WO2014007098A1 - Deep ultraviolet laser light source by means of electron beam excitation - Google Patents

Deep ultraviolet laser light source by means of electron beam excitation Download PDF

Info

Publication number
WO2014007098A1
WO2014007098A1 PCT/JP2013/067234 JP2013067234W WO2014007098A1 WO 2014007098 A1 WO2014007098 A1 WO 2014007098A1 JP 2013067234 W JP2013067234 W JP 2013067234W WO 2014007098 A1 WO2014007098 A1 WO 2014007098A1
Authority
WO
WIPO (PCT)
Prior art keywords
deep ultraviolet
light source
layer
laser light
electron beam
Prior art date
Application number
PCT/JP2013/067234
Other languages
French (fr)
Japanese (ja)
Inventor
松本 貴裕
岩山 章
Original Assignee
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社 filed Critical スタンレー電気株式会社
Publication of WO2014007098A1 publication Critical patent/WO2014007098A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/0955Processes or apparatus for excitation, e.g. pumping using pumping by high energy particles
    • H01S3/0959Processes or apparatus for excitation, e.g. pumping using pumping by high energy particles by an electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1628Solid materials characterised by a semiconducting matrix

Definitions

  • the present invention relates to a deep ultraviolet laser light source having a wavelength range of 200 to 350 nm, which is used as a light source for high density recording, a light source for semiconductor lithography, a light source for processing fine materials, and the like.
  • a gas laser light source as a first conventional deep ultraviolet laser light source, for example, an excimer laser light source represented by an ArF laser light source with a wavelength of 193 nm, an ArCl laser light source with a wavelength of 175 nm, a KrF laser light source with a wavelength of 249 nm, and the wavelength
  • a metal vapor ion laser light source represented by a copper vapor ion laser light source of 248.6 nm and a gold vapor ion laser light source of wavelength 226.4 nm.
  • the above-described first conventional deep ultraviolet laser light source has a high manufacturing cost of, for example, about 200 to 300,000 dollars, a large size of, for example, 2 m 3 or more, and a power / laser conversion efficiency of, for example, about 0.1 to 0.01%.
  • it requires frequent gas exchange once a week, for example, about 1000 to 5000 hours, the life of a hot cathode discharge tube (thyratron) is short, and fluorine / chlorine harmful gases are used.
  • thyratron hot cathode discharge tube
  • a solid-state laser light source as a second conventional deep ultraviolet laser light source (see: Patent Documents 1, 2, and 3).
  • a fundamental wave of a YAG laser device having a wavelength of 1064 nm is converted into a high-order harmonic of, for example, a wavelength of 266 nm by a wavelength conversion element and output.
  • the above-described second conventional deep ultraviolet laser light source has a high manufacturing cost of about 200 to 300,000 dollars, for example, a large size of 2 m 3 or more, for example, about 0.1 to 0.01%, depending on the wavelength conversion element.
  • drawbacks such as low power / laser conversion efficiency.
  • Non-Patent Document 1 As a deep ultraviolet laser light source, a semiconductor laser light source using a wide band gap semiconductor layer, for example, an AlGaN quantum well layer, which is attracting attention in terms of miniaturization, high output, high efficiency, etc. can be considered.
  • LED light-emitting diode
  • the LED light source when an LED light source using the above-mentioned wide band gap semiconductor layer is applied to a deep ultraviolet laser light source, the LED light source has the following problems.
  • the lifetime is as short as about 10 hours.
  • a deep ultraviolet laser light source includes a substrate, a wide band gap semiconductor layer provided on the substrate, and an aluminum metal back layer provided on the wide band gap semiconductor layer. And a resonator structure that resonates deep ultraviolet light generated from the wide band gap semiconductor layer, and irradiates an electron beam from the aluminum metal back layer side to excite the wide band gap semiconductor layer to start from the wide band gap semiconductor layer.
  • the generated deep ultraviolet light is laser-oscillated by a resonator structure. This realizes a deep ultraviolet laser light source using a wide band gap semiconductor layer by electron beam excitation.
  • the aluminum metal back layer prevents the wide band gap semiconductor layer from being charged and causing dielectric breakdown.
  • the wide band gap semiconductor layer is an Al x Ga 1-x N / AlN multiple quantum well layer, and the thickness of the Al x Ga 1-x N / AlN multiple quantum well layer is about 6 to 60 nm. Thereby, luminous efficiency becomes very high.
  • an electron emission source composed of a graphite nano needle rod for generating an electron beam is provided.
  • the vacuum degree of vacuum sealing is lowered, and the electron emission source has a long life.
  • the present invention it is possible to realize a deep ultraviolet laser light source using a wide band gap semiconductor layer by electron beam excitation. Moreover, the formation of the p-type layer is not required by electron beam excitation.
  • FIG. It is a fragmentary sectional view which shows the example of a change of FIG. It is a top view which shows an example of the electron beam irradiation pattern on the aluminum metal back layer obtained when the direct-current voltage for focus of FIG. 13, FIG. 14 is controlled. It is a graph which shows the emission intensity of the deep ultraviolet laser light source of FIG. 14, and the spectrum of a laser oscillation. It is a graph for demonstrating the directivity of the deep ultraviolet laser light source of FIG. It is a graph which shows the optical output characteristic of the deep ultraviolet laser light source of FIG. It is sectional drawing which shows the example of a change of the deep ultraviolet laser light source of FIG. It is sectional drawing which shows the 3rd Example of the deep ultraviolet laser light source which concerns on this invention. It is a graph which shows the lifetime of the deep ultraviolet laser light source of FIG.1, FIG.12, FIG.20.
  • FIG. 1 is a sectional view showing a first embodiment of a deep ultraviolet laser light source according to the present invention.
  • the deep ultraviolet laser device of FIG. 1 is an end face reflection type.
  • the deep ultraviolet laser light source includes a sapphire (0001) substrate 1, an AlN buffer layer 2 having a thickness of about 600 nm formed on the sapphire (0001) substrate 1, and a thickness of about 2 nm formed on the AlN buffer layer 2.
  • AlN layer 3 3 ⁇ m grating AlN layer 3, approximately 15 ⁇ m thick AlN layer 4 formed on grating AlN layer 3, approximately 3 nm thick Al 0.7 Ga 0.3 N well layer formed on AlN layer 4 and approximately 3 nm thick
  • Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 and the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 having a thickness of about 6 to 60 nm including 1 to 10 repetition periods with one AlN barrier layer as one period It comprises an aluminum (Al) metal back layer 6 formed and an electron emission source 7 that emits an electron beam EB.
  • both side surfaces of the sapphire (0001) substrate 1, AlN buffer layer 2, grating AlN layer 3, AlN layer 4, Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 and aluminum metal back layer 6 are cut or wall-opened.
  • the electron beam EB is irradiated from the electron emission source 7
  • the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is excited and resonated, and the deep ultraviolet laser light DUV is converted into at least one of the reflection structures RS1. Is emitted.
  • Black dots B in FIG. 2 indicate the thickness t 1 of the sapphire (0001) substrate 1 at which leakage X-rays obtained by simulation have legally specified values at the energy E (keV) of each electron beam EB. .
  • the leakage X-ray can be set to a legally prescribed value or less.
  • a curve like a dotted line is drawn. Therefore, as shown in FIG. 2, the thickness t 1 of the sapphire (0001) substrate 1 is calculated from the equation representing the plotted dotted line in order to prevent leakage X-rays.
  • the intensity of the leaked X-ray can be made lower than the legally prescribed value.
  • a SiC substrate or an AlN substrate can be used.
  • the constant “a” in the above formula is a value other than 1.
  • the laser oscillation direction of the deep ultraviolet laser beam DUV and the generation direction of the leakage X-ray are different from each other by 90 °, it is possible to take a leakage prevention measure in consideration of this. For example, it is conceivable to take measures such as covering a X-ray leakage location with a heavy metal lid such as lead that has been drilled in the laser oscillation direction of the deep ultraviolet laser beam DUV.
  • the sapphire (0001) substrate 1 is mounted on a metal organic chemical vapor deposition (MOCVD) apparatus, hydrogen (H 2 ) gas is supplied as a carrier gas, and the substrate temperature is kept at 1200 ° C. for 10 minutes. ) Pretreatment of the surface of the substrate 1 is performed.
  • MOCVD metal organic chemical vapor deposition
  • the substrate temperature was raised to 1300 ° C., and trimethylaluminum ((CH 3 ) 3 Al) and ammonia (NH 3 ) were supplied at a flow rate of 10 sccm and 5 slm, respectively, to a thickness of about 3 ⁇ m.
  • An AlN layer is formed.
  • the surface of the AlN layer having a thickness of about 3 ⁇ m has a period of about 3 ⁇ m and a depth of about 3 ⁇ m.
  • a grating structure having a thickness of about 500 nm is formed to form the grating AlN layer 3.
  • a striped resist pattern (not shown) having a width of about 3 ⁇ m is formed on the AlN layer by using a photolithography method, and then the above resist pattern is formed by using a reactive ion etching (RIE) process.
  • RIE reactive ion etching
  • the AlN layer is etched using as a mask.
  • the resist pattern is removed using an organic solvent or the like.
  • a groove (unevenness) structure having a line and space period of about 3 ⁇ m and a depth of 500 nm is formed.
  • the grating structure is used.
  • it may be an uneven shape.
  • the unevenness may be arranged in a dot shape.
  • the substrate temperature is raised to 1300 ° C., and trimethylaluminum ((CH 3 ) 3 Al) and ammonia (NH 3 ) are supplied at a flow rate of 10 sccm and 5 slm, respectively, to a thickness of about 15 ⁇ m.
  • An AlN layer 4 is formed. By making the AlN layer 4 as thick as about 15 ⁇ m, the film quality of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 to be grown next can be improved.
  • the substrate temperature is set to 1200 ° C.
  • an AlN barrier layer having a thickness of 3 nm is formed.
  • the Al 0.7 Ga 0.3 N-well layer and AlN barrier layer Repeat 1 cycle to 10 cycles as one cycle to form the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 having a thickness of about 6 - 60 nm.
  • FIG. 3 shows that the energy E of the electron beam EB is 10 keV, the beam diameter of the electron beam EB is 10 nm, the thickness t 6 of the Al metal back layer 6 is 30 nm, and the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is used.
  • FIG. 7 is a diagram showing a Monte Carlo simulation result of the diffusion of incident electrons of the electron beam EB when the thickness t 5 of the electron beam is 720 nm. That is, the electron beam EB is absorbed almost for example, Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 99%, the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is more thick, the manufacturing cost Wasted in terms.
  • Al 0.7 Ga 0.3 N / AlN multiple Considering uniformity and quality of the quantum well layer 5, the maximum value of the thickness t 5 of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is Al 0.7 Ga 0.3 N well It is about 60 nm for 10 periods of the layer and the AlN barrier layer.
  • FIG. 4 shows that the energy E of the electron beam EB is 10 keV, the beam diameter of the electron beam EB is 10 nm, the thickness t 6 of the Al metal back layer 6 is 30 nm, and the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is used.
  • FIG. 6 is a diagram showing a Monte Carlo simulation result of diffusion of incident electrons of an electron beam EB when the thickness t 5 of the film is 60 nm. Also in this case, excitons are formed through the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 and in which electron-hole pairs are coupled by electron beam excitation within the diffusion length D of the AlN layer 4.
  • excitons generated in the AlN layer 4 diffuse into the exciton diffusion region DE of the AlN layer 4 and contribute to light emission of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5. Absent. However, the present inventors succeeded in obtaining an interesting experimental fact here. It, Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 toward the potential of efficiently Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 by the diffusion phenomenon as shown excitons generated in the AlN layer 4 is by a dotted line arrow The effect is that it contributes to the re-excitation of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5.
  • the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is shown as vertical stripes, but this is for convenience, and in practice, Al 0.7 Ga 0.3 N / AlN multiple layers are shown.
  • the Al 0.7 Ga 0.3 N well layer and the AlN barrier layer of the quantum well layer 5 are stacked in the lateral direction.
  • Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 on the formed aluminum metal back layer 6 charge when Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is charged by the irradiation of the electron beam EB This prevents the dielectric breakdown of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5, but the thickness t 6 of the aluminum metal back layer 6 is important and will be described in detail.
  • the electron beam EB excites the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5.
  • the energy E of the electron beam EB should be small.
  • the energy E of the electron beam EB is as small as 10 keV or less, in other words, the electrons of the electron beam EB are slow. For slow electrons is transmitted through the aluminum metal back layer 6, the thickness t 6 of the aluminum metal back layer 6 is better small.
  • the thickness t 6 of the aluminum metal back layer is large, the electron beam EB is absorbed by the aluminum metal back layer 6 and the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 cannot be sufficiently excited, and the light emission is still caused. Efficiency is reduced.
  • the thickness t 6 of the aluminum metal back layer 6 should preferably be as small as possible.
  • the aluminum metal back layer 6 receives as much deep ultraviolet laser light DUV as possible.
  • the light emission efficiency can be increased by reflecting the light back to the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5.
  • the thickness t 6 of the aluminum metal back layer 6 from this point it is as large as possible.
  • the thickness t 6 of the aluminum metal back layer 6 is in the range of 30 nm or more, the reflectivity of the aluminum metal back layer 6 becomes large regardless of the incident angle ⁇ to the aluminum metal back layer 6. That is, as shown in FIG.
  • ATR total reflection attenuation
  • n 2 is the refractive index of the AlN layers 2, 3 and 4
  • k 2 is the extinction coefficient of the AlN layers 2, 3 and 4.
  • n 6 is the refractive index of the aluminum metal back layer 6
  • k 6 is an extinction coefficient of the aluminum metal back layer 6.
  • the thickness t 6 of the aluminum metal back layer 6 that minimizes the absorption loss of the electron beam EB and maximizes the reflectivity of the deep ultraviolet laser beam DUV is about 30 to 100 nm.
  • silver In addition to aluminum, silver (Ag) is also conceivable as a metal back layer that efficiently reflects the deep ultraviolet laser beam DUV.
  • heavy metals such as silver have a high electron beam blocking ability, so they absorb the electron beam EB.
  • the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 cannot be sufficiently excited, that is, cannot emit light.
  • aluminum which is a light metal and has good controllability and can be deposited, is optimal as the metal back layer.
  • two reflecting structures RS1 are formed as resonator structures for causing laser oscillation in the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 formed as described above.
  • the two sidewalls of the structure of FIG. 1 including the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 have a cleavage reflectance R of about 30% so that the resonator length L is about 0.1 to 1 mm.
  • a reflecting mirror, that is, two reflecting structures RS1 are realized.
  • the reflective structure RS1 can also be realized by cutting by a dry etching method or laser scribing method and then polishing.
  • the electron emission source 7 in FIG. 1 is composed of a graphite nano needle rod.
  • the above-mentioned graphite nano needle rod is formed by the manufacturing method shown in FIG.
  • a graphite substrate having a graphite rod surface shown in FIG. 8A is etched by a plasma etching method using hydrogen gas, and the nano-ordered graphite nanoneedle shown in FIG. Get a rod.
  • the plasma etching conditions are, for example, as follows. RF power: 100-1000W Pressure: 133-13300Pa (1-100Torr) Hydrogen flow rate: 5-500sccm Etching time: 1-100 minutes
  • the plasma etching method in step 701 may be any of an electron cyclotron resonance (ECR) etching method, a reactive ion etching (RIE) method, an atmospheric pressure plasma etching method, and the like, and the processing gas is other than H 2 gas.
  • ECR electron cyclotron resonance
  • RIE reactive ion etching
  • the processing gas is other than H 2 gas.
  • Ar gas, N 2 gas, O 2 gas, CF 4 gas, etc. may be used.
  • the graphite nanoneedle rod substrate obtained by performing the plasma etching described above exhibits good electron emission characteristics as shown in FIG.
  • the graphite nanoneedle rod according to the present invention has a higher emission current density than other materials such as carbon nanotube (CNT) and graphite nanofiber (GNF). Therefore, if the graphite nano needle rod according to the present invention is configured integrally with the conductive cathode base material, the adhesion of the graphite nano needle rod, the voltage drop at the interface between the graphite nano needle rod and the base material, and thus It can solve the problem of cathode breakdown due to degradation of electron emission characteristics (current saturation) and interface electric field concentration.
  • CNT carbon nanotube
  • GPF graphite nanofiber
  • FIG. 11 shows a modified example of the flow of FIG. 7.
  • step 1101 before the plasma etching step 701 of FIG. 7 irregular micron (submicron) mechanical uneven structure processing by mechanical surface polishing such as sandblasting is performed. I do.
  • step 1102 after the plasma etching step 701 in FIG. 7 irregular micron (submicron) laser irradiation uneven structure processing by surface polishing by high power laser irradiation such as CO 2 laser, YAG laser, and excimer laser is performed.
  • both steps 1101 and 1102 may be performed, but only one of them may be performed. In this case, it is preferable to perform step 1101 because small nano-order irregularities are more fragile.
  • a concavo-convex structure having an irregular period such as a micron order or a submicron order is formed. Accordingly, the surface area of the graphite substrate is increased and more electrons are emitted.
  • the surface area is increased by forming many irregular period micron or submicron order dents on the surface of the graphite substrate. You may let them.
  • a resist layer is applied, and then a pattern of the resist layer is formed by photolithography using a photomask having an irregular periodic pattern, and the graphite substrate is formed with H 2 gas and O 2 using the resist layer pattern.
  • Plasma etching using gas, for example, RIE process is performed, and then the pattern of the resist layer is removed.
  • the surface area can be increased by forming an irregular periodic micron order or submicron order sword mountain type concavo-convex structure by a cutting method using a mechanical ruling engine or the like.
  • This sword mountain-type uneven structure can also be formed by forming a reverse sword mountain mold by etching and pouring a liquid graphite material, such as carbon black, into it.
  • the electron emission source 7 may be one that can change the energy E of the electron beam EB to be emitted, or may be one that is fixed.
  • the thickness t 1 of the sapphire (0001) substrate 1 is set in accordance with the electron emission source 7 to be used.
  • the thickness t 1 of the sapphire (0001) substrate 1 is determined in accordance with the assumed upper limit of the use range, and if the upper limit is 10 keV or more, the thickness is 1000 nm. It is selected from the above range.
  • FIG. 12 is a cross-sectional view showing a second embodiment of the deep ultraviolet laser light source according to the present invention.
  • the deep ultraviolet laser light source of FIG. 12 is also an end face reflection type.
  • a reflective structure RS2 made of a dielectric multilayer mirror is provided instead of the reflective structure RS1 that becomes the reflective mirror of FIG.
  • Dielectric multilayer mirror is a combination of two dielectric multilayer films with different refractive indexes such as LaF 3 / Na 3 AlF 6 , Al 2 O 3 / SiO 2 , Y 2 O 3 / SiO 2 , HfO 2 / SiO 2, etc. It is configured by laminating about 2 to 100 thin films. The thickness of each layer is appropriately selected depending on the oscillation laser wavelength. At this time, for example, if the reflectance R of one reflective structure RS2 is 100% and the reflectance R of the other reflective structure RS2 is 90%, laser output can be obtained from only one direction.
  • a photonic crystal structure may be used instead of the dielectric multilayer mirror as the reflective structure RS2.
  • the photonic crystal structure has a higher reflectance R than the dielectric multilayer mirror.
  • FIG. 13 is a partial sectional view in which the deep ultraviolet laser light source of FIGS. 1 and 12 is actually assembled.
  • a laminate S, an aluminum metal back layer 6, and graphite composed of a sapphire (0001) substrate 1, an AlN buffer layer 2, a grating AlN layer 3, an AlN layer 4, an Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5.
  • the electron emission source 7 made of nano needle rods is vacuum sealed to the glass tube 8 and the anode electrode 9 using a stem pin (vacuum introduction terminal or the like) (not shown).
  • the anode electrode 9 has a metal structure in which a suitable metal plate is perforated or a structure in which the electrode can be obtained by metal deposition on the glass tube 8.
  • the aluminum metal back layer 6 is closely attached to the anode electrode 9 so as to cover the opening of the glass tube 8 so as to maintain a vacuum using an indium (In) seal or the like.
  • What is used for adhesion is not limited to an indium seal, but any conductive material may be used.
  • anode electrode 9 is perforated, a step-sealed glass that gradually changes from glass to metal is prepared.
  • an electron emission source 7 made of a graphite nano needle rod and an electrostatic lens 10 made of a cylindrical metal are attached using a stem pin or the like.
  • the electrostatic lens 10 is for focusing the electron beam EB of the electron emission source 7 on the stacked body S.
  • a stem pin to which the electron emission source 7 and the electrostatic lens 10 are attached is welded and vacuum sealed.
  • the glass tube 8 When a graphite nano needle rod is used as the electron emission source 7, its tip is installed perpendicularly to the plane of the laminate S, and because it saves space, the glass tube 8 can be made smaller, and the entire apparatus can be made compact. Can be At this time, since the glass tube 8 performs a so-called bipolar operation, the above-described stem pin is welded so that the distance between the electron emission source 7 on the cathode side and the anode electrode 9 becomes a predetermined value. Specifically, the distance is set to a predetermined value of about 0.5 mm / kV with respect to the voltage (kV) between the electron emission source 7 and the anode electrode 9.
  • the DC power source 11 is between the anode electrode 9 and the electron emission source 7 and applies a DC voltage V 1 to the anode electrode 9 so that the anode electrode 9 has a low potential when viewed from the electrons, whereas the DC power source 12 is an electron.
  • a focusing DC voltage V 2 is applied to the electrostatic lens 10 so that the electrostatic lens 10 is at a high potential when viewed from the electrons between the emission source 7 and the electrostatic lens 10.
  • FIG. 14 is a partial cross-sectional view showing a modified example of FIG.
  • an extraction electrode 13 is added in the vicinity of the electron emission source 7 to the components of FIG. 13, and a DC voltage V 3 is applied to the extraction electrode 13 by a DC power source 14 independently of the voltage of the anode electrode 9.
  • the current I EB of the electron beam EB flowing between the electron emission source 7 and the anode electrode 9 is controlled independently.
  • the glass tube 8 performs a so-called triode operation.
  • the DC power source is described as an example of the power sources 11, 12, and 14.
  • the electron beam EB can be temporally modulated by appropriately using an AC power source and a pulse power source.
  • the laser beam of the deep ultraviolet laser beam DUV can perform not only continuous oscillation but also pulse oscillation according to the modulation of the electron beam EB.
  • the degree of vacuum in the glass tube 8 may be increased.
  • a normal field emission type electron emission source requires a vacuum degree of 10 ⁇ 7 Pa or more, whereas in the case of the electron emission source 7 composed of the graphite nano needle rod according to the present invention, about 10 ⁇ 6 Pa.
  • the degree of vacuum is sufficient. Therefore, the vacuum sealing time can be greatly shortened, and as a result, the tact time can be shortened and a cheaper deep ultraviolet laser light source can be provided in the manufacture of the deep ultraviolet laser light source.
  • a getter or the like may be enclosed in the glass tube 8.
  • FIG. 15 is a plan view showing an example of an electron beam irradiation pattern P having a width of about 1 ⁇ m on the aluminum metal back layer 6 obtained when the direct current for focusing voltage V 2 shown in FIGS. 13 and 14 is controlled.
  • the transverse mode (TEM 00 ) pattern and the laser oscillation frequency are stabilized.
  • FIG. 16 shows emission intensity and laser oscillation obtained by applying 5 kV as the DC voltage V 1 to the deep ultraviolet laser light source of FIG. 14 and applying the DC voltage V 3 to the current I EB of the electron beam EB of 1 ⁇ A, 2 ⁇ A, and 30 ⁇ A. An intensity spectrum is shown.
  • the thickness t 5 of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is 60 nm.
  • AlN emits light from defects in the AlN layer 4
  • QW 1 emits light from the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5
  • QW 2 represents a deep quasi of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5.
  • Emission from the position, QW3, indicates the laser intensity from the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5.
  • FIG. 17 is a graph for explaining the directivity of the deep ultraviolet laser light source of FIG.
  • the half-value width of the far-field image is as large as 30 ° to 40 °.
  • the half-value width of the far-field image is as small as about 5 °.
  • FIG. 18 is a graph showing the light output characteristics of the deep ultraviolet laser light source of FIG.
  • the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 can obtain good laser oscillation characteristics by electron beam excitation. Further, when it is desired to improve the laser oscillation characteristics, as shown in FIG. 19, the AlN / AlGaN superlattice cladding layer 21 and the AlN light guide layer 22 are formed under the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 in FIG. At least one is provided, and at least one of the AlN light guide layer 23 and the AlN / AlGaN superlattice cladding layer 24 is provided on the upper layer of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5, thereby improving the optical confinement efficiency. Improve.
  • C is a constant according to the semiconductor material
  • FIG. 20 is a sectional view showing a third embodiment of the deep ultraviolet laser light source according to the present invention.
  • the deep ultraviolet laser device of FIG. 20 is a surface emitting type.
  • the deep ultraviolet laser light source includes a sapphire (0001) substrate 31, an AlN buffer layer 32 formed on the sapphire (0001) substrate 31, a grating AlN layer 33 formed on the AlN buffer layer 32, and a grating AlN layer.
  • a reflective structure RS31 formed of a dielectric multilayer mirror formed on 33, an AlN resonant layer 34 formed on the reflective structure RS31, and an Al 0.7 Ga 0.3 N well having a thickness of about 3 nm formed on the AlN resonant layer 34 Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 35, Al 0.7 Ga 0.3 N / AlN multiple layer having a thickness of about 6 to 60 nm including 1 to 10 repetition periods, with an AlN barrier layer having a thickness of about 3 nm and one period as a cycle
  • a reflective structure RS32 comprising an AlN resonant layer 36 formed on the quantum well layer 35, a dielectric multilayer mirror formed on the AlN resonant layer 36, and an aluminum (
  • an electron emission source 38 that emits an electron beam EB It becomes.
  • the reflectance R of the reflecting structure RS31 is small, and on the other hand, the reflectance R of the reflecting structure 32 is large.
  • the electron beam EB is irradiated from the electron emission source 38, Al 0.7 Ga 0.3 N
  • the / AlN multiple quantum well layer 35 is excited and resonates in the direction perpendicular to the growth surface, and the deep ultraviolet laser beam DUV is emitted from the reflective structure RS31 side.
  • the deep ultraviolet laser light source shown in FIG. 20 eliminates the need for a current confinement structure for realizing surface emission, thereby simplifying the epitaxial growth process.
  • the reflecting structures RS31 and RS32 are formed on the entire surface, the manufacture becomes easy. Further, since laser oscillation occurs from the electron beam irradiation position, the geometrical light emission pattern of the surface emitting laser can be freely changed.
  • FIG. 21 is a timing diagram showing the laser intensity for explaining the lifetime of the deep ultraviolet laser light source of FIGS.
  • an Al 0.7 Ga 0.3 N / AlN multiple quantum well layer is used as the wide band gap semiconductor, but Al x Ga 1-x N / AlN (0.1 ⁇ x ⁇ 0.9) A multiple quantum well layer may be used. In this case, the wavelength of the laser light becomes shorter as x becomes larger.
  • other wide band gap semiconductors such as ZnMgO, BN, and diamond semiconductor can be used.
  • Electron emission source 8 Glass tube 9: Anode electrode 10: Electrostatic lens 11, 12: DC power supply 13: Extraction electrode 14: DC power supply 34, 36: AlN resonance layer EB: Electron beam DUV: deep ultraviolet laser light RS1, RS2, RS31, RS32: Reflective structure

Abstract

This deep ultraviolet laser light source is provided with: a substrate; a wide band gap semiconductor layer which is provided on the substrate; an aluminum metal back layer which is provided on the wide band gap semiconductor layer; and a resonator structure which causes deep ultraviolet light produced from the wide band gap semiconductor layer to resonate. This deep ultraviolet laser light source is configured such that the wide band gap semiconductor layer is excited by electron beam irradiation from the aluminum metal back layer side and laser oscillation of the deep ultraviolet light produced from the wide band gap semiconductor layer is caused by the resonator structure. Consequently, there is achieved a deep ultraviolet laser light source which uses a wide band gap semiconductor layer by means of electron beam excitation.

