーライト)に変態させて、脱水素処理を行うのが望
ましい。図2に示す水素放出特性を考慮すると、脱水素
処理温度を450℃以上に設定すると拡散性水素及び非
拡散性水素の双方を除去することができる。一方、加熱
保持温度が400℃以下の場合は拡散性水素のみの除去
しか行なうことができず、総水素濃度を十分に低下させ
ることができない。すなわち、加熱保持温度の下限温度
としては450℃が望ましい。また、加熱保持温度の上
限温度は、上述した理由からA1 変態点直下温度が望ま
しいが、浸炭処理又は浸炭窒化処理後、引き続いて同一
温度(例えば、950℃で浸炭処理の場合は950℃)
で真空脱水素処理を施しても同一の効果を得ることがで
きる。
[Heat holding temperature] Since the diffusion rate of hydrogen is lower than the temperature of the so-called A 1 transformation point, that is, the case where the structure is (ferrite + pearlite) is the fastest, the heating holding temperature is constant below the A 1 transformation point. It is desirable to carry out the dehydrogenation treatment by holding and transforming to (ferrite + pearlite). In consideration of the hydrogen release characteristics shown in FIG. 2, when the dehydrogenation temperature is set to 450 ° C. or higher, both diffusible hydrogen and non-diffusible hydrogen can be removed. On the other hand, when the heating and holding temperature is 400 ° C. or lower, only the diffusible hydrogen can be removed only, and the total hydrogen concentration cannot be sufficiently reduced. That is, 450 ° C. is desirable as the lower limit temperature of the heating and holding temperature. The upper limit temperature of the heating and holding temperature is desirably a temperature immediately below the A 1 transformation point for the above-described reason. However, after the carburizing treatment or the carbonitriding treatment, the same temperature (for example, 950 ° C. in the case of 950 ° C. and carburizing treatment) is used.
The same effect can be obtained even if vacuum dehydrogenation treatment is performed in the above.

【0032】尚、浸炭処理又は浸炭窒化処理を施した
後、放冷し、その後、上記加熱保持温度に再加熱、保持
しても所望の脱水素効果を得ることができる。但し、浸
炭処理又は浸炭窒化処理を施した後に実行される放冷の
冷却速度が速すぎた場合は水素が残存するため温度低下
に伴い水素ガスが析出し、白点性欠陥が生じる虞がある
ため前記放冷は徐冷制御を行う必要がある。
It is to be noted that a desired dehydrogenation effect can be obtained by performing a carburizing treatment or a carbonitriding treatment, allowing the mixture to cool, and then reheating and maintaining the above heating and holding temperature. However, if the cooling rate of the cooling performed after the carburizing treatment or the carbonitriding treatment is too high, hydrogen remains, so that hydrogen gas precipitates as the temperature decreases, and white spot defects may occur. Therefore, it is necessary to perform slow cooling control for the cooling.

【0033】〔真空度〕脱水素処理時の真空度が鋼中の
水素濃度に及ぼす影響について以下の実験を行なった。
[Degree of vacuum] The following experiment was conducted on the effect of the degree of vacuum during the dehydrogenation treatment on the hydrogen concentration in steel.

【0034】SCr440鋼についてφ65×6mmの
スラスト形試験片を100個作製し、950℃で20時
間浸炭した後、室温に到達するまで放冷した。次いで、
種々の真空度について950℃で30分間加熱保持して
脱水素処理を行い、水素分析を行なった。尚、水素濃度
は、上記真空加熱法により測定した。
One hundred thrust-type test pieces of φ65 × 6 mm of SCr440 steel were prepared, carburized at 950 ° C. for 20 hours, and allowed to cool to room temperature. Then
Dehydrogenation was performed by heating and holding at 950 ° C. for 30 minutes at various degrees of vacuum, and hydrogen analysis was performed. The hydrogen concentration was measured by the above-mentioned vacuum heating method.

【0035】図3は真空度と水素濃度との関係を示す特
性図である。
FIG. 3 is a characteristic diagram showing the relationship between the degree of vacuum and the hydrogen concentration.

