JP2011152544A - Membrane filtration system using temperature-responsive membrane - Google Patents

Membrane filtration system using temperature-responsive membrane Download PDF

Info

Publication number
JP2011152544A
JP2011152544A JP2011102801A JP2011102801A JP2011152544A JP 2011152544 A JP2011152544 A JP 2011152544A JP 2011102801 A JP2011102801 A JP 2011102801A JP 2011102801 A JP2011102801 A JP 2011102801A JP 2011152544 A JP2011152544 A JP 2011152544A
Authority
JP
Japan
Prior art keywords
temperature
membrane
water
filtration system
responsive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011102801A
Other languages
Japanese (ja)
Other versions
JP5367758B2 (en
Inventor
Takeshi Matsushiro
武士 松代
Manabu Sakurai
学 桜井
Hideji Seki
秀司 関
Hideki Nakamura
秀樹 中村
Kenichi Kusaka
謙一 日下
Takahiro Soma
孝浩 相馬
Masahiko Tsutsumi
正彦 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011102801A priority Critical patent/JP5367758B2/en
Publication of JP2011152544A publication Critical patent/JP2011152544A/en
Application granted granted Critical
Publication of JP5367758B2 publication Critical patent/JP5367758B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the operating rate of a membrane filtration system by increasing the amount of water to be treated and also to reduce the total cost of running the system by reducing the cost of cleaning the system with chemicals or replacing membranes. <P>SOLUTION: The membrane filtration system includes temperature-responsive membrane modules whose temperature-responsive membranes are formed in plane or cylindrical shape, which are integrally combined with cases by be filled in the cases, and which filter supplied raw water through membranes and discharge the water as treated water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、河川水、地下水、湖沼水などの淡水、雨水貯水、産業廃水、下水などの汚水、バラスト水などの海水、などの水処理に適した温度応答性膜、温度応答性膜モジュール、およびそれを用いた膜ろ過システムに関する。   The present invention is a temperature responsive membrane, a temperature responsive membrane module suitable for water treatment such as fresh water such as river water, ground water, lake water, rainwater storage, industrial wastewater, sewage such as sewage, seawater such as ballast water, And a membrane filtration system using the same.

従来、水処理分野において、原水(河川水・地下水・湖沼水などの淡水、雨水貯水・産業廃水・下水などの汚水、バラスト水などの海水など)をろ過して、生活用水、工業用水、農業用水を得る方法として、例えば、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などの膜が用いられている。   Conventionally, in the water treatment field, raw water (fresh water such as river water, groundwater, lake water, etc., rainwater storage, industrial wastewater, sewage such as sewage, seawater such as ballast water) is filtered, and used for domestic water, industrial water, and agriculture. As a method for obtaining water, for example, membranes such as microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, and reverse osmosis membranes are used.

膜は、原水中の微生物、藻類、粘土などの固形分に対して高い分離性能を有しており、近年では、膜の素材として親水性材料を用いるのが一般的である。また、疎水性材料を用いる場合でも膜面を重クロム酸カリの硫酸溶液等で親水化処理することで、ろ過性能を向上させることが検討されている(例えば、特許文献1参照)。   The membrane has a high separation performance with respect to solids such as microorganisms, algae, and clay in the raw water, and in recent years, a hydrophilic material is generally used as the membrane material. Further, even when a hydrophobic material is used, it has been studied to improve the filtration performance by hydrophilizing the membrane surface with a sulfuric acid solution of potassium dichromate or the like (see, for example, Patent Document 1).

しかしながら、膜は、継続的に原水を通水することによって、膜面や膜の内部に原水中の固形分が堆積してろ過抵抗が増加し、運転時間の経過とともに、(1)膜自身の変質(膜の圧密化や損傷などの物理的劣化、加水分解・酸化などによる化学的劣化、微生物により膜が資化される生物的劣化、など)や、(2)微粒子・懸濁物質の膜表面への蓄積などの外的要因によってろ過性能が低下することがある。この場合、必要な処理水量を得ために膜差圧が高くなり、膜ろ過システムの運転に要するエネルギーが増大する恐れがある。   However, when the raw water is continuously passed through the membrane, solid content in the raw water accumulates on the membrane surface and inside the membrane, and the filtration resistance increases. With the passage of operation time, (1) the membrane itself Alteration (physical deterioration such as consolidation and damage of the membrane, chemical deterioration due to hydrolysis / oxidation, biological deterioration where the membrane is assimilated by microorganisms, etc.), and (2) membranes of fine particles and suspended substances Filtration performance may deteriorate due to external factors such as accumulation on the surface. In this case, in order to obtain a necessary amount of treated water, the membrane differential pressure increases, and there is a risk that the energy required for operation of the membrane filtration system increases.

そこで、このような膜ろ過システムでは、予め設定された周期、あるいは膜が所定の差圧上昇を示した時点で、ろ過した処理水を処理水側から流す、原水側から圧縮空気を送るなどの物理洗浄を行い、膜表面あるいは膜内部の付着物のうち、可逆的なものを取り除いている。   Therefore, in such a membrane filtration system, at a preset cycle or when the membrane shows a predetermined differential pressure increase, the filtered treated water is flowed from the treated water side, compressed air is sent from the raw water side, etc. Physical cleaning is performed to remove the reversible material from the surface of the film or inside the film.

一方、膜表面や内部には、このような物理洗浄で除去できない付着物が徐々に蓄積するため、膜差圧が予め設定されている上限値を越えた時点で、膜ろ過処理を停止して薬品洗浄を行い、物理洗浄で除去できなかった付着物を除去している。   On the other hand, since deposits that cannot be removed by such physical cleaning gradually accumulate on the surface and inside of the membrane, the membrane filtration treatment is stopped when the membrane differential pressure exceeds a preset upper limit value. Chemical cleaning is performed to remove deposits that could not be removed by physical cleaning.

特開平5−23553号公報Japanese Patent Laid-Open No. 5-23553

このような膜ろ過システムでは、物理洗浄を繰り返しながら、膜差圧がある設定値より高くなったときに薬品洗浄を実施するという洗浄サイクルを繰り返し、同じろ過膜をできるだけ長く使用するようにしている。そして、薬品洗浄を行っても、膜表面や内部などの付着物が取り除けなくなり、膜差圧の回復が認められなくなった場合、あるいは、膜の使用期間がある一定期間を超えた場合には、膜が寿命に達したと判断して交換を行っている。この際、薬品洗浄、ろ過膜の交換などを行なうごとに、膜ろ過処理を停止しなければならないことから、薬品洗浄の頻度やろ過膜の交換頻度をなるべく少なくし、膜ろ過システムの稼働率を高くするとともに、薬品洗浄や膜交換に要するコストを低減する必要がある。   In such a membrane filtration system, while repeating physical cleaning, a cleaning cycle of performing chemical cleaning when the membrane differential pressure becomes higher than a set value is repeated, and the same filtration membrane is used as long as possible. . And even if chemical cleaning, deposits such as the membrane surface and inside can not be removed, and recovery of membrane differential pressure is not recognized, or when the usage period of the membrane exceeds a certain period, The membrane is replaced when it is judged that it has reached the end of its life. At this time, the membrane filtration process must be stopped each time chemical cleaning, filtration membrane replacement, etc., so the frequency of chemical cleaning and filtration membrane replacement is reduced as much as possible to increase the operating rate of the membrane filtration system. In addition to increasing the cost, it is necessary to reduce the cost required for chemical cleaning and membrane replacement.

本発明は上記の課題を踏まえ、処理水量を多くしてシステム稼働率を高くするとともに、薬品洗浄や膜交換に要する費用を低減させ、トータルのランニングコストを低減することができる膜ろ過システムを提供することを目的としている。   In light of the above problems, the present invention provides a membrane filtration system capable of increasing the amount of treated water to increase the system operating rate, reducing the cost required for chemical cleaning and membrane replacement, and reducing the total running cost. The purpose is to do.

上記の目的を達成するために、本発明に温度応答性膜は、高分子材料からなる膜基体と、前記膜基体の外表面側に所定の温度で可逆的に膨張/収縮する高分子材料を付加した孔径調整材とから成り、前記膜基体に形成される孔は、25〜60℃における最大孔径が100μm以下であり、かつ前記高分子材料は、少なくとも以下の(1)〜(7)の中から選択された一の材料から成ることを特徴としている。   In order to achieve the above object, the temperature-responsive membrane according to the present invention comprises a membrane substrate made of a polymer material and a polymer material that reversibly expands / contracts at a predetermined temperature on the outer surface side of the membrane substrate. The pores formed in the membrane substrate have a maximum pore size of 100 μm or less at 25 to 60 ° C., and the polymer material has at least the following (1) to (7) It consists of one material selected from the inside.

(1)N−イソプロピルアクリルアミドに、アクリル酸、2-カルボキシイソプロピルアクリルアミド、3-カルボキシ-n-プロピルアクリルアミドを共重合した高分子、(2)N−ビニルイソ酪酸アミド系重合体、(3)ポリ−N−アルキルアクリルアミド誘導体、(4)ポリイソプロピルアクリルアミドに代表されるポリアクリルアミド誘導体とポリビニル誘導体との共重合体、(5)N−ビニルイソ酪酸アミドなどのN−ビニルC3−9アシルアミドと、N−ビニルアセトアミドなどのN−ビニルC1−3アシルアミドとの共重合体、(6)ポリアクリルアミド誘導体及びポリ−N−ビニルアシルアミド、(7)N−イソプロピルアクリルアミドで構成された単量体の重合体、及びN−ビニルイソ酪酸アミドで構成された単量体の重合体。 (1) A polymer obtained by copolymerizing acrylic acid, 2-carboxyisopropylacrylamide, 3-carboxy-n-propylacrylamide with N-isopropylacrylamide, (2) N-vinylisobutyric acid amide polymer, (3) poly- N-alkylacrylamide derivatives, (4) copolymers of polyacrylamide derivatives represented by polyisopropylacrylamide and polyvinyl derivatives, (5) N-vinyl C 3-9 acylamides such as N-vinylisobutyric acid amide, N- Copolymer with N-vinyl C 1-3 acylamide such as vinylacetamide, (6) Polymer of monomer composed of polyacrylamide derivative and poly-N-vinylacylamide, (7) N-isopropylacrylamide And a polymer of monomers composed of N-vinylisobutyric acid amide.

また、本発明の温度応答性膜モジュールは、請求項2に記載のように、請求項1に記載の温度応答性膜を平面状または円筒状に成型し、容器に充填して一体化したことを特徴としている。   Moreover, the temperature-responsive membrane module of the present invention, as described in claim 2, is obtained by molding the temperature-responsive membrane according to claim 1 into a flat shape or a cylindrical shape, filling the container, and integrating them. It is characterized by.

また、本発明の温度応答性膜モジュールは、請求項3に記載のように、請求項1に記載の温度応答性膜を複数、平面状または円筒状に成型し、原水が流入している槽に浸漬させることを特徴としている。   Moreover, the temperature-responsive membrane module of this invention is the tank which shape | molds the temperature-responsive membrane of Claim 1 in multiple numbers, planar shape, or cylindrical shape, as described in Claim 3, and the raw | natural water flows in It is characterized by being immersed in

また、本発明の膜ろ過システムは、請求項4に記載のように、請求項1に記載の温度応答性膜を平面状または円筒状に成型し、容器に充填して一体化して成り、供給された原水を膜ろ過し、処理水として排出する温度応答性膜モジュールを備えたことを特徴としている。   Further, the membrane filtration system of the present invention comprises a temperature-responsive membrane according to claim 1 formed into a flat shape or a cylindrical shape, filled into a container, and integrated as described in claim 4. It is characterized by having a temperature-responsive membrane module that performs membrane filtration of the raw water that has been discharged and discharges it as treated water.

また、本発明の膜ろ過システムは、請求項5に記載のように、請求項1に記載の温度応答性膜を複数、平面状または円筒状に成型し、原水が流入している槽に浸漬させて成り、供給された原水を膜ろ過し、処理水として排出する温度応答性膜モジュールを備えたことを特徴としている。   Moreover, the membrane filtration system of the present invention, as described in claim 5, is formed into a plurality of temperature-responsive membranes according to claim 1 in a planar or cylindrical shape and immersed in a tank into which raw water flows. It is characterized by comprising a temperature-responsive membrane module that membrane-filters the supplied raw water and discharges it as treated water.

本発明によれば、膜の洗浄効果が高く、長期間にわたり膜面の差圧上昇を抑制することができるため、薬品洗浄の頻度と膜の交換頻度を低減することで、膜ろ過システムの稼働率を高くするとともに薬品洗浄や膜交換に要するコストを低減し、トータルのランニングコストを低減することができる。   According to the present invention, since the membrane cleaning effect is high and the increase in the differential pressure on the membrane surface can be suppressed over a long period of time, the frequency of chemical cleaning and the replacement frequency of the membrane are reduced, so that the membrane filtration system can be operated. In addition to increasing the rate, the cost required for chemical cleaning and membrane replacement can be reduced, and the total running cost can be reduced.