Description

電子線励起による深紫外レーザ光源Deep ultraviolet laser light source by electron beam excitation.
本発明は高密度記録用光源、半導体リソグラフィ用光源、微細材料加工用光源等として用いられる波長200~350nmの領域の深紫外レーザ光源に関する。 The present invention relates to a deep ultraviolet laser light source having a wavelength range of 200 to 350 nm, which is used as a light source for high density recording, a light source for semiconductor lithography, a light source for processing fine materials, and the like.
第1の従来の深紫外レーザ光源として気体レーザ光源があり、たとえば、波長193nmのArFレーザ光源、波長175nmのArClレーザ光源、波長249nmのKrFレーザ光源、等で代表されるエキシマレーザ光源、及び波長248.6nmの銅蒸気イオンレーザ光源、波長226.4nmの金蒸気イオンレーザ光源で代表される金属蒸気イオンレーザ光源がある。 There is a gas laser light source as a first conventional deep ultraviolet laser light source, for example, an excimer laser light source represented by an ArF laser light source with a wavelength of 193 nm, an ArCl laser light source with a wavelength of 175 nm, a KrF laser light source with a wavelength of 249 nm, and the wavelength There is a metal vapor ion laser light source represented by a copper vapor ion laser light source of 248.6 nm and a gold vapor ion laser light source of wavelength 226.4 nm.
しかしながら、上述の第1の従来の深紫外レーザ光源においては、たとえば20~30万ドル程度と製造コストが高く、たとえば2m以上と大型であり、たとえば0.1~0.01%程度と電力/レーザ変換効率が低く、たとえば一週間に1回程度と頻繁なガス交換を必要とし、たとえば1000~5000時間程度と熱陰極放電管(サイラトロン)の寿命が短く、フッ素/塩素系の有害ガスを使用する等の欠点がある。 However, the above-described first conventional deep ultraviolet laser light source has a high manufacturing cost of, for example, about 200 to 300,000 dollars, a large size of, for example, 2 m 3 or more, and a power / laser conversion efficiency of, for example, about 0.1 to 0.01%. For example, it requires frequent gas exchange once a week, for example, about 1000 to 5000 hours, the life of a hot cathode discharge tube (thyratron) is short, and fluorine / chlorine harmful gases are used. There are drawbacks.
第2の従来の深紫外レーザ光源として固体レーザ光源がある(参照:特許文献1、2、3)。この固体レーザ光源においては、たとえば、波長1064nmのYAGレーザ装置の基本波を波長変換素子によってたとえば波長266nmの高次高調波に変換して出力する。 There is a solid-state laser light source as a second conventional deep ultraviolet laser light source (see: Patent Documents 1, 2, and 3). In this solid-state laser light source, for example, a fundamental wave of a YAG laser device having a wavelength of 1064 nm is converted into a high-order harmonic of, for example, a wavelength of 266 nm by a wavelength conversion element and output.
しかしながら、上述の第2の従来の深紫外レーザ光源においては、たとえば、20~30万ドル程度と製造コストが高く、たとえば2m以上と大型であり、たとえば0.1~0.01%程度と波長変換素子による電力/レーザ変換効率が低い等の欠点がある。 However, the above-described second conventional deep ultraviolet laser light source has a high manufacturing cost of about 200 to 300,000 dollars, for example, a large size of 2 m 3 or more, for example, about 0.1 to 0.01%, depending on the wavelength conversion element. There are drawbacks such as low power / laser conversion efficiency.
深紫外レーザ光源として、小型化、高出力化、高効率化等の点で注目されているワイドバンドギャップ半導体層たとえばAlGaN量子井戸層を利用した半導体レーザ光源が考えられるが、現段階ではレーザ発振には成功しておらず、発光ダイオード(LED)光源の開発に留まっている(特許文献4,5、非特許文献1)。 As a deep ultraviolet laser light source, a semiconductor laser light source using a wide band gap semiconductor layer, for example, an AlGaN quantum well layer, which is attracting attention in terms of miniaturization, high output, high efficiency, etc. can be considered. However, the development of light-emitting diode (LED) light sources has been limited ( Patent Documents 4 and 5, Non-Patent Document 1).
特開2012-37813号公報JP 2012-37813 A 特開2009-31684号公報(特許第4826558号)JP 2009-31684 A (Patent No. 4826558) 特開2007-86104号公報(US/2007/0064750A1)JP 2007-86104 A (US / 2007 / 0064750A1) WO2011/104969A1WO2011 / 104969A1 WO2010/027016A1WO2010 / 027016A1
しかしながら、上述のワイドバンドギャップ半導体層を利用したLED光源を深紫外レーザ光源に適用する場合にそのLED光源には次の課題がある。 However, when an LED light source using the above-mentioned wide band gap semiconductor layer is applied to a deep ultraviolet laser light source, the LED light source has the following problems.
 第1に、0.1~0.01%程度と電力/光変換効率が低い。 First, power / light conversion efficiency is low at around 0.1-0.01%.
 第2に、発光効率は未だ不充分である。 Second, the luminous efficiency is still insufficient.
 第3に、p型層の形成が困難のために、効率のよいダブルヘテロ型電流注入構造が実現できない。 Third, since it is difficult to form a p-type layer, an efficient double hetero current injection structure cannot be realized.
第4に、10時間程度と寿命が短い。 Fourth, the lifetime is as short as about 10 hours.
 上述の課題を解決するために、本発明に係る深紫外レーザ光源は、基板と、基板上に設けられたワイドバンドギャップ半導体層と、ワイドバンドギャップ半導体層上に設けられたアルミニウムメタルバック層と、ワイドバンドギャップ半導体層から発生した深紫外光を共振させる共振器構造とを具備し、アルミニウムメタルバック層側より電子線を照射してワイドバンドギャップ半導体層を励起してワイドバンドギャップ半導体層から発生した深紫外光を共振器構造によりレーザ発振するようにしたものである。これにより、電子線励起によるワイドバンドギャップ半導体層を用いた深紫外レーザ光源を実現する。また、アルミニウムメタルバック層によりワイドバンドギャップ半導体層が帯電して絶縁破壊するのを防止する。 In order to solve the above-described problems, a deep ultraviolet laser light source according to the present invention includes a substrate, a wide band gap semiconductor layer provided on the substrate, and an aluminum metal back layer provided on the wide band gap semiconductor layer. And a resonator structure that resonates deep ultraviolet light generated from the wide band gap semiconductor layer, and irradiates an electron beam from the aluminum metal back layer side to excite the wide band gap semiconductor layer to start from the wide band gap semiconductor layer. The generated deep ultraviolet light is laser-oscillated by a resonator structure. This realizes a deep ultraviolet laser light source using a wide band gap semiconductor layer by electron beam excitation. In addition, the aluminum metal back layer prevents the wide band gap semiconductor layer from being charged and causing dielectric breakdown.
 また、ワイドバンドギャップ半導体層はAlxGa1-xN/AlN多重量子井戸層であり、AlxGa1-xN/AlN多重量子井戸層の厚さが約6~60nmである。これにより、発光効率が非常に高くなる。 The wide band gap semiconductor layer is an Al x Ga 1-x N / AlN multiple quantum well layer, and the thickness of the Al x Ga 1-x N / AlN multiple quantum well layer is about 6 to 60 nm. Thereby, luminous efficiency becomes very high.
 さらに、電子線を発生するためのグラファイトナノ針状ロッドにより構成される電子放出源を具備する。これにより、真空封止の真空度が下がり、かつ、電子放出源が長寿命となる。 Furthermore, an electron emission source composed of a graphite nano needle rod for generating an electron beam is provided. As a result, the vacuum degree of vacuum sealing is lowered, and the electron emission source has a long life.
 本発明によれば、電子線励起によるワイドバンドギャップ半導体層を用いた深紫外レーザ光源を実現できる。また、電子線励起によりp型層の形成が不要となる。 According to the present invention, it is possible to realize a deep ultraviolet laser light source using a wide band gap semiconductor layer by electron beam excitation. Moreover, the formation of the p-type layer is not required by electron beam excitation.
本発明に係る深紫外レーザ光源の第1の実施例を示す断面図である。It is sectional drawing which shows the 1st Example of the deep ultraviolet laser light source which concerns on this invention. 図1のサファイア(0001)基板の厚さを説明するためのグラフである。It is a graph for demonstrating the thickness of the sapphire (0001) board | substrate of FIG. 図1の深紫外レーザ光源における電子線エネルギーを10keVとした場合の電子線の電子の拡散を説明するための図である。It is a figure for demonstrating the spreading | diffusion of the electron of an electron beam when the electron beam energy in the deep ultraviolet laser light source of FIG. 1 is 10 keV. 図1の深紫外レーザ光源における電子線エネルギーを10keVとした場合の励起子の拡散を説明するための図である。It is a figure for demonstrating the spreading | diffusion of an exciton when the electron beam energy in the deep ultraviolet laser light source of FIG. 1 is 10 keV. 図1のアルミニウムメタルバック層の反射率の入射角度依存性を示すグラフである。It is a graph which shows the incident angle dependence of the reflectance of the aluminum metal back layer of FIG. 図1のアルミニウムメタルバック層の反射率の入射角度依存性を示すグラフである。It is a graph which shows the incident angle dependence of the reflectance of the aluminum metal back layer of FIG. 図1の電子放出源の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the electron emission source of FIG. 図7のプラズマエッチング前後の電子放出源を示す走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph which shows the electron emission source before and behind the plasma etching of FIG. 図7のプラズマエッチング前後の電子放出源の電場/電流特性を示すグラフである。It is a graph which shows the electric field / current characteristic of the electron emission source before and behind the plasma etching of FIG. 図7のプラズマエッチング後の電子放出源の電場/電流密度特性及び他の比較例としての電子放出源の電場/電流密度特性を示すグラフである。It is a graph which shows the electric field / current density characteristic of the electron emission source after the plasma etching of FIG. 7, and the electric field / current density characteristic of the electron emission source as another comparative example. 図7の変更例を示すフローチャートである。It is a flowchart which shows the example of a change of FIG. 本発明に係る深紫外レーザ光源の第2の実施例を示す断面図である。It is sectional drawing which shows the 2nd Example of the deep ultraviolet laser light source which concerns on this invention. 図1、図12の深紫外レーザ光源を実際に組み立てた部分断面図である。It is the fragmentary sectional view which actually assembled the deep ultraviolet laser light source of FIG. 1, FIG. 図13の変更例を示す部分断面図である。It is a fragmentary sectional view which shows the example of a change of FIG. 図13、図14のフォーカス用直流電圧を制御した場合に得られるアルミニウムメタルバック層上の電子線照射パターンの一例を示す平面図である。It is a top view which shows an example of the electron beam irradiation pattern on the aluminum metal back layer obtained when the direct-current voltage for focus of FIG. 13, FIG. 14 is controlled. 図14の深紫外レーザ光源の発光強度及びレーザ発振のスペクトルを示すグラフである。It is a graph which shows the emission intensity of the deep ultraviolet laser light source of FIG. 14, and the spectrum of a laser oscillation. 図14の深紫外レーザ光源の指向性を説明するためのグラフである。It is a graph for demonstrating the directivity of the deep ultraviolet laser light source of FIG. 図14の深紫外レーザ光源の光出力特性を示すグラフである。It is a graph which shows the optical output characteristic of the deep ultraviolet laser light source of FIG. 図1の深紫外レーザ光源の変更例を示す断面図である。It is sectional drawing which shows the example of a change of the deep ultraviolet laser light source of FIG. 本発明に係る深紫外レーザ光源の第3の実施例を示す断面図である。It is sectional drawing which shows the 3rd Example of the deep ultraviolet laser light source which concerns on this invention. 図1、図12、図20の深紫外レーザ光源の寿命を示すグラフである。It is a graph which shows the lifetime of the deep ultraviolet laser light source of FIG.1, FIG.12, FIG.20.
発明を実施するための実施例Examples for carrying out the invention
 図1は本発明に係る深紫外レーザ光源の第1の実施例を示す断面図である。図1の深紫外レーザ装置は端面反射型である。 FIG. 1 is a sectional view showing a first embodiment of a deep ultraviolet laser light source according to the present invention. The deep ultraviolet laser device of FIG. 1 is an end face reflection type.
 図1において、深紫外レーザ光源は、サファイア(0001)基板1、サファイア(0001)基板1上に形成された厚さ約600nmのAlNバッファ層2、AlNバッファ層2上に形成された厚さ約3μmのグレーティングAlN層3、グレーティングAlN層3上に形成された厚さ約15μmのAlN層4、AlN層4上に形成された厚さ約3nmのAl0.7Ga0.3N井戸層及び厚さ約3nmのAlN障壁層を1周期として1~10繰返周期を含む厚さ約6~60nmのAl0.7Ga0.3N/AlN多重量子井戸層5、Al0.7Ga0.3N/AlN多重量子井戸層5上に形成されたアルミニウム(Al)メタルバック層6、及び電子線EBを放出する電子放出源7よりなる。また、サファイア(0001)基板1、AlNバッファ層2、グレーティングAlN層3、AlN層4、Al0.7Ga0.3N/AlN多重量子井戸層5及びアルミニウムメタルバック層6の両側面が切断もしくは壁開され、反射率R=30%以上の2つの反射構造RS1が形成されている。図1においては、電子放出源7より電子線EBが照射されると、Al0.7Ga0.3N/AlN多重量子井戸層5が励起されかつ共振されて深紫外レーザ光DUVが反射構造RS1の少なくとも一方より出射される。 In FIG. 1, the deep ultraviolet laser light source includes a sapphire (0001) substrate 1, an AlN buffer layer 2 having a thickness of about 600 nm formed on the sapphire (0001) substrate 1, and a thickness of about 2 nm formed on the AlN buffer layer 2. 3 μm grating AlN layer 3, approximately 15 μm thick AlN layer 4 formed on grating AlN layer 3, approximately 3 nm thick Al 0.7 Ga 0.3 N well layer formed on AlN layer 4 and approximately 3 nm thick On the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 and the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 having a thickness of about 6 to 60 nm including 1 to 10 repetition periods with one AlN barrier layer as one period It comprises an aluminum (Al) metal back layer 6 formed and an electron emission source 7 that emits an electron beam EB. Further, both side surfaces of the sapphire (0001) substrate 1, AlN buffer layer 2, grating AlN layer 3, AlN layer 4, Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 and aluminum metal back layer 6 are cut or wall-opened. Two reflection structures RS1 having a reflectance R = 30% or more are formed. In FIG. 1, when the electron beam EB is irradiated from the electron emission source 7, the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is excited and resonated, and the deep ultraviolet laser light DUV is converted into at least one of the reflection structures RS1. Is emitted.
