JP2011157470A - Desulfurizing agent, manufacturing method therefor, and desulfurization method for hydrocarbon oil using this - Google Patents

Desulfurizing agent, manufacturing method therefor, and desulfurization method for hydrocarbon oil using this Download PDF

Info

Publication number
JP2011157470A
JP2011157470A JP2010020259A JP2010020259A JP2011157470A JP 2011157470 A JP2011157470 A JP 2011157470A JP 2010020259 A JP2010020259 A JP 2010020259A JP 2010020259 A JP2010020259 A JP 2010020259A JP 2011157470 A JP2011157470 A JP 2011157470A
Authority
JP
Japan
Prior art keywords
mass
desulfurization
desulfurizing agent
nickel
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010020259A
Other languages
Japanese (ja)
Other versions
JP5467885B2 (en
Inventor
Satoshi Takasaki
智 高崎
Yasuhiro Araki
泰博 荒木
Yukio Otsuka
幸雄 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
Japan Petroleum Energy Center JPEC
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Petroleum Energy Center JPEC, JX Nippon Oil and Energy Corp filed Critical Japan Petroleum Energy Center JPEC
Priority to JP2010020259A priority Critical patent/JP5467885B2/en
Publication of JP2011157470A publication Critical patent/JP2011157470A/en
Application granted granted Critical
Publication of JP5467885B2 publication Critical patent/JP5467885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desulfurizing agent capable of stably and economically desulfurizing a hydrocarbon oil under a specific condition for a long period of time. <P>SOLUTION: The desulfurizing agent contains 1-30 mass% of nickel, 30-80 mass% of zinc and 0.1-20 mass% of one kind or more of elements selected from Group 3A and has a specific surface area of 70 m<SP>2</SP>/g or higher. The desulfurizing agent can be manufactured by simultaneously dropwise adding an acidic solution and an alkaline solution containing nickel, zinc and one kind or more of elements selected from Group 3A to water and producing precipitation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭化水素油中に含有される硫黄分を除去するための脱硫剤、該脱硫剤の製造方法、及び該脱硫剤を用いた炭化水素油の脱硫方法に関する。   The present invention relates to a desulfurizing agent for removing sulfur contained in hydrocarbon oil, a method for producing the desulfurizing agent, and a method for desulfurizing hydrocarbon oil using the desulfurizing agent.

21世紀の自動車及びその燃料においては環境問題への対応が大きな課題であり、地球温暖化ガスであるCO2排出削減とNOx等のいわゆる自動車排出ガス削減との両方の観点から、燃料の硫黄分低減が益々求められている。具体的には、ガソリンや軽油の硫黄分は、サルファー・フリー(硫黄分10質量ppm以下)に規制され、さらに低硫黄分、すなわちゼロ・サルファー(硫黄分1質量ppm以下)の燃料油も求められている。 In the 21st century automobiles and their fuels, dealing with environmental issues is a major issue. From the viewpoint of reducing CO 2 emissions, which are global warming gases, and so-called automobile exhaust emissions such as NOx, the sulfur content of the fuel Reduction is increasingly required. Specifically, the sulfur content of gasoline and light oil is regulated to sulfur-free (sulfur content of 10 ppm by mass or less), and further low sulfur content, that is, zero sulfur (sulfur content of 1 ppm by mass or less) fuel oil is also sought. It has been.

従来主に用いられてきた脱硫技術である水素化脱硫法(例えば、コバルト、ニッケル、モリブデンを担持したアルミナ触媒を用いて、高温高圧水素雰囲気下で脱硫する方法)を適用してガソリンや軽油などの燃料油に残存する硫黄化合物を除去し、硫黄分を10質量ppm以下、さらには1質量ppm以下にするには、高温・高圧の反応である水素化脱硫反応において従来よりもさらに高温・高圧での操作が求められるため、エネルギー消費が大きくなり、また、水素消費量も膨大になる。また、上記水素化脱硫において、空間速度を下げてマイルドな条件で反応させようとすると、膨大な触媒量を要する。そのため、水素化脱硫反応法を適用する場合には、いずれにせよ多大なコストアップとなることは避けられない。さらに、上記水素化脱硫を適用した場合、ガソリン基材については、オレフィン分まで水素化されてしまうため、オクタン価のロスが大きい。   Gasoline, light oil, etc. by applying the hydrodesulfurization method (for example, desulfurization under high-temperature and high-pressure hydrogen atmosphere using an alumina catalyst supporting cobalt, nickel and molybdenum), which is a desulfurization technique that has been mainly used in the past In order to remove the sulfur compounds remaining in the fuel oil and reduce the sulfur content to 10 ppm by mass or less, and further to 1 ppm by mass or less, the hydrodesulfurization reaction, which is a high temperature / high pressure reaction, has a higher temperature / pressure higher than before. Therefore, energy consumption is increased and hydrogen consumption is enormous. Further, in the above hydrodesulfurization, if an attempt is made to react under mild conditions by reducing the space velocity, a huge amount of catalyst is required. Therefore, when the hydrodesulfurization reaction method is applied, any increase in cost is inevitable in any case. Furthermore, when the above hydrodesulfurization is applied, the gasoline base material is hydrogenated to the olefin content, resulting in a large octane loss.

この問題に対して、オクタン価のロスを抑制しながら接触分解ガソリンを脱硫するための脱硫剤として、ニッケルと酸化亜鉛を含む脱硫剤が提案されている(特許文献1)。しかしながら、この脱硫剤では、比表面積が小さいため、十分な脱硫レベルが得られないという問題があった。   In response to this problem, a desulfurization agent containing nickel and zinc oxide has been proposed as a desulfurization agent for desulfurizing catalytic cracked gasoline while suppressing the loss of octane number (Patent Document 1). However, this desulfurization agent has a problem that a sufficient desulfurization level cannot be obtained because of its small specific surface area.

この問題に対して、アルミナ、シリカといった高表面積の担体成分を添加し、ニッケルと酸化亜鉛を担体上に展開することで高表面積化する手法が開発されている。例えば、下記特許文献2には、アルミナまたは擬ベーマイトを核としてニッケル成分、亜鉛成分を共沈させることで高表面積化する手法が開示されており、また、下記特許文献3には、シリカゾルを沈殿溶液に混合し、シリカ前駆体をニッケル成分、亜鉛成分と共沈させることで高表面積化する手法が開示されている。しかしながら、いずれもニッケルと酸化亜鉛が高表面積担体に展開されているため相互の接触面積が減少し、酸化亜鉛を十分に活かせないため、寿命が短いという問題があった。また、担体成分自体は硫黄を取り込むことができないため、担体成分を多く含む場合はさらに寿命が短くなる。さらには、ニッケル成分が担体の効果を受け、還元され難いという問題もあった。   In response to this problem, a technique has been developed in which a high surface area carrier component such as alumina or silica is added and nickel and zinc oxide are spread on the carrier to increase the surface area. For example, Patent Document 2 below discloses a technique for increasing the surface area by co-precipitation of a nickel component and a zinc component using alumina or pseudoboehmite as a core, and Patent Document 3 below precipitates silica sol. A method of increasing the surface area by mixing in a solution and coprecipitating a silica precursor with a nickel component and a zinc component is disclosed. However, in both cases, since nickel and zinc oxide are spread on a high surface area carrier, the mutual contact area is reduced, and zinc oxide cannot be fully utilized. Further, since the carrier component itself cannot take in sulfur, the life is further shortened when it contains a large amount of carrier component. Furthermore, there is a problem that the nickel component is hardly reduced due to the effect of the carrier.