本発明に係る温度応答性膜の断面構成を示す模式図。The schematic diagram which shows the cross-sectional structure of the temperature-responsive film which concerns on this invention. 本発明に係る温度応答性膜の孔径伸縮率と液温との関係を示す説明図。Explanatory drawing which shows the relationship between the hole diameter expansion-contraction rate of the temperature-responsive film which concerns on this invention, and liquid temperature. 温度応答性膜モジュールの種別を示す説明図。Explanatory drawing which shows the classification of a temperature-responsive membrane module. 本発明に係る温度応答性膜モジュールの一例であるケーシング収納型・円筒状膜モジュールの概略構成図。The schematic block diagram of the casing storage type | mold and cylindrical membrane module which is an example of the temperature-responsive membrane module which concerns on this invention. 本発明に係る温度応答性膜モジュールの一例である平膜モジュールの概略構成図。The schematic block diagram of the flat membrane module which is an example of the temperature-responsive membrane module which concerns on this invention. 本発明に係る膜ろ過システムの実施形態を示す構成図。The block diagram which shows embodiment of the membrane filtration system which concerns on this invention. 本発明に係る膜ろ過システムの他の実施形態を示す構成図。The block diagram which shows other embodiment of the membrane filtration system which concerns on this invention. 本発明に係る膜ろ過システムの更に他の実施形態を示す構成図。The block diagram which shows other embodiment of the membrane filtration system which concerns on this invention. 本発明に係る膜ろ過システムの更に他の実施形態を示す構成図。The block diagram which shows other embodiment of the membrane filtration system which concerns on this invention. 本発明に係る膜ろ過システムの更に他の実施形態を示す構成図。The block diagram which shows other embodiment of the membrane filtration system which concerns on this invention. 本発明に係る膜ろ過システムの更に他の実施形態を示す構成図。The block diagram which shows other embodiment of the membrane filtration system which concerns on this invention. 本発明に係る膜ろ過システムの更に他の実施形態を示す構成図。The block diagram which shows other embodiment of the membrane filtration system which concerns on this invention. 本発明に係る膜ろ過システムの更に他の実施形態を示す構成図。The block diagram which shows other embodiment of the membrane filtration system which concerns on this invention. 本発明に係る膜ろ過システムの更に他の実施形態を示す構成図。The block diagram which shows other embodiment of the membrane filtration system which concerns on this invention. 本発明に係る膜ろ過システムの更に他の実施形態を示す構成図。The block diagram which shows other embodiment of the membrane filtration system which concerns on this invention. 本発明に係る膜ろ過システムの更に他の実施形態を示す構成図。The block diagram which shows other embodiment of the membrane filtration system which concerns on this invention.

<温度応答性膜の実施形態>
図1は、本発明に係る温度応答性膜の実施形態を示している。
<Embodiment of temperature-responsive film>
FIG. 1 shows an embodiment of a temperature-responsive film according to the present invention.

本発明に係る温度応答性膜10は、高分子材料からなる膜基体1と、膜基体1の外表面側に所定の温度で可逆的に膨張/収縮する高分子材料を付加した孔径調整材2とで構成される。孔径調整材2の一例としては、N−イソプロピルアクリルアミドがある。N−イソプロピルアクリルアミドは単独では温度応答性を有していないが、これを重合した高分子は温度応答性を有する。   A temperature-responsive membrane 10 according to the present invention includes a membrane substrate 1 made of a polymer material, and a pore diameter adjusting material 2 in which a polymer material that reversibly expands / contracts at a predetermined temperature is added to the outer surface side of the membrane substrate 1. It consists of. An example of the pore diameter adjusting material 2 is N-isopropylacrylamide. N-isopropylacrylamide alone does not have temperature responsiveness, but a polymer obtained by polymerizing this has temperature responsiveness.

図1(A)に示すように、固形分3を含む原水(河川水・地下水・湖沼水などの淡水、雨水貯水・産業廃水・下水などの汚水、バラスト水などの海水、など)、100μm以下の細孔をもつ温度応答性膜10のふるい作用により細孔よりも大きな物質は膜面および孔径調整材2に捕捉される。原水中に含まれる固形分3としては、例えば、シリカコロイド、ベントナイト、粘土などの無機物のほか、大腸菌などのバクテリア、クリプトスポリジウム、ジアルジアなどの原虫、プランクトンが挙げられる。これら固形分3は、カルボキシル基、アミノ基、水酸基などを有している。   As shown in FIG. 1 (A), raw water containing solids 3 (fresh water such as river water, groundwater, lake water, sewage such as rainwater storage, industrial wastewater, sewage, seawater such as ballast water, etc.), 100 μm or less A substance larger than the pores is trapped by the membrane surface and the pore diameter adjusting material 2 by the sieving action of the temperature-responsive membrane 10 having the pores. Examples of the solid content 3 contained in the raw water include inorganic substances such as silica colloid, bentonite and clay, bacteria such as Escherichia coli, protozoa such as Cryptosporidium and Giardia, and plankton. These solid contents 3 have a carboxyl group, an amino group, a hydroxyl group, and the like.

本実施形態では、温度変化に対応した高分子鎖の膨張/収縮の変化を利用して、ろ過及び逆洗を行う。すなわち、温度応答性膜10を用いて、原水を膜面上方から下方に通水して上面側に原水中の固形分3を捕捉する。   In this embodiment, filtration and backwashing are performed using changes in expansion / contraction of the polymer chain corresponding to temperature changes. That is, using the temperature-responsive membrane 10, raw water is passed from above the membrane surface downward to capture the solid content 3 in the raw water on the upper surface side.

逆洗時においては、図1(B)に示すように、膜面下方から上方に逆洗する際に、膜面上方に滞留している原水、あるいは膜面下方から供給される逆洗浄水を25〜60℃に加温して高分子材料を膨張/収縮させる。   At the time of backwashing, as shown in FIG. 1 (B), when backwashing from below the membrane surface upward, raw water staying above the membrane surface or backwashing water supplied from below the membrane surface is used. The polymer material is expanded / contracted by heating to 25-60 ° C.

上述したように、N−イソプロピルアクリルアミドは、単独では温度応答性を有していないが、これを重合した高分子は温度応答性を有する。   As described above, N-isopropylacrylamide alone does not have temperature responsiveness, but a polymer obtained by polymerizing this has temperature responsiveness.

このような温度変化に対応したN−イソプロピルアクリルアミドの高分子鎖の膨張/収縮の変化を利用して、ろ過及び逆洗を行うようにする。すなわち、本発明の温度応答性中空糸膜を用いて、原水を該中空糸膜外表面側から内表面側に通水して外表面側に原水中の固形分を捕捉する。この後、該中空糸膜内表面側から外表面側に逆洗する際に、該中空糸膜の外表面側に滞留している原水を25〜60℃に加温してN−イソプロピルアクリルアミドの高分子鎖を収縮させる。このとき、該高分子鎖の脱水和による収縮にともなって、温度応答性膜10の孔径が拡張(開口)する。   Filtration and backwashing are performed using the change in expansion / contraction of the polymer chain of N-isopropylacrylamide corresponding to such temperature change. That is, using the temperature-responsive hollow fiber membrane of the present invention, raw water is passed from the outer surface side of the hollow fiber membrane to the inner surface side, and solids in the raw water are captured on the outer surface side. Thereafter, when backwashing from the inner surface side to the outer surface side of the hollow fiber membrane, the raw water staying on the outer surface side of the hollow fiber membrane is heated to 25 to 60 ° C. to obtain N-isopropylacrylamide. Shrink polymer chains. At this time, the pore diameter of the temperature-responsive membrane 10 expands (opens) as the polymer chain contracts due to dehydration.

N−イソプロピルアクリルアミドの孔径調整材2はその側鎖にアミド基を持ち、図2に示すように、約25℃以下において水和して膨張するが、25℃を超えると脱水和して収縮し、40℃付近では収縮もほぼ飽和状態となる。従って、逆洗浄水は25〜60℃の範囲で加温して高分子材料を収縮させるのが良い。   The pore size adjusting material 2 of N-isopropylacrylamide has an amide group in its side chain and, as shown in FIG. 2, hydrates and expands at about 25 ° C. or less, but dehydrates and contracts when it exceeds 25 ° C. In the vicinity of 40 ° C., the shrinkage is almost saturated. Therefore, the backwash water is preferably heated in the range of 25 to 60 ° C. to shrink the polymer material.

また、このときの膜差圧は通常5〜30kPa程度であるが、(財)水道技術研究センターの「小規模水道における膜ろ過施設導入ガイドライン」によると、「精密ろ過膜の場合は最大150kPa、限外ろ過膜の場合は300kPa以下であること」とされていることから同程度以下であることが望ましい。   In addition, the membrane differential pressure at this time is usually about 5 to 30 kPa, but according to the “Guidelines for Introducing Membrane Filtration Facilities in Small-Scale Waterworks” of the Water Technology Research Center, “Maximum 150 kPa for microfiltration membranes, In the case of an ultrafiltration membrane, it is said that it is 300 kPa or less.

以上説明したように、従来の膜では、カルボキシル基、アミノ基、水酸基などを有している固形分3が水素結合により膜面に付着するため、単に逆洗するだけでは除去し難い。このため、逆洗時に、固形分3を捕捉した膜面側の原水および処理水を25〜60℃に加温することで、上記効果に加えて、固形分3と膜表面との結合力を弱めて剥離しやすくすることができる。   As described above, in the conventional film, the solid content 3 having a carboxyl group, an amino group, a hydroxyl group, and the like adheres to the film surface by hydrogen bonding, so that it is difficult to remove it by simply backwashing. For this reason, at the time of backwashing, by heating the raw water and treated water on the membrane surface side that has captured the solid content 3 to 25 to 60 ° C., in addition to the above effect, the binding force between the solid content 3 and the membrane surface is increased. It can be weakened to facilitate peeling.

なお、高分子材料としては、(1)N−イソプロピルアクリルアミドに、アクリル酸、2-カルボキシイソプロピルアクリルアミド、3-カルボキシ-n-プロピルアクリルアミドを共重合した高分子、(2)N−ビニルイソ酪酸アミド系重合体、(3)ポリ−N−アルキルアクリルアミド誘導体、(4)ポリイソプロピルアクリルアミドに代表されるポリアクリルアミド誘導体とポリビニル誘導体との共重合体、(5)N−ビニルイソ酪酸アミドなどのN−ビニルC3−9アシルアミドと、N−ビニルアセトアミドなどのN−ビニルC1−3アシルアミドとの共重合体、(6)ポリアクリルアミド誘導体及びポリ−N−ビニルアシルアミド、(7)N−イソプロピルアクリルアミドで構成された単量体の重合体、及びN−ビニルイソ酪酸アミドで構成された単量体の重合体、などが考えられる。なお、温度応答性膜としては、これらの高分子に限定されるものではなく、所定の温度で可逆的に膨張/収縮する高分子材料であれば良い。 The polymer materials include (1) a polymer obtained by copolymerizing acrylic acid, 2-carboxyisopropylacrylamide, and 3-carboxy-n-propylacrylamide with N-isopropylacrylamide, and (2) N-vinylisobutyric acid amide. Polymer, (3) poly-N-alkylacrylamide derivative, (4) copolymer of polyacrylamide derivative represented by polyisopropylacrylamide and polyvinyl derivative, (5) N-vinyl C such as N-vinylisobutyric acid amide Copolymer of 3-9 acylamide and N-vinyl C 1-3 acylamide such as N-vinylacetamide, (6) polyacrylamide derivative and poly-N-vinylacylamide, and (7) N-isopropylacrylamide Monomer polymer, and N-vinylisobutyric acid amide Conceived monomer polymers may be considered. The temperature-responsive film is not limited to these polymers, and any polymer material that reversibly expands / contracts at a predetermined temperature may be used.

<温度応答性膜モジュールの実施形態>
次に、本発明に係る温度応答性膜モジュールの実施形態を説明する。
<Embodiment of temperature-responsive membrane module>
Next, an embodiment of a temperature-responsive membrane module according to the present invention will be described.

膜の形状とモジュール形状を系統化すると図3に示すように分類できる。なお、この分類は、(財)水道技術研究センター、「水道用膜ろ過技術の新しい展開」より引用したものである。   When the membrane shape and the module shape are systematized, they can be classified as shown in FIG. This classification is taken from the Water Technology Research Center, “New development of membrane filtration technology for water supply”.