 始めに、サファイア(0001)基板1について詳述する。 First, the sapphire (0001) substrate 1 will be described in detail.
 図2の黒点Bはそれぞれの電子線EBのエネルギーE(keV)の時、シミュレーションによって求めた漏洩X線が法定規定値となるサファイア(0001)基板1の厚さt1を示したものである。サファイア(0001)基板1の厚さt1を黒点Bが示す値以上にすることで漏洩X線を法定規定値以下とすることができる。これをプロットすると点線のようなカーブを描く。従って、サファイア(0001)基板1の厚さt1は漏洩X線を防止するために、プロットされた点線を表す式から、図2に示すように、
t1≧a・E3
但し、Eは電子線EBのエネルギー(keV)
aは1μm/(keV)3
である。すなわち、制動幅射によって発生するX線の最も高いエネルギーは電子線EBのエネルギーEと同一である。従って、たとえば、E=6keVのときに、サファイア(0001)基板1の厚さt1は216μm以上、E=10keVのときに、サファイア(0001)基板1の厚さt1は1000μm以上である。このように、サファイア(0001)基板1の厚さt1を上述の式に基づいて設定することにより漏洩X線の強度を法定規定値以下とすることができる。
Black dots B in FIG. 2 indicate the thickness t 1 of the sapphire (0001) substrate 1 at which leakage X-rays obtained by simulation have legally specified values at the energy E (keV) of each electron beam EB. . By setting the thickness t 1 of the sapphire (0001) substrate 1 to be equal to or greater than the value indicated by the black point B, the leakage X-ray can be set to a legally prescribed value or less. When this is plotted, a curve like a dotted line is drawn. Therefore, as shown in FIG. 2, the thickness t 1 of the sapphire (0001) substrate 1 is calculated from the equation representing the plotted dotted line in order to prevent leakage X-rays.
t 1 ≧ a · E 3
Where E is the energy of the electron beam EB (keV)
a is 1 μm / (keV) 3
It is. That is, the highest energy of X-rays generated by the braking range is the same as the energy E of the electron beam EB. Therefore, for example, when E = 6 keV, the thickness t 1 of the sapphire (0001) substrate 1 is 216 μm or more, and when E = 10 keV, the thickness t 1 of the sapphire (0001) substrate 1 is 1000 μm or more. Thus, by setting the thickness t 1 of the sapphire (0001) substrate 1 based on the above-described formula, the intensity of the leaked X-ray can be made lower than the legally prescribed value.
 尚、サファイア(0001)基板1の代りに、SiC基板あるいはAlN基板を用いることもできる。この場合には、上述の式の定数“a”は1以外の値となる。
 また、深紫外レーザ光DUVのレーザ発振方向と漏洩X線の発生方向とは90°角度が異なるので、これを考慮した漏洩防止策を施すことも可能である。例えば、深紫外レーザ光DUVのレーザ発振方向に穴開け加工を施した鉛等の重金属蓋をX線漏洩個所に被せる等の工夫を取ることが考えられる。
In place of the sapphire (0001) substrate 1, a SiC substrate or an AlN substrate can be used. In this case, the constant “a” in the above formula is a value other than 1.
Further, since the laser oscillation direction of the deep ultraviolet laser beam DUV and the generation direction of the leakage X-ray are different from each other by 90 °, it is possible to take a leakage prevention measure in consideration of this. For example, it is conceivable to take measures such as covering a X-ray leakage location with a heavy metal lid such as lead that has been drilled in the laser oscillation direction of the deep ultraviolet laser beam DUV.
 次に、サファイア(0001)基板1上のAlNバッファ層2、グレーティングAlN層3、AlN層4、Al0.7Ga0.3N/AlN多重量子井戸層5の形成方法を詳述する。 Next, a method of forming the AlN buffer layer 2, the grating AlN layer 3, the AlN layer 4, and the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 on the sapphire (0001) substrate 1 will be described in detail.
 サファイア(0001)基板1を有機金属化学的気相成長(MOCVD)装置に装着し、キャリアガスとして水素(H2)ガスを供給すると共に基板温度を1200℃にして10分間保持し、サファイア(0001)基板1の表面の前処理を行う。 The sapphire (0001) substrate 1 is mounted on a metal organic chemical vapor deposition (MOCVD) apparatus, hydrogen (H 2 ) gas is supplied as a carrier gas, and the substrate temperature is kept at 1200 ° C. for 10 minutes. ) Pretreatment of the surface of the substrate 1 is performed.
 次に、同一MOCVD装置において、基板温度を800℃に保持したままで、トリメチルアルミニウム((CH3)3Al)及びアンモニア(NH3)を、それぞれ、流量10sccm及び5slmで供給して厚さ約50nmのAlNバッファ層2を形成する。 Next, in the same MOCVD apparatus, while maintaining the substrate temperature at 800 ° C., trimethylaluminum ((CH 3 ) 3 Al) and ammonia (NH 3 ) are supplied at a flow rate of 10 sccm and 5 slm, respectively. A 50 nm AlN buffer layer 2 is formed.
 次に、同一MOCVD装置において、基板温度を1300℃に上昇させ、トリメチルアルミニウム((CH3)3Al)及びアンモニア(NH3)を、それぞれ、流量10sccm及び5slmで供給して厚さ約3μmのAlN層を形成する。 Next, in the same MOCVD apparatus, the substrate temperature was raised to 1300 ° C., and trimethylaluminum ((CH 3 ) 3 Al) and ammonia (NH 3 ) were supplied at a flow rate of 10 sccm and 5 slm, respectively, to a thickness of about 3 μm. An AlN layer is formed.
 次に、後述のAlN層4をエピタキシャル横方向成長法によって成長させる際にその転位密度を低減させて欠陥を少なくするために、上述の厚さ約3μmのAlN層の表面に周期約3μm、深さ約500nmのグレーティング構造を形成してグレーティングAlN層3を形成する。具体的には、AlN層上にフォトリソグラフィ法を用いて幅約3μmのストライプ状のレジストパターン(図示せず)を形成し、次いで、反応性イオンエッチング(RIE)プロセスを用いて上述のレジストパターンをマスクとしてAlN層をエッチングする。次いで、有機溶剤等を用いてレジストパターンを除去する。この結果、ラインアンドスペース周期が約3μm、深さが500nmの溝(凹凸)構造が形成される。本実施例においてはグレーティング構造としたが、凹凸状の形状であればよく、たとえば凹凸がドット状に並ぶ形状としてもよい。 Next, in order to reduce the dislocation density and reduce defects when the AlN layer 4 described later is grown by the epitaxial lateral growth method, the surface of the AlN layer having a thickness of about 3 μm has a period of about 3 μm and a depth of about 3 μm. A grating structure having a thickness of about 500 nm is formed to form the grating AlN layer 3. Specifically, a striped resist pattern (not shown) having a width of about 3 μm is formed on the AlN layer by using a photolithography method, and then the above resist pattern is formed by using a reactive ion etching (RIE) process. The AlN layer is etched using as a mask. Next, the resist pattern is removed using an organic solvent or the like. As a result, a groove (unevenness) structure having a line and space period of about 3 μm and a depth of 500 nm is formed. In this embodiment, the grating structure is used. However, it may be an uneven shape. For example, the unevenness may be arranged in a dot shape.
 次に、再びMOCVD装置において、基板温度を1300℃に上昇させ、トリメチルアルミニウム((CH3)3Al)及びアンモニア(NH)を、それぞれ、流量10sccm及び5slmで供給して厚さ約15μmのAlN層4を形成する。AlN層4を約15μmと厚くすることにより次に成長させるAl0.7Ga0.3N/AlN多重量子井戸層5の膜質を良好にできる。 Next, again in the MOCVD apparatus, the substrate temperature is raised to 1300 ° C., and trimethylaluminum ((CH 3 ) 3 Al) and ammonia (NH 3 ) are supplied at a flow rate of 10 sccm and 5 slm, respectively, to a thickness of about 15 μm. An AlN layer 4 is formed. By making the AlN layer 4 as thick as about 15 μm, the film quality of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 to be grown next can be improved.
 次に、同一MOCVD装置において、AlN層4上にAl0.7Ga0.3N/AlN多重量子井戸層5を形成する。すなわち、MOCVD装置において、化学量論比でAl:Ga:N=0.7:0.3:1となるように、トリメチルガリウム((CH3)3Ga)、トリメチルアルミニウム((CH3)3Al)及びアンモニア(NH)を、それぞれ、流量20sccm、8sccm及び7slmで供給すると共に、基板温度を1000℃とする。これにより、厚さ3nmのAl0.7Ga0.3N井戸層を形成する。また、同一MOCVD装置において、化学量論比でAl:N=1:1となるように、トリメチルアルミニウム((CH3)3Al)及びアンモニア(NH3)を、それぞれ、流量10sccm及び5slmで供給すると共に、基板温度を1200℃とする。これにより、厚さ3nmのAlN障壁層を形成する。このAl0.7Ga0.3N井戸層及びAlN障壁層を1周期として1周期~10周期繰返して厚さ約6~60nmのAl0.7Ga0.3N/AlN多重量子井戸層5を形成する。 Next, an Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is formed on the AlN layer 4 in the same MOCVD apparatus. That is, in the MOCVD apparatus, trimethylgallium ((CH 3 ) 3 Ga), trimethylaluminum ((CH 3 ) 3 Al) and ammonia so that the stoichiometric ratio is Al: Ga: N = 0.7: 0.3: 1. (NH 3 ) is supplied at flow rates of 20 sccm, 8 sccm, and 7 slm, respectively, and the substrate temperature is set to 1000 ° C. Thereby, an Al 0.7 Ga 0.3 N well layer having a thickness of 3 nm is formed. In the same MOCVD apparatus, trimethylaluminum ((CH 3 ) 3 Al) and ammonia (NH 3 ) are supplied at a flow rate of 10 sccm and 5 slm, respectively, so that the stoichiometric ratio is Al: N = 1: 1. In addition, the substrate temperature is set to 1200 ° C. Thereby, an AlN barrier layer having a thickness of 3 nm is formed. The Al 0.7 Ga 0.3 N-well layer and AlN barrier layer Repeat 1 cycle to 10 cycles as one cycle to form the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 having a thickness of about 6 - 60 nm.
図3は、電子線EBのエネルギーEを10keVとし、電子線EBのビーム径を10nmとし、Alメタルバック層6の厚さt6を30nmとし、Al0.7Ga0.3N/AlN多重量子井戸層5の厚さt5を720nmとした場合、電子線EBの入射電子の拡散のモンテカルロシミュレーション結果を示
す図である。すなわち、電子線EBはほとんどたとえば99%以上Al0.7Ga0.3N/AlN多重量子井戸層5に吸収されており、Al0.7Ga0.3N/AlN多重量子井戸層5がこれ以上厚いと、製造コストの点で無駄となる。また、Al0.7Ga0.3N/AlN多重量子井戸層5の均一度及び品質を考慮すると、Al0.7Ga0.3N/AlN多重量子井戸層5の厚さt5の最大値はAl0.7Ga0.3N井戸層及びAlN障壁層の10周期分の約60nmである。
3 shows that the energy E of the electron beam EB is 10 keV, the beam diameter of the electron beam EB is 10 nm, the thickness t 6 of the Al metal back layer 6 is 30 nm, and the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is used. FIG. 7 is a diagram showing a Monte Carlo simulation result of the diffusion of incident electrons of the electron beam EB when the thickness t 5 of the electron beam is 720 nm. That is, the electron beam EB is absorbed almost for example, Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 99%, the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is more thick, the manufacturing cost Wasted in terms. Also, Al 0.7 Ga 0.3 N / AlN multiple Considering uniformity and quality of the quantum well layer 5, the maximum value of the thickness t 5 of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is Al 0.7 Ga 0.3 N well It is about 60 nm for 10 periods of the layer and the AlN barrier layer.
図4は、電子線EBのエネルギーEを10keVとし、電子線EBのビーム径を10nmとし、Alメタルバック層6の厚さt6を30nmとし、Al0.7Ga0.3N/AlN多重量子井戸層5の厚さt5を60nmとした場合、電子線EBの入射電子の拡散のモンテカルロシミュレーション結果を示す図である。この場合においても、Al0.7Ga0.3N/AlN多重量子井戸層5を突き抜けてAlN層4の拡散長D内で電子線励起によって電子と正孔との対が結合した励起子が生成される。一般的に、AlN層4で生成された励起子は、AlN層4の励起子拡散領域DE内に拡散してしまい、Al0.7Ga0.3N/AlN多重量子井戸層5の発光に寄与することはない。しかしながら、本願発明者らはここで興味深い実験事実を得ることに成功した。それは、AlN層4で生成された励起子が点線矢印で示すごとく拡散現象により効率よくAl0.7Ga0.3N/AlN多重量子井戸層5のポテンシャルに向かいAl0.7Ga0.3N/AlN多重量子井戸層5の中に落込み、Al0.7Ga0.3N/AlN多重量子井戸層5の再励起に寄与するという効果である。本効果を利用することによって、電子線EBのエネルギーEに対してAl0.7Ga0.3N/AlN多重量子井戸層5の厚さを薄くすることができ、高品質かつ欠陥の少ないAl0.7Ga0.3N/AlN多重量子井戸層へ、効率の良い電子線励起を行うことができ、低しきい値での深紫外レーザ光DUVのレーザ発振が可能となる。この理由は、薄い方が均一で欠陥の少ない高品質膜質のAl0.7Ga0.3N/AlN多重量子井戸層5を形成できることに起因する。 4 shows that the energy E of the electron beam EB is 10 keV, the beam diameter of the electron beam EB is 10 nm, the thickness t 6 of the Al metal back layer 6 is 30 nm, and the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is used. FIG. 6 is a diagram showing a Monte Carlo simulation result of diffusion of incident electrons of an electron beam EB when the thickness t 5 of the film is 60 nm. Also in this case, excitons are formed through the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 and in which electron-hole pairs are coupled by electron beam excitation within the diffusion length D of the AlN layer 4. In general, excitons generated in the AlN layer 4 diffuse into the exciton diffusion region DE of the AlN layer 4 and contribute to light emission of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5. Absent. However, the present inventors succeeded in obtaining an interesting experimental fact here. It, Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 toward the potential of efficiently Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 by the diffusion phenomenon as shown excitons generated in the AlN layer 4 is by a dotted line arrow The effect is that it contributes to the re-excitation of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5. By using this effect, it is possible to reduce the thickness of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 with respect to the energy E of the electron beam EB, high quality and defect less Al 0.7 Ga 0.3 N / AlN multiple quantum well layers can be efficiently excited with an electron beam, and deep ultraviolet laser light DUV can be oscillated at a low threshold. The reason for this is that the thinner Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 can be formed, which is more uniform and has fewer defects.