これに対して、本発明者等は、ニッケル、亜鉛を含有する脱硫剤に、アルカリ土類金属を含有させることで、接触分解ガソリンを高度に脱硫できることを見い出している(特許文献4)。しかしながら、この方法でも、十分な脱硫レベルが得られているとは言えなかった。   On the other hand, the present inventors have found that catalytic cracking gasoline can be highly desulfurized by adding an alkaline earth metal to a desulfurizing agent containing nickel and zinc (Patent Document 4). However, even with this method, it could not be said that sufficient desulfurization levels were obtained.

特開平6−80972号公報Japanese Patent Laid-Open No. 6-80972 特開2004−230317号公報JP 2004230317 A 特開2008−115309号公報JP 2008-115309 A 特開2008−291146号公報JP 2008-291146 A

上述したように、炭化水素油の硫黄分を10質量ppm、さらには1質量ppm以下まで比較的マイルドな条件において安定にかつ経済的に脱硫する方法は、未だ確立されていない。そこで、本発明は、特定の条件下で炭化水素油を長期間にわたって安定にかつ経済的に脱硫できる脱硫剤を提供することを課題とする。   As described above, a method for stably and economically desulfurizing the sulfur content of hydrocarbon oil under relatively mild conditions up to 10 ppm by mass and even 1 ppm by mass has not been established yet. Then, this invention makes it a subject to provide the desulfurization agent which can desulfurize hydrocarbon oil stably and economically over a long period of time on specific conditions.

本発明者らは、上記課題を解決するために鋭意研究した結果、3A族から選ばれる1種類以上の元素を含む特定の脱硫剤によって炭化水素油を処理することで長期間安定的に硫黄分を低減できることを見出し、この発明に至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors have been able to stably treat sulfur oil for a long period of time by treating hydrocarbon oil with a specific desulfurizing agent containing one or more elements selected from Group 3A. Has been found to be able to be reduced, leading to the present invention.

すなわち、本発明は、
(1)ニッケルを1〜30質量%、亜鉛を30〜80質量%、3A族から選ばれる1種類以上の元素を0.1〜20質量%含有し、比表面積が70m2/g以上であることを特徴とする脱硫剤、
(2)水に、ニッケル、亜鉛及び3A族から選ばれる1種類以上の元素を含有する酸性溶液とアルカリ溶液とを同時に滴下して、沈殿を生成させることを特徴とする前記(1)記載の脱硫剤の製造方法、
(3)硫黄分を2質量ppm以上含有する炭化水素油を前記(1)記載の脱硫剤と水素存在下で、温度50〜300℃、圧力0.2〜5.0MPa、液空間速度1.0h-1以上の条件で接触させる炭化水素油の脱硫方法である。
That is, the present invention
(1) 1 to 30% by mass of nickel, 30 to 80% by mass of zinc, 0.1 to 20% by mass of one or more elements selected from Group 3A, and a specific surface area of 70 m 2 / g or more A desulfurizing agent, characterized by
(2) The above-mentioned (1), wherein an acidic solution containing at least one element selected from nickel, zinc and 3A group and an alkaline solution are simultaneously dropped into water to form a precipitate. A method for producing a desulfurization agent,
(3) Hydrocarbon oil containing 2 mass ppm or more of sulfur content in the presence of the desulfurizing agent and hydrogen described in (1) above, temperature 50 to 300 ° C., pressure 0.2 to 5.0 MPa, liquid space velocity 1. This is a method for desulfurizing a hydrocarbon oil to be contacted under a condition of 0 h −1 or more.

本発明の脱硫剤を特定の条件下で適用する事により、オレフィン分をほとんど水素化することなく、炭化水素油の脱硫を長期間にわたって安定かつ経済的に実施する事ができる。   By applying the desulfurizing agent of the present invention under specific conditions, desulfurization of hydrocarbon oil can be carried out stably and economically over a long period of time without almost hydrogenating the olefin component.

[脱硫剤]
本発明の脱硫剤はニッケル、亜鉛及び3A族から選ばれる1種類以上の元素を含むものであり、例えば、共沈法によって金属成分を沈殿させてろ過、洗浄し、成形、焼成等の工程を経ることによって得ることができる。
[Desulfurizing agent]
The desulfurizing agent of the present invention contains one or more elements selected from nickel, zinc, and group 3A. For example, a metal component is precipitated by coprecipitation and filtered, washed, molded, fired, and the like. It can be obtained by going through.

脱硫剤総質量に対するニッケル含有量は1〜30質量%であり、好ましくは10〜20質量%、より好ましくは13〜16質量%である。また、脱硫剤総質量に対する亜鉛含有量は30〜80質量%であり、好ましくは40〜60質量%、より好ましくは45〜55質量%である。   The nickel content with respect to the total mass of the desulfurizing agent is 1 to 30% by mass, preferably 10 to 20% by mass, and more preferably 13 to 16% by mass. Moreover, zinc content with respect to the desulfurization agent total mass is 30-80 mass%, Preferably it is 40-60 mass%, More preferably, it is 45-55 mass%.

ニッケル含有量が30質量%以下、亜鉛含有量が30質量%以上の場合、脱硫剤の寿命が長く、また、ニッケル含有量が20質量%以下、亜鉛含有量が45質量%以上の場合、脱硫剤の寿命が特に長くなる。なお、ニッケル及び亜鉛の合計総含有量は、脱硫剤の総質量に対して35〜80質量%、特には50〜75質量%が好ましい。   When the nickel content is 30% by mass or less and the zinc content is 30% by mass or more, the life of the desulfurization agent is long, and when the nickel content is 20% by mass or less and the zinc content is 45% by mass or more, desulfurization is performed. The life of the agent is particularly long. In addition, the total total content of nickel and zinc is 35 to 80% by mass, particularly 50 to 75% by mass with respect to the total mass of the desulfurizing agent.

また、本発明の脱硫剤において、3A族から選ばれる1種類以上の元素の含有量は、脱硫剤総質量に対して0.1〜20質量%、好ましくは5〜20質量%、より好ましくは7〜16質量%である。   In the desulfurizing agent of the present invention, the content of one or more elements selected from Group 3A is 0.1 to 20% by mass, preferably 5 to 20% by mass, more preferably, based on the total mass of the desulfurizing agent. 7 to 16% by mass.