図3に示すように、膜モジュールの形状は、ケーシング収納型と槽浸漬型に大別される。さらに、各膜モジュールに装填されるモジュール形状は円筒状膜と平膜とに分けられる。ケーシング収納型の円筒状膜は中空糸型、管状型、モノリス型に分けられ、平膜はスパイラル型、プレードアンドフレーム型、振動式円盤型、プリーツ型に分けられる。槽浸漬型の円筒状膜は、中空糸型、管状型に分かられ、平膜はプレートアンドフレーム型、回転式円盤型に分けられる。   As shown in FIG. 3, the shape of the membrane module is roughly classified into a casing storage type and a bath immersion type. Furthermore, the module shape loaded in each membrane module is divided into a cylindrical membrane and a flat membrane. The casing-containing cylindrical membrane is divided into a hollow fiber type, a tubular type, and a monolith type, and the flat membrane is divided into a spiral type, a blade and frame type, a vibrating disc type, and a pleated type. The tank immersion type cylindrical membrane is divided into a hollow fiber type and a tubular type, and the flat membrane is divided into a plate and frame type and a rotary disk type.

<温度応答性膜モジュールの第1実施形態>
図4は、本発明に係る温度応答性膜モジュールの第1実施形態を示している。
<First Embodiment of Temperature Responsive Membrane Module>
FIG. 4 shows a first embodiment of a temperature-responsive membrane module according to the present invention.

同図に示すように、円筒状のケーシング内には、円筒軸方向に多数の温度応答性膜が装填されている。原水がこの温度応答性膜を通過する間にろ過され、膜ろ過水(処理水)と濃縮水(排水)とに分離される。   As shown in the figure, a large number of temperature-responsive membranes are loaded in the cylindrical casing in the cylindrical axis direction. The raw water is filtered while passing through the temperature-responsive membrane, and separated into membrane filtrate (treated water) and concentrated water (drainage).

この場合、固形分3(図1参照)を含む原水(河川水・地下水・湖沼水などの淡水、雨水貯水・産業廃水・下水などの汚水、バラスト水などの海水、など)は、100μm以下の細孔をもつ温度応答性膜のふるい作用により細孔よりも大きな物質は膜面および孔径調整材2に捕捉される。容器に一体化した場合は、原水を膜面に沿って流し、処理水が原水とは直角方向に流れ、原水の一部が循環するクロスフローろ過方式か、原水を循環させることなく全量ろ過する全量ろ過方式によってろ過を行うことが可能となる。   In this case, raw water (solid water such as river water, groundwater, lake water, sewage such as rainwater storage, industrial wastewater, sewage, seawater such as ballast water, etc.) containing solids 3 (see Fig. 1) is 100 µm or less. A substance larger than the pores is trapped by the membrane surface and the pore diameter adjusting material 2 by the sieving action of the temperature-responsive membrane having pores. When integrated into a container, the raw water flows along the membrane surface, the treated water flows in a direction perpendicular to the raw water, and a part of the raw water circulates, or the whole amount is filtered without circulating the raw water. It becomes possible to perform filtration by the total amount filtration method.

<温度応答性膜モジュールの第2実施形態>
図5は、本発明に係る温度応答性膜モジュールの第2実施形態を示している。
<Second Embodiment of Temperature Responsive Membrane Module>
FIG. 5 shows a second embodiment of the temperature-responsive membrane module according to the present invention.

同図に示すように、この温度応答性膜モジュールは、平面状に形成された温度応答性膜モジュールを複数積層して構成したものであり、同図(A)に示すように、原水が平板面からモジュール内に流入すると、同図(B)に示すように、膜内を通過して膜ろ過水(処理水)となる。この温度応答性膜モジュールは、原水が流入している槽(開放型または密閉型)に浸漬させた状態で使用することができる。   As shown in the figure, this temperature-responsive membrane module is constructed by laminating a plurality of temperature-responsive membrane modules formed in a planar shape. As shown in FIG. When flowing into the module from the surface, it passes through the membrane and becomes membrane filtered water (treated water) as shown in FIG. This temperature-responsive membrane module can be used in a state where it is immersed in a tank (open type or sealed type) into which raw water flows.

このように、温度応答性膜モジュールの第1、第2実施形態によれば、温度応答性膜を円筒状または平面状に成形し、容器と充填一体化することによって、膜ろ過面積を増大させることができる。また、円筒状または平面状に成形し、温度応答性膜を原水が流入している槽(開放型または密閉型)に浸漬させることによって、システムが簡素で膜の交換が容易となり、膜供給水の濁度が高くても安定して運転することができる。   Thus, according to the first and second embodiments of the temperature-responsive membrane module, the membrane-filtration area is increased by forming the temperature-responsive membrane into a cylindrical shape or a flat shape and filling and integrating with the container. be able to. In addition, by forming the cylinder in a cylindrical or flat shape and immersing the temperature-responsive membrane in a tank (open type or sealed type) into which raw water flows, the system is simple and the membrane can be easily replaced. Even if the turbidity is high, it is possible to operate stably.

なお、本発明では、温度応答性膜が平面状または円筒状に成形し、容器に充填一体化するようにしたが、これに限定されるものではない。一体化した形状の例としては、中空糸型、管状型、モノリス型、スパイラル型、プレートアンドフレーム型、振動円盤型、プリーツ型等、種々のものがあり、更にこれらの形状に限定されるものでもない。   In the present invention, the temperature-responsive film is formed into a flat shape or a cylindrical shape, and is filled and integrated into the container. However, the present invention is not limited to this. Examples of integrated shapes include various types such as hollow fiber type, tubular type, monolith type, spiral type, plate and frame type, vibration disk type, pleated type, etc. not.

また、本発明では、温度応答性膜が平面状または円筒状に成形され、原水が流入している槽(開放型または密閉型)に浸漬されている。形状の例としては、中空糸型、管状型、プレートアンドフレーム型、回転式円盤型があるがこれらの形状に限定されるものではない。   In the present invention, the temperature-responsive membrane is formed into a flat shape or a cylindrical shape, and is immersed in a tank (open type or sealed type) into which raw water flows. Examples of the shape include a hollow fiber type, a tubular type, a plate and frame type, and a rotary disk type, but are not limited to these shapes.

<膜ろ過システムの実施形態>
図6は本発明に係る膜ろ過システムの第1実施形態を示すブロック図である。
<Embodiment of membrane filtration system>
FIG. 6 is a block diagram showing a first embodiment of a membrane filtration system according to the present invention.

この膜ろ過システム100は、2基の温度応答性膜モジュールが並列配置された例を示しており、原水を導く導水ポンプ11と、導水ポンプ11によって導かれた原水を一時貯水する原水タンク12と、原水タンク12内の原水を各別も温度応答性膜モジュールに供給する原水ポンプ13−1,13−2と、各原水ポンプ13−1,13−2から導かれる原水の流量を測定する各別の流量計14−1,14−2と、原水ポンプ13−1,13−2によって導かれた原水を膜ろ過する温度応答性膜モジュール15−1,15−2と、温度応答性膜モジュール15−1,15−2で膜ろ過された処理水を貯水する処理水タンク16とを備えている。また、膜ろ過後の処理水の濁度を測定する濁度計17と、温度応答性膜モジュール15−1,15−2に各別に設けられ各温度応答性膜モジュールにおける流入側と排出側との差圧を測定する差圧計18−1,18−2とを備えている。さらに、原水タンク12の原水温度を測定する温度計19と、原水タンク12内の原水を所定温度に加熱するための加熱器20とを備えている。さらに、処理水タンク16内に貯水された処理水の一部を逆洗水として導入した貯水する逆洗水タンク21と、この逆洗水タンク21内の逆洗水の温度を測定する温度計26と、逆洗水タンク21内に貯水された逆洗水を所定温度に加熱する加熱器22と、逆洗水タンク21内の逆洗水を温度応答性膜モジュール15−1,15−2に供給する逆洗水ポンプと、温度応答性膜モジュール15−1,15−2に供給される逆洗水の流量を測定する流量計24とを備えている。加えて、洗浄時に加圧空気を供給するコンプレッサ25も備えている。なお、図中V1〜V22は各配管に設けられた弁を示す。   This membrane filtration system 100 shows an example in which two temperature-responsive membrane modules are arranged in parallel, a water feed pump 11 that guides raw water, and a raw water tank 12 that temporarily stores the raw water guided by the water feed pump 11. Each of the raw water pumps 13-1 and 13-2 for supplying the raw water in the raw water tank 12 to the temperature-responsive membrane module and the flow rate of the raw water led from the raw water pumps 13-1 and 13-2 are measured. Temperature-responsive membrane modules 15-1 and 15-2 for membrane filtration of the raw water guided by the separate flow meters 14-1 and 14-2, the raw water pumps 13-1 and 13-2, and the temperature-responsive membrane module And a treated water tank 16 for storing treated water that has been membrane-filtered by 15-1 and 15-2. Also, a turbidimeter 17 for measuring the turbidity of treated water after membrane filtration, and an inflow side and an outflow side in each temperature responsive membrane module provided separately for each of the temperature responsive membrane modules 15-1 and 15-2. Differential pressure gauges 18-1 and 18-2 for measuring the differential pressure. Further, a thermometer 19 for measuring the raw water temperature in the raw water tank 12 and a heater 20 for heating the raw water in the raw water tank 12 to a predetermined temperature are provided. Furthermore, a backwash water tank 21 for storing a part of the treated water stored in the treated water tank 16 as backwash water, and a thermometer for measuring the temperature of the backwash water in the backwash water tank 21. 26, a heater 22 for heating the backwash water stored in the backwash water tank 21 to a predetermined temperature, and the backwash water in the backwash water tank 21 as temperature-responsive membrane modules 15-1 and 15-2. And a flow meter 24 for measuring the flow rate of the backwash water supplied to the temperature-responsive membrane modules 15-1 and 15-2. In addition, a compressor 25 that supplies pressurized air during cleaning is also provided. In addition, V1-V22 in the figure shows the valve provided in each piping.

(ろ過時)
図6に示す膜ろ過システム100において、原水は導水ポンプ11によって原水タンク12へ導かれている。各原水ポンプ13−1,13−2によってそれぞれの温度応答性膜モジュール15−1,15−2へ原水が導入され、温度応答性膜モジュール15−1,15−2を透過した処理水は処理水タンク16へ流入される。
(When filtering)
In the membrane filtration system 100 shown in FIG. 6, the raw water is guided to the raw water tank 12 by the water transfer pump 11. The raw water is introduced into the temperature responsive membrane modules 15-1 and 15-2 by the raw water pumps 13-1 and 13-2, and the treated water that has passed through the temperature responsive membrane modules 15-1 and 15-2 is treated. It flows into the water tank 16.

(洗浄時)
このような膜ろ過システム100では、継続的に原水を通水することによって、膜面などに原水中の固形分3が堆積してろ過抵抗が増加し、膜差圧が高くなるため、予め設定された周期、あるいは膜が所定の差圧上昇を示した時点で、ろ過された処理水を処理水側から流す、あるいはコンプレッサ25による圧縮空気を原水側から送る物理洗浄を行い、膜表面あるいは膜内部の付着物のうち、可逆的なものを取り除く。
(When washing)
In such a membrane filtration system 100, since the raw water is continuously passed, the solid content 3 in the raw water accumulates on the membrane surface and the like to increase the filtration resistance and increase the membrane differential pressure. When the cycle or the membrane shows a predetermined differential pressure increase, the filtered treated water is flowed from the treated water side, or physical cleaning is performed by sending compressed air by the compressor 25 from the raw water side, and the membrane surface or membrane Remove reversible ones of internal deposits.

さらに、膜表面や内部には、このような物理洗浄で除去できない付着物が徐々に蓄積するため、膜差圧が予め設定されている上限値を越えた時点で、膜ろ過処理を停止して薬品洗浄を行い、物理洗浄で除去できなかった付着物を除去する。   Furthermore, since deposits that cannot be removed by such physical cleaning gradually accumulate on the membrane surface and inside, when the membrane differential pressure exceeds a preset upper limit value, the membrane filtration treatment is stopped. Perform chemical cleaning to remove deposits that could not be removed by physical cleaning.

本発明では、このような物理洗浄や薬品洗浄に加え、加熱した原水および処理水により温水洗浄を行うものである。   In the present invention, in addition to such physical cleaning and chemical cleaning, warm water cleaning is performed with heated raw water and treated water.

温水洗浄は、物理洗浄および薬品洗浄と同様にあらかじめ設定した周期、あるいは、あらかじめ設定した膜差圧に達した時点で実施する。   The hot water cleaning is performed when a preset cycle or a preset film differential pressure is reached in the same manner as the physical cleaning and chemical cleaning.