 尚、図3、図4において、Al0.7Ga0.3N/AlN多重量子井戸層5は縦縞で図示されているが、これは便宜上のものであり、実際には、Al0.7Ga0.3N/AlN多重量子井戸層5のAl0.7Ga0.3N井戸層及びAlN障壁層は横方向に積層されている。 In FIGS. 3 and 4, the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is shown as vertical stripes, but this is for convenience, and in practice, Al 0.7 Ga 0.3 N / AlN multiple layers are shown. The Al 0.7 Ga 0.3 N well layer and the AlN barrier layer of the quantum well layer 5 are stacked in the lateral direction.
 次に、Al0.7Ga0.3N/AlN多重量子井戸層5上に形成されたアルミニウムメタルバック層6はAl0.7Ga0.3N/AlN多重量子井戸層5が電子線EBの照射によって帯電した場合に電荷を逃がしてAl0.7Ga0.3N/AlN多重量子井戸層5の絶縁破壊を防止するものであるが、アルミニウムメタルバック層6の厚さt6は重要であるので、これについて詳述する。 Then, Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 on the formed aluminum metal back layer 6 charge when Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is charged by the irradiation of the electron beam EB This prevents the dielectric breakdown of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5, but the thickness t 6 of the aluminum metal back layer 6 is important and will be described in detail.
 上述のごとく、Al0.7Ga0.3N/AlN多重量子井戸層5の厚さt5は約6~60nmと小さいので、電子線EBがAl0.7Ga0.3N/AlN多重量子井戸層5を励起するには発光効率の点から電子線EBのエネルギーEは小さい方がよい。また、漏洩X線の影響を回避するためにも、電子線EBのエネルギーEは小さい方がよい。従って、電子線EBのエネルギーEは10keV以下と小さく、言い換えると、電子線EBの電子は低速である。低速電子がアルミニウムメタルバック層6を透過するためには、アルミニウムメタルバック層6の厚さt6は小さい方がよい。尚、アルミニウムメタルバック層の厚さt6が大きいと、電子線EBがアルミニウムメタルバック層6によって吸収されてAl0.7Ga0.3N/AlN多重量子井戸層5を十分に励起できず、やはり、発光効率が低下する。このような点からは、アルミニウムメタルバック層6の厚さt6はできるだけ小さい方がよい。 As described above, since the thickness t 5 of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is as small as about 6 to 60 nm, the electron beam EB excites the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5. In view of luminous efficiency, the energy E of the electron beam EB should be small. Further, in order to avoid the influence of leaked X-rays, the energy E of the electron beam EB should be small. Accordingly, the energy E of the electron beam EB is as small as 10 keV or less, in other words, the electrons of the electron beam EB are slow. For slow electrons is transmitted through the aluminum metal back layer 6, the thickness t 6 of the aluminum metal back layer 6 is better small. When the thickness t 6 of the aluminum metal back layer is large, the electron beam EB is absorbed by the aluminum metal back layer 6 and the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 cannot be sufficiently excited, and the light emission is still caused. Efficiency is reduced. Such terms, the thickness t 6 of the aluminum metal back layer 6 should preferably be as small as possible.
 他方、Al0.7Ga0.3N/AlN多重量子井戸層5から発生した深紫外レーザ光DUVがアルミニウムメタルバック層6に到達した場合には、アルミニウムメタルバック層6はできるだけ多くの深紫外レーザ光DUVを反射してAl0.7Ga0.3N/AlN多重量子井戸層5へ戻すことにより、発光効率を上げることができる。この点からはアルミニウムメタルバック層6の厚さt6はできるだけ大きい方がよい。但し、アルミニウムメタルバック層6の厚さt6が30nm以上の範囲では、アルミニウムメタルバック層6への入射角θに関係なくアルミニウムメタルバック層6の反射率は大きくなる。すなわち、図5の(A)に示すごとく、アルミニウムメ
タルバック層6の厚さt6が10nmのときには、十分な反射率は得られない。また、図5の(B)に示すごとく、アルミニウムメタルバック層6の厚さt6が21nmのときには、表面プラズモン吸収が顕著となり、やはり十分な反射率は得られない。さらに、図6の(A)に示すごとく、アルミニウムメタルバック層6の厚さt6が30nmのときには、表面プラズモン吸収は小さくなり、さらに十分な反射率が得られる。さらにまた、図6の(B)に示すごとく、アルミニウムメタルバック層6の厚さt6が60nmのときには、表面プラズモン吸収はなくなり、十分な反射率が得られる。尚、図5、図6はサファイア(0001)基板1からAlN層2,3,4を介してアルミニウムメタルバック層6に入射角θで入射した場合の全反射減衰(ATR)信号スペクトル図であって、シミュレーションソフトとしてはマックスプランク研究所開発のWinspall(商標名)を用いた。波長λ=240nmの深紫外レーザ光DUVの基における条件は次のごとくである。
 サファイア(0001)基板1について、
     n1=1.84
     k1=0
 但し、n1はサファイア(0001)基板1の屈折率、
    k1はサファイア(0001)基板1の消衰係数である。
 AlN層2,3,4について、
     n2=1.87
     k2=0
 但し、n2はAlN層2,3,4の屈折率、
    k2はAlN層2,3,4の消衰係数である。
 アルミニウムメタルバック層6について、
     n6=0.172
     k6=2.79
 但し、n6はアルミニウムメタルバック層6の屈折率、
    k6はアルミニウムメタルバック層6の消衰係数である。
On the other hand, when the deep ultraviolet laser light DUV generated from the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 reaches the aluminum metal back layer 6, the aluminum metal back layer 6 receives as much deep ultraviolet laser light DUV as possible. The light emission efficiency can be increased by reflecting the light back to the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5. The thickness t 6 of the aluminum metal back layer 6 from this point it is as large as possible. However, when the thickness t 6 of the aluminum metal back layer 6 is in the range of 30 nm or more, the reflectivity of the aluminum metal back layer 6 becomes large regardless of the incident angle θ to the aluminum metal back layer 6. That is, as shown in FIG. 5A, when the thickness t6 of the aluminum metal back layer 6 is 10 nm, sufficient reflectance cannot be obtained. Further, as shown in FIG. 5B, when the thickness t6 of the aluminum metal back layer 6 is 21 nm, surface plasmon absorption becomes remarkable, and sufficient reflectance cannot be obtained. Further, as shown in FIG. 6A, when the thickness t6 of the aluminum metal back layer 6 is 30 nm, the surface plasmon absorption becomes small, and a further sufficient reflectance is obtained. Furthermore, as shown in FIG. 6B, when the thickness t6 of the aluminum metal back layer 6 is 60 nm, surface plasmon absorption is eliminated and sufficient reflectance is obtained. 5 and 6 are total reflection attenuation (ATR) signal spectrum diagrams when the light is incident on the aluminum metal back layer 6 from the sapphire (0001) substrate 1 through the AlN layers 2, 3 and 4 at an incident angle θ. As a simulation software, Winspall (trade name) developed by Max Planck Institute was used. The conditions for the base of the deep ultraviolet laser beam DUV having the wavelength λ = 240 nm are as follows.
About the sapphire (0001) substrate 1
n 1 = 1.84
k 1 = 0
Where n 1 is the refractive index of the sapphire (0001) substrate 1,
k 1 is an extinction coefficient of the sapphire (0001) substrate 1.
For AlN layers 2, 3, and 4,
n 2 = 1.87
k 2 = 0
Where n 2 is the refractive index of the AlN layers 2, 3 and 4,
k 2 is the extinction coefficient of the AlN layers 2, 3 and 4.
For the aluminum metal back layer 6,
n 6 = 0.172
k 6 = 2.79
Where n 6 is the refractive index of the aluminum metal back layer 6,
k 6 is an extinction coefficient of the aluminum metal back layer 6.
 以上から電子線EBの吸収損失を最小にし、かつ深紫外レーザ光DUVの反射率を最大とするアルミニウムメタルバック層6の厚さt6は約30~100nmであることが好ましい。 From the above, it is preferable that the thickness t 6 of the aluminum metal back layer 6 that minimizes the absorption loss of the electron beam EB and maximizes the reflectivity of the deep ultraviolet laser beam DUV is about 30 to 100 nm.
 尚、深紫外レーザ光DUVを効率よく反射するメタルバック層としては、アルミニウム以外に銀(Ag)も考えられるが、銀等の重い金属は電子線阻止能が大きいので、電子線EBを吸収してAl0.7Ga0.3N/AlN多重量子井戸層5を十分に励起つまり発光できない。結局、軽金属で制御性がよくかつ蒸着可能なアルミニウムがメタルバック層として最適である。 In addition to aluminum, silver (Ag) is also conceivable as a metal back layer that efficiently reflects the deep ultraviolet laser beam DUV. However, heavy metals such as silver have a high electron beam blocking ability, so they absorb the electron beam EB. Thus, the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 cannot be sufficiently excited, that is, cannot emit light. In the end, aluminum, which is a light metal and has good controllability and can be deposited, is optimal as the metal back layer.
 次に、上述のごとく形成されたAl0.7Ga0.3N/AlN多重量子井戸層5にレーザ発振させるための共振器構造として2つの反射構造RS1を形成する。反射構造RS1は共振器長Lが0.1~1mm程度となるように、Al0.7Ga0.3N/AlN多重量子井戸層5を含む図1の構造の2つの側壁を劈開反射率R=30%程度の反射ミラーつまり2つの反射構造RS1を実現する。尚、反射構造RS1はドライエッチング法、レーザスクライビング法により切断し、その後、研磨することによっても実現できる。 Next, two reflecting structures RS1 are formed as resonator structures for causing laser oscillation in the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 formed as described above. In the reflection structure RS1, the two sidewalls of the structure of FIG. 1 including the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 have a cleavage reflectance R of about 30% so that the resonator length L is about 0.1 to 1 mm. A reflecting mirror, that is, two reflecting structures RS1 are realized. The reflective structure RS1 can also be realized by cutting by a dry etching method or laser scribing method and then polishing.
 図1の電子放出源7はグラファイトナノ針状ロッドにより構成されている。 The electron emission source 7 in FIG. 1 is composed of a graphite nano needle rod.
 上述のグラファイトナノ針状ロッドは図7に示す製造方法によって形成される。 The above-mentioned graphite nano needle rod is formed by the manufacturing method shown in FIG.
 すなわち、ステップ701において、図8の(A)に示すグラファイトロッド表面を有するグラファイト基板を水素ガスを用いたプラズマエッチング法によってエッチングして図8の(B)に示すナノオーダの凹凸構造のグラファイトナノ針状ロッドを得る。このプラズマエッチング条件は、たとえば、次のごとくである。
 RFパワー:100-1000W
 圧力:133-13300Pa (1-100Torr)
 水素流量:5-500sccm
 エッチング時間:1-100分
That is, in step 701, a graphite substrate having a graphite rod surface shown in FIG. 8A is etched by a plasma etching method using hydrogen gas, and the nano-ordered graphite nanoneedle shown in FIG. Get a rod. The plasma etching conditions are, for example, as follows.
RF power: 100-1000W
Pressure: 133-13300Pa (1-100Torr)
Hydrogen flow rate: 5-500sccm
Etching time: 1-100 minutes
 尚、ステップ701でのプラズマエッチング法は、電子サイクロトロン共鳴(ECR)エッチング法、反応性イオンエッチング(RIE)法、大気圧プラズマエッチング法等のいずれでもよく、また、処理ガスは、H2ガス以外のArガス、N2ガス、O2ガス、CF4ガス等のいずれでもよい。 Note that the plasma etching method in step 701 may be any of an electron cyclotron resonance (ECR) etching method, a reactive ion etching (RIE) method, an atmospheric pressure plasma etching method, and the like, and the processing gas is other than H 2 gas. Ar gas, N 2 gas, O 2 gas, CF 4 gas, etc. may be used.
 上述のプラズマエッチングを行うことによって得られたグラファイトナノ針状ロッド基板は、図9に示すごとく、良好な電子放出特性を示す。 The graphite nanoneedle rod substrate obtained by performing the plasma etching described above exhibits good electron emission characteristics as shown in FIG.
 図10に示すごとく、本発明に係るグラファイトナノ針状ロッドは他の材料であるカーボンナノチューブ(CNT)、グラファイトナノファイバ(GNF)と比較して高い放出電流密度を有する。従って、本発明に係るグラファイトナノ針状ロッドを導電性カソード基材と一体で構成すれば、グラファイトナノ針状ロッドの密着性、グラファイトナノ針状ロッドと基材との界面での電圧降下、ひいては、電子放出特性の劣化(電流飽和)、界面電場集中によるカソード破壊の問題を解決できる。 As shown in FIG. 10, the graphite nanoneedle rod according to the present invention has a higher emission current density than other materials such as carbon nanotube (CNT) and graphite nanofiber (GNF). Therefore, if the graphite nano needle rod according to the present invention is configured integrally with the conductive cathode base material, the adhesion of the graphite nano needle rod, the voltage drop at the interface between the graphite nano needle rod and the base material, and thus It can solve the problem of cathode breakdown due to degradation of electron emission characteristics (current saturation) and interface electric field concentration.
