JP2011154980A - Field emission type electron source and method of manufacturing the same - Google Patents

Field emission type electron source and method of manufacturing the same Download PDF

Info

Publication number
JP2011154980A
JP2011154980A JP2010017440A JP2010017440A JP2011154980A JP 2011154980 A JP2011154980 A JP 2011154980A JP 2010017440 A JP2010017440 A JP 2010017440A JP 2010017440 A JP2010017440 A JP 2010017440A JP 2011154980 A JP2011154980 A JP 2011154980A
Authority
JP
Japan
Prior art keywords
cold cathode
field emission
carbon material
electron source
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010017440A
Other languages
Japanese (ja)
Other versions
JP5406748B2 (en
Inventor
Takahiro Matsumoto
貴裕 松本
Yoshihiro Onizuka
好弘 鬼塚
Tomonobu Nakamura
智宣 中村
Atsuo Sadatsuka
淳生 定塚
Shusuke Mimura
秀典 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ONIZUKA GLASS KK
Stanley Electric Co Ltd
Original Assignee
ONIZUKA GLASS KK
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ONIZUKA GLASS KK, Stanley Electric Co Ltd filed Critical ONIZUKA GLASS KK
Priority to JP2010017440A priority Critical patent/JP5406748B2/en
Publication of JP2011154980A publication Critical patent/JP2011154980A/en
Application granted granted Critical
Publication of JP5406748B2 publication Critical patent/JP5406748B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sharpen a surface structure of a carbon material constituting a cold cathode of a field emission type electron source, and reduce production cost by performing the sharpening in a single step. <P>SOLUTION: In a method of manufacturing the field emission type electron source equipped with the cold cathode which discharges electrons by being applied with an electric field, by exposing the carbon material 10 to be a material of the cold cathode to a combustion flame 11 of a mixture of hydrogen and oxygen, an etching treatment to form a nanometer structure of carbon on a surface of the carbon material 10 is performed, and the cold cathode is formed of the obtained carbon material 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電界が印加されることにより電子を放出する電界放出型電子源とその製造方法に関する。   The present invention relates to a field emission electron source that emits electrons when an electric field is applied, and a method of manufacturing the same.

従来、電子顕微鏡、電子線管、X線管等に用いられる電界放出型電子源において、電界が印加されることにより電子を放出する冷陰極(エミッタ)を、グラファイト材に水素などのプラズマを照射してグラファイト材上にナノ構造体を形成した炭素材で形成することが知られている。その冷陰極を構成するグラファイト材料として、水素などのプラズマ処理を施すことにより作製されるナノメートルの針状構造を有するグラファイトナノクレータ(GRANC)がある。これは、カーボンナノチューブ等の炭素系電子放出材料に比べて、強電界領域での電子放出特性に優れていることが知られている。   Conventionally, in a field emission electron source used for an electron microscope, an electron beam tube, an X-ray tube, etc., a cold cathode (emitter) that emits electrons when an electric field is applied is irradiated, and a plasma such as hydrogen is irradiated on a graphite material. Thus, it is known to form a carbon material in which a nanostructure is formed on a graphite material. As a graphite material constituting the cold cathode, there is a graphite nanocrater (GRANC) having a nanometer needle-like structure manufactured by performing a plasma treatment such as hydrogen. This is known to be superior in electron emission characteristics in a strong electric field region as compared with carbon-based electron emission materials such as carbon nanotubes.

このGRANCが良好な電子放出特性を有する理由として、ナノメートルの針状構造への強力な電界集中があげられるが、これに用いられる炭素材は、重金属を含む炭素材でなければならない。加えて、高効率で良好な電界放出特性を得るためには、電界集中係数を高める必要があり、そのためにプラズマ照射前処理として、予め機械加工等によりマイクロメートル領域にまで炭素材自体の先鋭化を図ることが必要である。更に、電子放出に好適なナノ構造を実現するためには、上記の前処理で先鋭化した炭素材について水素プラズマ等を用いてエッチング処理を行う必要がある(特許文献1参照)。   The reason why this GRANC has a good electron emission characteristic is a strong electric field concentration on a nanometer needle-like structure, and the carbon material used for this must be a carbon material containing a heavy metal. In addition, in order to obtain high efficiency and good field emission characteristics, it is necessary to increase the electric field concentration factor. For this reason, as a pretreatment for plasma irradiation, the carbon material itself is sharpened to the micrometer range by machining or the like in advance. It is necessary to plan. Furthermore, in order to realize a nanostructure suitable for electron emission, the carbon material sharpened by the above pretreatment needs to be etched using hydrogen plasma or the like (see Patent Document 1).

特許第4268471号公報Japanese Patent No. 4268471

上記のように、従来のGRANCを冷陰極として用いる電界型電子放出源では、プラズマエッチング前の前処理として、炭素基材の先端を機械加工等でマイクロメートル領域まで先鋭化することが必要であり、原材料の加工にコストがかかる。この先鋭化は、化学的加工によっても実現できるが、その後にプラズマ照射等によるエッチング処理が必要とされるため、その処理に必要な装置とその使用にコストがかかっていた。   As described above, in a field-type electron emission source using conventional GRANC as a cold cathode, it is necessary to sharpen the tip of the carbon substrate to the micrometer range by machining or the like as a pretreatment before plasma etching. Cost of processing raw materials. This sharpening can be realized by chemical processing, but since an etching process such as plasma irradiation is required after that, an apparatus necessary for the process and its use are costly.