【0036】この図3から明らかなように、真空加熱処
理を施すことにより水素濃度が減少し、真空度が1Torr
以下に減圧すると試験片の水素濃度が短時間に1ppm
以下に減少することが判明した。一方、真空度を高くす
るほど水素濃度は低下して白点性欠陥や遅れ破壊等の材
料欠陥に対する安全性が高まるため、真空度は0.1To
rr以下に減圧するのが望ましい。以上より、本実施の形
態では真空度は0.1〜1Torrに設定した。
As is apparent from FIG. 3, the hydrogen concentration is reduced by performing the vacuum heat treatment, and the degree of vacuum is reduced to 1 Torr.
When the pressure is reduced below, the hydrogen concentration of the test piece becomes 1 ppm in a short time.
It was found to decrease below. On the other hand, the higher the degree of vacuum, the lower the hydrogen concentration and the higher the safety against material defects such as white spot defects and delayed fracture.
It is desirable to reduce the pressure to rr or less. As described above, in this embodiment, the degree of vacuum is set to 0.1 to 1 Torr.

【0037】このように本実施の形態では真空度を0.
1〜1Torrに設定しているが、かかる真空度は汎用の油
回転ポンプで到達可能な真空度であり、経済的にも低廉
で済む。また、1Torr程度の真空度は極度の高真空では
なく、しかも短時間処理のため脱炭素、脱窒素等が生じ
ることもない。
As described above, in this embodiment, the degree of vacuum is set to 0.1.
Although it is set to 1 to 1 Torr, such a vacuum degree is a vacuum degree that can be reached by a general-purpose oil rotary pump, and it is economically inexpensive. In addition, the degree of vacuum of about 1 Torr is not an extremely high vacuum, and decarburization, denitrification, etc. do not occur because of the short-time treatment.

【0038】尚、本発明に係る機械部品の脱水素処理方
法は、鋼の種類に関係なく適用することができる。これ
は合金元素の添加により、水素の拡散速度については影
響を受けるものの、その影響度合は僅かである一方、水
素の拡散速度は温度、真空度及び組織による影響の方が
遙かに大きく、上述した加熱保持温度及び真空度では鋼
種による効果の差異は殆ど生じないためである。
The method for dehydrogenating mechanical parts according to the present invention can be applied regardless of the type of steel. Although the diffusion rate of hydrogen is affected by the addition of alloying elements, the degree of the effect is small, but the diffusion rate of hydrogen is much more affected by the temperature, degree of vacuum, and the structure. This is because there is almost no difference in effect depending on the steel type at the heating holding temperature and the degree of vacuum.

【0039】[0039]

【実施例】次に、本発明の実施例について具体的に説明
する。
Next, embodiments of the present invention will be described specifically.

【0040】まず、成分組成の異なる鋼種1、鋼種2及
び鋼種3の各試験片(寸法はいずれもφ65×6mm)
について、950℃で20時間浸炭処理又は浸炭窒化処
理を施し、所定の脱水素処理を行なった。
First, test specimens of steel type 1, steel type 2 and steel type 3 having different component compositions (all dimensions are φ65 × 6 mm)
Was subjected to a carburizing treatment or a carbonitriding treatment at 950 ° C. for 20 hours to perform a predetermined dehydrogenation treatment.

【0041】表1は、鋼種1、鋼種2及び鋼種3の成分
組成を示し、表2は、各処理A〜Hの浸炭処理条件又は
浸炭窒化処理条件、脱水素処理条件、測定結果(L10寿
命(サイクル)、水素濃度(ppm))を示している。
表2中、処理A〜Dは本発明の実施例、処理E〜Hは比
較例である。
Table 1 shows the component compositions of steel type 1, steel type 2 and steel type 3. Table 2 shows the carburizing conditions or carbonitriding conditions, dehydrogenating conditions, and measurement results (L 10 Life (cycle), hydrogen concentration (ppm)).
In Table 2, treatments A to D are examples of the present invention, and treatments E to H are comparative examples.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 寿命測定については各処理A〜Hを施した後、840℃
で焼入硬化処理を施し、その後160℃で90分間焼戻
処理を施し、寿命試験を行なってL10寿命を測定した。
[Table 2] After the treatments A to H were performed for the life measurement, 840 ° C.
In performing quench-hardening treatment, then subjected to 90 minutes tempering treatment at 160 ° C., it was measured L 10 life by performing life tests.