 図11は図7のフローの変更例を示し、図7のプラズマエッチングステップ701の前にステップ1101において、サンドブラスト等の機械的表面研磨による不規則的周期のミクロン(サブミクロン)機械的凹凸構造加工を行う。また、図7のプラズマエッチングステップ701の後にステップ1102において、CO2レーザ、YAGレーザ、エキシマレーザ等のハイパワーレーザ照射による表面研磨による不規則的周期のミクロン(サブミクロン)レーザ照射凹凸構造加工を行う。尚、ステップ1101、1102は両方を行ってもよいが、いずれか一方のみを行えばよい。この場合、小さいナノオーダの凹凸のほうが壊れやすいためにステップ1101を行うことが好ましい。これにより、不規則的周期のたとえばミクロンオーダ、サブミクロンオーダの凹凸構造を形成する。従って、グラファイト基板の表面積が増大して放出電子がより多くなる。 FIG. 11 shows a modified example of the flow of FIG. 7. In step 1101 before the plasma etching step 701 of FIG. 7, irregular micron (submicron) mechanical uneven structure processing by mechanical surface polishing such as sandblasting is performed. I do. Further, in step 1102 after the plasma etching step 701 in FIG. 7, irregular micron (submicron) laser irradiation uneven structure processing by surface polishing by high power laser irradiation such as CO 2 laser, YAG laser, and excimer laser is performed. Do. Note that both steps 1101 and 1102 may be performed, but only one of them may be performed. In this case, it is preferable to perform step 1101 because small nano-order irregularities are more fragile. As a result, a concavo-convex structure having an irregular period such as a micron order or a submicron order is formed. Accordingly, the surface area of the graphite substrate is increased and more electrons are emitted.
 尚、図11の不規則的周期のミクロン(サブミクロン)機械的凹凸構造加工ステップ1101において、グラファイト基板の表面に不規則的周期のミクロンオーダもしくはサブミクロンオーダの凹みを多数形成して表面積を増大させてもよい。たとえば、レジスト層を塗布し、次いで、不規則的周期パターンを有するフォトマスクを用いたフォトリソグラフィによりレジスト層のパターンを形成し、このレジスト層のパターンを用いてグラファイト基板をH2ガス及びO2ガスを用いたプラズマエッチングたとえばRIEプロセスを行い、その後、レジスト層のパターンを除去する。また、機械的ルーリングエンジン等を用いた切削方法によって不規則的周期のミクロンオーダあるいはサブミクロンオーダの剣山型凹凸構造を形成して表面積を増大させることもできる。この剣山型凹凸構造はエッチングで逆剣山型の金型を形成し、これに液体状のグラファイト材料、例えばカーボンブラック等を流し込んでも形成できる。尚、電子放出源7は放出する電子線EBのエネルギーEを可変できるものであっても良いし、固定されているものの何れでも良い。サファイア(0001)基板1の厚さt1は使用する電子放出源7に併せて設定される。たとえば、電子線EBのエネルギーEがE=6keVで固定されているなら216nm以上、E=10keVで固定されているなら1000nm以上の厚さが選ばれる。電子放出源7の電子線EBのエネルギーEが可変ならば想定している使用範囲の上限に合わせてサファイア(0001)基板1の厚さt1が決まり、上限が10keV以上の範囲なら厚さも1000nm以上の範囲から選ばれる。 In addition, in the irregular period micron (submicron) mechanical uneven structure processing step 1101 in FIG. 11, the surface area is increased by forming many irregular period micron or submicron order dents on the surface of the graphite substrate. You may let them. For example, a resist layer is applied, and then a pattern of the resist layer is formed by photolithography using a photomask having an irregular periodic pattern, and the graphite substrate is formed with H 2 gas and O 2 using the resist layer pattern. Plasma etching using gas, for example, RIE process is performed, and then the pattern of the resist layer is removed. Further, the surface area can be increased by forming an irregular periodic micron order or submicron order sword mountain type concavo-convex structure by a cutting method using a mechanical ruling engine or the like. This sword mountain-type uneven structure can also be formed by forming a reverse sword mountain mold by etching and pouring a liquid graphite material, such as carbon black, into it. The electron emission source 7 may be one that can change the energy E of the electron beam EB to be emitted, or may be one that is fixed. The thickness t 1 of the sapphire (0001) substrate 1 is set in accordance with the electron emission source 7 to be used. For example, if the energy E of the electron beam EB is fixed at E = 6 keV, a thickness of 216 nm or more is selected, and if it is fixed at E = 10 keV, a thickness of 1000 nm or more is selected. If the energy E of the electron beam EB of the electron emission source 7 is variable, the thickness t 1 of the sapphire (0001) substrate 1 is determined in accordance with the assumed upper limit of the use range, and if the upper limit is 10 keV or more, the thickness is 1000 nm. It is selected from the above range.
 図12は本発明に係る深紫外レーザ光源の第2の実施例を示す断面図である。図12の
深紫外レーザ光源も端面反射型である。
FIG. 12 is a cross-sectional view showing a second embodiment of the deep ultraviolet laser light source according to the present invention. The deep ultraviolet laser light source of FIG. 12 is also an end face reflection type.
 図12においては、図1の反射ミラーになる反射構造RS1の代りに、誘電体多層膜ミラーよりなる反射構造RS2を設けてある。誘電体多層膜ミラーは屈折率が異なる2つの誘電体多層膜たとえばLaF3/Na3AlF6、Al2O3/SiO2、Y2O3/SiO2、HfO2/SiO2等の組合せを有する薄膜を2層から100層程度積層させることによって構成される。各層の厚さは発振レーザ波長に依存して適宜選択される。このとき、たとえば、1つの反射構造RS2の反射率Rを100%とし、他の反射構造RS2の反射率Rを90%とすれば、一方向のみからレーザ出力を得ることができる。 In FIG. 12, a reflective structure RS2 made of a dielectric multilayer mirror is provided instead of the reflective structure RS1 that becomes the reflective mirror of FIG. Dielectric multilayer mirror is a combination of two dielectric multilayer films with different refractive indexes such as LaF 3 / Na 3 AlF 6 , Al 2 O 3 / SiO 2 , Y 2 O 3 / SiO 2 , HfO 2 / SiO 2, etc. It is configured by laminating about 2 to 100 thin films. The thickness of each layer is appropriately selected depending on the oscillation laser wavelength. At this time, for example, if the reflectance R of one reflective structure RS2 is 100% and the reflectance R of the other reflective structure RS2 is 90%, laser output can be obtained from only one direction.
 尚、図12においては、反射構造RS2として誘電体多層膜ミラーの代りにフォトニック結晶構造を用いてもよい。フォトニック結晶構造は誘電体多層膜ミラーより高い反射率Rを有する。 In FIG. 12, a photonic crystal structure may be used instead of the dielectric multilayer mirror as the reflective structure RS2. The photonic crystal structure has a higher reflectance R than the dielectric multilayer mirror.
 図13は図1、図12の深紫外レーザ光源を実際に組み立てた部分断面図である。 FIG. 13 is a partial sectional view in which the deep ultraviolet laser light source of FIGS. 1 and 12 is actually assembled.
 図13において、サファイア(0001)基板1、AlNバッファ層2、グレーティングAlN層3、AlN層4、Al0.7Ga0.3N/AlN多重量子井戸層5よりなる積層体S及びアルミニウムメタルバック層6及びグラファイトナノ針状ロッドよりなる電子放出源7をガラス管8及び陽極電極9にステムピン(真空導入端子等)(図示せず)を用いて真空封止する。この場合、陽極電極9は適当な金属板に穴あけした金属構造あるいはガラス管8に金属蒸着して電極をとれる構造である。次に、アルミニウムメタルバック層6を陽極電極9にインジウム(In)シール等を利用して真空を保つようにガラス管8の開口部を覆うように密着させる。密着に使用するものはインジウムシールに限らず導電性の材料ならよい。積層体Sと陽極電極9の間にはアルミニウムメタルバック層6があり、使用時にはアルミニウムメタルバック層6から導電性の材料を伝って陽極電極9に電荷を逃がすことができるようになる。また、ガラス管8と陽極電極9とを溶着させる。このとき、ガラスとガラスとの溶着は容易であるが、陽極電極9が穴あけした金属構造の場合には、ガラスから金属に向って徐々に変化する段シールしたガラスを準備する。ガラス管8の陰極側には、ステムピン等を利用してグラファイトナノ針状ロッドよりなる電子放出源7及び円筒状金属よりなる静電レンズ10を取付ける。この静電レンズ10は電子放出源7の電子線EBを積層体S上にフォーカスさせるためのものである。電子放出源7及び静電レンズ10を取付けたステムピンを溶着させた上で真空封止する。電子放出源7にグラファイトナノ針状ロッドを使用すると、その先端は積層体Sの平面に向けて垂直に設置されることになり、省スペースであるのでガラス管8も小さくでき、装置全体を小型化することができる。このとき、ガラス管8はいわゆる2極管動作をするので、陰極側の電子放出源7と陽極電極9との距離が所定値となるように、上述のステムピンの溶着を行う。具体的には、上記距離は電子放出源7と陽極電極9との間の電圧(kV)に対して所定値約0.5mm/kVとなるようにする。 In FIG. 13, a laminate S, an aluminum metal back layer 6, and graphite composed of a sapphire (0001) substrate 1, an AlN buffer layer 2, a grating AlN layer 3, an AlN layer 4, an Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5. The electron emission source 7 made of nano needle rods is vacuum sealed to the glass tube 8 and the anode electrode 9 using a stem pin (vacuum introduction terminal or the like) (not shown). In this case, the anode electrode 9 has a metal structure in which a suitable metal plate is perforated or a structure in which the electrode can be obtained by metal deposition on the glass tube 8. Next, the aluminum metal back layer 6 is closely attached to the anode electrode 9 so as to cover the opening of the glass tube 8 so as to maintain a vacuum using an indium (In) seal or the like. What is used for adhesion is not limited to an indium seal, but any conductive material may be used. There is an aluminum metal back layer 6 between the stacked body S and the anode electrode 9, and in use, electric charges can be released from the aluminum metal back layer 6 to the anode electrode 9 through a conductive material. Further, the glass tube 8 and the anode electrode 9 are welded. At this time, glass is easily welded to each other, but in the case of a metal structure in which the anode electrode 9 is perforated, a step-sealed glass that gradually changes from glass to metal is prepared. On the cathode side of the glass tube 8, an electron emission source 7 made of a graphite nano needle rod and an electrostatic lens 10 made of a cylindrical metal are attached using a stem pin or the like. The electrostatic lens 10 is for focusing the electron beam EB of the electron emission source 7 on the stacked body S. A stem pin to which the electron emission source 7 and the electrostatic lens 10 are attached is welded and vacuum sealed. When a graphite nano needle rod is used as the electron emission source 7, its tip is installed perpendicularly to the plane of the laminate S, and because it saves space, the glass tube 8 can be made smaller, and the entire apparatus can be made compact. Can be At this time, since the glass tube 8 performs a so-called bipolar operation, the above-described stem pin is welded so that the distance between the electron emission source 7 on the cathode side and the anode electrode 9 becomes a predetermined value. Specifically, the distance is set to a predetermined value of about 0.5 mm / kV with respect to the voltage (kV) between the electron emission source 7 and the anode electrode 9.
 直流電源11は陽極電極9と電子放出源7との間にあって電子から見て陽極電極9が低いポテンシャルとなるように直流電圧V1を陽極電極9に印加するのに対し、直流電源12は電子放出源7と静電レンズ10との間にあって電子から見て静電レンズ10が高いポテンシャルとなるようにフォーカス用直流電圧V2を静電レンズ10に印加する。 The DC power source 11 is between the anode electrode 9 and the electron emission source 7 and applies a DC voltage V 1 to the anode electrode 9 so that the anode electrode 9 has a low potential when viewed from the electrons, whereas the DC power source 12 is an electron. A focusing DC voltage V 2 is applied to the electrostatic lens 10 so that the electrostatic lens 10 is at a high potential when viewed from the electrons between the emission source 7 and the electrostatic lens 10.
 図14は図13の変更例を示す部分断面図である。図14においては、図13の構成要素に対して電子放出源7近傍に引出電極13を付加し、陽極電極9の電圧とは独立して、直流電源14によって直流電圧V3を引出電極13に印加して電子放出源7と陽極電極9との間に流れる電子線EBの電流IEBを独立に制御する。これにより、ガラス管8はいわゆる三極管動作を行う。
 尚、上記において、電源11、12、14として、直流電源を例にとって説明を行って
いるが、適宜、交流電源並びにパルス電源を使用することにより、電子線EBを時間的に変調することが可能となり、深紫外レーザ光DUVのレーザ光も、電子線EBの変調に応じて連続発振のみならず、パルス発振等を行うことが可能となる。
FIG. 14 is a partial cross-sectional view showing a modified example of FIG. In FIG. 14, an extraction electrode 13 is added in the vicinity of the electron emission source 7 to the components of FIG. 13, and a DC voltage V 3 is applied to the extraction electrode 13 by a DC power source 14 independently of the voltage of the anode electrode 9. The current I EB of the electron beam EB flowing between the electron emission source 7 and the anode electrode 9 is controlled independently. As a result, the glass tube 8 performs a so-called triode operation.
In the above description, the DC power source is described as an example of the power sources 11, 12, and 14. However, the electron beam EB can be temporally modulated by appropriately using an AC power source and a pulse power source. Thus, the laser beam of the deep ultraviolet laser beam DUV can perform not only continuous oscillation but also pulse oscillation according to the modulation of the electron beam EB.
 グラファイトナノ針状ロッドよりなる電子放出源7を安定的に動作させて深紫外レーザ光源の寿命を延ばすには、ガラス管8内真空度を上げればよい。但し、通常の電界放出型電子放出源が10-7Pa以上の真空度を必要とするのに対し、本発明に係るグラファイトナノ針状ロッドよりなる電子放出源7の場合、10-6Pa程度の真空度でよい。従って、真空封止時間を大幅に短縮でき、この結果、深紫外レーザ光源の製造に関しては、タクトタイムを短縮でき、より安価な深紫外レーザ光源を提供できる。尚、確立した真空度を長時間保持するためには、ガラス管8内にゲッタ等(図示せず)を封入しておけばよい。 In order to stably operate the electron emission source 7 made of graphite nano needle rods and extend the life of the deep ultraviolet laser light source, the degree of vacuum in the glass tube 8 may be increased. However, a normal field emission type electron emission source requires a vacuum degree of 10 −7 Pa or more, whereas in the case of the electron emission source 7 composed of the graphite nano needle rod according to the present invention, about 10 −6 Pa. The degree of vacuum is sufficient. Therefore, the vacuum sealing time can be greatly shortened, and as a result, the tact time can be shortened and a cheaper deep ultraviolet laser light source can be provided in the manufacture of the deep ultraviolet laser light source. In order to maintain the established degree of vacuum for a long time, a getter or the like (not shown) may be enclosed in the glass tube 8.
 図15は図13、図14のフォーカス用直流電圧V2を制御した場合に得られるアルミニウムメタルバック層6上の幅約1μmの電子線照射パターンPの一例を示す平面図である。このような電子線照射パターンPが得られると、横モード(TEM00)パターン及びレーザ発振周波数が安定する。 FIG. 15 is a plan view showing an example of an electron beam irradiation pattern P having a width of about 1 μm on the aluminum metal back layer 6 obtained when the direct current for focusing voltage V 2 shown in FIGS. 13 and 14 is controlled. When such an electron beam irradiation pattern P is obtained, the transverse mode (TEM 00 ) pattern and the laser oscillation frequency are stabilized.
 図16は図14の深紫外レーザ光源に直流電圧V1として5kVを印加すると共に直流電圧V3を印加して電子線EBの電流IEBを1μA、2μA、30μAとして得られる発光強度及びレーザ発振強度のスペクトルを示す。尚、Al0.7Ga0.3N/AlN多重量子井戸層5の厚さt5は60nmとする。 FIG. 16 shows emission intensity and laser oscillation obtained by applying 5 kV as the DC voltage V 1 to the deep ultraviolet laser light source of FIG. 14 and applying the DC voltage V 3 to the current I EB of the electron beam EB of 1 μA, 2 μA, and 30 μA. An intensity spectrum is shown. The thickness t 5 of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is 60 nm.
 図16において、AlNはAlN層4の欠陥からの発光、QW1はAl0.7Ga0.3N/AlN多重量子井戸層5からの発光、QW2はAl0.7Ga0.3N/AlN多重量子井戸層5の深い準位からの発光、QW3はAl0.7Ga0.3N/AlN多重量子井戸層5からのレーザ強度を示す。このように、直流電圧V1=5kVの基で、電子線EBの電流IEBを30μAに高めていくと、励起密度が上昇し、共振構造RS1、RS2の損失に打ち勝ち、反転分布が形成されてレーザ発振を起こすことになる。 In FIG. 16, AlN emits light from defects in the AlN layer 4, QW 1 emits light from the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5, and QW 2 represents a deep quasi of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5. Emission from the position, QW3, indicates the laser intensity from the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5. As described above, when the current I EB of the electron beam EB is increased to 30 μA based on the DC voltage V 1 = 5 kV, the excitation density increases, the loss of the resonance structures RS1 and RS2 is overcome, and an inversion distribution is formed. Cause laser oscillation.
 図17は図14の深紫外レーザ光源の指向性を説明するためのグラフである。 FIG. 17 is a graph for explaining the directivity of the deep ultraviolet laser light source of FIG.
 図17に示すように、直流電圧V1=5kVかつ電子線EBの電流IEB=1μAであるレーザ発振前の単なる発光の場合には、遠視野像の半値幅は30°~40°と大きく、他方、レーザ発振後の直流電圧V1=5kVかつ電子線EBの電流IEB=30μAであるレーザ発振の場合には、遠視野像の半値幅は5°程度と小さいことが分かる。 As shown in FIG. 17, in the case of simple light emission before laser oscillation with a DC voltage V 1 = 5 kV and an electron beam EB current I EB = 1 μA, the half-value width of the far-field image is as large as 30 ° to 40 °. On the other hand, in the case of laser oscillation where the DC voltage V 1 after laser oscillation is V 1 = 5 kV and the current I EB = 30 μA of the electron beam EB, the half-value width of the far-field image is as small as about 5 °.
 図18は図14の深紫外レーザ光源の光出力特性を示すグラフである。 FIG. 18 is a graph showing the light output characteristics of the deep ultraviolet laser light source of FIG.
 図18に示すように、電子線EBの電流IEBの密度が0~30A/cm2のときの単なる深紫外発光からしきい値30A/cm2を超えると、光出力が急激に増加してレーザ発振状態となることが分かる。 As shown in FIG. 18, when the density of the current I EB of the electron beam EB is 0 to 30 A / cm 2 , and the threshold value 30 A / cm 2 is exceeded from the simple deep ultraviolet emission, the light output increases rapidly. It turns out that it becomes a laser oscillation state.
 このように、上述の実施例によれば、Al0.7Ga0.3N/AlN多重量子井戸層5は電子線励起により良好なレーザ発振特性を得ることができる。さらに、レーザ発振特性を向上させたいときには、図19に示すごとく、図1のAl0.7Ga0.3N/AlN多重量子井戸層5の下層にAlN/AlGaN超格子クラッド層21及びAlN光ガイド層22の少なくとも1つを設け、Al0.7Ga0.3N/AlN多重量子井戸層5の上層にAlN光ガイド層23及びAlN/AlGaN超格子クラッド層24の少なくとも1つを設け、これにより、光閉じ込み効率を向上せしめる。尚、図19の構成は図12の深紫外レーザ光源にも適用できる。図19のごとく、光閉じ込み手段としてAlN/AlGaN超格子クラッド層及び/またはAlN光ガイド層を用いた場合の図1、図12の深紫外レーザ装置の光閉じ込み効率を考察すると、深紫外レーザ装置の全体の光強度に対す
るAl0.7Ga0.3N/AlN多重量子井戸層5の光閉じ込め光強度は、
     Γ=1-exp(-C・Δn・t5
     但し、Cは半導体材料に応じた定数であって、AlGaAlの場合、2.5×10-3-1
     ΔnはAl0.7Ga0.3N/AlN多重量子井戸層5の屈折率nAlGaN=2.6とAlN/AlGaN超格子クラッド層及び/またはAlN光ガイド層の屈折率nAlN=2.3との屈折率差0.3、
で表わせる。たとえば、Al0.7Ga0.3N/AlN多重量子井戸層5の厚さt5を60nmとすれば、Γ=0.36であり、通常のレーザ発振の目安とされるΓ=0.01よりも大きく、非常に高い光閉じ込め効率を実現できる。
Thus, according to the above-described embodiment, the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 can obtain good laser oscillation characteristics by electron beam excitation. Further, when it is desired to improve the laser oscillation characteristics, as shown in FIG. 19, the AlN / AlGaN superlattice cladding layer 21 and the AlN light guide layer 22 are formed under the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 in FIG. At least one is provided, and at least one of the AlN light guide layer 23 and the AlN / AlGaN superlattice cladding layer 24 is provided on the upper layer of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5, thereby improving the optical confinement efficiency. Improve. The configuration of FIG. 19 can also be applied to the deep ultraviolet laser light source of FIG. When considering the optical confinement efficiency of the deep ultraviolet laser device of FIGS. 1 and 12 when an AlN / AlGaN superlattice cladding layer and / or an AlN optical guide layer is used as the optical confinement means as shown in FIG. The optical confinement light intensity of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 with respect to the total light intensity of the laser device is
Γ = 1-exp (-C · Δn · t 5 )
However, C is a constant according to the semiconductor material, and in the case of AlGaAl, 2.5 × 10 −3 Å −1 ,
Δn is the refractive index difference 0.3 between the refractive index n AlGaN = 2.6 of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 and the refractive index n AlN = 2.3 of the AlN / AlGaN superlattice cladding layer and / or AlN light guide layer,
It can be expressed as For example, if the thickness t 5 of the Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 5 is 60 nm, Γ = 0.36, which is larger than Γ = 0.01, which is a standard for normal laser oscillation, and is very high. Light confinement efficiency can be realized.
 図20は本発明に係る深紫外レーザ光源の第3の実施例を示す断面図である。図20の深紫外レーザ装置は面発光型である。 FIG. 20 is a sectional view showing a third embodiment of the deep ultraviolet laser light source according to the present invention. The deep ultraviolet laser device of FIG. 20 is a surface emitting type.
 図20において、深紫外レーザ光源は、サファイア(0001)基板31、サファイア(0001)基板31上に形成されたAlNバッファ層32、AlNバッファ層32上に形成されたグレーティングAlN層33、グレーティングAlN層33上に形成された誘電体多層膜ミラーよりなる反射構造RS31、反射構造RS31上に形成されたAlN共振層34、AlN共振層34上に形成された厚さ約3nmのAl0.7Ga0.3N井戸層及び厚さ約3nmのAlN障壁層を1周期として1~10繰返周期を含む厚さ約6~60nmのAl0.7Ga0.3N/AlN多重量子井戸層35、Al0.7Ga0.3N/AlN多重量子井戸層35上に形成されたAlN共振層36、AlN共振層36上に形成された誘電体多層膜ミラーよりなる反射構造RS32、反射構造RS32上に形成されたアルミニウム(Al)メタルバック層37、及び電子線EBを放出する電子放出源38よりなる。この場合、反射構造RS31の反射率Rは小さく、他方、反射構造32の反射率Rは大きくされており、これにより、電子放出源38より電子線EBが照射されると、Al0.7Ga0.3N/AlN多重量子井戸層35が励起されかつ成長面と垂直方向で共振がおこり、深紫外レーザ光DUVが反射構造RS31側より出射される。 20, the deep ultraviolet laser light source includes a sapphire (0001) substrate 31, an AlN buffer layer 32 formed on the sapphire (0001) substrate 31, a grating AlN layer 33 formed on the AlN buffer layer 32, and a grating AlN layer. A reflective structure RS31 formed of a dielectric multilayer mirror formed on 33, an AlN resonant layer 34 formed on the reflective structure RS31, and an Al 0.7 Ga 0.3 N well having a thickness of about 3 nm formed on the AlN resonant layer 34 Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 35, Al 0.7 Ga 0.3 N / AlN multiple layer having a thickness of about 6 to 60 nm including 1 to 10 repetition periods, with an AlN barrier layer having a thickness of about 3 nm and one period as a cycle A reflective structure RS32 comprising an AlN resonant layer 36 formed on the quantum well layer 35, a dielectric multilayer mirror formed on the AlN resonant layer 36, and an aluminum (Al) metal back layer 37 formed on the reflective structure RS32. And an electron emission source 38 that emits an electron beam EB It becomes. In this case, the reflectance R of the reflecting structure RS31 is small, and on the other hand, the reflectance R of the reflecting structure 32 is large. Thus, when the electron beam EB is irradiated from the electron emission source 38, Al 0.7 Ga 0.3 N The / AlN multiple quantum well layer 35 is excited and resonates in the direction perpendicular to the growth surface, and the deep ultraviolet laser beam DUV is emitted from the reflective structure RS31 side.
 図20の深紫外レーザ光源によれば、面発光を実現するための電流狭窄構造が不要となるので、エピタキシャル成長プロセスが簡略化できる。また、反射構造RS31及びRS32が全面に形成されているので、製造が容易となる。さらに、電子線ビーム照射位置からレーザ発振が起こるので、面発光レーザの幾可学的発光パターンを自由に変更できる。 The deep ultraviolet laser light source shown in FIG. 20 eliminates the need for a current confinement structure for realizing surface emission, thereby simplifying the epitaxial growth process. In addition, since the reflecting structures RS31 and RS32 are formed on the entire surface, the manufacture becomes easy. Further, since laser oscillation occurs from the electron beam irradiation position, the geometrical light emission pattern of the surface emitting laser can be freely changed.
 図21は図1、図12、図20の深紫外レーザ光源の寿命を説明するためのレーザ強度を示すタイミング図である。 FIG. 21 is a timing diagram showing the laser intensity for explaining the lifetime of the deep ultraviolet laser light source of FIGS.
 図21に示すごとく、4000時間を超えても、安定なレーザ強度を維持している。従って、指数関数的寿命予測から寿命は40,000時間を超えると期待され、従来の深紫外レーザ光源よりも長寿命となると共に、高発光強度かつ高発光効率が期待される。 As shown in FIG. 21, stable laser intensity is maintained even after 4000 hours. Therefore, the lifetime is expected to exceed 40,000 hours from the exponential lifetime prediction, and the lifetime is longer than that of the conventional deep ultraviolet laser light source, and the high emission intensity and the high emission efficiency are expected.
 尚、上述の実施例においては、ワイドバンドギャップ半導体としてAl0.7Ga0.3N/AlN多重量子井戸層を用いているが、x=0.7以外のAlxGa1-xN/AlN(0.1≦x≦0.9)多重量子井戸層を用いてもよい。この場合、xが大きくなる程、レーザ光の波長は短くなる。また、他のワイドバンドギャップ半導体たとえばZnMgO、BN、ダイヤモンド半導体等を用いることもできる。 In the above-described embodiment, an Al 0.7 Ga 0.3 N / AlN multiple quantum well layer is used as the wide band gap semiconductor, but Al x Ga 1-x N / AlN (0.1 ≦ x ≦ 0.9) A multiple quantum well layer may be used. In this case, the wavelength of the laser light becomes shorter as x becomes larger. In addition, other wide band gap semiconductors such as ZnMgO, BN, and diamond semiconductor can be used.
1、31:サファイア(0001)基板
2、32:AlNバッファ層
3、33:グレーティングAlN層
4:AlN層
5、35:Al0.7Ga0.3N/AlN多重量子井戸層
6、37:アルミニウムメタルバック層
7、38:電子放出源
8:ガラス管
9:陽極電極
10:静電レンズ
11、12:直流電源
13:引出電極
14:直流電源
34,36:AlN共振層
EB:電子線
DUV:深紫外レーザ光
RS1、RS2、RS31、RS32:反射構造
1, 31: Sapphire (0001) substrate 2, 32: AlN buffer layer 3, 33: Grating AlN layer 4: AlN layer 5,35: Al 0.7 Ga 0.3 N / AlN multiple quantum well layer 6,37: aluminum metal back layer 7, 38: Electron emission source 8: Glass tube 9: Anode electrode 10: Electrostatic lens 11, 12: DC power supply 13: Extraction electrode 14: DC power supply 34, 36: AlN resonance layer
EB: Electron beam
DUV: deep ultraviolet laser light
RS1, RS2, RS31, RS32: Reflective structure