また、プラズマ照射を行うには真空装置が必須であり、素材を真空チャンバに装填するといった操作を必要とするため、歩留まりが低い原因となっていた。   In addition, a vacuum apparatus is indispensable for performing plasma irradiation, and an operation of loading a material into a vacuum chamber is required, which causes a low yield.

本発明は、上記のような電界放出型電子源の製造に際し、冷陰極を構成する炭素材の表面に炭素のナノメートル構造(炭素シートが重なり合った構造)を形成することで炭素材の先鋭化を実現すると共に、その先鋭化を1回の工程で行うことで製造コストを抑えることができる製造方法と、この方法で製造された電界放出型電子源を提供することを目的とする。   The present invention sharpens the carbon material by forming a carbon nanometer structure (a structure in which carbon sheets overlap) on the surface of the carbon material constituting the cold cathode in the manufacture of the field emission electron source as described above. It is an object of the present invention to provide a manufacturing method capable of suppressing the manufacturing cost by performing sharpening in one step and a field emission electron source manufactured by this method.

本発明は、電界が印加されることにより電子を放出する冷陰極を備えた電界放出型電子源の製造方法であって、前記冷陰極の素材となる炭素材を水素酸素混合ガスの燃焼炎に暴露することで、該炭素材の表面に炭素のナノメートル構造を形成するエッチング処理を行い、得られた炭素材で前記冷陰極を形成することを特徴とする。   The present invention relates to a method of manufacturing a field emission electron source including a cold cathode that emits electrons when an electric field is applied, wherein a carbon material that is a material of the cold cathode is used as a combustion flame of a hydrogen-oxygen mixed gas. By performing the exposure, an etching process for forming a nanometer structure of carbon on the surface of the carbon material is performed, and the cold cathode is formed of the obtained carbon material.

本発明の方法によれば、炭素材を水素酸素混合ガスの燃焼炎に暴露するという1回の工程(エッチング処理)で、該炭素材のマイクロメートル領域に至る先端の先鋭化と同時に、先鋭化された先端の表面に炭素のナノメートル構造が形成される。そして、この炭素材で電界放出型電子源の冷陰極を形成する。従って、従来の真空中でのプラズマ照射のように手間とコストがかかる工程が不要であり、歩留まりが良く低コストで、優れた電界放出特性を有する電界放出型電子源が得られる。   According to the method of the present invention, the carbon material is exposed to a combustion flame of a hydrogen-oxygen mixed gas in one step (etching process), and at the same time as the tip of the carbon material reaching the micrometer region is sharpened. A carbon nanometer structure is formed on the surface of the tip. And the cold cathode of a field emission type electron source is formed with this carbon material. Therefore, a process that requires labor and cost like conventional plasma irradiation in a vacuum is not required, and a field emission electron source having excellent field emission characteristics can be obtained with good yield and low cost.

本発明のもう1つの態様は、電界が印加されることにより電子を放出する冷陰極を備えた電界放出型電子源であって、前記冷陰極の素材となる炭素材を水素酸素混合ガスの燃焼炎に暴露することで、該炭素材の表面に炭素のナノメートル構造を形成するエッチング処理を行い、得られた炭素材で前記冷陰極を形成したことを特徴とする。   Another aspect of the present invention is a field emission electron source including a cold cathode that emits electrons when an electric field is applied, and a carbon material that is a material of the cold cathode is burned with a hydrogen-oxygen mixed gas. The cold cathode is formed of the carbon material obtained by performing an etching process for forming a carbon nanometer structure on the surface of the carbon material by exposure to a flame.

本発明の電界放出型電子源では、冷陰極を構成する炭素材の先端をマイクロメートルの領域まで先鋭化すると同時に、その先鋭化された先端部の表面に数ナノメートル程度のナノ構造を形成することができるので、その製造工程を1回とすることができて製造コストを抑えることが可能となる。   In the field emission electron source of the present invention, the tip of the carbon material constituting the cold cathode is sharpened to the micrometer region, and at the same time, a nanostructure of about several nanometers is formed on the surface of the sharpened tip. Therefore, the manufacturing process can be performed once, and the manufacturing cost can be suppressed.

本発明の電界放出型電子源において、前記冷陰極から放出された電子が向かうターゲットと該冷陰極との間で前記冷陰極の周囲に制御電極が配置され、前記ターゲットと前記制御電極との間に、前記ターゲットと前記冷陰極との間に印加するのと同じ電圧が印加されることが好ましい。   In the field emission electron source of the present invention, a control electrode is disposed around the cold cathode between the cold cathode and a target to which electrons emitted from the cold cathode travel, and between the target and the control electrode. Further, it is preferable that the same voltage as that applied between the target and the cold cathode is applied.