【0044】また、水素濃度については、上記高温真空
融解法(JIS Z 2614)によって鋼中の総水素
量を測定し、該総水素量から鋼中の水素濃度を算出し
た。
Regarding the hydrogen concentration, the total hydrogen content in the steel was measured by the high-temperature vacuum melting method (JIS Z 2614), and the hydrogen concentration in the steel was calculated from the total hydrogen content.

【0045】本実施例(A〜D)の処理条件は以下の通
りである。
The processing conditions of this embodiment (A to D) are as follows.

【0046】〔処理A〕浸炭処理後、温度950℃で
0.5時間、真空度0.1Torrで脱水素処理を施した
後、大気放冷した。
[Treatment A] After the carburizing treatment, the mixture was subjected to a dehydrogenation treatment at a temperature of 950 ° C. for 0.5 hour and a degree of vacuum of 0.1 Torr, and then allowed to cool to the atmosphere.

【0047】〔処理B〕浸炭処理後、温度650℃に窒
素ガス冷却し、該温度650℃で0.5時間、真空度
0.1Torrで脱水素処理を施した後、大気放冷した。
[Treatment B] After the carburizing treatment, the mixture was cooled with nitrogen gas to a temperature of 650 ° C., subjected to a dehydrogenation treatment at the temperature of 650 ° C. for 0.5 hour at a degree of vacuum of 0.1 Torr, and then allowed to cool to the atmosphere.

【0048】〔処理C〕浸炭処理後、室温まで放冷した
後、温度650℃に再加熱し、該温度650℃で0.5
時間、真空度0.1Torrで脱水素処理を施した後、大気
放冷した。
[Treatment C] After the carburizing treatment, the mixture was allowed to cool to room temperature, reheated to a temperature of 650 ° C.
After performing dehydrogenation treatment at a vacuum degree of 0.1 Torr for a time, the mixture was allowed to cool to the atmosphere.

【0049】〔処理D〕浸炭窒化処理後、温度650℃
に窒素ガス冷却し、該温度650℃で0.5時間、真空
度0.1Torrで脱水素処理を施した後、大気放冷した。
[Treatment D] After carbonitriding, the temperature was 650 ° C.
The mixture was subjected to dehydrogenation treatment at a temperature of 650 ° C. for 0.5 hour and a degree of vacuum of 0.1 Torr, and then allowed to cool to the atmosphere.

【0050】一方、比較例(E〜H)の処理条件は以下
の通りである。
On the other hand, the processing conditions of the comparative examples (E to H) are as follows.

【0051】〔処理E〕浸炭処理後、温度250℃に窒
素ガス冷却し、該温度250℃で0.5時間、真空度
0.1Torrで脱水素処理を施した後、大気放冷した。
[Treatment E] After the carburizing treatment, the mixture was cooled to a temperature of 250 ° C. with nitrogen gas, subjected to a dehydrogenation treatment at the temperature of 250 ° C. for 0.5 hour at a degree of vacuum of 0.1 Torr, and then allowed to cool to the atmosphere.

【0052】〔処理F〕浸炭処理後、温度650℃に窒
素ガス冷却し、該温度650℃で0.5時間、真空度2
Torrで脱水素処理を施した後、大気放冷した。
[Treatment F] After the carburizing treatment, nitrogen gas was cooled to a temperature of 650 ° C., and the temperature was 650 ° C. for 0.5 hour and the degree of vacuum was 2
After performing dehydrogenation treatment with Torr, it was allowed to cool to the atmosphere.

【0053】〔処理G〕浸炭処理後、温度650℃に窒
素ガス冷却し、窒素雰囲気下(大気圧)で温度650℃
で0.5時間で脱水素処理を施した後、大気放冷した。
[Treatment G] After the carburizing treatment, the mixture was cooled to a temperature of 650 ° C. with nitrogen gas, and heated to a temperature of 650 ° C. in a nitrogen atmosphere (atmospheric pressure).
After dehydrogenation for 0.5 hour, the mixture was allowed to cool to the atmosphere.