原水および処理水を加熱する方法としては、原水タンク12や処理水タンク16に加熱器20,22を設置して行っている。加熱器20では、原水を25〜60℃に加温して温度応答性膜モジュール15−1,15−2に供給する。   As a method of heating raw water and treated water, heaters 20 and 22 are installed in the raw water tank 12 and the treated water tank 16. In the heater 20, the raw water is heated to 25 to 60 ° C. and supplied to the temperature responsive membrane modules 15-1 and 15-2.

一方、温度応答性膜モジュール15−1,15−2の逆洗時には処理水を加熱器22によって25〜60℃に加温して温度応答性膜モジュール15−1,15−2に供給する。洗浄後の水は系外に排出される。   On the other hand, when the temperature-responsive membrane modules 15-1 and 15-2 are backwashed, the treated water is heated to 25 to 60 ° C. by the heater 22 and supplied to the temperature-responsive membrane modules 15-1 and 15-2. The washed water is discharged out of the system.

この際、温度計19によって原水の温度が測定され、流量計14−1,14−2によって温度応答性膜モジュール15−1,15−2に供給される原水の流量が測定される。また、差圧計18−1,18−2によって温度応答性膜モジュール15−1,15−2の差圧が測定され、また濁度計17によって処理水の濁度が測定される。   At this time, the temperature of the raw water is measured by the thermometer 19, and the flow rate of the raw water supplied to the temperature-responsive membrane modules 15-1 and 15-2 is measured by the flow meters 14-1 and 14-2. Further, the differential pressure of the temperature-responsive membrane modules 15-1 and 15-2 is measured by the differential pressure gauges 18-1 and 18-2, and the turbidity of the treated water is measured by the turbidimeter 17.

この実施形態によれば、物理洗浄、薬品洗浄の間隔を長くすることで、物理洗浄、薬品洗浄、膜交換にかかる費用を抑制することができる。また、薬品洗浄を実施した際の廃液処理が縮小できるため、費用面だけでなく環境負荷の低減も図ることができる。   According to this embodiment, the cost for physical cleaning, chemical cleaning, and membrane replacement can be reduced by increasing the interval between physical cleaning and chemical cleaning. In addition, since waste liquid processing when chemical cleaning is performed can be reduced, not only cost but also environmental load can be reduced.

なお、この実施形態では、逆洗水タンク21に加熱器22を設置して洗浄に必要な量だけを加熱することができるように構成している。加熱器22は、逆洗水タンク21以外にも処理水タンク20に設置しても良い。このように処理水タンク20または逆洗水タンク21に加熱器22を設置する場合は、後述する物理洗浄と同じ作用により実施することができ、頻度は膜面の汚れ具合により決定する。   In this embodiment, the heater 22 is installed in the backwash water tank 21 so that only the amount necessary for cleaning can be heated. The heater 22 may be installed in the treated water tank 20 in addition to the backwash water tank 21. Thus, when installing the heater 22 in the treated water tank 20 or the backwash water tank 21, it can implement by the same effect | action as the physical washing | cleaning mentioned later, and frequency is determined by the dirt condition of a film surface.

また、原水または処理水を加熱する方法としては、例えば、複数の温度応答性膜から構成された膜束を容器内に配置した温度応答性膜モジュール15−1,15−2と、温度応答性膜モジュール15−1,15−2の原水側と原水循環管を介して連結された加熱器とを備える構成でも良い。具体的な構成を図16に示す。なお、温度応答性膜モジュール15−1と温度応答性膜モジュール15−2は同一構成であり、またその作用・効果も同じであるため、以下、図16の説明においては、温度応答性膜モジュール15−1を中心に説明する。   Moreover, as a method for heating raw water or treated water, for example, temperature responsive membrane modules 15-1 and 15-2 in which a membrane bundle composed of a plurality of temperature responsive membranes is arranged in a container, and temperature responsiveness are used. The structure provided with the heater connected with the raw | natural water side of the membrane modules 15-1 and 15-2 and the raw | natural water circulation pipe may be sufficient. A specific configuration is shown in FIG. Since the temperature responsive membrane module 15-1 and the temperature responsive membrane module 15-2 have the same configuration and the same operation and effect, the temperature responsive membrane module will be hereinafter described in FIG. The description will be focused on 15-1.

図16に示す膜ろ過システム100では、温度応答性膜モジュール15−1(15−2)が容器101−1(101−2)内に配置された構成となっている。温度応答性膜モジュール15−1(15−2)は、複数の温度応答性膜を束ねて成る温度応答性膜束102で構成されており、温度応答性膜モジュール15−1(15−2)の後述する原水側103−1(103−2)と原水循環管104−1(104−2)を介して連結された加熱器105−1(105−2)を備えている。 The membrane filtration system 100 shown in FIG. 16 has a configuration in which a temperature-responsive membrane module 15-1 (15-2) is disposed in a container 101-1 (101-2). The temperature responsive membrane module 15-1 (15-2) includes a temperature responsive membrane bundle 102 formed by bundling a plurality of temperature responsive membranes, and the temperature responsive membrane module 15-1 (15-2). The heater 105-1 (105-2) connected via the raw | natural water side 103-1 (103-2) mentioned later and the raw | natural water circulation pipe 104-1 (104-2) is provided.

また、この図に示す温度応答性膜モジュール15−1(15−2)は、ポッティング剤から成る固定部材106−1(106−2)によって、各膜の外表面側と接し且つ原水を供給する原水口を有する原水側103−1(103−2)と、各中空糸膜の内表面側とそれぞれの開口端を介して連通し且つ処理水を取り出す処理水口を有する処理水側107−1(107−2)とに区分けされており、原水側103−1(103−2)と処理水側107−1(107−2)との間での物質移動は温度応答性膜の膜面のみを介して行われる。なお、原水側103−1(103−2)には、その下方にコンプレッサ25と連通し圧縮空気を放出する空気放出管108−1(108−2)(第1空気供給系統)が設けられている。   The temperature-responsive membrane module 15-1 (15-2) shown in this figure is in contact with the outer surface side of each membrane and supplies raw water by a fixing member 106-1 (106-2) made of a potting agent. A raw water side 103-1 (103-2) having a raw water inlet and a treated water side 107-1 (102-1) having a treated water outlet communicating with the inner surface side of each hollow fiber membrane through the respective open ends and taking out the treated water 107-2), and mass transfer between the raw water side 103-1 (103-2) and the treated water side 107-1 (107-2) is performed only on the surface of the temperature-responsive membrane. Done through. The raw water side 103-1 (103-2) is provided with an air discharge pipe 108-1 (108-2) (first air supply system) below which communicates with the compressor 25 and discharges compressed air. Yes.

温度応答性膜束102は、複数の温度応答性膜をU字状に折り曲げて一方の側(図16では上方側)に各端部を集束させるように束ねたものであり、各温度応答性膜の内表面側と連通する開口端は固定部材106−1(106−2)により支持固定されている。なお、この温度応答性膜の固定方法は、特に限定されるものではない。   The temperature-responsive membrane bundle 102 is formed by bundling a plurality of temperature-responsive membranes in a U shape so as to focus each end on one side (the upper side in FIG. 16). The opening end communicating with the inner surface side of the membrane is supported and fixed by a fixing member 106-1 (106-2). The method for fixing the temperature responsive membrane is not particularly limited.

加熱器105−1(105−2)は、原水側103−1(103−2)と連結するように設けられており、温度応答性膜モジュール15−1(15−2)内の膜外表面側と接する原水を25〜60℃に加温する。すなわち、加熱器105−1(105−2)には、第2空気配管109(第2空気供給系統)を介してコンプレッサ25から圧縮空気が送られている。これによって、原水循環管104−1(104−2)を介して送られた温度応答性膜モジュール15−1(15−2)内の原水を加熱器105−1(105−2)で25〜60℃に加温し、矢印で示す方向に循環させて該モジュール15−1(15−2)の原水を25〜60℃に制御する。   The heater 105-1 (105-2) is provided so as to be connected to the raw water side 103-1 (103-2), and the outer membrane surface in the temperature-responsive membrane module 15-1 (15-2). Warm the raw water in contact with the side to 25-60 ° C. That is, compressed air is sent from the compressor 25 to the heater 105-1 (105-2) via the second air pipe 109 (second air supply system). Thereby, the raw water in the temperature-responsive membrane module 15-1 (15-2) sent via the raw water circulation pipe 104-1 (104-2) is converted into 25 to 25 by the heater 105-1 (105-2). It heats to 60 degreeC and it circulates in the direction shown by the arrow, and controls the raw | natural water of this module 15-1 (15-2) to 25-60 degreeC.

なお、加熱器に供給された余剰な圧縮空気は、空気排出ライン116−1(116−2)へ排出される。 In addition, the excess compressed air supplied to the heater is discharged | emitted to the air discharge line 116-1 (116-2).

次に、本実施形態における温度応答性膜モジュールを用いた膜ろ過システム100の使用方法の一例を示す。   Next, an example of the usage method of the membrane filtration system 100 using the temperature-responsive membrane module in this embodiment is shown.

まず温度応答性膜を装填した温度応答性膜モジュール15−1(15−2)を用いて、原水をろ過処理する。原水の供給は、原水移送ポンプ110を駆動源としている。この原水移送ポンプ110によって原水を原水管111を介して圧送し、温度応答性膜の外表面側から内表面側に流すことにより、原水中の固形分が温度応答性膜の外表面側で捕捉される。温度応答性膜で処理された処理水は処理水管112へ送られる。温度応答性膜の膜面差圧が初期圧より、例えば50kPa程度上昇した時点で、ろ過処理を停止する。   First, raw water is filtered using a temperature responsive membrane module 15-1 (15-2) loaded with a temperature responsive membrane. The supply of raw water uses the raw water transfer pump 110 as a drive source. The raw water is pumped by the raw water transfer pump 110 through the raw water pipe 111 and flows from the outer surface side to the inner surface side of the temperature responsive membrane, so that the solid content in the raw water is captured on the outer surface side of the temperature responsive membrane. Is done. The treated water treated with the temperature-responsive membrane is sent to the treated water pipe 112. When the membrane surface differential pressure of the temperature-responsive membrane rises from the initial pressure by, for example, about 50 kPa, the filtration process is stopped.

なお、図16に示す膜ろ過システム100においては、以下の手順により、膜面に捕捉され堆積した固形分の洗浄除去を行う。第2空気配管109を介してコンプレッサ25から送られた圧縮空気を加熱器105−1(105−2)に供給することによって、原水循環管104−1(104−2)を介して原水側103−1(103−2)から供給された原水を加熱器105−1(105−2)で25〜60℃に温めた後、原水側103−1(103−2)に送る。これを繰り返し行い、原水を加熱循環させて水温を25〜60℃に制御する。   In the membrane filtration system 100 shown in FIG. 16, the solid content captured and deposited on the membrane surface is removed by the following procedure. By supplying the compressed air sent from the compressor 25 via the second air pipe 109 to the heater 105-1 (105-2), the raw water side 103 via the raw water circulation pipe 104-1 (104-2). -1 (103-2) is heated to 25-60 ° C. with a heater 105-1 (105-2) and then sent to the raw water side 103-1 (103-2). This is repeated, and the raw water is heated and circulated to control the water temperature to 25-60 ° C.

次に、第1空気配管113を介して空気放出管108−1(108−2)から圧縮空気を放出し、温度応答性膜の外表面に堆積、付着している固形分を振動剥離する。これと同時に、逆圧洗浄手段として第3空気配管114を介してコンプレッサ25から供給される圧縮空気(例えば300kPa)によって、処理水側103−1(103−2)に滞留する処理水をろ過運転時とは逆方向の原水側107−1(107−2)に流し込み、各温度応答性膜の内表面側から外表面側に逆洗する。処理水側107−1(107−2)の処理水が、原水側103−1(103−2)に混入するため一時液温が25℃未満に低下するが、第2空気配管109を介して圧縮空気を加熱器105−1(105−2)に供給し、原水側103−1(103−2)を加熱循環させることで25〜60℃まで上昇させる。なお、逆洗時に供給された余剰な圧縮空気は、空気排出ライン115−1(115−2)へ排出される。   Next, compressed air is discharged from the air discharge pipe 108-1 (108-2) through the first air pipe 113, and the solid content deposited and adhered to the outer surface of the temperature-responsive film is vibrationally peeled off. At the same time, the treated water staying on the treated water side 103-1 (103-2) is filtered by compressed air (for example, 300 kPa) supplied from the compressor 25 through the third air pipe 114 as a back pressure washing means. Pour into the raw water side 107-1 (107-2) in the opposite direction to the time, and backwash from the inner surface side to the outer surface side of each temperature-responsive membrane. Since the treated water on the treated water side 107-1 (107-2) is mixed into the raw water side 103-1 (103-2), the temporary liquid temperature falls below 25 ° C. Compressed air is supplied to the heater 105-1 (105-2), and the raw water side 103-1 (103-2) is heated and circulated to raise the temperature to 25 to 60 ° C. In addition, the excess compressed air supplied at the time of backwashing is discharged | emitted to the air discharge line 115-1 (115-2).