脱硫剤総質量に対する3A族元素含有量が0.1質量%以上であると、ニッケルを微粒子化することで細孔径2〜30nmの細孔容積、比表面積を増大させることができ、ニッケルと硫黄化合物との反応を促進できる。また、亜鉛酸化物粒子も微粒子化されることで、ニッケルと亜鉛酸化物の接触面積を増大させ、硫黄の移動を促進できる。なお、3A族元素含有量が0.1質量%未満であると、上記の効果を得るには不十分である。一方、脱硫剤総質量に対する3A族元素含有量が20質量%を超えると、脱硫剤粒子表面に3A族元素酸化物が多く存在し、ニッケルと硫黄化合物との反応、あるいはニッケルと亜鉛酸化物間の硫黄の移動を妨げる効果が大きくなり脱硫活性が低くなるだけでなく、脱硫剤全体におけるニッケルと亜鉛の含有量がその分少なくなり、炭化水素油との接触効率が低くなって寿命が短くなる。前記の3A族としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジウム、ネオジウム等が挙げられ、特にはセリウムが好ましい。   When the content of the group 3A element with respect to the total mass of the desulfurizing agent is 0.1% by mass or more, it is possible to increase the pore volume with a pore diameter of 2 to 30 nm and the specific surface area by making nickel fine particles. The reaction with the compound can be promoted. Further, since the zinc oxide particles are also made fine, the contact area between nickel and zinc oxide can be increased and the movement of sulfur can be promoted. In addition, it is inadequate to acquire said effect as 3A group element content is less than 0.1 mass%. On the other hand, if the content of the group 3A element with respect to the total mass of the desulfurizing agent exceeds 20% by mass, a large amount of the group 3A element oxide exists on the surface of the desulfurizing agent particles, and the reaction between nickel and the sulfur compound or This not only increases the effect of hindering the movement of sulfur and lowers the desulfurization activity, but also reduces the nickel and zinc contents in the entire desulfurization agent, lowering the contact efficiency with hydrocarbon oil and shortening the life . Examples of the group 3A include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium and the like, and cerium is particularly preferable.

また、脱硫剤中のニッケル含有量に対する3A族元素含有量(モル比、3A族元素/Ni)は0.01〜0.6が好ましく、より好ましくは0.1〜0.55、特には0.15〜0.50が好ましい。ニッケル含有量に対する3A族元素含有量(モル比)が0.6を超えると、脱硫剤の寿命が著しく短くなり好ましくない。   Further, the 3A group element content (molar ratio, 3A group element / Ni) with respect to the nickel content in the desulfurizing agent is preferably 0.01 to 0.6, more preferably 0.1 to 0.55, particularly 0. .15 to 0.50 is preferred. When the 3A group element content (molar ratio) with respect to the nickel content exceeds 0.6, the life of the desulfurizing agent is remarkably shortened, which is not preferable.

本発明の脱硫剤は、ニッケル酸化物(NiO)の結晶子径が好ましくは5.0nm以下、より好ましくは4.0nm以下であり、亜鉛酸化物(ZnO)の結晶子径が好ましくは12nm以下、より好ましくは10nm以下である。NiOの結晶子径が5nmを超えると、上記の細孔径2〜30nmの細孔容積、比表面積の増大効果が得られないため好ましくない。また、ZnOの結晶子径が12nmを超えると、上記記載のニッケルと亜鉛酸化物の接触面積を増大効果が得られないため好ましくない。   In the desulfurizing agent of the present invention, the crystallite diameter of nickel oxide (NiO) is preferably 5.0 nm or less, more preferably 4.0 nm or less, and the crystallite diameter of zinc oxide (ZnO) is preferably 12 nm or less. More preferably, it is 10 nm or less. When the crystallite diameter of NiO exceeds 5 nm, it is not preferable because the effect of increasing the pore volume and specific surface area with the pore diameter of 2 to 30 nm cannot be obtained. Further, if the crystallite diameter of ZnO exceeds 12 nm, the effect of increasing the contact area between nickel and zinc oxide described above cannot be obtained, which is not preferable.

本発明の脱硫剤は、細孔径が2〜30nmである細孔の容積が好ましくは0.25〜0.50mL/gであり、より好ましくは0.25〜0.35mL/gである。細孔径が2〜30nmの細孔の容積が0.25mL/g未満であると、主として脱硫反応が起こる空間が少なくなるため好ましくない。また、細孔径が2〜30nmの細孔の容積が0.50mL/gを超えると、脱硫剤の嵩密度が小さくなって一定容量の反応器に充填できる質量が少なくなり寿命が短くなるため好ましくない。一方、細孔径が2〜30nmである細孔の容積が0.50mL/g以下であれば、十分な嵩密度が得られる。   The desulfurization agent of the present invention preferably has a pore volume having a pore diameter of 2 to 30 nm of 0.25 to 0.50 mL / g, more preferably 0.25 to 0.35 mL / g. If the volume of the pores having a pore diameter of 2 to 30 nm is less than 0.25 mL / g, it is not preferable because the space where the desulfurization reaction occurs mainly decreases. In addition, when the volume of the pores having a pore diameter of 2 to 30 nm exceeds 0.50 mL / g, the bulk density of the desulfurizing agent is reduced, and the mass that can be charged in the reactor of a constant volume is reduced, and the life is shortened. Absent. On the other hand, if the volume of the pores having a pore diameter of 2 to 30 nm is 0.50 mL / g or less, a sufficient bulk density can be obtained.

本発明の脱硫剤の比表面積は、70m2/g以上であり、好ましくは90〜600m2/gである。多孔質脱硫剤の比表面積が70m2/g未満であると、ニッケルや亜鉛酸化物と炭化水素油との接触効率が低くなって寿命が短くなる。なお、該比表面積は、窒素吸脱着法によるBET法で測定できる。 The specific surface area of the desulfurization agent of the present invention is 70m 2 / g or more, preferably 90~600m 2 / g. When the specific surface area of the porous desulfurization agent is less than 70 m 2 / g, the contact efficiency between nickel or zinc oxide and hydrocarbon oil is lowered and the life is shortened. The specific surface area can be measured by a BET method using a nitrogen adsorption / desorption method.

本発明の脱硫剤は、水素雰囲気下200〜350℃で処理して用いられることが好ましい。水素雰囲気下での処理温度が200℃未満では、ニッケルが還元され難くなるため好ましくない。また、該処理温度が350℃を超えると、ニッケルがシンタリングしてしまって活性が低くなるため好ましくない。   The desulfurizing agent of the present invention is preferably used after being treated at 200 to 350 ° C. in a hydrogen atmosphere. A treatment temperature under a hydrogen atmosphere of less than 200 ° C. is not preferable because nickel is difficult to be reduced. On the other hand, when the treatment temperature exceeds 350 ° C., nickel is sintered and the activity is lowered, which is not preferable.

本発明の脱硫剤は、共沈法により調製されることが好ましい。共沈法による調製方法は、アルミナのような多孔質担体に亜鉛、ニッケル、3A族元素などの金属成分を含浸、担持して焼成する製造方法に比べて脱硫に有効なニッケルと亜鉛を脱硫剤中に多く含ませることができるため、脱硫剤の長寿命化を達成できる。一方、亜鉛酸化物担体にニッケル及び3A族元素を含浸する方法は、亜鉛酸化物担体の細孔の閉塞により比表面積及び細孔容積が減少し、脱硫活性が低くなるため好ましくない。さらに、亜鉛及びニッケルを含む脱硫剤に3A族元素を含浸する方法も、担体の細孔の閉塞により比表面積及び細孔容積が減少し、脱硫活性が低くなるため好ましくない。   The desulfurizing agent of the present invention is preferably prepared by a coprecipitation method. The coprecipitation method uses a desulfurization agent that is more effective for desulfurization than a production method in which a porous carrier such as alumina is impregnated with metal components such as zinc, nickel, and a group 3A element, and is fired. Since it can be contained in a large amount, the life of the desulfurizing agent can be extended. On the other hand, the method of impregnating the zinc oxide support with nickel and a group 3A element is not preferable because the specific surface area and the pore volume are reduced due to the clogging of the pores of the zinc oxide support and the desulfurization activity is lowered. Furthermore, a method of impregnating a group 3A element with a desulfurizing agent containing zinc and nickel is not preferable because the specific surface area and the pore volume are reduced due to the clogging of the pores of the carrier and the desulfurization activity is lowered.

本発明では、ニッケルと亜鉛と3A族元素を含む酸性溶液をアルカリ溶液に混合して、ニッケルと亜鉛と3A族元素を含有する脱硫剤を調製することができる。ニッケルと亜鉛と3A族元素を含む酸性溶液は、亜鉛、ニッケル、3A族元素の硝酸塩、硫酸塩等を水で溶解することにより得られる。また、上記アルカリ溶液として、炭酸ナトリウム、炭酸アンモニウム等を用いることができるが、中でも炭酸ナトリウムを用いることが好ましい。   In the present invention, a desulfurization agent containing nickel, zinc and a group 3A element can be prepared by mixing an acidic solution containing nickel, zinc and a group 3A element with an alkaline solution. An acidic solution containing nickel, zinc, and a group 3A element is obtained by dissolving zinc, nickel, a group 3A element nitrate, sulfate, or the like with water. Moreover, although sodium carbonate, ammonium carbonate, etc. can be used as said alkaline solution, it is preferable to use sodium carbonate especially.

本発明の脱硫剤は、水に、ニッケル、亜鉛及び3A族から選ばれる1種類以上の元素を含有する酸性溶液とアルカリ溶液とを同時に滴下して、ニッケルと亜鉛と3A族元素を含有する沈殿を生成させることにより調製されることが特に好ましい。なお、本発明において、酸性溶液とアルカリ溶液との同時滴下とは、酸性溶液の80容量%以上の量、好ましくは90容量%以上の量を滴下している期間、酸性溶液を滴下しつつアルカリ溶液が滴下されており、且つ、アルカリ溶液の80容量%以上の量、好ましくは90容量%以上の量を滴下している期間、アルカリ溶液を滴下しつつ酸性溶液が滴下されていることを指し、酸性溶液及びアルカリ溶液の滴下の開始と終了が完全に一致していることを要さない。   The desulfurization agent of the present invention is a precipitate containing nickel, zinc, and a group 3A element by simultaneously dropping an acidic solution and an alkali solution containing one or more elements selected from nickel, zinc, and a group 3A into water. It is particularly preferred to be prepared by producing In the present invention, the simultaneous dropping of the acidic solution and the alkaline solution means that the acidic solution is dropped while the acidic solution is dropped for a period of 80% by volume or more, preferably 90% by volume or more. It means that the acidic solution is being dropped while the alkaline solution is being dropped while the solution is being dropped and the amount of 80% by volume or more, preferably 90% by volume or more of the alkaline solution is being dropped. In addition, it is not necessary that the start and end of the dropping of the acidic solution and the alkaline solution completely coincide with each other.

上記の工程で生成した沈殿物はろ過後に乾燥する必要があるが、乾燥温度は100〜200℃が好ましい。また、その後の焼成は必ずしも必要ではないが、焼成する場合の温度は400℃以下が好ましく、350℃以下が更に好ましい。焼成温度が400℃を超えると、塩が分解してできるニッケルと亜鉛と3A族元素の酸化物の結晶化が進み、ニッケル、亜鉛および3A族元素酸化物の結晶子径が大きくなり比表面積が低下するので好ましくない。   Although the precipitate produced | generated at said process needs to be dried after filtration, 100-200 degreeC is preferable for drying temperature. Subsequent firing is not necessarily required, but the temperature for firing is preferably 400 ° C. or lower, more preferably 350 ° C. or lower. When the firing temperature exceeds 400 ° C., crystallization of nickel, zinc, and group 3A element oxide formed by decomposition of the salt proceeds, and the crystallite size of nickel, zinc, and group 3A element oxide increases, and the specific surface area increases. Since it falls, it is not preferable.

なお、本発明において脱硫剤とは、硫黄収着機能を持った脱硫剤をいう。ここでいう硫黄収着機能を持った脱硫剤とは、有機硫黄化合物中の硫黄原子を脱硫剤に固定化するとともに、有機硫黄化合物中の硫黄原子以外の炭化水素残基については有機硫黄化合物中の炭素−硫黄結合が開裂することによって脱硫剤から脱離させる機能をもった脱硫剤をいう。この有機硫黄化合物中の炭化水素残基が脱離する際には、硫黄との結合が開裂した炭素に、系内に存在する水素が付加する。したがって、有機硫黄化合物から硫黄原子が除かれてそこに水素が付加した炭化水素化合物が生成物として得られることになる。ただし、硫黄原子が除かれた炭化水素化合物が、さらに水素化、異性化、分解等の反応を受けた生成物を与えることがあっても構わない。一方、硫黄は脱硫剤に固定化されるため、水素化精製処理とは異なり、反応生成物として硫化水素などの硫黄化合物の発生を伴わない。そのため、反応系内の水素をリサイクルして使用する際にも、硫化水素を除去する設備が不要となるため経済的に有利である。   In the present invention, the desulfurizing agent refers to a desulfurizing agent having a sulfur sorption function. The desulfurization agent having a sulfur sorption function here is to fix the sulfur atom in the organic sulfur compound to the desulfurization agent, and for hydrocarbon residues other than the sulfur atom in the organic sulfur compound in the organic sulfur compound. The desulfurization agent has a function of desorbing from the desulfurization agent by cleaving the carbon-sulfur bond. When the hydrocarbon residue in the organic sulfur compound is eliminated, hydrogen present in the system is added to the carbon whose bond with sulfur is cleaved. Therefore, a hydrocarbon compound obtained by removing a sulfur atom from an organic sulfur compound and adding hydrogen thereto is obtained as a product. However, the hydrocarbon compound from which the sulfur atom is removed may give a product that has undergone a reaction such as hydrogenation, isomerization, or decomposition. On the other hand, since sulfur is fixed to the desulfurization agent, unlike a hydrorefining treatment, generation of sulfur compounds such as hydrogen sulfide is not involved as a reaction product. Therefore, when hydrogen in the reaction system is recycled and used, an equipment for removing hydrogen sulfide is unnecessary, which is economically advantageous.

[炭化水素油]
本発明による脱硫方法の対象となる原料の炭化水素油は、硫黄分を含む炭化水素油であれば特に限定されないが、硫黄分を2質量ppm以上含むものが好ましく、より好ましくは2〜1,000質量ppm、より一層好ましくは2〜100質量ppm、特に好ましくは2〜40質量ppm含むものである。硫黄分が1,000質量ppmを超えると、脱硫剤の寿命が短くなり好ましくない。
[Hydrocarbon oil]
The hydrocarbon oil as a raw material to be subjected to the desulfurization method according to the present invention is not particularly limited as long as it is a hydrocarbon oil containing a sulfur content, but preferably contains 2 ppm by mass or more of sulfur content, more preferably 2 to 1, 000 mass ppm, more preferably 2 to 100 mass ppm, particularly preferably 2 to 40 mass ppm. When the sulfur content exceeds 1,000 ppm by mass, the life of the desulfurizing agent is shortened, which is not preferable.

原料の炭化水素油として、具体的には、製油所などで一般的に生産されるLPG留分、ガソリン留分、ナフサ留分、灯油留分、軽油留分などに相当する基材が挙げられる。LPG留分は、プロパン、プロピレン、ブタン、ブチレンなどを主成分とする燃料ガスおよび工業用原料ガスである。該LPG留分は、通常は、LPG(液化石油ガス)と称されるように、加圧下の球状タンクに液相の状態で貯蔵されるか、大気圧近傍の低温下にて、液相の状態で貯蔵される。上記ガソリン留分は、一般に炭素数4〜11の炭化水素を主体とし、密度(15℃)が0.783g/cm3以下、10%留出温度が24℃以上、90%留出温度が180℃以下である。上記ナフサ留分は、ガソリン留分の構成成分(ホールナフサ、軽質ナフサ、重質ナフサ、又はそれらの水素化脱硫ナフサ)あるいはガソリン基材を製造する接触改質の原料(脱硫重質ナフサ)となる成分などの総称であり、沸点範囲がガソリン留分と殆ど同じ範囲か、ガソリン留分の沸点範囲に包含されるものである。したがって、ガソリン留分と同じ意味で用いられることも多い。上記灯油留分は、一般に沸点範囲150〜280℃の炭化水素混合物である。上記軽油留分は、一般に沸点範囲190〜350℃の炭化水素混合物である。 Specific examples of the hydrocarbon oil as a raw material include base materials corresponding to LPG fraction, gasoline fraction, naphtha fraction, kerosene fraction, light oil fraction, etc. that are generally produced in refineries and the like. . The LPG fraction is a fuel gas mainly composed of propane, propylene, butane, butylene, and industrial raw material gas. The LPG fraction is usually stored in a liquid phase in a spherical tank under pressure as called LPG (liquefied petroleum gas) or at a low temperature near atmospheric pressure. Stored in state. The gasoline fraction is generally composed mainly of hydrocarbons having 4 to 11 carbon atoms, and has a density (15 ° C.) of 0.783 g / cm 3 or less, a 10% distillation temperature of 24 ° C. or more, and a 90% distillation temperature of 180%. It is below ℃. The naphtha fraction is composed of gasoline fraction components (hole naphtha, light naphtha, heavy naphtha, or hydrodesulfurized naphtha thereof) or a raw material for catalytic reforming (desulfurized heavy naphtha) for producing a gasoline base. The boiling point range is almost the same as that of the gasoline fraction or it is included in the boiling range of the gasoline fraction. Therefore, it is often used in the same meaning as the gasoline fraction. The kerosene fraction is generally a hydrocarbon mixture with a boiling range of 150-280 ° C. The gas oil fraction is generally a hydrocarbon mixture having a boiling range of 190 to 350 ° C.

また、原料の炭化水素油は、製油所などで生産されるものには限らず、硫黄分を2〜1,000質量ppm含有し、石油化学から生産される石油(炭化水素)ガスや前記と同様な沸点範囲を有する留分でも構わない。好ましく使用できる炭化水素油としては、重質油を熱分解又は接触分解して得られた炭化水素をさらに分留したものが挙げられる。   The hydrocarbon oil as a raw material is not limited to those produced at refineries and the like, but contains 2 to 1,000 ppm by mass of sulfur, petroleum (hydrocarbon) gas produced from petrochemicals, A fraction having a similar boiling range may be used. Examples of hydrocarbon oils that can be preferably used include those obtained by further fractionating hydrocarbons obtained by pyrolysis or catalytic cracking of heavy oils.

なお、本発明による脱硫方法の対象となる原料の炭化水素油として特に好ましいのは、接触分解ガソリンや軽油留分である。接触分解ガソリンはオレフィン分を10〜50容量%程度含むため、一般的に行われる水素化脱硫触媒による水素化精製ではオレフィン分が水素化されてオクタン価が大きく低下してしまうが、本発明の脱硫方法ではオレフィン分はほとんど水素化されない。従って、オレフィン分を10〜50容量%、好ましくは10〜30容量%含有する炭化水素油にも、好適に使用できる。   Particularly preferred as raw material hydrocarbon oils to be subjected to the desulfurization method according to the present invention are catalytic cracked gasoline and light oil fractions. Since catalytically cracked gasoline contains about 10 to 50% by volume of olefin content, hydrorefining using a hydrodesulfurization catalyst generally performed hydrogenates the olefin content and greatly reduces the octane number. In the process, the olefin content is hardly hydrogenated. Therefore, it can be suitably used for hydrocarbon oils containing 10 to 50% by volume, preferably 10 to 30% by volume of olefin.

また、軽油留分には芳香族分が多く含まれるため、一般的に行われる水素化脱硫触媒による水素化精製では芳香族分が水素化されるため水素の消費量が多いが、本発明の脱硫方法では芳香族分はほとんど水素化されない。ただし、軽油留分の場合、通常硫黄分を10,000質量ppm程度含むため、水素化脱硫触媒による水素化精製で硫黄分をある程度低減し、具体的には2〜40質量ppmまで低減したのち、本発明の脱硫方法を適用することが好ましい。硫黄分が多いと、脱硫剤の寿命が大きく低下してしまう。本発明の対象とする炭化水素油の芳香族分に制限はないが、芳香族分は0.1〜50容量%、好ましくは0.1〜45容量%含有する炭化水素油にも、好適に使用できる。   In addition, since the gas oil fraction contains a large amount of aromatics, the amount of hydrogen consumed is large because the aromatics are hydrogenated in the hydrorefining using a hydrodesulfurization catalyst that is generally performed. In the desulfurization method, the aromatic content is hardly hydrogenated. However, in the case of light oil fractions, it usually contains about 10,000 ppm by mass of sulfur. Therefore, after the sulfur content has been reduced to some extent by hydrorefining with a hydrodesulfurization catalyst, specifically to 2 to 40 ppm by mass. It is preferable to apply the desulfurization method of the present invention. When there is much sulfur content, the lifetime of a desulfurization agent will fall large. Although there is no restriction | limiting in the aromatic content of the hydrocarbon oil made into the object of this invention, It is suitable also for the hydrocarbon oil which contains an aromatic content 0.1 to 50 volume%, Preferably 0.1 to 45 volume%. Can be used.

[脱硫反応条件]
炭化水素油を脱硫剤と接触させる条件としては、反応温度は50〜300℃が好ましく、さらに好ましくは100〜300℃、特に好ましくは100〜200℃である。反応温度が50℃未満であると、脱硫速度が低下し、効率的に脱硫ができず好ましくない。また、反応温度が300℃を超えると、脱硫剤がシンタリングし、脱硫速度、脱硫容量とも低下し好ましくない。なお、反応温度が100℃以上であれば、脱硫速度が十分に高く、効率的に脱硫を行うことができる。
[Desulfurization reaction conditions]
As conditions for bringing the hydrocarbon oil into contact with the desulfurizing agent, the reaction temperature is preferably 50 to 300 ° C, more preferably 100 to 300 ° C, and particularly preferably 100 to 200 ° C. When the reaction temperature is less than 50 ° C., the desulfurization rate decreases, and it is not preferable because desulfurization cannot be efficiently performed. On the other hand, when the reaction temperature exceeds 300 ° C., the desulfurizing agent is sintered, and both the desulfurization rate and the desulfurization capacity are lowered, which is not preferable. If the reaction temperature is 100 ° C. or higher, the desulfurization rate is sufficiently high and desulfurization can be performed efficiently.

また、反応圧力は、ゲージ圧で0.2〜5.0MPaであるのが好ましく、さらには0.2〜2.0MPa、特には0.2〜1.0MPaである。反応圧力が0.2MPa未満だと、脱硫速度が低下し、効率的に脱硫ができず好ましくない。また、反応圧力が5.0MPaを超えると、炭化水素油中に含まれるオレフィン分や芳香族分の水素化等の副反応が進行するため好ましくない。なお、反応圧力が5.0MPa以下であれば、オレフィン分や芳香族分の水素化等の副反応を十分に抑制でき、2.0MPa以下であれば、これら副反応を確実に防止できる。   The reaction pressure is preferably 0.2 to 5.0 MPa in gauge pressure, more preferably 0.2 to 2.0 MPa, and particularly preferably 0.2 to 1.0 MPa. When the reaction pressure is less than 0.2 MPa, the desulfurization rate decreases, and it is not preferable because desulfurization cannot be efficiently performed. On the other hand, when the reaction pressure exceeds 5.0 MPa, side reactions such as hydrogenation of olefins and aromatics contained in the hydrocarbon oil proceed, which is not preferable. If the reaction pressure is 5.0 MPa or less, side reactions such as hydrogenation of olefins and aromatics can be sufficiently suppressed, and if it is 2.0 MPa or less, these side reactions can be reliably prevented.

更に、重量基準の液空間速度(WHSV)は、1.0h-1以上であることが好ましく、より好ましくは2.0h-1以上、さらに好ましくは3.0h-1以上である。また、WHSVは、好ましくは50.0h-1以下、より好ましくは20.0h-1以下、より一層好ましくは10.0h-1以下である。WHSVが1.0h-1未満だと、通油量が制限されたり、脱硫リアクターが大きくなり過ぎたりするため、経済的に脱硫できず好ましくない。また、WHSVが50.0h-1を超えると、脱硫するのに十分な接触時間が得られず、脱硫率が低下するため好ましくない。なお、WHSVが2.0h-1以上であれば、十分経済的に脱硫を行うことができ、WHSVが20.0h-1以下であれば、接触時間が十分に長いため脱硫率が向上し、10.0h-1以下であれば、脱硫率が特に高くなる。なお、WHSVは、脱硫剤の重量に対する、1時間あたりに流れた炭化水素油の重量である。 Additionally, liquid hourly space velocity of the weight (WHSV) is preferably at 1.0 h -1 or more, more preferably 2.0 h -1 or more, and still more preferably 3.0 h -1 or more. Moreover, WHSV is preferably 50.0 h −1 or less, more preferably 20.0 h −1 or less, and even more preferably 10.0 h −1 or less. If the WHSV is less than 1.0 h −1 , the amount of oil passing is limited or the desulfurization reactor becomes too large, so it is not preferable because it cannot economically desulfurize. On the other hand, when WHSV exceeds 50.0 h −1 , a contact time sufficient for desulfurization cannot be obtained, and the desulfurization rate decreases, which is not preferable. In addition, if WHSV is 2.0 h −1 or more, desulfurization can be performed sufficiently economically, and if WHSV is 20.0 h −1 or less, the contact time is sufficiently long so that the desulfurization rate is improved. If it is 10.0 h −1 or less, the desulfurization rate is particularly high. In addition, WHSV is the weight of the hydrocarbon oil which flowed per hour with respect to the weight of the desulfurizing agent.

水素/油比は特に限定しないが、接触分解ガソリンのようにオレフィンを多く含む留分の場合は、0.01NL/L以上が好ましく、0.1NL/L以上がより好ましく、また、200NL/L以下が好ましく、100NL/Lがより好ましい。水素/油比が0.01NL/L未満だと、十分に脱硫が進行しないため好ましくなく、水素/油比が200NL/Lを超えると、オレフィンの水素化などの副反応が起こるため好ましくない。   The hydrogen / oil ratio is not particularly limited, but is preferably 0.01 NL / L or more, more preferably 0.1 NL / L or more, and 200 NL / L for a fraction containing a large amount of olefins such as catalytic cracking gasoline. The following is preferable, and 100 NL / L is more preferable. If the hydrogen / oil ratio is less than 0.01 NL / L, desulfurization does not proceed sufficiently, which is not preferable. If the hydrogen / oil ratio exceeds 200 NL / L, side reactions such as hydrogenation of olefins are not preferable.

また、軽油留分のように多環芳香族を含む留分の場合、水素/油比は0.1〜1,000NL/Lが好ましく、1〜500NL/Lが更に好ましく、10〜400NL/Lが特に好ましい。水素/油比が0.1NL/L未満だと、十分に脱硫が進行せず好ましくない。また、水素/油比が1,000NL/Lだと、水素流量が多くなりすぎて、水素コンプレッサーが大きくなり好ましくない。   In the case of a fraction containing polycyclic aromatics such as a light oil fraction, the hydrogen / oil ratio is preferably 0.1 to 1,000 NL / L, more preferably 1 to 500 NL / L, and more preferably 10 to 400 NL / L. Is particularly preferred. When the hydrogen / oil ratio is less than 0.1 NL / L, desulfurization does not proceed sufficiently, which is not preferable. On the other hand, if the hydrogen / oil ratio is 1,000 NL / L, the hydrogen flow rate becomes too high, and the hydrogen compressor becomes undesirably large.

使用する水素はメタン等の不純物を含んでいてもよいが、水素コンプレッサーが大きくなり過ぎないよう水素純度は50容量%以上が好ましく、さらには80容量%以上、特には95%以上が好ましい。なお、水素中に硫化水素などの硫黄化合物が含まれると脱硫剤の寿命が短くなるので、水素中の硫黄分は1,000容量ppm以下が好ましく、さらには100容量ppm以下、特には10容量ppm以下が好ましい。   The hydrogen used may contain impurities such as methane, but the hydrogen purity is preferably 50% by volume or more, more preferably 80% by volume or more, and particularly preferably 95% or more so that the hydrogen compressor does not become too large. If the sulfur compound such as hydrogen sulfide is contained in hydrogen, the life of the desulfurizing agent is shortened. Therefore, the sulfur content in hydrogen is preferably 1,000 ppm by volume or less, more preferably 100 ppm by volume or less, particularly 10 volumes. ppm or less is preferable.

以下に、実施例により具体的に説明するが、本発明はこれらの例により何ら制限されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

(脱硫剤1)
硝酸亜鉛六水和物170.5g、硝酸ニッケル六水和物55.5g、硝酸セリウム六水和物15.6gを水300mLに溶解した酸性溶液Aを調製した。また、炭酸ナトリウム103.9gを水300mLに溶解したアルカリ溶液Bを調製した。蒸留水600mLを温度60℃に加温撹拌しながら、前記調製した酸性溶液Aとアルカリ溶液Bを滴下した。酸性溶液Aとアルカリ溶液Bは、ほぼ同時に滴下を開始し、60分で滴下を終了した。その後、1時間継続して撹拌した。得られた沈殿物をろ過した後、水で洗浄した。その後、120℃で16時間乾燥後、350℃で3時間焼成して脱硫剤1を得た。得られた脱硫剤1に対して、金属分の含有量をアルカリ融解ICP法で、酸化物の結晶子径はXRD測定結果から求めた。なお、NiOは(200)面のピーク、ZnOは(100)面のピークからScherrerの式により算出した。また、細孔容積を窒素吸脱着法によるBJH法で、比表面積を窒素吸脱着法によるBET法で測定した。結果を表1に示す。
(Desulfurizing agent 1)
An acidic solution A was prepared by dissolving 170.5 g of zinc nitrate hexahydrate, 55.5 g of nickel nitrate hexahydrate, and 15.6 g of cerium nitrate hexahydrate in 300 mL of water. Further, an alkaline solution B in which 103.9 g of sodium carbonate was dissolved in 300 mL of water was prepared. The prepared acidic solution A and alkaline solution B were added dropwise while stirring 600 mL of distilled water at a temperature of 60 ° C. The acidic solution A and the alkaline solution B started dripping almost simultaneously, and the dripping was completed in 60 minutes. Thereafter, stirring was continued for 1 hour. The resulting precipitate was filtered and washed with water. Then, after drying at 120 degreeC for 16 hours, it baked at 350 degreeC for 3 hours, and obtained the desulfurization agent 1. With respect to the obtained desulfurizing agent 1, the metal content was determined by the alkali melting ICP method, and the crystallite diameter of the oxide was determined from the XRD measurement results. NiO was calculated from the (200) plane peak and ZnO was calculated from the (100) plane peak according to Scherrer's formula. The pore volume was measured by the BJH method using a nitrogen adsorption / desorption method, and the specific surface area was measured by the BET method using a nitrogen adsorption / desorption method. The results are shown in Table 1.

(脱硫剤2)
硝酸亜鉛六水和物を160.7g、硝酸ニッケル六水和物を52.3g、硝酸セリウム六水和物34.7gを水300mLに溶解した酸性溶液Aを調製した以外、脱硫剤1と同様の方法により脱硫剤2を得た。また、得られた脱硫剤2の金属分の含有量、酸化物の結晶子径、細孔容積、比表面積を測定した。結果を表1に示す。
(Desulfurizing agent 2)
Same as desulfurizing agent 1 except that 160.7 g of zinc nitrate hexahydrate, 52.3 g of nickel nitrate hexahydrate, and 34.7 g of cerium nitrate hexahydrate were dissolved in 300 mL of water. The desulfurizing agent 2 was obtained by the method described above. Further, the metal content, oxide crystallite diameter, pore volume, and specific surface area of the obtained desulfurizing agent 2 were measured. The results are shown in Table 1.

(脱硫剤3)
硝酸亜鉛六水和物を178.5g、硝酸ニッケル六水和物58.2gを水300mLに溶解した酸性溶液Aを調製した以外、脱硫剤1と同様の方法により脱硫剤3を得た。また、得られた脱硫剤3の金属分の含有量、酸化物の結晶子径、細孔容積、比表面積を測定した。結果を表1に示す。
(Desulfurizing agent 3)
A desulfurizing agent 3 was obtained in the same manner as the desulfurizing agent 1 except that an acidic solution A was prepared by dissolving 178.5 g of zinc nitrate hexahydrate and 58.2 g of nickel nitrate hexahydrate in 300 mL of water. Further, the metal content, oxide crystallite diameter, pore volume, and specific surface area of the obtained desulfurizing agent 3 were measured. The results are shown in Table 1.

Figure 2011157470
Figure 2011157470

(実施例1)
リアクターに脱硫剤1を充填し、水素気流中300℃で16時間還元処理を行った後、炭化水素油の通油試験を実施した。炭化水素油としては、接触分解重質ガソリン(密度(15℃):0.7992g/cm3、10%留出温度:120.5℃、90%留出温度:190.5℃、硫黄分13質量ppm、芳香族分:42.5容量%、オレフィン分:17.6容量%、オクタン価(RON):86.6)を用いた。反応温度140℃、反応圧力0.3MPa、水素/油比=100NL/L、WHSV=3.4h-1の条件下、リアクターの入口から炭化水素油の通油を開始した。その結果、脱硫率50%となったときの脱硫油の性状は、硫黄分6.5質量ppm、芳香族分:43.6容量%、オレフィン分:16.9容量、オクタン価(RON)ロス:0.1であった。また、脱硫率が50%を切るまでの時間(L50)は1,391時間であった。
Example 1
The reactor was filled with the desulfurizing agent 1 and subjected to reduction treatment at 300 ° C. for 16 hours in a hydrogen stream, and then a hydrocarbon oil permeation test was performed. As hydrocarbon oil, catalytic cracked heavy gasoline (density (15 ° C.): 0.7922 g / cm 3 , 10% distillation temperature: 120.5 ° C., 90% distillation temperature: 190.5 ° C., sulfur content 13 Mass ppm, aromatic content: 42.5% by volume, olefin content: 17.6% by volume, octane number (RON): 86.6) were used. Under the conditions of a reaction temperature of 140 ° C., a reaction pressure of 0.3 MPa, a hydrogen / oil ratio of 100 NL / L, and WHSV = 3.4 h −1 , hydrocarbon oil was introduced from the inlet of the reactor. As a result, the properties of the desulfurized oil when the desulfurization rate was 50% were as follows: sulfur content 6.5 mass ppm, aromatic content: 43.6 vol%, olefin content: 16.9 vol, octane number (RON) loss: It was 0.1. Moreover, the time (L50) until the desulfurization rate fell below 50% was 1,391 hours.

尚、密度はJIS K2249「原油及び石油製品−密度試験方法」、蒸留性状はJIS K2254「石油製品−蒸留試験法」、硫黄分はASTM D5453(紫外蛍光法)に準拠して測定した。芳香族分、オレフィン分及びRONはJIS K2536−2(ガスクロマトグラフによる全成分の求め方)に準拠してヒューレットパッカード社製PIONA装置を用いて測定した。結果を表2に示す。   The density was measured according to JIS K2249 “Crude oil and petroleum products—density test method”, the distillation property was measured according to JIS K2254 “petroleum product—distillation test method”, and the sulfur content was measured according to ASTM D5453 (ultraviolet fluorescence method). The aromatic content, olefin content, and RON were measured using a Hewlett Packard PIONA device in accordance with JIS K2536-2 (how to obtain all components by gas chromatography). The results are shown in Table 2.

(実施例2)
脱硫剤2を用いて、実施例1と同様にして炭化水素油の通油試験を実施した。結果を表2に示す。
(Example 2)
Using the desulfurizing agent 2, the oil passage test of hydrocarbon oil was carried out in the same manner as in Example 1. The results are shown in Table 2.

(比較例1)
脱硫剤3を用いて、実施例1と同様にして炭化水素油の通油試験を実施した。結果を表2に示す。
(Comparative Example 1)
Using the desulfurizing agent 3, an oil passage test for hydrocarbon oil was conducted in the same manner as in Example 1. The results are shown in Table 2.

Figure 2011157470
Figure 2011157470

(比較例2)
リアクターに水素化精製触媒(Advanced Refining Technologies LLC社製、型番AT−505、(Ni、Moを含有触媒))を充填し、反応開始前に、硫化処理を行った。硫化処理は接触分解重質ガソリンにジメチルジスルフィドを1000ppm加えた油を用いて320℃、2.0MPa、WHSV=3.4h-1で8時間行った。
その後、反応圧力を2.0MPa、反応温度を脱硫率が50%(硫黄分6.5質量ppm)となるように設定し、水素/油比=100NL/L、WHSV=3.4h-1の条件下、実施例1と同じ接触分解重質ガソリンの通油試験を実施した。その結果、反応温度275℃まで上げたときに脱硫率50%となった。その際の芳香族分は39.7容量%、オレフィン分は12.2容量%、オクタン価(RON)ロスは3.0であった。
(Comparative Example 2)
The reactor was filled with a hydrorefining catalyst (manufactured by Advanced Refining Technologies LLC, model number AT-505 (containing Ni and Mo)), and subjected to sulfurization treatment before the reaction was started. The sulfurization treatment was carried out for 8 hours at 320 ° C., 2.0 MPa, WHSV = 3.4 h −1 using oil obtained by adding 1000 ppm of dimethyl disulfide to catalytic cracked heavy gasoline.
Thereafter, the reaction pressure was set to 2.0 MPa, the reaction temperature was set to 50% (sulfur content 6.5 mass ppm), the hydrogen / oil ratio = 100 NL / L, and WHSV = 3.4 h −1 . Under the conditions, the same catalytic cracking heavy gasoline as in Example 1 was tested. As a result, the desulfurization rate was 50% when the reaction temperature was raised to 275 ° C. At that time, the aromatic content was 39.7% by volume, the olefin content was 12.2% by volume, and the octane number (RON) loss was 3.0.

以上に示す通り、通常の水素化精製触媒による脱硫では、芳香族分、オレフィン分が水添され減少するのに対し、本発明に従う実施例の脱硫剤は、比較的マイルドな条件において炭化水素油を長期間にわたって安定にかつ経済的に脱硫できることが分かる。   As described above, in the desulfurization using a conventional hydrorefining catalyst, the aromatic content and olefin content are reduced by hydrogenation, whereas the desulfurization agent of the embodiment according to the present invention is a hydrocarbon oil under relatively mild conditions. It can be seen that can be desulfurized stably and economically over a long period of time.

Claims (3)

ニッケルを1〜30質量%、亜鉛を30〜80質量%、3A族から選ばれる1種類以上の元素を0.1〜20質量%含有し、比表面積が70m2/g以上であることを特徴とする脱硫剤。 1 to 30% by mass of nickel, 30 to 80% by mass of zinc, 0.1 to 20% by mass of one or more elements selected from Group 3A, and a specific surface area of 70 m 2 / g or more Desulfurizing agent. 水に、ニッケル、亜鉛及び3A族から選ばれる1種類以上の元素を含有する酸性溶液とアルカリ溶液とを同時に滴下して、沈殿を生成させることを特徴とする請求項1に記載の脱硫剤の製造方法。   2. The desulfurization agent according to claim 1, wherein an acid solution containing at least one element selected from nickel, zinc, and a group 3A and an alkali solution are simultaneously dropped into water to form a precipitate. Production method. 硫黄分を2質量ppm以上含有する炭化水素油を請求項1に記載の脱硫剤と水素存在下で、温度50〜300℃、圧力0.2〜5.0MPa、重量空間速度(WHSV)1.0h-1以上の条件で接触させる炭化水素油の脱硫方法。 A hydrocarbon oil containing 2 mass ppm or more of sulfur content in the presence of the desulfurizing agent and hydrogen according to claim 1, a temperature of 50 to 300 ° C., a pressure of 0.2 to 5.0 MPa, a weight space velocity (WHSV) of 1. A hydrocarbon oil desulfurization method in which contact is made under a condition of 0 h -1 or more.
JP2010020259A 2010-02-01 2010-02-01 Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil using the same Active JP5467885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010020259A JP5467885B2 (en) 2010-02-01 2010-02-01 Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020259A JP5467885B2 (en) 2010-02-01 2010-02-01 Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil using the same

Publications (2)

Publication Number Publication Date
JP2011157470A true JP2011157470A (en) 2011-08-18
JP5467885B2 JP5467885B2 (en) 2014-04-09

Family

ID=44589695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020259A Active JP5467885B2 (en) 2010-02-01 2010-02-01 Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil using the same

Country Status (1)

Country Link
JP (1) JP5467885B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291685A (en) * 1985-06-18 1986-12-22 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Desulfurization of hydrocarbon
JP2009516578A (en) * 2005-07-15 2009-04-23 チャイナ ペトロリウム アンド ケミカル コーポレイション Reduction of fluff of sulfur adsorbent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291685A (en) * 1985-06-18 1986-12-22 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Desulfurization of hydrocarbon
JP2009516578A (en) * 2005-07-15 2009-04-23 チャイナ ペトロリウム アンド ケミカル コーポレイション Reduction of fluff of sulfur adsorbent

Also Published As

Publication number Publication date
JP5467885B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2006070660A1 (en) Method for producing super-low sulfur gas oil base material or super-low sulfur gas oil composition, and super-low sulfur gas oil composition
MXPA05009298A (en) Catalytic hydrorefining process for crude oil.
EP2474598A1 (en) Aviation fuel oil composition
JP2008291146A (en) Porous desulfurizing agent and method for desulfurizing hydrocarbon oil using the same
JP5284361B2 (en) Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil
KR101514954B1 (en) Process for producing gasoline base and gasoline
JP5372338B2 (en) Porous desulfurization agent and hydrocarbon oil desulfurization method using the same
JP4658491B2 (en) Production method of environment-friendly diesel oil
JP5467885B2 (en) Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil using the same
JP5394272B2 (en) Desulfurizing agent, method for producing the same, and method for desulfurizing hydrocarbon oil using the same
JP5807005B2 (en) Desulfurization agent and method for producing the same
US9550167B2 (en) Method for preparing hollow carbon structure using cracking reaction of heavy hydrocarbon fraction
JP4996983B2 (en) Porous desulfurizing agent and hydrocarbon desulfurization method using the same
JP5196391B2 (en) Method for producing low sulfur hydrocarbon oil
JP5411762B2 (en) Hydrocarbon oil desulfurization method
JP4850412B2 (en) Method for producing environmentally friendly gasoline composition
JP2001262164A (en) Fuel oil for fuel cell
JP2009209252A (en) Fuel oil for fuel cell
Narayanasarma Mesoporous carbon supported NiMo catalyst for the hydrotreating of coker gas oil
CA2831537A1 (en) Catalyst for decomposition of hydrocarbon oil and method for decomposing hydrocarbon oil
JP2001303071A (en) Fuel oil composition
CN105618073A (en) Light hydrocarbon sweetening catalyst based on aluminum oxide crystal face regulation and control and preparation method of light hydrocarbon sweetening catalyst
JP2009067993A (en) Fuel oil for fuel cell
JP2005154538A (en) Method for manufacturing ultra-low sulfur content gas oil base
JP2001279255A (en) Method for producing nickel-based desulfurizing agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140128

R150 Certificate of patent or registration of utility model

Ref document number: 5467885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250