【0054】〔処理H〕浸炭処理後、室温まで大気放冷
した後、該室温で20時間、真空度0.1Torrで脱水素
処理を施した。
[Treatment H] After carburizing, the mixture was allowed to cool to room temperature in the air, and then subjected to a dehydrogenation treatment at room temperature for 20 hours at a vacuum of 0.1 Torr.

【0055】表2から明らかなように、処理A〜Dにお
いては、鋼種1、鋼種2、鋼種3の種類の如何に拘わら
ず水素濃度が1ppm以下に低下し、しかもこれらの寿
命も良好な結果が得られることが判る。
As is clear from Table 2, in the treatments A to D, the hydrogen concentration was reduced to 1 ppm or less irrespective of the types of steel 1, steel 2, and steel 3, and their life was good. Is obtained.

【0056】一方、処理Eは加熱保持温度が250℃と
低いため、拡散性水素は放出されたものの、非拡散性水
素の放出はなされないため、水素濃度が2.23ppm
と1ppm以上になり、L10寿命も本実施例処理A〜D
に比べ極端に低下している。これは一般に拡散性水素が
存在しなければ、遅れ破壊を防止することができるとさ
れているが、実際には試験片中に非拡散性水素が残存し
ているため、応力負荷により拡散性水素と類似の挙動を
行なうためと考えられる。したがって、これらのことか
らも拡散性水素のみならず非拡散性水素をも除去する必
要があることが判る。
On the other hand, in the treatment E, the diffusible hydrogen was released because the heating and holding temperature was as low as 250 ° C., but the non-diffusible hydrogen was not released, so that the hydrogen concentration was 2.23 ppm.
And becomes more than 1 ppm, L 10 life embodiment process A~D
It is extremely low compared to. It is generally said that if there is no diffusible hydrogen, delayed fracture can be prevented.However, since non-diffusible hydrogen remains in the test piece, diffusible hydrogen is not It is considered that the behavior similar to the above is performed. Therefore, it is understood from these facts that it is necessary to remove not only diffusible hydrogen but also non-diffusible hydrogen.

【0057】処理F及び処理Gは、いずれも真空度が1
Torrより低真空であるため、水素の排出量が少なくな
る。このため、試験片の水素濃度は1ppm以上とな
り、L10寿命が低下している。
In both processes F and G, the degree of vacuum was 1
Since the vacuum is lower than Torr, the amount of discharged hydrogen is reduced. Therefore, the hydrogen concentration of the specimen becomes more 1 ppm, L 10 life is reduced.

【0058】処理Hは、真空度が1Torr以下で20時間
保持しているが、室温で保持しているため、試験片中の
水素が殆ど排出されず、試験片中の水素濃度が高い状態
を維持し、その結果L10寿命も極端に低下する結果とな
った。
In the treatment H, although the degree of vacuum is kept at 1 Torr or less for 20 hours, since the specimen is kept at room temperature, almost no hydrogen is discharged from the test piece and the hydrogen concentration in the test piece is high. maintaining, resulted in a result L 10 life is extremely lowered.

【0059】[0059]

【発明の効果】このように本発明に係る機械部品の脱水
素処理方法は、所定条件下で浸炭処理又は浸炭窒化処理
をした後、真空下で加熱保持して脱水素処理を施すの
で、設備の大幅な変更を必要とせず、従来の設備に真空
設備を加えるか、或いは真空置換設備が既に装備されて
いる場合は該真空置換設備を流用することのみで、浸炭
処理時又は浸炭窒化処理時に侵入した機械部品内の水素
濃度を大幅に低下させることができ、白点性欠陥や遅れ
破壊等の材料欠陥に対して安全性を高めることができ、
耐久性の向上した機械部品を得ることができる。
As described above, according to the method for dehydrogenating mechanical parts according to the present invention, after performing carburizing or carbonitriding under predetermined conditions, heating and holding under vacuum to perform dehydrogenating, It does not require a significant change of the conventional equipment, or adding vacuum equipment to the existing equipment, or if the vacuum replacement equipment is already equipped, only by diverting the vacuum replacement equipment, during carburizing treatment or carbonitriding processing It can greatly reduce the hydrogen concentration in the machine parts that have penetrated and increase the safety against material defects such as white spot defects and delayed fracture,
Machine parts with improved durability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水素濃度と機械部品の寿命との関係を示す特性
図である。
FIG. 1 is a characteristic diagram showing a relationship between a hydrogen concentration and a service life of a machine component.