ここで、主として水道用の膜ろ過システム100で実施する温度応答性膜モジュール15−1,15−2の物理洗浄と薬品洗浄について補足説明する。   Here, a supplementary description will be given of physical cleaning and chemical cleaning of the temperature-responsive membrane modules 15-1 and 15-2 that are mainly performed in the water membrane filtration system 100.

[膜モジュールの物理洗浄]
運転時間の経過とともに膜に付着した物質は、下記のいずれか、および併用による物理洗浄により除去することができる。
[Physical cleaning of membrane module]
Substances adhering to the film over the course of the operation time can be removed by physical cleaning by any of the following and combined use.

逆圧洗浄、逆圧空気洗浄、エアスクラビング、原水または空気フラッシュ洗浄、機械的振動、機械的回転、超音波洗浄、熱水洗浄、スポンジボール洗浄、薬品注入洗浄、オゾン注入洗浄。原水水質に応じて10〜120分に一回定期的に実施する。洗浄時間は、逆圧水洗浄が1分以内、エアスクラビングが数分以内、逆圧空気洗浄は数秒である。 Back pressure cleaning, back pressure air cleaning, air scrubbing, raw water or air flush cleaning, mechanical vibration, mechanical rotation, ultrasonic cleaning, hot water cleaning, sponge ball cleaning, chemical injection cleaning, ozone injection cleaning. It is carried out once every 10 to 120 minutes according to the raw water quality. The cleaning time is within 1 minute for back-pressure water cleaning, within a few minutes for air scrubbing, and within seconds for back-pressure air cleaning.

[膜モジュールの薬品洗浄]
物理洗浄で除去できない膜への付着物質は、下記のいずれか、および併用による薬品洗浄により除去することができる。次亜塩素酸ナトリウム等の酸化剤、アルカリ洗剤や酸洗剤等の界面活性剤、塩酸や硫酸等の無機酸、シュウ酸やクエン酸等の有機酸。洗浄方式は、膜モジュールをシステムから切り離すことなく洗浄を行うオンライン方式と、システムから切り離して洗浄を行うオフライン方式がある。薬品洗浄は、定流量制御の場合は膜差圧(100〜200kpa)が、定圧制御の場合はろ過流束が所定の値になった時点で実施し、概ね1〜数ヶ月の頻度で行う。
[Membrane module chemical cleaning]
Substances adhering to the film that cannot be removed by physical cleaning can be removed by chemical cleaning by any of the following and combined use. Oxidizing agents such as sodium hypochlorite, surfactants such as alkaline detergents and acid detergents, inorganic acids such as hydrochloric acid and sulfuric acid, and organic acids such as oxalic acid and citric acid. There are two cleaning methods: an online method in which the membrane module is cleaned without being separated from the system, and an offline method in which the membrane module is separated from the system for cleaning. Chemical cleaning is performed when the membrane differential pressure (100 to 200 kpa) in the case of constant flow control, and when the filtration flux reaches a predetermined value in the case of constant pressure control, and is performed at a frequency of approximately 1 to several months.

<膜ろ過システムの他の実施形態>
図7は本発明に係る膜ろ過システムの他の実施形態を示している。
<Other embodiments of membrane filtration system>
FIG. 7 shows another embodiment of the membrane filtration system according to the present invention.

この実施形態では、原水タンク12と温度応答性膜モジュール15−1,15−2の間に前処理設備31を設けたことを特徴としている。前処理設備31は、夾雑物除去設備、凝集剤注入設備、凝集沈殿設備、凝集砂ろ過設備、凝集沈殿砂ろ過設備、塩素注入設備、エアレーション設備、生物処理設備、粉末活性炭設備、粒状活性炭設備、オゾン発生設備およびこれらの併用により温度応答性膜モジュール15−1,15−2への供給する原水を前処理することができる。   In this embodiment, a pretreatment facility 31 is provided between the raw water tank 12 and the temperature-responsive membrane modules 15-1 and 15-2. The pretreatment equipment 31 is a contaminant removal equipment, a coagulant injection equipment, a coagulation sedimentation equipment, a coagulation sand filtration equipment, a coagulation sediment sand filtration equipment, a chlorine injection equipment, an aeration equipment, a biological treatment equipment, a powdered activated carbon equipment, a granular activated carbon equipment, The raw water supplied to the temperature-responsive membrane modules 15-1 and 15-2 can be pretreated by the ozone generation facility and the combined use thereof.

前処理設備31における共通の効果は、温度応答性膜モジュール15−1,15−2の性能を水量および水質の両面において、最も効率よく、かつ安定して発揮させることができるとともに、膜供給水中の懸濁物質による膜の損傷や閉塞等のトラブルを防止することができる。   The common effect in the pretreatment facility 31 is that the performance of the temperature-responsive membrane modules 15-1 and 15-2 can be exhibited most efficiently and stably in both water quantity and water quality, and the membrane feed water Troubles such as membrane damage and blockage due to suspended solids can be prevented.

<膜ろ過システムの更に他の実施形態>
図8は本発明に係る膜ろ過システムの更に他の実施形態を示している。
<Another embodiment of the membrane filtration system>
FIG. 8 shows still another embodiment of the membrane filtration system according to the present invention.

この実施形態では、膜ろ過システム100と同一系内もしくは系外に、排水処理設備32を備えることを特徴としている。   In this embodiment, the wastewater treatment facility 32 is provided in the same system as the membrane filtration system 100 or outside the system.

排水処理設備32は、凝集剤注入設備、凝集沈殿設備、凝集砂ろ過設備、凝集沈殿砂ろ過設備、濃縮設備、脱水設備、乾燥設備、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜、UV照射設備、pH調整設備、嫌気性消化設備、およびこれらの併用により構成されるが、これらのうち、たとえば乾燥設備や嫌気性消化設備から排出される熱を利用して、原水および処理水の加熱を行う。   The wastewater treatment facility 32 includes a flocculant injection facility, a coagulation sedimentation facility, a coagulation sand filtration facility, a coagulation sedimentation sand filtration facility, a concentration facility, a dehydration facility, a drying facility, a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane. Consists of a membrane, UV irradiation equipment, pH adjustment equipment, anaerobic digestion equipment, and combinations thereof. Of these, raw water and treatment using heat discharged from drying equipment and anaerobic digestion equipment, for example Heat the water.

この実施形態によれば、膜ろ過システム100内外にある熱源を有効利用することによって、原水および処理水を加温するためのエネルギーを削減することができる。   According to this embodiment, the energy for heating raw | natural water and treated water can be reduced by using effectively the heat source which exists in the membrane filtration system 100 inside and outside.

<膜ろ過システムの更に他の実施形態>
図9は本発明に係る膜ろ過システムの更に他の実施形態を示している。
<Another embodiment of the membrane filtration system>
FIG. 9 shows still another embodiment of the membrane filtration system according to the present invention.

この実施形態では、膜ろ過システム100から排出される洗浄水を冷却する熱交換器33を備えたことを特徴としている。   This embodiment is characterized in that a heat exchanger 33 for cooling the wash water discharged from the membrane filtration system 100 is provided.

地方自治体の条例では、水質汚濁防止法に基づく上乗せ基準を設定することがある。たとえば東京都環境局では、公共用水域に排出される水は40℃以下と規定されている。こうした基準を遵守するため、温水で洗浄した後の洗浄水を熱交換器33で冷却するとともに、回収した熱により原水および処理水を加温する。   Local government regulations may set extra standards based on the Water Pollution Control Law. For example, the Tokyo Metropolitan Environment Bureau stipulates that water discharged into public water bodies is 40 ° C. or lower. In order to comply with these standards, the wash water after washing with warm water is cooled by the heat exchanger 33, and the raw water and the treated water are heated by the recovered heat.

この実施形態によれば、膜ろ過システム100内外にある熱源を有効利用することによって、原水および処理水を加温するためのエネルギーを削減することができる。   According to this embodiment, the energy for heating raw | natural water and treated water can be reduced by using effectively the heat source which exists in the membrane filtration system 100 inside and outside.

<膜ろ過システムの更に他の実施形態>
図10は本発明に係る膜ろ過システムの更に他の実施形態を示している。
<Another embodiment of the membrane filtration system>
FIG. 10 shows still another embodiment of the membrane filtration system according to the present invention.

この実施形態では、膜ろ過システム100の膜差圧、水量(原水、処理水、洗浄水)、水温、濁度を連続的に監視制御する監視制御装置41と、膜の完全性を確認する膜破断検知装置42とを備えたことを特徴としている。特に、濁度計17で検出される濁度は、特にクリプトスポリジウムやジアルジア等の原虫類を監視するための重要な指標であり、レーザー濁度計、透過光式濁度計により常時監視することが望ましい。   In this embodiment, a monitoring controller 41 that continuously monitors and controls the membrane pressure difference, water amount (raw water, treated water, washing water), water temperature, and turbidity of the membrane filtration system 100, and a membrane that confirms the integrity of the membrane. It is characterized by comprising a breakage detection device 42. In particular, the turbidity detected by the turbidimeter 17 is an important index especially for monitoring protozoa such as Cryptosporidium and Giardia, and should always be monitored by a laser turbidimeter or transmitted light turbidimeter. Is desirable.

本実施形態における膜ろ過システム100は、運転時間の経過とともに原水中の微粒子・濁質によって膜の閉塞が進行するので、膜差圧や水量を監視する必要がある。監視制御装置41は、膜ろ過システム100の機器を制御するための設備であり、膜差圧、水量(原水、処理水、洗浄水)、水温、濁度に関する計測信号が入力されると、入力された計測信号に基づき機器を制御するための制御信号を出力する。また、破断検知装置42は、温度応答性膜モジュール15−1,15−2が破断したことを検知し、破断が検知された温度応答性膜モジュール15−1,15−2の運転を一時的に停止する。膜の破断はレーザー濁度計、透過光式濁度計により、処理水の濁度を常時監視することで検出するとともに、より高感度の検出方法である拡散空気方式によって1日1回実施することが望ましい。   In the membrane filtration system 100 according to the present embodiment, since the clogging of the membrane proceeds with the fine particles / turbidity in the raw water as the operation time elapses, it is necessary to monitor the membrane differential pressure and the amount of water. The monitoring control device 41 is a facility for controlling the equipment of the membrane filtration system 100, and inputs a measurement signal related to a membrane differential pressure, water volume (raw water, treated water, washing water), water temperature, and turbidity. A control signal for controlling the device is output based on the measured signal. Further, the breakage detection device 42 detects that the temperature-responsive membrane modules 15-1 and 15-2 are broken, and temporarily operates the temperature-responsive membrane modules 15-1 and 15-2 in which the breakage is detected. To stop. The film breakage is detected by constantly monitoring the turbidity of the treated water with a laser turbidimeter and a transmitted light turbidimeter, and once a day by the diffused air method, which is a more sensitive detection method. It is desirable.

この実施形態によれば、膜ろ過システム100を連続的に監視制御することによって、機器を効率的に運転するとともに、膜の破断による病原性微生物等の漏洩リスクを低減することができる。   According to this embodiment, by continuously monitoring and controlling the membrane filtration system 100, it is possible to efficiently operate the device and reduce the risk of leakage of pathogenic microorganisms and the like due to membrane breakage.

<膜ろ過システムの更に他の実施形態>
原水および処理水を加温する方法は、図11、図12、図13の形態を用いて実施することもできる。
<Another embodiment of the membrane filtration system>
The method of heating raw water and treated water can also be carried out using the forms shown in FIGS.

図11に示す実施形態では、原水は温度応答性膜モジュール15−1,15−2に導入される直前の配管で加温するための加熱器50−1,50−2と、処理水を温度応答性膜モジュール15−1,15−2に導入される直前の配管で加温するための加熱器51−1,51−2を備えている。   In the embodiment shown in FIG. 11, the raw water is heated by pipes immediately before being introduced into the temperature-responsive membrane modules 15-1 and 15-2, and the treated water is heated to a temperature. Heaters 51-1 and 51-2 are provided for heating with piping immediately before being introduced into the responsive membrane modules 15-1 and 15-2.

加熱器50−1,50−2によって原水を加温しながら温度応答性膜モジュール15−1,15−2内に導入し、温度応答性膜モジュール15−1,15−2内の温度が25〜60℃になった時点で原水ポンプ13−1,13−2を停止する。次に、逆洗水ポンプ23により加熱器51−1,51−2で加温した処理水を温度応答性膜モジュール15−1,15−2に導入することによって洗浄を行う。   While heating the raw water with the heaters 50-1 and 50-2, the raw water is introduced into the temperature-responsive membrane modules 15-1 and 15-2, and the temperature in the temperature-responsive membrane modules 15-1 and 15-2 is 25. The raw water pumps 13-1 and 13-2 are stopped when the temperature reaches -60 ° C. Next, cleaning is performed by introducing the treated water heated by the heaters 51-1 and 51-2 to the temperature-responsive membrane modules 15-1 and 15-2 by the backwash water pump 23.