Claims (12)

  1.  基板と、
     該基板上に設けられたワイドバンドギャップ半導体層と、
     前記ワイドバンドギャップ半導体層上に設けられたアルミニウムメタルバック層と、
    前記ワイドバンドギャップ半導体層から発生した深紫外光を共振させるための共振器構造と
    を具備し、
     前記アルミニウムメタルバック層側より電子線を照射して前記ワイドバンドギャップ半導体層を励起して該励起されたワイドバンドギャップ半導体層から発生した深紫外光を前記共振器構造によりレーザ共振させるようにした深紫外レーザ光源。
    A substrate,
    A wide band gap semiconductor layer provided on the substrate;
    An aluminum metal back layer provided on the wide band gap semiconductor layer;
    Comprising a resonator structure for resonating deep ultraviolet light generated from the wide band gap semiconductor layer;
    An electron beam is irradiated from the aluminum metal back layer side to excite the wide band gap semiconductor layer so that deep ultraviolet light generated from the excited wide band gap semiconductor layer is laser-resonated by the resonator structure. Deep ultraviolet laser light source.
  2.  前記ワイドバンドギャップ半導体層がAlxGa1-xN井戸層(0.1≦x≦0.9)及びAlN障壁層よりなるAlxGa1-xN/AlN多重量子井戸層を具備する請求項1に記載の深紫外レーザ光源。 The wide band gap semiconductor layer comprises an Al x Ga 1-x N / AlN multiple quantum well layer comprising an Al x Ga 1-x N well layer (0.1 ≦ x ≦ 0.9) and an AlN barrier layer. Deep UV laser light source.
  3.  前記AlxGa1-xN/AlN多重量子井戸層の厚さは約6nmから60nmである請求項2に記載の深紫外レーザ装置。 The deep ultraviolet laser device according to claim 2, wherein the Al x Ga 1-x N / AlN multiple quantum well layer has a thickness of about 6 nm to 60 nm.
  4.  前記アルミニウムメタルバック層の厚さは約30~100nmである請求項1に記載の深紫外レーザ光源。 The deep ultraviolet laser light source according to claim 1, wherein the thickness of the aluminum metal back layer is about 30 to 100 nm.
  5.  さらに、前記電子線をアルミニウムメタルバック層に照射するための電子線源を具備する請求項1に記載の深紫外レーザ光源。 The deep ultraviolet laser light source according to claim 1, further comprising an electron beam source for irradiating the aluminum metal back layer with the electron beam.
  6.  前記電子線源はグラファイトナノ針状ロッドにより構成される請求項5に記載の深紫外レーザ光源。 The deep ultraviolet laser light source according to claim 5, wherein the electron beam source is composed of a graphite nano needle rod.
  7.  前記基板の厚さt1は、
    t1≧a・E
    但し、Eは前記電子線のエネルギー、
    “a”は前記基板の材料によって定める定数
    である請求項1に記載の深紫外レーザ光源。
    The thickness t 1 of the substrate is
    t 1 ≧ a · E 3
    Where E is the energy of the electron beam,
    The deep ultraviolet laser light source according to claim 1, wherein “a” is a constant determined by a material of the substrate.
  8.  さらに、前記電子線を前記ワイドバンドギャップ半導体層上にフォーカスさせるための静電レンズを具備する請求項1に記載の深紫外レーザ光源。 The deep ultraviolet laser light source according to claim 1, further comprising an electrostatic lens for focusing the electron beam on the wide band gap semiconductor layer.
  9.  さらに、前記電子線源近傍に前記電子線の電流を制御するための引出電極を具備する請求項1に記載の深紫外レーザ光源。 The deep ultraviolet laser light source according to claim 1, further comprising an extraction electrode for controlling the current of the electron beam in the vicinity of the electron beam source.
  10.  さらに、内部が真空であるガラス管を具備し、
     前記電子線源は前記ガラス管内に設置され、
     前記アルミニウムメタルバック層は前記ガラス管に密着されている請求項5に記載の深紫外レーザ光源。
    Furthermore, it comprises a glass tube whose inside is a vacuum,
    The electron beam source is installed in the glass tube,
    6. The deep ultraviolet laser light source according to claim 5, wherein the aluminum metal back layer is in close contact with the glass tube.
  11.  前記反射構造がワイドバンドギャップ半導体層の両側に設けられた端面反射型である請求項1に記載の深紫外レーザ光源。 The deep ultraviolet laser light source according to claim 1, wherein the reflection structure is an end face reflection type provided on both sides of a wide band gap semiconductor layer.
  12.  前記反射構造が前記ワイドバンドギャップ半導体層の上下に設けられた面発光型である請求項1に記載の深紫外レーザ光源。 The deep ultraviolet laser light source according to claim 1, wherein the reflection structure is a surface-emitting type provided above and below the wide band gap semiconductor layer.
PCT/JP2013/067234 2012-07-02 2013-06-24 Deep ultraviolet laser light source by means of electron beam excitation WO2014007098A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-148314 2012-07-02
JP2012148314A JP5943738B2 (en) 2012-07-02 2012-07-02 Deep ultraviolet laser light source

Publications (1)

Publication Number Publication Date
WO2014007098A1 true WO2014007098A1 (en) 2014-01-09

Family

ID=49881856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067234 WO2014007098A1 (en) 2012-07-02 2013-06-24 Deep ultraviolet laser light source by means of electron beam excitation

Country Status (2)

Country Link
JP (1) JP5943738B2 (en)
WO (1) WO2014007098A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018195807A (en) * 2017-05-19 2018-12-06 パロ アルト リサーチ センター インコーポレイテッド Electron beam pumped non-c-plane uv emitters
CN111064075A (en) * 2019-12-26 2020-04-24 海南师范大学 Deep ultraviolet vertical cavity semiconductor laser epitaxial structure and preparation method
CN111082318A (en) * 2019-12-26 2020-04-28 海南师范大学 Epitaxial structure of deep ultraviolet multi-quantum well semiconductor laser and preparation method thereof
CN111092367A (en) * 2019-12-26 2020-05-01 海南师范大学 Epitaxial structure of deep ultraviolet semiconductor light emitting diode and preparation method thereof
CN111129954A (en) * 2019-12-26 2020-05-08 海南师范大学 Epitaxial structure of deep ultraviolet semiconductor laser and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8964796B2 (en) * 2013-06-18 2015-02-24 Palo Alto Research Center Incorporated Structure for electron-beam pumped edge-emitting device and methods for producing same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218589A (en) * 1992-02-07 1993-08-27 Sharp Corp Electron beam excited semiconductor light-emitting element
JPH08162720A (en) * 1994-11-30 1996-06-21 Canon Inc Semiconductor laser
US20010033589A1 (en) * 2000-02-10 2001-10-25 Pankove Jacques Isaac Solid state short wavelength laser and process
JP3667188B2 (en) * 2000-03-03 2005-07-06 キヤノン株式会社 Electron beam excitation laser device and multi-electron beam excitation laser device
JP2006079873A (en) * 2004-09-08 2006-03-23 National Institute For Materials Science Solid far-ultraviolet-ray emitting device
JP2009155689A (en) * 2007-12-26 2009-07-16 Kochi Prefecture Sangyo Shinko Center Film-forming apparatus and film-forming method
JP2011154980A (en) * 2010-01-28 2011-08-11 Stanley Electric Co Ltd Field emission type electron source and method of manufacturing the same
JP2011178928A (en) * 2010-03-02 2011-09-15 Mie Univ Target for use in ultraviolet generation, and electron beam excitation ultraviolet light source
WO2011161775A1 (en) * 2010-06-23 2011-12-29 株式会社日立製作所 Electron beam excited light-emitting device
JP2012104643A (en) * 2010-11-10 2012-05-31 Ushio Inc Electron beam excitation type light source
JP2012199174A (en) * 2011-03-23 2012-10-18 Stanley Electric Co Ltd Deep uv source

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218589A (en) * 1992-02-07 1993-08-27 Sharp Corp Electron beam excited semiconductor light-emitting element
JPH08162720A (en) * 1994-11-30 1996-06-21 Canon Inc Semiconductor laser
US20010033589A1 (en) * 2000-02-10 2001-10-25 Pankove Jacques Isaac Solid state short wavelength laser and process
JP3667188B2 (en) * 2000-03-03 2005-07-06 キヤノン株式会社 Electron beam excitation laser device and multi-electron beam excitation laser device
JP2006079873A (en) * 2004-09-08 2006-03-23 National Institute For Materials Science Solid far-ultraviolet-ray emitting device
JP2009155689A (en) * 2007-12-26 2009-07-16 Kochi Prefecture Sangyo Shinko Center Film-forming apparatus and film-forming method
JP2011154980A (en) * 2010-01-28 2011-08-11 Stanley Electric Co Ltd Field emission type electron source and method of manufacturing the same
JP2011178928A (en) * 2010-03-02 2011-09-15 Mie Univ Target for use in ultraviolet generation, and electron beam excitation ultraviolet light source
WO2011161775A1 (en) * 2010-06-23 2011-12-29 株式会社日立製作所 Electron beam excited light-emitting device
JP2012104643A (en) * 2010-11-10 2012-05-31 Ushio Inc Electron beam excitation type light source
JP2012199174A (en) * 2011-03-23 2012-10-18 Stanley Electric Co Ltd Deep uv source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAO OTO ET AL.: "100 mW deep-ultraviolet emission from aluminium-nitride-based quantum wells pumped by an electron beam", NATURE PHOTONICS, vol. 4, no. LL, November 2010 (2010-11-01), pages 767 - 770 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018195807A (en) * 2017-05-19 2018-12-06 パロ アルト リサーチ センター インコーポレイテッド Electron beam pumped non-c-plane uv emitters
CN111064075A (en) * 2019-12-26 2020-04-24 海南师范大学 Deep ultraviolet vertical cavity semiconductor laser epitaxial structure and preparation method
CN111082318A (en) * 2019-12-26 2020-04-28 海南师范大学 Epitaxial structure of deep ultraviolet multi-quantum well semiconductor laser and preparation method thereof
CN111092367A (en) * 2019-12-26 2020-05-01 海南师范大学 Epitaxial structure of deep ultraviolet semiconductor light emitting diode and preparation method thereof
CN111129954A (en) * 2019-12-26 2020-05-08 海南师范大学 Epitaxial structure of deep ultraviolet semiconductor laser and preparation method thereof
CN111092367B (en) * 2019-12-26 2021-05-18 海南师范大学 Epitaxial structure of deep ultraviolet semiconductor light emitting diode and preparation method thereof
CN111064075B (en) * 2019-12-26 2021-06-15 海南师范大学 Deep ultraviolet vertical cavity semiconductor laser epitaxial structure and preparation method

Also Published As

Publication number Publication date
JP2014011377A (en) 2014-01-20
JP5943738B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5833325B2 (en) Deep ultraviolet light source
WO2014007098A1 (en) Deep ultraviolet laser light source by means of electron beam excitation
JP5548204B2 (en) UV irradiation equipment
JPH08508137A (en) Surface emitting semiconductor laser device, manufacturing method thereof, and manufacturing apparatus
Bokhan et al. Luminescence and superradiance in electron-beam-excited AlxGa1− xN
US20170125683A1 (en) Ultraviolet light emitting device
Cuesta et al. Electron beam pumped light emitting devices
JP2014011377A5 (en)
JP2005302784A (en) Semiconductor light emitting element and its manufacturing method
JP5700325B2 (en) Ultraviolet light generation target and electron beam excited ultraviolet light source
JP2006287137A (en) Nitride semiconductor laser element and manufacturing method thereof
JP5665036B2 (en) Method for producing compound semiconductor layer structure
US20040155573A1 (en) Diamond high brightness ultraviolet ray emitting element
WO2011152331A1 (en) Ultraviolet irradiation device
JP2009123772A (en) Semiconductor laser device
JP2003218469A (en) Nitride system semiconductor laser device
JP2007081197A (en) Semiconductor laser and its manufacturing method
JP2010092898A (en) Semiconductor light emitting element
JP2009016710A (en) Laser oscillation element
RU2408119C2 (en) Semiconductor laser
JP2015046415A (en) Nitride semiconductor light-emitting element, and electron beam excitation type light source device
JP2009302429A (en) Nitride semiconductor laser
JP6553361B2 (en) UV light source
Okazaki et al. Synthesis and nano-processing of ZnO nano-crystals for controlled laser action
JP4850058B2 (en) Semiconductor device, and lighting device and image receiver using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13813042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13813042

Country of ref document: EP

Kind code of ref document: A1