この構成によれば、制御電極が、ターゲットと冷陰極との間の距離よりもターゲットと制御電極との間の距離が短くなるように配置されるので、エミッタよりもそれを囲む制御電極の電界強度が強く、X線発生ターゲットで発生したイオンは、冷陰極に向かうより制御電極に向かっていく。このため、冷陰極の先端部におけるイオン衝撃頻度は従来の電界放出型電子源に比して圧倒的に小さくなり、該イオンによる冷陰極先端部の破壊を抑制することができる。   According to this configuration, since the control electrode is arranged such that the distance between the target and the control electrode is shorter than the distance between the target and the cold cathode, the electric field of the control electrode that surrounds the control electrode rather than the emitter. The intensity is high and ions generated at the X-ray generation target are directed toward the control electrode rather than toward the cold cathode. For this reason, the ion bombardment frequency at the tip of the cold cathode is overwhelmingly lower than that of a conventional field emission electron source, and the destruction of the tip of the cold cathode due to the ions can be suppressed.

本発明の方法で電界放出型電子源の冷陰極を形成する工程の概念図。The conceptual diagram of the process of forming the cold cathode of a field emission type electron source with the method of this invention. (A)及び(B)はエッチング前及びエッチング後の炭素材の走査型電子顕微鏡写真。(A) and (B) are scanning electron micrographs of the carbon material before and after etching. (A)及び(B)はエッチング前後の炭素材の拡大写真。(A) and (B) are enlarged photographs of the carbon material before and after etching. 電界放出型電子源を用いたX線管の構成図。The block diagram of the X-ray tube using a field emission type electron source. 図4の電界放出型電子源でエミッタと制御電極に向かう電気力線によるイオンの流れを示す図。The figure which shows the flow of ion by the electric force line which goes to an emitter and a control electrode with the field emission type electron source of FIG. 別形態のX線管の構成図。The block diagram of the X-ray tube of another form. 図4の電界放出型電子源でエミッタと制御電極との間に調節用電源を設けた形態の構成図。The block diagram of the form which provided the power supply for adjustment between the emitter and the control electrode in the field emission type electron source of FIG. 実施例のX線管における電流電圧特性を示すグラフ。The graph which shows the current-voltage characteristic in the X-ray tube of an Example.

以下、本発明による電界放出型電子源の製造方法について説明する。   Hereinafter, a method for manufacturing a field emission electron source according to the present invention will be described.

まず、電界放出型電子源の冷陰極(エミッタ)を形成する炭素材は、炭素を含有する材料であればよく、その形状は棒状(ロッド型)又は板状でよい。この炭素材を水素及び酸素の燃焼炎(トーチ)に暴露して600度C以上の高温に加熱することにより、上記燃焼炎中の水蒸気、残留酸素及び水素による炭素材のエッチング効果を利用して炭素材の先鋭化を達成することができる。   First, the carbon material forming the cold cathode (emitter) of the field emission electron source may be a material containing carbon, and the shape thereof may be a rod shape (rod shape) or a plate shape. By exposing this carbon material to a combustion flame (torch) of hydrogen and oxygen and heating it to a high temperature of 600 ° C. or higher, the etching effect of the carbon material by water vapor, residual oxygen and hydrogen in the combustion flame is utilized. Sharpening of the carbon material can be achieved.

具体的には、図1に示すように、棒状又は板状の炭素材10を水素酸素混合ガス(モル比で水素:酸素= 4.5:1程度)の燃焼炎11内(高温加熱域)に暴露する。炭素材10が2000°C以上に加熱されると、炭素材中の炭素が酸化及び水素化などにより、エッチングされる。   Specifically, as shown in FIG. 1, a rod-like or plate-like carbon material 10 is exposed in a combustion flame 11 (high temperature heating region) of a hydrogen-oxygen mixed gas (hydrogen: oxygen = 4.5: 1 in molar ratio). To do. When the carbon material 10 is heated to 2000 ° C. or more, the carbon in the carbon material is etched by oxidation and hydrogenation.

この工程によれば、炭素材の水素酸素燃焼炎への暴露は大気圧中で実施できるので、簡便な設備で炭素材のマイクロメートル領域に至る先端の先鋭化とナノ構造の作製を実現できる。この先鋭化は、上記の燃焼炎による高温状態下で行うことにより、効率が高く機械加工による先鋭化に匹敵するものとなる。   According to this process, since the carbon material can be exposed to the hydrogen-oxygen combustion flame at atmospheric pressure, the sharpening of the tip of the carbon material to the micrometer region and the production of the nanostructure can be realized with simple equipment. This sharpening is performed at a high temperature by the combustion flame described above, so that the efficiency is high and comparable to the sharpening by machining.