【図2】加熱温度と機械部品からの水素放出速度との関
係を示す特性図である。
FIG. 2 is a characteristic diagram showing a relationship between a heating temperature and a hydrogen release rate from a mechanical part.

【図3】真空度と水素濃度との関係を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing a relationship between a degree of vacuum and a hydrogen concentration.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年2月20日[Submission date] February 20, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】このため、近年では、真空排気装置を設
け、処理品である機械部品の炉内への搬入や浸炭処理後
等の焼入時に真空置換を行なう方法が採用されており、
また実平3−45946号公報では浸炭処理後に真空
下で拡散処理を施して酸素分圧を低下させることによ
り、処理材表面の酸化物を除去し、煤の付着を防止する
技術が提案されている。
For this reason, in recent years, a method has been adopted in which a vacuum exhaust device is provided, and vacuum replacement is performed at the time of quenching such as after carrying in a furnace of a machined part to be processed or after carburizing.
Further, by the real equitable 3-45946 discloses to reduce the oxygen partial pressure is subjected to diffusion treatment in vacuum after carburization, to remove oxides of treatment material surface, it is proposed a technique of preventing the soot of ing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 機械部品を所定条件下で浸炭処理又は浸
炭窒化処理をした後、真空下で加熱保持して脱水素処理
を施すことを特徴とする機械部品の脱水素処理方法。
1. A method for dehydrogenating mechanical parts, comprising subjecting a mechanical part to a carburizing treatment or a carbonitriding treatment under a predetermined condition, and then performing a dehydrogenation treatment by heating and holding under vacuum.
JP2192797A 1997-01-22 1997-01-22 Dehydrogenation for machine parts Pending JPH10204612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2192797A JPH10204612A (en) 1997-01-22 1997-01-22 Dehydrogenation for machine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2192797A JPH10204612A (en) 1997-01-22 1997-01-22 Dehydrogenation for machine parts

Publications (1)

Publication Number Publication Date
JPH10204612A true JPH10204612A (en) 1998-08-04

Family

ID=12068709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2192797A Pending JPH10204612A (en) 1997-01-22 1997-01-22 Dehydrogenation for machine parts

Country Status (1)

Country Link
JP (1) JPH10204612A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339054A (en) * 2001-05-17 2002-11-27 Daido Steel Co Ltd High pressure-resistant member and manufacturing method
JP2004278782A (en) * 2003-02-28 2004-10-07 Ntn Corp Component of transmission, its manufacturing method, and tapered roller bearing
JP2004315964A (en) * 2003-03-31 2004-11-11 Ntn Corp Drive shaft supporting structure in scroll compressor, component of scroll compressor, method for manufacturing drive shaft supporting structure in scroll compressor, and method for manufacturing component of scroll compressor
JP2006206929A (en) * 2005-01-25 2006-08-10 Ntn Corp Thin orbital member for bearing, and thrust bearing
US7334943B2 (en) 2003-02-28 2008-02-26 Ntn Corporation Differential support structure, differential's component, method of manufacturing differential support structure, and method of manufacturing differential's component
DE102006054280A1 (en) * 2006-11-17 2008-05-29 Durferrit Gmbh Method for increasing corrosion resistance of nitrocarburized and oxidized surfaces of steel components, comprises degassing the surfaces of the components in a vacuum and applying corrosion protection agent on the component surface
US7438477B2 (en) 2001-11-29 2008-10-21 Ntn Corporation Bearing part, heat treatment method thereof, and rolling bearing
US7585114B2 (en) 2003-03-28 2009-09-08 Ntn Corporation Compressor bearing and compressor component
JP2011157598A (en) * 2010-02-02 2011-08-18 Daido Steel Co Ltd Heat treatment method of steel material
JP2015078416A (en) * 2013-10-18 2015-04-23 日本パワーファスニング株式会社 Heat treatment method of steel product
US9404531B2 (en) 2007-02-23 2016-08-02 Ntn Corporation Bearing apparatus for wheel

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339054A (en) * 2001-05-17 2002-11-27 Daido Steel Co Ltd High pressure-resistant member and manufacturing method
KR100951216B1 (en) * 2001-11-29 2010-04-05 에누티에누 가부시기가이샤 Bearing Part, Heat Treatment Method Thereof, and Rolling Bearing
US7438477B2 (en) 2001-11-29 2008-10-21 Ntn Corporation Bearing part, heat treatment method thereof, and rolling bearing
JP2004278782A (en) * 2003-02-28 2004-10-07 Ntn Corp Component of transmission, its manufacturing method, and tapered roller bearing
US7334943B2 (en) 2003-02-28 2008-02-26 Ntn Corporation Differential support structure, differential's component, method of manufacturing differential support structure, and method of manufacturing differential's component
JP4718781B2 (en) * 2003-02-28 2011-07-06 Ntn株式会社 Transmission components and tapered roller bearings
US7585114B2 (en) 2003-03-28 2009-09-08 Ntn Corporation Compressor bearing and compressor component
JP2004315964A (en) * 2003-03-31 2004-11-11 Ntn Corp Drive shaft supporting structure in scroll compressor, component of scroll compressor, method for manufacturing drive shaft supporting structure in scroll compressor, and method for manufacturing component of scroll compressor
JP2006206929A (en) * 2005-01-25 2006-08-10 Ntn Corp Thin orbital member for bearing, and thrust bearing
JP4642490B2 (en) * 2005-01-25 2011-03-02 Ntn株式会社 Manufacturing method of thin-walled bearing member for bearing
DE102006054280B4 (en) * 2006-11-17 2011-01-05 Durferrit Gmbh Method and device for increasing the corrosion resistance of nitrocarburised or nitrocarburised and oxidized surfaces of steel components
DE102006054280A1 (en) * 2006-11-17 2008-05-29 Durferrit Gmbh Method for increasing corrosion resistance of nitrocarburized and oxidized surfaces of steel components, comprises degassing the surfaces of the components in a vacuum and applying corrosion protection agent on the component surface
US9404531B2 (en) 2007-02-23 2016-08-02 Ntn Corporation Bearing apparatus for wheel
JP2011157598A (en) * 2010-02-02 2011-08-18 Daido Steel Co Ltd Heat treatment method of steel material
JP2015078416A (en) * 2013-10-18 2015-04-23 日本パワーファスニング株式会社 Heat treatment method of steel product

Similar Documents

Publication Publication Date Title
JP3605830B2 (en) Continuous annealing furnace, annealing method and method for manufacturing inner and outer rings of rolling bearing
EP0626468B1 (en) Process for carbonitriding steel
EP1837413B1 (en) Rolling-sliding elements and process for production of the same
EP2623627A1 (en) Case hardened steel and method for producing same
EP2508638B1 (en) Forged steel bar for bearings and process for producing it
JPH10204612A (en) Dehydrogenation for machine parts
JP2002115030A (en) Rolling bearing for spindle of machine tool
JPH09257041A (en) Rolling bearing resistant for surface flaw
JP5260032B2 (en) Induction hardened steel excellent in cold workability, rolling member made of the steel, and linear motion device using the rolling member
JP2010255099A (en) Method for manufacturing bearing-component excellent in rolling fatigue characteristics under foreign matter environment
JP2002180203A (en) Needle bearing components, and method for producing the components
GB2333782A (en) Method of production of rolling bearing
Siepak The influence of contact stress on the wear of a carburized steel case with a high content of retained austenite
JP2007113027A (en) Heat treatment method for steel, method for producing rolling-supporting apparatus and rolling-supporting apparatus
JPH1046286A (en) Rolling bearing
EP1420078B1 (en) Bearing steel excellent in corrosion resistance
EP0718416B1 (en) Rolling bearing and method of making same
JP2000204445A (en) Rolling bearing parts for high temperature use
JPH10168515A (en) Heat treated article
EP1001181B1 (en) Rolling or sliding parts
JPH0428845A (en) Steel for rolling bearing
JPH05118336A (en) Rolling bearing
JP2596051B2 (en) Manufacturing method of carburized parts
JP2003268497A (en) Roller bearing
JPH11210767A (en) Rolling bearing