なお、原水側の加熱器50−1,50−2か、処理水側の加熱器51−1,51−2のどちらか一方を省略することもできる。原水側の加熱器50−1,50−2を省略した場合の作用・効果は図6に示した実施形態と同様である。一方、処理水側の加熱器51−1,51−2を省略した場合には、逆洗時に、常温の処理水を温度応答性膜モジュール15−1,15−2内に導入することによって、温度応答性膜モジュール15−1,15−2内の温度が25℃以下に低下した時点で洗浄効果が低下するが、設備が簡素化し、コスト面で有利な構成となる。   Note that either the raw water side heaters 50-1 and 50-2 or the treated water side heaters 51-1 and 51-2 may be omitted. The actions and effects when the raw water heaters 50-1 and 50-2 are omitted are the same as those of the embodiment shown in FIG. On the other hand, when the heaters 51-1 and 51-2 on the treated water side are omitted, by introducing treated water at room temperature into the temperature-responsive membrane modules 15-1 and 15-2 during backwashing, Although the cleaning effect is reduced when the temperature in the temperature-responsive membrane modules 15-1 and 15-2 is lowered to 25 ° C. or lower, the equipment is simplified and the structure is advantageous in terms of cost.

図12に示す実施形態では、膜ろ過システム100は、原水ポンプ13−1,13−2の前段に洗浄水タンク60と、タンク60内の洗浄水を加温する加熱器61とを備えることを特徴としている。   In the embodiment shown in FIG. 12, the membrane filtration system 100 includes a cleaning water tank 60 and a heater 61 that heats the cleaning water in the tank 60 in front of the raw water pumps 13-1 and 13-2. It is a feature.

原水を加温する際には、原水タンク12の出口のバルブV3を閉め、原水ポンプ13−1,13−2により温度応答性膜モジュール15−1,15−2内に加温した洗浄水を導入し、温度応答性膜モジュール15−1,15−2と洗浄水タンク60の間で温水を循環させる。温度応答性膜モジュール15−1,15−2内の温度が25〜60℃になった時点で導水ポンプ11を停止する。次に逆洗水ポンプ23からの水により加熱器22で加温した処理水を温度応答性膜モジュール15−1,15−2に導入することによって逆洗を行う。原水側の加熱器61か処理水側の加熱器22のどちらか一方を省略することもできる。原水側の加熱器22を省略した場合の作用・効果は図6と同様である。処理水側の加熱器22を省略した場合には、逆洗時に、常温の処理水を温度応答性膜モジュール15−1,15−2内に導入することによって、温度応答性膜モジュール15−1,15−2内の温度が25℃以下に低下した時点で洗浄効果が低下するが、設備が簡素化し、コスト面で有利な構成となる。   When warming the raw water, the valve V3 at the outlet of the raw water tank 12 is closed, and the wash water heated in the temperature-responsive membrane modules 15-1 and 15-2 by the raw water pumps 13-1 and 13-2 is supplied. The hot water is circulated between the temperature responsive membrane modules 15-1 and 15-2 and the washing water tank 60. When the temperature in the temperature-responsive membrane modules 15-1 and 15-2 reaches 25 to 60 ° C., the water pump 11 is stopped. Next, backwashing is performed by introducing the treated water heated by the heater 22 with water from the backwash water pump 23 into the temperature-responsive membrane modules 15-1 and 15-2. Either the raw water heater 61 or the treated water heater 22 may be omitted. The actions and effects when the raw water heater 22 is omitted are the same as in FIG. When the heater 22 on the treated water side is omitted, the temperature-responsive membrane module 15-1 is introduced by introducing normal temperature treated water into the temperature-responsive membrane modules 15-1 and 15-2 at the time of backwashing. , 15-2, the cleaning effect is reduced when the temperature falls to 25 ° C. or lower, but the equipment is simplified and the construction is advantageous in terms of cost.

図13に示す実施形態では、原水ポンプ13−1,13−2と温度応答性膜モジュール15−1,15−2の間に洗浄水タンク70を備えたことを特徴としている。   The embodiment shown in FIG. 13 is characterized in that a washing water tank 70 is provided between the raw water pumps 13-1 and 13-2 and the temperature-responsive membrane modules 15-1 and 15-2.

この場合、原水ポンプ13−1,13−2を停止せず、60〜100℃に加温した洗浄水を温水ポンプ72で押し込みながら温度応答性膜モジュール15−1,15−2に原水を供給することで温度応答性膜モジュール15−1,15−2内を25〜60℃に加温する。洗浄水タンク70からの洗浄水の導入位置は、原水ポンプ13−1,13−2の前段であってもかまわない。原水側の加熱器71か処理水側の加熱器22のどちらか一方を省略することもできる。原水側の加熱器71を省略した場合の作用・効果は図6と同様である。一方、処理水側の加熱器22を省略した場合には、逆洗時に、常温の処理水を温度応答性膜モジュール15−1,15−2内に導入することによって、温度応答性膜モジュール15−1,15−2内の温度が25℃以下に低下した時点で洗浄効果が低下するが、設備が簡素化し、コスト面で有利な構成となる。   In this case, the raw water pumps 13-1 and 13-2 are not stopped, and the raw water is supplied to the temperature-responsive membrane modules 15-1 and 15-2 while pushing the wash water heated to 60 to 100 ° C. with the hot water pump 72. Thus, the temperature-responsive membrane modules 15-1 and 15-2 are heated to 25 to 60 ° C. The position where the cleaning water is introduced from the cleaning water tank 70 may be upstream of the raw water pumps 13-1 and 13-2. Either the heater 71 on the raw water side or the heater 22 on the treated water side can be omitted. The actions and effects when the raw water heater 71 is omitted are the same as in FIG. On the other hand, when the heater 22 on the treated water side is omitted, the temperature responsive membrane module 15 is introduced by introducing normal temperature treated water into the temperature responsive membrane modules 15-1 and 15-2 during backwashing. Although the cleaning effect is reduced when the temperature in -1,15-2 is lowered to 25 ° C. or lower, the equipment is simplified and the structure is advantageous in terms of cost.

なお、上述した各実施形態では、2基の温度応答性膜モジュール15−1,15−2を使用する構成であるが、3基以上のモジュールを直列または並列に配置する構成であっても良い。   In each of the above-described embodiments, two temperature-responsive membrane modules 15-1 and 15-2 are used. However, three or more modules may be arranged in series or in parallel. .

このように構成することにより、より大きなろ過処理量に対応することができる。   By comprising in this way, it can respond to a bigger filtration processing amount.

<膜ろ過システムの更に他の実施形態>
図14は発明に係る膜ろ過システムの更に他の実施形態を示している。
<Another embodiment of the membrane filtration system>
FIG. 14 shows still another embodiment of the membrane filtration system according to the invention.

この実施形態では、温度応答性膜を原水が流入している槽(開放型または密閉型)に浸漬させた構成を示している。   In this embodiment, a configuration in which a temperature-responsive membrane is immersed in a tank (open type or sealed type) into which raw water flows is shown.

同図に示すように、原水ポンプ81によって導水された原水をろ過する膜浸漬槽82と、この膜浸漬槽82内に浸漬された温度応答性膜モジュール83とを備え、膜ろ過後の処理水は、槽外に配置された吸引ポンプ84によって処理水タンク16内に吸引される。この場合、原水は、水位差方式または吸引方式、およびこれらの併用により生じる膜差圧により、温度応答性膜を透過する。   As shown in the figure, a membrane immersion tank 82 for filtering the raw water introduced by the raw water pump 81 and a temperature-responsive membrane module 83 immersed in the membrane immersion tank 82 are provided, and treated water after membrane filtration. Is sucked into the treated water tank 16 by a suction pump 84 disposed outside the tank. In this case, the raw water permeates the temperature-responsive membrane due to the differential pressure generated by the water level difference method or the suction method and the combination thereof.

また、膜浸漬槽82内の原水を加熱する加熱器85と、膜浸漬槽82に導入される原水自体を加熱する加熱器20,87と、逆洗時に逆洗水を加熱する加熱器22、86、88とを備えている。   In addition, a heater 85 for heating the raw water in the film immersion tank 82, heaters 20 and 87 for heating the raw water itself introduced into the film immersion tank 82, and a heater 22 for heating the backwash water during backwashing, 86, 88.

そして、洗浄時には、加熱器20,85,87のいずれか、またはそれらの組み合わせによって膜浸漬槽82内の原水温度を加温した後、逆洗水ポンプ23から供給される逆洗水を加熱器22,86,88のいずれかまたはそれらの組み合わせで25〜60℃に加温して温度応答性膜モジュール83に供給して洗浄処理を実行する。すなわち、原水側での加熱は、加熱器20,87,85のいずれかあるいはそれらの組み合わせで行い、処理水側での加熱は加熱器22,86,88のいずれかあるいはそれらの組み合わせで行う。   And at the time of washing | cleaning, after heating the raw | natural water temperature in the film | membrane immersion tank 82 with either of the heaters 20, 85, 87, or those combinations, the backwash water supplied from the backwash water pump 23 is used as a heater. Any one of 22, 86, 88 or a combination thereof is heated to 25-60 ° C. and supplied to the temperature-responsive membrane module 83 to execute the cleaning process. That is, heating on the raw water side is performed by any one of the heaters 20, 87, 85 or a combination thereof, and heating on the treated water side is performed by any one of the heaters 22, 86, 88 or a combination thereof.

このように、温度応答性膜から構成された温度応答性膜モジュール83を原水が流入している膜浸漬槽82に浸漬させることによって、簡素なシステムを構成でき、また膜の交換が容易となり、膜供給水の濁度が高い場合にあっても安定した運転を実行することができる。   Thus, by immersing the temperature-responsive membrane module 83 composed of the temperature-responsive membrane in the membrane immersion tank 82 into which raw water flows, a simple system can be configured, and the membrane can be easily replaced. Even when the turbidity of the membrane feed water is high, stable operation can be performed.

なお、図14においては、原水側での加熱は、加熱器20,87,85で構成し、処理水側での加熱は加熱器22,86,88で構成するようにしたが、これに限定されるものではない。すなわち、原水側では原水タンク12内の原水を加熱する加熱器20、原水タンク12から膜浸漬槽82に供給される原水を加熱する加熱器87、または膜浸漬槽内の原水を加熱する加熱器85の少なくともいずれかを備える構成であれば良い。また、処理水側では、逆洗水タンク22内の処理水を加熱する加熱器22、処理水タンク16内の処理水を加熱する加熱器86、または膜浸漬槽82に供給される処理水を加熱する加熱器88の少なくともいずれかを備える構成であれば良い。   In FIG. 14, the heating on the raw water side is constituted by the heaters 20, 87, 85, and the heating on the treated water side is constituted by the heaters 22, 86, 88. However, the present invention is limited to this. Is not to be done. That is, on the raw water side, a heater 20 for heating the raw water in the raw water tank 12, a heater 87 for heating the raw water supplied from the raw water tank 12 to the membrane immersion tank 82, or a heater for heating the raw water in the film immersion tank. Any configuration including at least one of 85 may be used. On the treated water side, the treated water supplied to the heater 22 for heating the treated water in the backwash water tank 22, the heater 86 for heating the treated water in the treated water tank 16, or the membrane immersion tank 82 is used. What is necessary is just a structure provided with at least any one of the heater 88 to heat.

<膜ろ過システムの更に他の実施形態>
図15は、温度制御装置を備えた膜ろ過システムの構成を示している。
<Another embodiment of the membrane filtration system>
FIG. 15 shows the configuration of a membrane filtration system provided with a temperature control device.

この実施形態では、温度制御装置90を設け、原水の温度に応じて加熱器22の温度を制御するようにしたものである。 In this embodiment, a temperature control device 90 is provided, and the temperature of the heater 22 is controlled according to the temperature of the raw water.

温度制御装置90は、温度測定値と温度目標値とから今回温度目標値を演算する温度演算部91と、演算された今回目標値に基づいて加熱器22の温度制御を実行する温度制御部92とを備えている。また、原水タンク12の原水温度を測定する温度計93と、逆洗水の温度を測定する温度計94とを備えている。   The temperature control device 90 includes a temperature calculation unit 91 that calculates the current temperature target value from the temperature measurement value and the temperature target value, and a temperature control unit 92 that performs temperature control of the heater 22 based on the calculated current target value. And. Moreover, the thermometer 93 which measures the raw | natural water temperature of the raw | natural water tank 12 and the thermometer 94 which measures the temperature of backwash water are provided.