このとき、水素燃焼炎によるエッチングの効果は、凡そ600度C(約900度K)以上では急激に失われるため、水素燃焼炎を用いることでは、上記のように機械加工に匹敵する炭素材の先鋭化を行うことができない。しかしながら、水素燃焼炎に酸素を加えて徐々に燃焼温度を上げていくと、燃焼炎中の主な分子種はHOとなり、この新たに生成されたHOは、約900度K以上では、炭素材料をエッチングする効果を有するようになる。更に2300度K以上では、非常に高い反応性を示すようになる。 At this time, the etching effect by the hydrogen combustion flame is rapidly lost at about 600 degrees C (about 900 degrees K) or more. Therefore, by using the hydrogen combustion flame, the carbon material comparable to machining as described above can be obtained. Sharpening cannot be performed. However, when oxygen is added to the hydrogen combustion flame and the combustion temperature is gradually raised, the main molecular species in the combustion flame becomes H 2 O, and this newly generated H 2 O is about 900 degrees K or more. Then, it comes to have an effect which etches a carbon material. Furthermore, at 2300 degrees K or more, it will show very high reactivity.

上記のように炭素材が水素酸素燃焼炎に暴露されることにより、炭素材に含まれる炭素原子は、与えられた熱で分解及び再構成され、後述の図3(B)に示すように、数〜数十ナノメートル程度の炭素シートが炭素材の長尺方向に束ねられた構造を形成するようになる
このような炭素シートを備えた炭素材で冷陰極(エミッタ)を形成した電界放出型電子源において、冷陰極に強い電界が印加されると、電界放出により炭素シートの端部から電子が放出される。その電子放出による単位径あたりの電流は、GRANCよりも大きい。従って、上記の炭素シート構造は、大電流が要求される真空デバイス(X線管、電界放出ランプなど)に好適な炭素系電界放出材料となり得る。
When the carbon material is exposed to the hydrogen-oxygen combustion flame as described above, the carbon atoms contained in the carbon material are decomposed and reconfigured by the applied heat, as shown in FIG. A field emission type in which a cold cathode (emitter) is formed of a carbon material having such a carbon sheet, in which carbon sheets of several to several tens of nanometers are bundled in the longitudinal direction of the carbon material. When a strong electric field is applied to the cold cathode in the electron source, electrons are emitted from the edge of the carbon sheet by field emission. The current per unit diameter due to the electron emission is larger than that of GRANC. Therefore, the above carbon sheet structure can be a carbon-based field emission material suitable for vacuum devices (such as X-ray tubes and field emission lamps) that require a large current.

また、一般的に、カーボンナノチューブ等の炭素系ナノ材料の作製には、重金属からなる触媒を用いなければならないが、本発明によれば、電子放出源に好適なナノ構造を作製するために触媒を用いる必要がない。従って、この点からも、製造コストを削減できる。   In general, a carbon-based nanomaterial such as a carbon nanotube must be prepared using a catalyst made of heavy metal. According to the present invention, a catalyst for producing a nanostructure suitable for an electron emission source is used. Need not be used. Therefore, also from this point, the manufacturing cost can be reduced.

図2(A)及び(B)は、エッチング前及びエッチング後の炭素材の走査型電子顕微鏡(SEM)写真である。エッチングが施された時間は10秒である。この例では、グラファイト粒子を有機物系接着剤で固めたものを無酸素雰囲気化で炭化した炭素材を利用した。作製した炭素材中に重金属類は確認されなかった。写真から機械加工を施すことなく先端が先鋭化されていることが確認できる。   2A and 2B are scanning electron microscope (SEM) photographs of the carbon material before and after etching. The etching time is 10 seconds. In this example, a carbon material obtained by carbonizing graphite particles hardened with an organic adhesive in an oxygen-free atmosphere was used. Heavy metals were not confirmed in the produced carbon material. It can be confirmed from the photograph that the tip is sharpened without machining.

図3(A)及び(B)は、エッチング前後の炭素材の拡大写真である。図3(A)に示すエッチング前の状態では、炭素材を構成するグラファイトがランダムに配列していることを確認できる。一方、図3(B)に示すように、エッチングが施された炭素材表面には、数ナノメートル程度の炭素シートが長尺方向に向かって配向している。これは、高温エッチングに伴って、炭素材中の炭素原子が高温処理により炭素シートを形成したことによると考えられる。   3A and 3B are enlarged photographs of the carbon material before and after etching. In the state before etching shown in FIG. 3A, it can be confirmed that the graphite constituting the carbon material is randomly arranged. On the other hand, as shown in FIG. 3B, on the etched carbon material surface, a carbon sheet of about several nanometers is oriented in the longitudinal direction. This is considered to be due to the fact that carbon atoms in the carbon material formed a carbon sheet by high-temperature treatment with high-temperature etching.

次に、本発明の方法で製造される電界放出型電子源の使用例として、電界放出型X線管について説明する。これは、上記炭素材のような電界放出型電子材料からなる冷陰極(エミッタ)に強電界を印加して電子を放出させ、電子をX線発生ターゲットに照射することによってX線を発生させるものである。かかるX線管において、エミッタから電子を放出させるためには、X線発生ターゲットとエミッタとの間に高電圧を印加し、エミッタ先端から電子放出をさせるのに十分な電界強度を与えなければならない。   Next, a field emission X-ray tube will be described as an example of use of the field emission electron source manufactured by the method of the present invention. This is a technique in which a strong electric field is applied to a cold cathode (emitter) made of a field emission electronic material such as the carbon material to emit electrons, and X-rays are generated by irradiating the X-ray generation target with electrons. It is. In such an X-ray tube, in order to emit electrons from the emitter, a high voltage must be applied between the X-ray generation target and the emitter to give a sufficient electric field strength to emit electrons from the tip of the emitter. .

このタイプのX線管は、図4に模式的に示すように、電界放出型電子源を構成するエミッタ1とX線ターゲット3と制御電極4とをガラス管内に封入し、その内部を高真空状態に保持するように構成される。このX線ターゲット3とエミッタ1との間に電圧源2から高電圧VETを印加すると共に、エミッタ1の先端に強電界を印加することにより、エミッタ1から放出された電子がターゲット3に照射され、ターゲット3からX線が発生する。 In this type of X-ray tube, as schematically shown in FIG. 4, an emitter 1, an X-ray target 3 and a control electrode 4 constituting a field emission electron source are enclosed in a glass tube, and the inside thereof is subjected to a high vacuum. Configured to hold in a state. A high voltage VET is applied from the voltage source 2 between the X-ray target 3 and the emitter 1, and a strong electric field is applied to the tip of the emitter 1 to irradiate the target 3 with electrons emitted from the emitter 1. Then, X-rays are generated from the target 3.

図4に示したX線管に用いられている電界放出型電子源は、前述のように作製した炭素材10からなる棒状の冷陰極(エミッタ)1の上方に、制御電極4として円筒状の導電性材料をエミッタ1と心合せして配置した構造である。すなわち、エミッタ1は、制御電極4の中心の下方位置に配置されている。そして、制御電極4は、ターゲット3とエミッタ1との間の距離よりもターゲット3と当該制御電極4との間の距離が短くなるように配置されている。   The field emission electron source used in the X-ray tube shown in FIG. 4 has a cylindrical shape as the control electrode 4 above the rod-like cold cathode (emitter) 1 made of the carbon material 10 produced as described above. In this structure, a conductive material is aligned with the emitter 1. That is, the emitter 1 is disposed at a position below the center of the control electrode 4. The control electrode 4 is disposed such that the distance between the target 3 and the control electrode 4 is shorter than the distance between the target 3 and the emitter 1.

この構造によれば、電界が図の矢印方向に印加されると、制御電極4の電界強度はエミッタ1のそれよりも強くなる。すなわち、この電界放出型電子源においては、エミッタ1を制御電極4で取り囲み、制御電極4は、これに印加される電界強度がエミッタ1よりも強くなるように配置される。   According to this structure, when an electric field is applied in the direction of the arrow in the figure, the electric field strength of the control electrode 4 becomes stronger than that of the emitter 1. That is, in this field emission type electron source, the emitter 1 is surrounded by the control electrode 4, and the control electrode 4 is arranged so that the electric field strength applied thereto is stronger than that of the emitter 1.

ここで、エミッタ1と制御電極4が同電位の状態でエミッタ‐ターゲット間に高電圧VETを印加すると、図5に示すように、電気力線がエミッタ1の先端部へ集中するのが緩和される。そして、より高い電界強度が印加された制御電極4へイオンが流れるため、エミッタ1へのイオン流入量が少なくなる。 Here, when the high voltage VET is applied between the emitter and target while the emitter 1 and the control electrode 4 are at the same potential, the concentration of the electric lines of force on the tip of the emitter 1 is reduced as shown in FIG. Is done. Since ions flow to the control electrode 4 to which a higher electric field strength is applied, the amount of ions flowing into the emitter 1 is reduced.

なお、電気力線の数は、ターゲット・エミッタ間の距離、印加電圧、エミッタ1と制御電極4の幾何学的位置関係等によって変動する。   Note that the number of lines of electric force varies depending on the distance between the target and the emitter, the applied voltage, the geometric positional relationship between the emitter 1 and the control electrode 4, and the like.

上記電界放出型電子源では、エミッタ1を囲む制御電極4は、エミッタ1に比べて仕事関数φの高い材料で構成することが好ましい。これにより、エミッタ1からの電子放出よりも制御電極4からの電子放出が優勢となる可能性をなくすことができる。   In the field emission electron source, the control electrode 4 surrounding the emitter 1 is preferably made of a material having a work function φ higher than that of the emitter 1. Thereby, the possibility that the electron emission from the control electrode 4 becomes dominant over the electron emission from the emitter 1 can be eliminated.

また、制御電極4は、イオン衝突によるスパッタを生じない材料が好適であり、原子番号の大きい材料或いは共有結合性の強い材料が好ましい。なぜなら、イオンは数10keVのエネルギーを有しているため、スパッタにより更なるイオンの発生が起こり得るからである。   The control electrode 4 is preferably made of a material that does not cause sputtering due to ion collision, and is preferably made of a material having a large atomic number or a material having strong covalent bonding. This is because ions have energy of several tens of keV, so that further ions can be generated by sputtering.