上記の構成において、温度計93により原水タンク12内の原水の温度が計測され、その温度計測値Tが温度演算部91に供給されている。一方、逆洗時において、温度計94により配管を流れる逆洗水の温度が計測され、その温度計測値Tが温度演算部91に供給されている。温度演算部91は、温度目標値TSVと、温度計測値T,TとからT<Tとなるように今回操作量TMVを演算する。 In the above configuration, the temperature of the raw water in the raw water tank 12 is measured by the thermometer 93, and the temperature measurement value T 1 is supplied to the temperature calculation unit 91. On the other hand, at the time of backwashing, the temperature of the backwashing water flowing through the pipe is measured by the thermometer 94, and the temperature measurement value T 2 is supplied to the temperature calculation unit 91. The temperature calculation unit 91 calculates the current operation amount T MV so that T 1 <T 2 from the temperature target value T SV and the temperature measurement values T 1 and T 2 .

具体的には、温度制御装置90は、下記に示したPID制御によって、加熱器22を制御して逆洗水タンク21内の温度を調節する。   Specifically, the temperature control device 90 controls the heater 22 and adjusts the temperature in the backwash water tank 21 by the PID control described below.

〔数1〕
<T
MV=TMV(n−1)+ΔTMV
ΔTMV=Kp{(e−en−1)+eΔt/Ti
+Td(e−2en−1−en−2)/Δt}
=TSV−T(n)
ここで、TSV:温度目標値
MV:今回操作量
MV(n−1):前回操作量
ΔTMV:今回操作量差分
(n):今回制御周期の逆洗水の温度
:今回制御周期の入力偏差
n−1:前回制御周期の入力偏差
n−2:前々回制御周期の入力偏差
Kp:比例ゲイン
Ti:積分時間
Td:微分時間
このように、この実施形態では、温度制御装置90によって加熱器22の温度制御を実行することで、緻密な温度管理の下で逆洗処理を行うことができる。
[Equation 1]
T 1 <T 2
T MV = T MV (n-1) + ΔT MV
ΔT MV = Kp {(e n -e n-1) + e n Δt / Ti
+ Td (e n -2e n- 1 -e n-2) / Δt}
e n = T SV −T 2 (n)
Where T SV : temperature target value
T MV : Operation amount this time
T MV (n-1): previous manipulated variable
ΔT MV : Current manipulated variable difference
T 2 (n): Temperature of backwash water in the current control cycle
e n : Input deviation of current control cycle
e n-1 : Input deviation of the previous control cycle
e n-2 : Input deviation of the previous control cycle
Kp: Proportional gain
Ti: Integration time
Td: Differential time As described above, in this embodiment, the temperature control of the heater 22 is performed by the temperature control device 90, so that the backwash process can be performed under precise temperature control.

1…膜基体
2…孔径調整材
3…固形分
11…導水ポンプ
12…原水タンク
13−1,13−2…原水ポンプ
14−1,14−2…流量計
15−1,15−2…温度応答性膜モジュール
16…処理水タンク
17…濁度計
18−1, 18−2…差圧計
19,26…温度計
20…加熱器
21…逆洗水タンク
22…加熱器
23…逆洗水ポンプ
24…流量計
25…コンプレッサ
31…前処理設備
32…排水処理設備
33…熱交換器
41…監視制御装置
42…膜破断検知装置
50−1,50−2,51−1,51−2…加熱器
60…洗浄水タンク
61…加熱器
70…洗浄水タンク
71…加熱器
72…温水ポンプ
81…原水ポンプ
82…膜浸漬槽
83…温度応答性膜モジュール
84…吸引ポンプ
85,86,87,88…加熱器
90…温度制御装置
91…温度演算部
92…温度制御部
93,94…温度計
100…膜ろ過システム
V1〜V21,V31〜V40…弁
101−1,101−2…容器
102−1,102−2…温度応答性膜束
103−1,103−2…原水口を有する原水側
104−1,104−2…原水循環管
105−1,105−2…加熱器
106−1,106−2…固定部材
107−1,107−2…処理水口を有する処理水側
108−1,108−2…空気放出管
109…第2空気配管
110…原水移送ポンプ
111…原水管
112…処理水管
113…第1空気配管
114…第3空気配管
115−1, 115−2…空気排出ライン
116−1, 116−2…空気排出ライン
DESCRIPTION OF SYMBOLS 1 ... Membrane base body 2 ... Pore diameter adjusting material 3 ... Solid content 11 ... Water transfer pump 12 ... Raw water tank 13-1, 13-2 ... Raw water pump 14-1, 14-2 ... Flowmeter 15-1, 15-2 ... Temperature Responsive membrane module 16 ... treated water tank 17 ... turbidity meter 18-1, 18-2 ... differential pressure gauge 19, 26 ... thermometer 20 ... heater 21 ... backwash water tank 22 ... heater 23 ... backwash water pump 24 ... Flow meter 25 ... Compressor 31 ... Pretreatment equipment 32 ... Waste water treatment equipment 33 ... Heat exchanger 41 ... Monitoring and control device 42 ... Membrane breakage detection device 50-1, 50-2, 51-1, 51-2 ... Heating Apparatus 60 ... Washing water tank 61 ... Heater 70 ... Washing water tank 71 ... Heater 72 ... Warm water pump 81 ... Raw water pump 82 ... Membrane immersion tank 83 ... Temperature-responsive membrane module 84 ... Suction pump 85, 86, 87, 88 ... heater 90 ... Temperature control device 91 ... Temperature calculation unit 92 ... Temperature control unit 93,94 ... thermometer 100 ... Membrane filtration system V1-V21, V31-V40 ... Valve 101-1, 101-2 ... Vessel 102-1, 102-2 ... Temperature-responsive membrane bundles 103-1, 103-2 ... Raw water side having raw water inlets 104-1, 104-2 ... Raw water circulation pipes 105-1, 105-2 ... Heaters 106-1, 106-2 ... Fixing members 107-1, 107-2 ... treated water side having treated water port 108-1, 108-2 ... air discharge pipe 109 ... second air pipe 110 ... raw water transfer pump 111 ... raw water pipe 112 ... treated water pipe 113 ... first air Piping 114 ... Third air piping 115-1, 115-2 ... Air exhaust line 116-1, 116-2 ... Air exhaust line

Claims (16)

高分子材料からなる膜基体と、
前記膜基体の外表面側に所定の温度で可逆的に膨張/収縮する高分子材料を付加した孔径調整材とから成り、
前記膜基体に形成される孔は、25〜60℃における最大孔径が100μm以下であり、かつ
前記高分子材料は、少なくとも以下の(1)〜(7)の中から選択された一の材料から成ることを特徴とする温度応答性膜。
(1)N−イソプロピルアクリルアミドに、アクリル酸、2-カルボキシイソプロピルアクリルアミド、3-カルボキシ-n-プロピルアクリルアミドを共重合した高分子、
(2)N−ビニルイソ酪酸アミド系重合体、
(3)ポリ−N−アルキルアクリルアミド誘導体、
(4)ポリイソプロピルアクリルアミドに代表されるポリアクリルアミド誘導体とポリビニル誘導体との共重合体、
(5)N−ビニルイソ酪酸アミドなどのN−ビニルC3−9アシルアミドと、N−ビニルアセトアミドなどのN−ビニルC1−3アシルアミドとの共重合体、
(6)ポリアクリルアミド誘導体及びポリ−N−ビニルアシルアミド、
(7)N−イソプロピルアクリルアミドで構成された単量体の重合体、及びN−ビニルイソ酪酸アミドで構成された単量体の重合体。
A membrane substrate made of a polymer material;
It comprises a pore diameter adjusting material to which a polymer material that reversibly expands / shrinks at a predetermined temperature is added to the outer surface side of the membrane substrate,
The pores formed in the film substrate have a maximum pore diameter of 25 μm or less at 25 to 60 ° C., and the polymer material is at least one material selected from the following (1) to (7) A temperature-responsive film characterized by comprising:
(1) A polymer obtained by copolymerizing acrylic acid, 2-carboxyisopropylacrylamide, and 3-carboxy-n-propylacrylamide with N-isopropylacrylamide,
(2) N-vinylisobutyric acid amide polymer,
(3) poly-N-alkylacrylamide derivatives,
(4) a copolymer of a polyacrylamide derivative represented by polyisopropylacrylamide and a polyvinyl derivative,
(5) a copolymer of N-vinyl C 3-9 acylamide such as N-vinylisobutyric acid amide and N-vinyl C 1-3 acylamide such as N-vinylacetamide,
(6) polyacrylamide derivative and poly-N-vinylacylamide,
(7) A monomer polymer composed of N-isopropylacrylamide and a monomer polymer composed of N-vinylisobutyric acid amide.
請求項1に記載の温度応答性膜を平面状または円筒状に成型し、容器に充填して一体化したことを特徴とする温度応答性膜モジュール。   A temperature responsive membrane module, wherein the temperature responsive membrane according to claim 1 is molded into a flat shape or a cylindrical shape, and filled into a container to be integrated. 請求項1に記載の温度応答性膜を複数、平面状または円筒状に成型し、原水が流入している槽に浸漬させることを特徴とする温度応答性膜モジュール。   A temperature responsive membrane module, wherein a plurality of the temperature responsive membranes according to claim 1 are formed into a flat shape or a cylindrical shape and immersed in a tank into which raw water flows. 請求項1に記載の温度応答性膜を平面状または円筒状に成型し、容器に充填して一体化して成り、供給された原水を膜ろ過し、処理水として排出する温度応答性膜モジュールを備えたことを特徴とする膜ろ過システム。   A temperature-responsive membrane module comprising: the temperature-responsive membrane according to claim 1 formed into a flat shape or a cylindrical shape, filled in a container and integrated; and the supplied raw water is subjected to membrane filtration and discharged as treated water. A membrane filtration system characterized by comprising. 請求項1に記載の温度応答性膜を複数、平面状または円筒状に成型し、原水が流入している槽に浸漬させて成り、供給された原水を膜ろ過し、処理水として排出する温度応答性膜モジュールを備えたことを特徴とする膜ろ過システム。   A temperature at which a plurality of temperature-responsive membranes according to claim 1 are formed into a planar shape or a cylindrical shape and immersed in a tank into which raw water flows, and the supplied raw water is subjected to membrane filtration and discharged as treated water. A membrane filtration system comprising a responsive membrane module. 請求項4または5に記載の膜ろ過システムにおいて、
前記温度応答性膜モジュールを複数台、直列または並列に備えることを特徴とする膜ろ過システム。
The membrane filtration system according to claim 4 or 5,
A membrane filtration system comprising a plurality of the temperature-responsive membrane modules in series or in parallel.
請求項4乃至6のいずれか1項に記載の膜ろ過システムにおいて、
前記原水または処理水の全部または一部を温度応答性膜モジュールに供給して洗浄処理を実行する洗浄手段を備えたことを特徴とする膜ろ過システム。
The membrane filtration system according to any one of claims 4 to 6,
A membrane filtration system comprising a cleaning means for supplying a whole or a part of the raw water or treated water to a temperature-responsive membrane module to perform a cleaning process.
前記洗浄手段は、物理洗浄、薬品洗浄、または温水による洗浄の少なくとも何れか、若しくはこれらを組合せて行われることを特徴とする膜ろ過システム。   The membrane filtration system is characterized in that the cleaning means is at least one of physical cleaning, chemical cleaning, and warm water cleaning, or a combination thereof. 請求項4乃至8のいずれか1項に記載の膜ろ過システムにおいて、
前記原水を25〜60℃に加温する第1の加熱手段を設け、膜洗浄時において、加温された原水による温水洗浄を行うことを特徴とする膜ろ過システム。
The membrane filtration system according to any one of claims 4 to 8,
A membrane filtration system comprising a first heating means for heating the raw water to 25 to 60 ° C., and performing warm water cleaning with the heated raw water at the time of membrane cleaning.
請求項4乃至9のいずれか1項に記載の膜ろ過システムにおいて、
前記処理水を25〜60℃に加温する第2の加熱手段を設け、膜洗浄時において、加温された処理水による温水洗浄を行うことを特徴とする膜ろ過システム。
The membrane filtration system according to any one of claims 4 to 9,
A membrane filtration system comprising a second heating means for heating the treated water to 25 to 60 ° C., and performing warm water washing with the heated treated water during membrane washing.
請求項9または10に記載の膜ろ過システムにおいて、
前記第1の加熱手段または第2の加熱手段における加熱には、同一系内もしくは系外に設けられた排水処理設備の熱源を利用することを特徴とする膜ろ過システム。
The membrane filtration system according to claim 9 or 10,
A membrane filtration system using a heat source of waste water treatment equipment provided in the same system or outside the system for heating in the first heating means or the second heating means.
請求項4乃至11のいずれか1項に記載の膜ろ過システムにおいて、
前記温度応答性膜モジュールの前段に前処理設備を具備することを特徴とする膜ろ過システム。
The membrane filtration system according to any one of claims 4 to 11,
A membrane filtration system comprising a pretreatment facility in a stage preceding the temperature-responsive membrane module.
請求項12に記載の膜ろ過システムにおいて、
前処理設備は、夾雑物除去設備、凝集剤注入設備、凝集沈殿設備、凝集砂ろ過設備、凝集沈殿砂ろ過設備、塩素注入設備、エアレーション設備、浮上分離設備、生物処理設備、粉末活性炭設備、オゾン発生設備、粒状活性炭設備のいずれか、またはこれら設備の併用により原水に対する前処理を実行することを特徴とする膜ろ過システム。
The membrane filtration system according to claim 12,
Pre-treatment equipment includes contaminant removal equipment, coagulant injection equipment, coagulation sedimentation equipment, coagulation sand filtration equipment, coagulation sediment sand filtration equipment, chlorine injection equipment, aeration equipment, flotation separation equipment, biological treatment equipment, powdered activated carbon equipment, ozone A membrane filtration system, wherein pretreatment of raw water is performed by using either a generating facility, a granular activated carbon facility, or a combination of these facilities.
請求項4乃至13のいずれか1項に記載の膜ろ過システムにおいて、
前記温度応答性膜モジュールから排出される温排水を冷却する熱交換器を備えたことを特徴とする膜ろ過システム。
The membrane filtration system according to any one of claims 4 to 13,
A membrane filtration system comprising a heat exchanger for cooling hot wastewater discharged from the temperature-responsive membrane module.
請求項5乃至14のいずれか1項に記載の膜ろ過システムにおいて、
膜差圧、水量(原水、処理水、洗浄水)、水温、濁度、を連続的に監視制御する圧力計、流量計、水温計、濁度計を具備するとともに、膜の完全性を確認する膜破断検知手段を備えたことを特徴とする膜ろ過システム。
The membrane filtration system according to any one of claims 5 to 14,
Equipped with a pressure gauge, flow meter, water temperature meter, and turbidity meter that continuously monitor and control membrane differential pressure, water volume (raw water, treated water, washing water), water temperature, and turbidity, and confirms membrane integrity A membrane filtration system comprising membrane breakage detecting means for performing
請求項4乃至14のいずれか1項に記載の膜ろ過システムにおいて、
原水の温度を測定する原水温度測定手段と、
逆洗水の温度を測定する逆洗水温度測定手段と、
原水の温度計測値と、逆洗水の温度計測値を入力し、原水の温度よりも逆洗水の温度の方が大きくなるように、逆洗水の温度目標値を演算する温度演算手段と、
演算された温度目標値に基づいて前記第2の加熱手段の加温制御を実行する温度制御手段と、
を備えたことを特徴とする膜ろ過システム。
The membrane filtration system according to any one of claims 4 to 14,
Raw water temperature measuring means for measuring the temperature of the raw water;
Backwash water temperature measuring means for measuring the temperature of backwash water;
A temperature calculation means for inputting a temperature measurement value of the raw water and a temperature measurement value of the backwash water and calculating a temperature target value of the backwash water so that the temperature of the backwash water is larger than the temperature of the raw water; ,
Temperature control means for performing heating control of the second heating means based on the calculated temperature target value;
A membrane filtration system characterized by comprising:
JP2011102801A 2011-05-02 2011-05-02 Membrane filtration system using temperature-responsive membrane Expired - Fee Related JP5367758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011102801A JP5367758B2 (en) 2011-05-02 2011-05-02 Membrane filtration system using temperature-responsive membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011102801A JP5367758B2 (en) 2011-05-02 2011-05-02 Membrane filtration system using temperature-responsive membrane