本発明の電界放出型電子源は、図4の構成に限らず、図6に示すように、エミッタ1の上方周囲に針状の制御電極4を複数配置した構造でもよい。この場合、エミッタ1は、その上方円周上に配置した制御電極4からなる円の中心位置に配置されている。そして、制御電極4は、ターゲット3とエミッタ1との間の距離よりもターゲット3と当該制御電極4との間の距離が短くなるように配置されている。   The field emission electron source of the present invention is not limited to the configuration of FIG. 4, and may have a structure in which a plurality of needle-like control electrodes 4 are arranged around the emitter 1 as shown in FIG. 6. In this case, the emitter 1 is arranged at the center position of a circle composed of the control electrodes 4 arranged on the upper circumference thereof. The control electrode 4 is disposed such that the distance between the target 3 and the control electrode 4 is shorter than the distance between the target 3 and the emitter 1.

従って、この構造の電界放出型電子源においても、電界が図の矢印方向に印加されると、制御電極4の電界強度はエミッタ1のそれよりも強くなる。このため、より高い電界強度を印加された制御電極4へイオンが流れるので、エミッタ1へのイオン流入量が少なくなり、エミッタ1における電子放出部のスパッタによる破壊が抑えられる。   Therefore, also in the field emission electron source having this structure, when the electric field is applied in the direction of the arrow in the figure, the electric field intensity of the control electrode 4 becomes stronger than that of the emitter 1. For this reason, since ions flow to the control electrode 4 to which a higher electric field strength is applied, the amount of ions flowing into the emitter 1 is reduced, and destruction of the electron emission portion in the emitter 1 due to sputtering is suppressed.

以上のように、図4及び図6の電界放出型電子源においては、エミッタ1を制御電極4で取り囲み、制御電極4は、ターゲット3とエミッタ1との間の距離よりもターゲット3と制御電極4との間の距離が短くなるように配置されることで、制御電極4に印加される電界強度がエミッタ1に印加される電界よりも強くなる。このため、X線発生ターゲットで発生したイオンは、エミッタ1に向かうよりも多く制御電極4に向かうので、エミッタ1の先端部におけるイオン衝撃頻度は従来の電界放出型X線管に比して圧倒的に小さくなる。これにより、実用に供し得る寿命を有する電界放出型X線管が得られる。   As described above, in the field emission electron source of FIGS. 4 and 6, the emitter 1 is surrounded by the control electrode 4, and the control electrode 4 has a larger distance than the target 3 and the control electrode 4 than the distance between the target 3 and the emitter 1. The electric field strength applied to the control electrode 4 is stronger than the electric field applied to the emitter 1 by being arranged so that the distance to the electrode 4 is short. For this reason, ions generated at the X-ray generation target are directed to the control electrode 4 more than toward the emitter 1, so that the ion bombardment frequency at the tip of the emitter 1 is overwhelming as compared with the conventional field emission X-ray tube. Become smaller. Thereby, a field emission X-ray tube having a useful life can be obtained.

また、別の実施形態として、図4又は図6の電界放出型電子源において、エミッタへのイオン衝突の頻度に応じて、制御電極へのイオンの引き込み量を調節可能とする。図7は、その構成例を示す。   As another embodiment, in the field emission electron source of FIG. 4 or 6, the amount of ions drawn into the control electrode can be adjusted according to the frequency of ion collision with the emitter. FIG. 7 shows an example of the configuration.

これは、前述のようにエミッタ1と制御電極4を同電位とする構成においても、エミッタ1へのイオン衝突が問題となる場合に対処するものである。具体的には、例えば図4の電界放出型電子源において、エミッタ1と制御電極4との間に、図7に示すようにエミッタ1と制御電極4の間に電位差を設ける調節用可変電源6が接続される。   This is to deal with the case where ion collision with the emitter 1 becomes a problem even in the configuration in which the emitter 1 and the control electrode 4 are set to the same potential as described above. More specifically, for example, in the field emission electron source of FIG. 4, an adjusting variable power source 6 that provides a potential difference between the emitter 1 and the control electrode 4 and between the emitter 1 and the control electrode 4 as shown in FIG. Is connected.

この電源6は、前述した制御電極4に印加される電界強度がエミッタ1に印加される電界強度よりも強いという電界強度の関係が反転しない(すなわち、エミッタ1に印加される電界強度が、制御電極4に印加される電界強度よりも強くならない)範囲で、電圧を印加するように調節される。こうして制御電極4の電位をエミッタ1の電位より低くする程度を調整することで、制御電極4へのイオンの引き込み量を調整することができ、ひいてはエミッタへのイオンの衝突を更に減少又は微調整することができる。   This power supply 6 does not reverse the relationship of the electric field strength that the electric field strength applied to the control electrode 4 is stronger than the electric field strength applied to the emitter 1 (that is, the electric field strength applied to the emitter 1 is controlled). The voltage is adjusted to be applied within a range that does not become stronger than the electric field strength applied to the electrode 4. In this way, by adjusting the degree to which the potential of the control electrode 4 is lower than the potential of the emitter 1, the amount of ions attracted to the control electrode 4 can be adjusted, thereby further reducing or finely adjusting the collision of ions with the emitter. can do.

上記のようにして作製されたエッチング済み炭素材で冷陰極(エミッタ)を形成したX線管(図4)を製作し、その電界放出特性を評価した。このX線管の制御電極4の材料にはTi、X線発生ターゲット3にはBe窓にCuを堆積したものを用いた。また、制御電極4に対して、エミッタ1は1mm程度下方に位置するようにした。これは、制御電極4部分の電界強度をエミッタ1の先端よりも強くすることにより、X線発生ターゲット3から生じるイオンによるエミッタ1の先端部の破壊を抑制するためである。   An X-ray tube (FIG. 4) having a cold cathode (emitter) formed of an etched carbon material produced as described above was manufactured, and its field emission characteristics were evaluated. Ti was used as the material of the control electrode 4 of the X-ray tube, and the X-ray generation target 3 was made of Cu deposited on the Be window. Further, the emitter 1 is positioned about 1 mm below the control electrode 4. This is because the breakdown of the tip of the emitter 1 due to ions generated from the X-ray generation target 3 is suppressed by making the electric field strength of the control electrode 4 portion stronger than the tip of the emitter 1.

このX線管内部の真空度は、ゲッター材等を用いて10−7 Pa以下の高真空状態とした。エミッタへのイオン衝撃頻度は真空度に比例するので、できるだけ高真空にすることが必要である。 The degree of vacuum inside the X-ray tube was set to a high vacuum state of 10 −7 Pa or less using a getter material or the like. Since the frequency of ion bombardment on the emitter is proportional to the degree of vacuum, it is necessary to make the vacuum as high as possible.

図8は、上記X線管の電流−電圧特性を示している。この特性から、X線発生ターゲットに電圧を印加すると、閾値電圧4kVで電子放出が確認され、8kV以上の印加電圧で1mAを超える電界放出電流が得られることがわかる。本実施例においては、3mAの直流駆動も可能であることを確認しており、本発明の方法で作製された炭素材からなるエミッタは優れた電界放出特性を有することが明らかとなった。   FIG. 8 shows the current-voltage characteristics of the X-ray tube. From this characteristic, it can be seen that when a voltage is applied to the X-ray generation target, electron emission is confirmed at a threshold voltage of 4 kV, and a field emission current exceeding 1 mA is obtained at an applied voltage of 8 kV or higher. In this example, it was confirmed that a DC drive of 3 mA was possible, and it became clear that the emitter made of the carbon material produced by the method of the present invention has excellent field emission characteristics.

以上のように、本発明によれば、従来の製造方法に比して遥かに簡便に且つ低コストで、良好な電子放出特性を有する電界放出型電子源を提供することができる。   As described above, according to the present invention, it is possible to provide a field emission type electron source having good electron emission characteristics, which is much simpler and lower in cost than the conventional manufacturing method.

上記実施形態では、電界放出型電子源をX線管に用いた場合について説明したが、本発明によって得られる電界放出型電子源は、X線管のほか、電界放出電子源を利用する全ての装置、例えば電子線管の電子線源部、走査型電子顕微鏡及び透過型電子顕微鏡の電子源部、電子線励起型蛍光灯の電子源部、電子線マイクロプローブアナライザの電子線源部、カソードルミネッセンス装置の電子線源部等に、好適に用いられる。   In the above embodiment, the case where the field emission electron source is used in the X-ray tube has been described. Apparatus, for example, electron beam source part of electron tube, electron source part of scanning electron microscope and transmission electron microscope, electron source part of electron beam excitation type fluorescent lamp, electron beam source part of electron beam microprobe analyzer, cathode luminescence It is suitably used for an electron beam source part of the apparatus.

1・・・エミッタ、2…電圧源、3…ターゲット、4・・・制御電極、5…孔、6…調節電源、10…炭素材、11…水素酸素燃焼炎。   DESCRIPTION OF SYMBOLS 1 ... Emitter, 2 ... Voltage source, 3 ... Target, 4 ... Control electrode, 5 ... Hole, 6 ... Control power supply, 10 ... Carbon material, 11 ... Hydrogen oxygen combustion flame.

Claims (3)

電界が印加されることにより電子を放出する冷陰極を備えた電界放出型電子源の製造方法であって、前記冷陰極の素材となる炭素材を水素酸素混合ガスの燃焼炎に暴露することで、該炭素材の表面に炭素のナノメートル構造を形成するエッチング処理を行い、得られた炭素材で前記冷陰極を形成することを特徴とする製造方法。   A method of manufacturing a field emission electron source including a cold cathode that emits electrons when an electric field is applied, wherein a carbon material as a material of the cold cathode is exposed to a combustion flame of a hydrogen-oxygen mixed gas. A manufacturing method comprising: performing an etching treatment to form a nanometer structure of carbon on a surface of the carbon material, and forming the cold cathode with the obtained carbon material. 電界が印加されることにより電子を放出する冷陰極を備えた電界放出型電子源であって、前記冷陰極の素材となる炭素材を水素酸素混合ガスの燃焼炎に暴露することで、該炭素材の表面に炭素のナノメートル構造を形成するエッチング処理を行い、得られた炭素材で前記冷陰極を形成したことを特徴とする電界放出型電子源。   A field emission electron source having a cold cathode that emits electrons when an electric field is applied, wherein the carbon material as a material of the cold cathode is exposed to a combustion flame of a hydrogen-oxygen mixed gas, whereby the carbon A field emission electron source, wherein an etching process for forming a nanometer structure of carbon on a surface of a material is performed, and the cold cathode is formed of the obtained carbon material. 請求項2に記載の電界放出型電子源において、該冷陰極から放出された電子が向かうターゲットと該冷陰極との間で、前記冷陰極の周囲に制御電極が配置され、前記ターゲットと前記制御電極との間に、前記ターゲットと前記冷陰極との間に印加するのと同じ電圧が印加されることを特徴とする電界放出型電子源。
3. The field emission electron source according to claim 2, wherein a control electrode is disposed around the cold cathode between the cold cathode and a target to which electrons emitted from the cold cathode travel, and the target and the control are arranged. A field emission electron source, wherein the same voltage as that applied between the target and the cold cathode is applied between electrodes.
JP2010017440A 2010-01-28 2010-01-28 Field emission electron source and manufacturing method thereof Expired - Fee Related JP5406748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010017440A JP5406748B2 (en) 2010-01-28 2010-01-28 Field emission electron source and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010017440A JP5406748B2 (en) 2010-01-28 2010-01-28 Field emission electron source and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011154980A true JP2011154980A (en) 2011-08-11
JP5406748B2 JP5406748B2 (en) 2014-02-05

Family

ID=44540787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010017440A Expired - Fee Related JP5406748B2 (en) 2010-01-28 2010-01-28 Field emission electron source and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5406748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007098A1 (en) * 2012-07-02 2014-01-09 スタンレー電気株式会社 Deep ultraviolet laser light source by means of electron beam excitation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348296A (en) * 2000-04-05 2001-12-18 Kobe Steel Ltd Diamond having needle-shaped surface, carbon-based material having cilium-like surface, method of producing these materials and electrode and electronic device using these materials
JP2005032638A (en) * 2003-07-09 2005-02-03 Stanley Electric Co Ltd Manufacturing method of cold cathode, and device using cold cathode
JP2010218894A (en) * 2009-03-17 2010-09-30 Jeol Ltd Emitter tip acumination method and device of field ionization type gas ion source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348296A (en) * 2000-04-05 2001-12-18 Kobe Steel Ltd Diamond having needle-shaped surface, carbon-based material having cilium-like surface, method of producing these materials and electrode and electronic device using these materials
JP2005032638A (en) * 2003-07-09 2005-02-03 Stanley Electric Co Ltd Manufacturing method of cold cathode, and device using cold cathode
JP2010218894A (en) * 2009-03-17 2010-09-30 Jeol Ltd Emitter tip acumination method and device of field ionization type gas ion source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014007098A1 (en) * 2012-07-02 2014-01-09 スタンレー電気株式会社 Deep ultraviolet laser light source by means of electron beam excitation
JP2014011377A (en) * 2012-07-02 2014-01-20 Stanley Electric Co Ltd Deep ultraviolet laser light source

Also Published As

Publication number Publication date
JP5406748B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
Parmee et al. X-ray generation using carbon nanotubes
JP4783239B2 (en) Electron emitter material and electron emission application device
Terranova et al. Nanodiamonds for field emission: state of the art
KR102368515B1 (en) An electron emitter for an x-ray tube
US20020006489A1 (en) Electron emitter, manufacturing method thereof and electron beam device
JP2001180920A (en) Method of machining nano tube and method of producing field emission-type cold cathode and indicator
Zhao et al. Field emission from screen-printed carbon nanotubes irradiated by tunable ultraviolet laser in different atmospheres
CN1538485A (en) Manufacturing method of electron emission source
JP5406748B2 (en) Field emission electron source and manufacturing method thereof
JP4872042B2 (en) High-density carbon nanotube aggregate and method for producing the same
Koh et al. Low temperature direct of graphene onto metal nano‐spindt tip with applications in electron emission
JP4955265B2 (en) Method and apparatus for manufacturing semiconductor device
Chen et al. Analysis of a laser post-process on a buckypaper field emitter for high and uniform electron emission
Hu et al. A novel cold cathode design for S-band continuous-wave magnetron
CN108987215B (en) Method for improving field emission performance of graphene sheet-carbon nanotube array composite material
KR102362517B1 (en) Tungsten doped grapheneoxide, manufacturing method thereof and electron emitter including the same
JP4863590B2 (en) Carbon nanotube modification method, carbon nanotube and electron emission source
JP2006049293A (en) Field-emission electron gun and electron beam application apparatus using the same
JP2004146158A (en) Field emission type x-ray source
KR101121639B1 (en) Cathode structure of electron emitting device
JP2004335420A (en) Fe type x-ray radiography system and method of manufacturing fe emitter used in the same
JP2002022899A (en) Electron beam irradiator
JP5081851B2 (en) Manufacturing method of field emission electron source
JP2007095580A (en) Field emitter using carbon nanotube
JP2008044828A (en) Carbon nanotube forming device and carbon nanotube forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131101

LAPS Cancellation because of no payment of annual fees