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005324151A Division JP5203563B2 (en) 2005-11-08 2005-11-08 Membrane filtration system

Publications (2)

Publication Number Publication Date
JP2011152544A true JP2011152544A (en) 2011-08-11
JP5367758B2 JP5367758B2 (en) 2013-12-11

Family

ID=44538879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011102801A Expired - Fee Related JP5367758B2 (en) 2011-05-02 2011-05-02 Membrane filtration system using temperature-responsive membrane

Country Status (1)

Country Link
JP (1) JP5367758B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008435A (en) * 2012-06-28 2014-01-20 Uerushii:Kk Ground water purification apparatus and operational method thereof
JP5558622B1 (en) * 2013-12-05 2014-07-23 三菱重工業株式会社 Circulating water utilization system
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
WO2017009792A1 (en) * 2015-07-13 2017-01-19 King Abdullah University Of Science And Technology Dynamic coating of mf/uf membranes for fouling mitigation
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
US9611161B2 (en) 2013-12-05 2017-04-04 Mitsubishi Hitachi Power Systems, Ltd. Circulating water utilization system
US9783963B2 (en) 2013-12-05 2017-10-10 Mitsubishi Hitachi Power Systems, Ltd. Safety device for circulating water utilization system and circulating-water utilization system
KR101810814B1 (en) 2017-03-21 2018-01-25 이희남 Ultra filtration unit and water purifying system having the same
US10315930B2 (en) 2013-12-05 2019-06-11 Mitsubishi Hitachi Power Systems, Ltd. Method and system for remotely monitoring a group of circulating-water utilization systems
CN112374967A (en) * 2020-11-06 2021-02-19 杭州新德环保科技有限公司 System and method for recovering ethanol from organic waste liquid
US10997673B2 (en) 2013-12-05 2021-05-04 Wota Group Llc Charging device of circulating water utilization system and circulating-water utilization system
CN112827364A (en) * 2021-01-19 2021-05-25 大唐环境产业集团股份有限公司 Off-line recovery chemical cleaning method for MBR (membrane bioreactor) membrane module

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106600A (en) * 1983-10-21 1985-06-12 Ebara Infilco Co Ltd Drying method of water-containing organic material
JPH0332729A (en) * 1989-06-30 1991-02-13 Biomaterial Universe Kk Filter membrane responding to temperature
JPH1043560A (en) * 1996-07-30 1998-02-17 Nitto Denko Corp Method for washing separation membrane and solid-liquid separation using separation membrane
JPH11290850A (en) * 1998-04-10 1999-10-26 Hitachi Ltd Water treatment method and apparatus
JPH11347382A (en) * 1998-06-04 1999-12-21 Nitto Denko Corp Shape memory separation membrane system module
JP2000176260A (en) * 1998-12-18 2000-06-27 Sharp Corp Polymer composite body and its production
JP2001170458A (en) * 1999-12-15 2001-06-26 Meidensha Corp Method of detecting membrane breaking and fouling in membrane cleaning
JP2002256075A (en) * 2001-02-28 2002-09-11 Sentomedo:Kk Temperature-respondent material and composition containing the same
JP2002346560A (en) * 2001-05-28 2002-12-03 Takehisa Yamaguchi Method for treating water and membrane for water treatment
JP2003252936A (en) * 2002-02-28 2003-09-10 Sentomedo:Kk Temperature-responsive material and composition comprising the same
WO2004073843A1 (en) * 2003-02-19 2004-09-02 Mcmaster University Composite materials comprising supported porous gels
JP2005118707A (en) * 2003-10-17 2005-05-12 Ngk Insulators Ltd Water cleaning system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106600A (en) * 1983-10-21 1985-06-12 Ebara Infilco Co Ltd Drying method of water-containing organic material
JPH0332729A (en) * 1989-06-30 1991-02-13 Biomaterial Universe Kk Filter membrane responding to temperature
JPH1043560A (en) * 1996-07-30 1998-02-17 Nitto Denko Corp Method for washing separation membrane and solid-liquid separation using separation membrane
JPH11290850A (en) * 1998-04-10 1999-10-26 Hitachi Ltd Water treatment method and apparatus
JPH11347382A (en) * 1998-06-04 1999-12-21 Nitto Denko Corp Shape memory separation membrane system module
JP2000176260A (en) * 1998-12-18 2000-06-27 Sharp Corp Polymer composite body and its production
JP2001170458A (en) * 1999-12-15 2001-06-26 Meidensha Corp Method of detecting membrane breaking and fouling in membrane cleaning
JP2002256075A (en) * 2001-02-28 2002-09-11 Sentomedo:Kk Temperature-respondent material and composition containing the same
JP2002346560A (en) * 2001-05-28 2002-12-03 Takehisa Yamaguchi Method for treating water and membrane for water treatment
JP2003252936A (en) * 2002-02-28 2003-09-10 Sentomedo:Kk Temperature-responsive material and composition comprising the same
WO2004073843A1 (en) * 2003-02-19 2004-09-02 Mcmaster University Composite materials comprising supported porous gels
JP2005118707A (en) * 2003-10-17 2005-05-12 Ngk Insulators Ltd Water cleaning system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014008435A (en) * 2012-06-28 2014-01-20 Uerushii:Kk Ground water purification apparatus and operational method thereof
US9611161B2 (en) 2013-12-05 2017-04-04 Mitsubishi Hitachi Power Systems, Ltd. Circulating water utilization system
JP5558622B1 (en) * 2013-12-05 2014-07-23 三菱重工業株式会社 Circulating water utilization system
JP2015107468A (en) * 2013-12-05 2015-06-11 三菱重工業株式会社 Circulation water using system
US10997673B2 (en) 2013-12-05 2021-05-04 Wota Group Llc Charging device of circulating water utilization system and circulating-water utilization system
US10315930B2 (en) 2013-12-05 2019-06-11 Mitsubishi Hitachi Power Systems, Ltd. Method and system for remotely monitoring a group of circulating-water utilization systems
US9783963B2 (en) 2013-12-05 2017-10-10 Mitsubishi Hitachi Power Systems, Ltd. Safety device for circulating water utilization system and circulating-water utilization system
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
WO2017009792A1 (en) * 2015-07-13 2017-01-19 King Abdullah University Of Science And Technology Dynamic coating of mf/uf membranes for fouling mitigation
US10946342B2 (en) 2015-07-13 2021-03-16 King Abdullah University Of Science And Technology Dynamic coating of MF/UF membranes for fouling mitigation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
KR101810814B1 (en) 2017-03-21 2018-01-25 이희남 Ultra filtration unit and water purifying system having the same
CN112374967A (en) * 2020-11-06 2021-02-19 杭州新德环保科技有限公司 System and method for recovering ethanol from organic waste liquid
CN112827364A (en) * 2021-01-19 2021-05-25 大唐环境产业集团股份有限公司 Off-line recovery chemical cleaning method for MBR (membrane bioreactor) membrane module

Also Published As

Publication number Publication date
JP5367758B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5203563B2 (en) Membrane filtration system
JP5367758B2 (en) Membrane filtration system using temperature-responsive membrane
JP6189835B2 (en) How to maintain process stream water quality
JP6441808B2 (en) Desalination apparatus and desalination method
JP6432914B2 (en) Water treatment method and water treatment apparatus
KR102329058B1 (en) A computer readable recording medium recording a clogged point specific program of the separation membrane module, a tidal system and a tidal method
Chen et al. Membrane separation: basics and applications
JP2010227836A (en) Method for operating film module
JP4896783B2 (en) Membrane filtration system and membrane cleaning method
JP7306826B2 (en) Physical cleaning process trouble determination program for fresh water generation system, physical cleaning process trouble determination device, and recording medium
JP2006263501A (en) System and method for cleaning membrane
JP6087667B2 (en) Desalination method and desalination apparatus
Sangrola et al. Optimization of backwash parameters for hollow fiber membrane filters used for water purification
Hafiz et al. Techno-economic assessment of forward osmosis as a pretreatment process for mitigation of scaling in multi-stage flash seawater desalination process
JP2013212497A (en) Water treating method
KR101693100B1 (en) Smart Membrane-Filteration Water Treating System
Cui et al. Influence of selective permeation of backwashing solution on the cleaning effectiveness in hollow fiber system
Zebić Avdičević et al. Performance evaluation of different membrane types in the textile mercerization wastewater treatment
JP2007289899A (en) Membrane washing method for membrane separation means, and water treatment apparatus
JP2011056340A (en) Membrane filtration system
CN115297950A (en) Washing failure determination method and washing failure determination program for water producing device
JP7286419B2 (en) MEMBRANE FILTRATION SYSTEM, OPERATING METHOD OF MEMBRANE FILTRATION SYSTEM, ELECTRICAL SUPPLY DEVICE AND METHOD OF ELECTRICITY SUPPLY TO MEMBRANE FILTRATION SYSTEM
JP2016172238A (en) Desalination method, cleaning method of desalination apparatus, and desalination apparatus
CN214990774U (en) Water pretreatment system for thermal power plant boiler
JPH1015307A (en) Coagulating filtration method of water and water treatment device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R151 Written notification of patent or utility model registration

Ref document number: 5367758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees