JP2011151994A - Method and device for manufacturing stator winding, and rotary electric machine - Google Patents

Method and device for manufacturing stator winding, and rotary electric machine Download PDF

Info

Publication number
JP2011151994A
JP2011151994A JP2010012403A JP2010012403A JP2011151994A JP 2011151994 A JP2011151994 A JP 2011151994A JP 2010012403 A JP2010012403 A JP 2010012403A JP 2010012403 A JP2010012403 A JP 2010012403A JP 2011151994 A JP2011151994 A JP 2011151994A
Authority
JP
Japan
Prior art keywords
stator winding
conductor
manufacturing
assembly
holder member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010012403A
Other languages
Japanese (ja)
Other versions
JP5428896B2 (en
Inventor
Kenji Kobayashi
賢治 小林
Yoshiteru Kashiwabara
義輝 柏原
Akio Mori
昭夫 盛
Masaomi Dobashi
正臣 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010012403A priority Critical patent/JP5428896B2/en
Publication of JP2011151994A publication Critical patent/JP2011151994A/en
Application granted granted Critical
Publication of JP5428896B2 publication Critical patent/JP5428896B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a stator winding by facilitating assembly while avoiding the interferences of mutual conductors molded in a normal size. <P>SOLUTION: A moving process for relatively moving conductor aggregates CG along a first path R1, and an assembly process moving and assembling the conductor aggregates CG along a second path R2 are conducted regarding the conductor aggregates CG. The conductor aggregates CG are moved along the first path R1 in the moving process, and clearances among the mutual conductor aggregates CG are secured. The moved conductor aggregates CG are moved and assembled along the second path R2 in the assembly process. Accordingly, the stator winding can be manufactured by facilitating assembly while avoiding the interferences among the mutual conductor aggregates CG molded in the normal size. The same applies to the case when the assembly is facilitated at each conductor in place of the conductor aggregates CG. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、複数の導線を積層させた導線集積体を複数有する固定子巻線を製造するための方法および装置に関する。   The present invention relates to a method and an apparatus for manufacturing a stator winding having a plurality of conductor assemblies in which a plurality of conductors are laminated.

従来では、平角線を波巻きしてなるベルト状の導線集積体を、円筒状の芯部材を回転させながら渦巻状に巻き取って組み付けることで固定子巻線(導線集積体の組み付け体)を製造する技術の一例が開示されている(例えば特許文献1を参照)。   Conventionally, a stator winding (an assembly of conductor assemblies) is assembled by winding and assembling a belt-like conductor assembly formed by wave winding a rectangular wire in a spiral shape while rotating a cylindrical core member. An example of the technique to manufacture is disclosed (for example, refer patent document 1).

特開2009−247199号公報JP 2009-247199 A

しかし、特許文献1の技術によれば、導線集積体の巻き取り後、各導線は外径方向へ広がろうとする力(すなわちスプリングバック)が作用する。このスプリングバックの作用によって導線同士が干渉し、擦れ合うことで互いに絶縁用の皮膜が損傷する可能性がある。皮膜が損傷した導線は当該皮膜の絶縁抵抗が低下するため、導線集積体を組み付けた固定子巻線を備えた回転電機の性能を十分に発揮できない。   However, according to the technique of Patent Document 1, a force (that is, a spring back) is applied to each of the conductive wires after the conductive wire assembly is wound up so as to spread in the outer diameter direction. The conductors interfere with each other due to the action of the spring back, and the insulating films may be damaged by rubbing each other. Since the insulation resistance of the film is reduced in a conductor with a damaged film, the performance of a rotating electrical machine having a stator winding assembled with a conductor assembly cannot be sufficiently exhibited.

一方、スプリングバックを考慮して渦巻状等に成形し、スプリングバック後に正規寸法(出来上がり寸法)となった各導線を移動させて組み付ける方法が考えられる。この方法によれば、スプリングバックの作用を回避し、導線同士の干渉に伴って発生する皮膜の損傷を抑制することが可能である。ところが、導線同士は正規寸法になっているため、導線集積体を組み付けて固定子巻線を製造しようとしても、導線間のクリアランス(隙間)がほとんどない。そのため、単純に各導線を移動させて組み付けようとすると、組み付けの際に導線同士の干渉が発生する可能性がある。   On the other hand, it is possible to consider a method of forming the coil into a spiral shape in consideration of the spring back, and moving and assembling each conductor wire having a normal dimension (finished dimension) after the spring back. According to this method, it is possible to avoid the action of the springback and to suppress the damage to the coating that occurs due to the interference between the conducting wires. However, since the conductors have regular dimensions, there is almost no clearance (gap) between the conductors even if the stator winding is manufactured by assembling the conductor assembly. Therefore, if the conductors are simply moved and assembled, interference between the conductors may occur during the assembly.

本発明はこのような点に鑑みてなしたものであり、正規寸法に成形された導線同士の干渉を回避しながらも、組み付けを容易にして固定子巻線を製造できる固定子巻線の製造方法、その製造装置を提供することを目的とする。また、当該製造方法や製造装置によって製造された回転電機を提供することを目的とする。   The present invention has been made in view of the above points, and manufacture of a stator winding capable of manufacturing a stator winding by facilitating assembly while avoiding interference between conductive wires formed in regular dimensions. It is an object to provide a method and a manufacturing apparatus thereof. Moreover, it aims at providing the rotary electric machine manufactured with the said manufacturing method and manufacturing apparatus.

上記課題を解決するためになされた請求項1に記載の発明は、複数の導線を積層して組み付けることにより固定子巻線を製造する固定子巻線の製造方法において、前記複数の導線に含まれる各導線は、径方向に円弧状や渦巻き状等の曲線形状に成形され、軸方向に凸形状に成形されたものであって、前記導線を少なくとも軸方向を含む第1経路に沿って相対移動させる移動工程と、前記導線を少なくとも水平方向を含む第2経路に沿って移動させて組み付ける組付工程と、を有することを特徴とする。   The invention according to claim 1, which has been made in order to solve the above-described problem, is a stator winding manufacturing method for manufacturing a stator winding by stacking and assembling a plurality of conductors, and is included in the plurality of conductors. Each conducting wire is formed into a curved shape such as an arc shape or a spiral shape in the radial direction and is shaped into a convex shape in the axial direction, and the conducting wire is relative to the first path including at least the axial direction. It has a moving process to move, and an assembling process to move and assemble the conducting wire along a second path including at least the horizontal direction.

この構成によれば、スプリングバックを考慮して径方向に曲線形状に成形されるとともに、軸方向に凸形状に成形され、スプリングバック後に正規寸法となる導線を用いる。「曲線形状」は主に円弧状や渦巻き状が該当するが、一部に直線形状を含んでもよい。各導線は正規寸法となるので導線間のクリアランスを確保するため、移動工程を行って導線を第1経路に沿って移動させる。「第1経路」は少なくとも軸方向を含む移動経路であって、経路の一部に他方向(例えば径方向や水平方向等)を含んでもよい。複数の導線を移動させて組み付ける際に組付工程を行い、予め移動させた導線を第2経路に沿って移動させて組み付ける。「第2経路」は少なくとも水平方向を含む移動経路であって、経路の一部に他方向(例えば径方向や軸方向等)を含んでもよい。したがって、正規寸法に成形された導線同士の干渉を回避しながらも、組み付けを容易にして固定子巻線を製造することができる。   According to this configuration, a lead wire that is shaped into a curved shape in the radial direction in consideration of the spring back and is shaped into a convex shape in the axial direction and having a normal dimension after the spring back is used. The “curved shape” mainly corresponds to an arc shape or a spiral shape, but may include a linear shape in part. Since each conducting wire has a normal dimension, in order to secure a clearance between the conducting wires, a moving process is performed to move the conducting wire along the first path. The “first path” is a moving path including at least the axial direction, and a part of the path may include another direction (for example, a radial direction, a horizontal direction, etc.). When assembling by moving a plurality of conducting wires, an assembling step is performed, and the conducting wires moved in advance are moved along the second path and assembled. The “second path” is a moving path including at least a horizontal direction, and a part of the path may include another direction (for example, a radial direction or an axial direction). Therefore, it is possible to manufacture the stator winding while facilitating the assembly while avoiding the interference between the conductive wires formed in regular dimensions.

請求項2に記載の発明は、前記移動工程では、前記導線を径方向および周方向のうち一方または双方の方向に移動させることを特徴とする。すなわち、第1経路には軸方向とともに、径方向や周方向への移動を含む。この構成によれば、径方向や周方向への移動を含むことにより、例えば未だ組み付けていない新たな導線を組み付けようとする際に、既に組み付けた導線との干渉を回避する。したがって、複数の導線を組み付ける過程において、導線同士の干渉をより確実に回避することができる。   The invention according to claim 2 is characterized in that, in the moving step, the conducting wire is moved in one or both of a radial direction and a circumferential direction. That is, the first path includes movement in the radial direction and the circumferential direction as well as the axial direction. According to this configuration, by including the movement in the radial direction and the circumferential direction, for example, when trying to assemble a new conductor that has not yet been assembled, interference with the already assembled conductor is avoided. Therefore, in the process of assembling a plurality of conductors, interference between the conductors can be avoided more reliably.

請求項3に記載の発明は、前記組付工程では、前記導線を前記移動工程とは反対方向に動かすことを特徴とする。この構成によれば、第1経路に含めた径方向や周方向への移動を行うと正規寸法でなくなる場合があり、正規寸法に戻すために移動工程とは反対方向に動かす。したがって、複数の導線を組み付ける過程において、導線の正規寸法をより確実に維持することができる。   The invention according to claim 3 is characterized in that, in the assembling step, the conducting wire is moved in a direction opposite to the moving step. According to this configuration, when the movement in the radial direction or the circumferential direction included in the first path is performed, the normal dimension may be lost, and the movement is performed in the opposite direction to the normal dimension in order to return to the normal dimension. Therefore, in the process of assembling a plurality of conductors, the normal dimension of the conductors can be more reliably maintained.

請求項4に記載の発明は、前記導線は、移動カムの作用によって移動することを特徴とする。この構成によれば、移動カムを回転させるだけで簡単に導線を移動させることができる。したがって、モータなどの動力源を必要とせず、簡素な仕組みで実現できるので、コストを低く抑えることができる。   The invention described in claim 4 is characterized in that the conducting wire moves by the action of a moving cam. According to this configuration, the conducting wire can be easily moved by simply rotating the moving cam. Therefore, a power source such as a motor is not required, and a simple mechanism can be realized, so that the cost can be kept low.

請求項5に記載の発明は、前記複数の導線を、二つ以上の導線からなる導線集積体にグループ化するグループ化工程を有し、前記グループ化工程によってグループ化された導線集積体に対して、前記移動工程と前記組付工程とを行うことを特徴とする。「複数の導線」は製造しようとする固定子巻線を構成するのに必要な数(例えば48本)の導線であり、グループ化工程によって二つ以上の導線(例えば6本)ごとにグループ化し、複数の導線集積体(例えば8群)にする。この構成によれば、導線ごとに対して行う移動工程および組付工程と同様にして、導線集積体ごとに移動工程および組付工程を行えばよい。したがって、グループ化した複数の導線集積体についても、正規寸法に成形された導線同士の干渉を回避しながらも、組み付けを容易にして固定子巻線を製造することができる。   The invention according to claim 5 includes a grouping step of grouping the plurality of conductors into a conductor assembly composed of two or more conductors, and the conductor assembly grouped by the grouping step The moving process and the assembling process are performed. The “multiple conductors” are the number of conductors (for example, 48 wires) necessary to constitute the stator winding to be manufactured, and are grouped into two or more conductors (for example, six wires) by the grouping process. A plurality of conductive wire assemblies (for example, 8 groups) are formed. According to this configuration, the moving process and the assembling process may be performed for each conductor assembly in the same manner as the moving process and the assembling process performed for each conductor. Therefore, it is possible to manufacture the stator winding by facilitating the assembly of the grouped plurality of conductor assemblies, while avoiding the interference between the conductors formed in regular dimensions.

請求項6に記載の発明は、複数の導線を積層して組み付けることにより固定子巻線を製造する固定子巻線の製造装置において、前記複数の導線に含まれる各導線は、径方向に円弧状や渦巻き状等の曲線形状に成形され、軸方向に凸形状に成形されたものであって、前記導線の一部分を保持可能なホルダ部材と、前記ホルダ部材を複数の位置で移動可能に搭載するテーブル部材と、を有することを特徴とする。   According to a sixth aspect of the present invention, in the stator winding manufacturing apparatus for manufacturing a stator winding by stacking and assembling a plurality of conductors, each conductor included in the plurality of conductors is circular in the radial direction. It is formed into a curved shape such as an arc shape or a spiral shape, and is formed into a convex shape in the axial direction, and a holder member capable of holding a part of the conducting wire, and the holder member mounted so as to be movable at a plurality of positions And a table member.

この構成によれば、請求項1に記載の発明と同様に、スプリングバックを考慮して径方向に曲線形状に成形されるとともに、軸方向に凸形状に成形され、スプリングバック後に正規寸法となる導線を用いる。各導線は正規寸法となるので組み付け済みの導線との間のクリアランスを確保するため、これから組み付けようとする導線をホルダ部材によって保持する。こうして保持された導線は、テーブル部材上の複数の位置でホルダ部材とともに移動する。当該移動は、組み付け済みの導線との干渉を回避する経路に沿って移動することを意味し、軸方向,水平方向,径方向,周方向等のうちで一つ以上の方向を含む。したがって、正規寸法に成形された導線同士の干渉を回避しながらも、組み付けを容易にして固定子巻線を製造することができる。   According to this configuration, in the same manner as in the first aspect of the invention, in consideration of the spring back, it is formed into a curved shape in the radial direction and is formed into a convex shape in the axial direction, and becomes a normal dimension after the spring back. Use conducting wire. Since each conducting wire has a normal dimension, in order to secure a clearance with the assembled conducting wire, the conducting wire to be assembled is held by a holder member. The conducting wire thus held moves together with the holder member at a plurality of positions on the table member. The said movement means moving along the path | route which avoids interference with the assembled conducting wire, and includes one or more directions among an axial direction, a horizontal direction, a radial direction, a circumferential direction, etc. Therefore, it is possible to manufacture the stator winding while facilitating the assembly while avoiding the interference between the conductive wires formed in regular dimensions.

請求項7に記載の発明は、前記ホルダ部材は、前記導線を少なくとも軸方向を含む第1経路に沿って移動させるときの第1位置と、前記導線を少なくとも水平方向を含む第2経路に沿って移動させるときの第2位置と、を含んで移動可能に構成することを特徴とする。この構成によれば、ホルダ部材によって保持された導線は、第1経路に沿って第1位置に移動し、第2経路に沿って第2位置に移動することを含む。したがって、正規寸法に成形された導線同士の干渉をより確実に回避しながら、複数の導線の組み付けを行って、組付体である固定子巻線を製造することができる。   According to a seventh aspect of the present invention, the holder member moves along the first path when the conductor is moved along a first path including at least the axial direction, and along the second path including at least the horizontal direction of the conductor. And a second position when moving in a movable manner. According to this configuration, the conducting wire held by the holder member includes moving to the first position along the first path and moving to the second position along the second path. Therefore, it is possible to manufacture a stator winding as an assembly by assembling a plurality of conductors while more reliably avoiding interference between the conductors formed into regular dimensions.

請求項8に記載の発明は、前記ホルダ部材は、前記第2位置よりも更に径方向または周方向にずれている第3位置に移動可能に構成することを特徴とする。「第3位置」は複数の導線を組み付けた組付体としての固定子巻線と、導線を保持していたホルダ部材とを分離するための位置を意味する。この構成によれば、保持している導線を第2位置で解放した後、第3位置にホルダ部材を移動させるだけで、簡単に完成品としての固定子巻線を取り出すことができる。当然のことながら、ホルダ部材が第2位置から第3位置に移動する際には、導線(固定子巻線)との干渉を回避する経路に沿って移動する。したがって、完成品と治具との分離を行う際にも干渉が回避される。   The invention according to claim 8 is characterized in that the holder member is configured to be movable to a third position that is further displaced in the radial direction or the circumferential direction than the second position. The “third position” means a position for separating a stator winding as an assembly in which a plurality of conducting wires are assembled and a holder member holding the conducting wires. According to this configuration, the stator winding as a finished product can be easily taken out simply by moving the holder member to the third position after releasing the held conducting wire at the second position. As a matter of course, when the holder member moves from the second position to the third position, the holder member moves along a path that avoids interference with the conducting wire (stator winding). Therefore, interference is avoided even when the finished product and the jig are separated.

請求項9に記載の発明は、前記ホルダ部材は、移動カムの作用によって前記複数の位置のうちいずれか一の位置に移動することを特徴とする。この構成によれば、移動カムを回転させるだけで簡単にホルダ部材(ひいては導線)を移動させることができる。したがって、モータなどの動力源を必要とせず、簡素な仕組みで実現できるので、コストを低く抑えることができる。   The invention according to claim 9 is characterized in that the holder member moves to any one of the plurality of positions by the action of a moving cam. According to this configuration, the holder member (and consequently the conducting wire) can be easily moved simply by rotating the moving cam. Therefore, a power source such as a motor is not required, and a simple mechanism can be realized, so that the cost can be kept low.

請求項10に記載の発明は、前記ホルダ部材によって保持する導線の一部分は、固定子鉄心のスロット内に収容されるスロット収容部であることを特徴とする。この構成によれば、導線のスロット収容部は直線形状に成形されるので、スロット収容部を保持するためのホルダ部材も直線形状に構成される。したがって、簡単に保持を行え、ホルダ部材を曲線形状等の複雑な形状に構成する場合に比べてコストを低く抑えることができる。   The invention described in claim 10 is characterized in that a part of the conducting wire held by the holder member is a slot accommodating portion accommodated in a slot of the stator core. According to this structure, since the slot accommodating part of a conducting wire is shape | molded in a linear shape, the holder member for hold | maintaining a slot accommodating part is also comprised in a linear shape. Therefore, it can hold | maintain easily and cost can be restrained low compared with the case where a holder member is comprised in complicated shapes, such as a curve shape.

請求項11に記載の発明は、複数の前記ホルダ部材を、前記第2位置に位置決め可能な円筒部材を有することを特徴とする。この構成によれば、円筒部材の外周面が第2位置となり、円筒部材の外周面と接触するまで複数のホルダ部材を移動させるだけで、簡単に一律に第2位置に位置決めすることができる。したがって、完成品となる固定子巻線の内周面を均一にすることができる。   The invention according to claim 11 is characterized in that a plurality of the holder members are provided with a cylindrical member that can be positioned at the second position. According to this configuration, the outer peripheral surface of the cylindrical member becomes the second position, and the plurality of holder members can be simply and uniformly positioned at the second position until they contact the outer peripheral surface of the cylindrical member. Therefore, the inner peripheral surface of the stator winding that is the finished product can be made uniform.

請求項12に記載の発明は、前記複数の導線を二つ以上の導線からなる導線集積体にグループ化し、前記ホルダ部材は前記導線集積体に含まれる各導線を保持することを特徴とする。この構成によれば、ホルダ部材は導線集積体(二つ以上の導線)を全体で保持し、複数の位置に移動させることができる。固定子巻線の製造にあたっては導線集積体の数だけ組み付けを行えばよく、導線間で干渉する可能性が大幅に低下する。したがって、正規寸法に成形された導線同士の干渉をさらに確実に回避することができる。   The invention described in claim 12 is characterized in that the plurality of conductors are grouped into a conductor assembly comprising two or more conductors, and the holder member holds each conductor included in the conductor assembly. According to this configuration, the holder member can hold the conductor assembly (two or more conductors) as a whole and move it to a plurality of positions. When manufacturing the stator windings, it is only necessary to assemble the same number of conductor assemblies, and the possibility of interference between the conductors is greatly reduced. Therefore, it is possible to more reliably avoid the interference between the conductive wires formed in regular dimensions.

請求項13に記載の発明は、回転電機において、請求項1から12のいずれか一項の記載によって製造された固定子巻線を備えることを特徴とする。この構成によれば、正規寸法に成形された導線同士の干渉を回避して組み付けられた固定子巻線を備えるので、導線間の絶縁抵抗が確実に確保され、回転電機の所要の性能を発揮することができる。   According to a thirteenth aspect of the present invention, in a rotating electrical machine, the stator winding manufactured according to any one of the first to twelfth aspects is provided. According to this configuration, since the stator windings are assembled so as to avoid interference between the conductors molded in regular dimensions, insulation resistance between the conductors is ensured and the required performance of the rotating electrical machine is exhibited. can do.

固定子巻線の製造装置の全体構成例を示す斜視図である。It is a perspective view which shows the example of whole structure of the manufacturing apparatus of a stator winding | coil. 把持機構の構成例を示す斜視図である。It is a perspective view which shows the structural example of a holding | grip mechanism. 製造装置の構成部分を示す斜視図である。It is a perspective view which shows the structural part of a manufacturing apparatus. テーブル部材やホルダ部材等の構成例を示す図である。It is a figure which shows the structural examples, such as a table member and a holder member. ホルダ部材の構成例を示す斜視図である。It is a perspective view which shows the structural example of a holder member. 図5に示すホルダ部材の分解斜視図である。It is a disassembled perspective view of the holder member shown in FIG. 図5に示すホルダ部材の平面図および断面図である。It is the top view and sectional drawing of a holder member shown in FIG. チャック機構の構成例を示す図である。It is a figure which shows the structural example of a chuck mechanism. 導線を保持しない状態と保持する状態とを示す図である。It is a figure which shows the state which does not hold | maintain conducting wire, and the state hold | maintained. 連結部材の構成例を示す側面図および平面図である。It is the side view and top view which show the structural example of a connection member. チャック機構の間隙伸縮機能と連結状態変更機能を説明する図である。It is a figure explaining the gap expansion-contraction function and connection state change function of a chuck mechanism. ホルダ部材が移動可能な複数の位置を説明する側面図である。It is a side view explaining the several position which a holder member can move. ホルダ部材が移動可能な複数の位置を説明する断面図である。It is sectional drawing explaining the several position which a holder member can move. 一の導線を延伸方向に成形する例を示す図である。It is a figure which shows the example which shape | molds one conducting wire in an extending | stretching direction. 導線のスロット収容部およびターン部の成形例を示す図である。It is a figure which shows the example of shaping | molding of the slot accommodating part and turn part of conducting wire. 一の導線を径方向に成形する例を示す図である。It is a figure which shows the example which shape | molds one conducting wire to radial direction. 複数の導線を用いて導線集積体を組み合わせる例を示す斜視図である。It is a perspective view which shows the example which combines a conducting wire assembly using a some conducting wire. 複数の導線をチャック機構で保持した状態を示す斜視図である。It is a perspective view which shows the state which hold | maintained the several conducting wire with the chuck mechanism. 導線集積体を組み付ける過程を説明する斜視図である。It is a perspective view explaining the process of assembling a conducting wire assembly. 導線集積体を組み付けた後の状態を示す斜視図である。It is a perspective view which shows the state after assembling | attaching a conducting wire assembly. 1番目の導線集積体を変形させた状態を示す平面図である。It is a top view which shows the state which deform | transformed the 1st conductor assembly. 2番目の導線集積体を組み付ける過程を示す平面図である。It is a top view which shows the process of assembling the 2nd conducting wire assembly. 2番目の導線集積体を組み付けた後の状態を示す平面図である。It is a top view which shows the state after attaching the 2nd conductor assembly. 取付済導線集積体と取付予定導線集積体との関係を示す平面図である。It is a top view which shows the relationship between an attached conducting wire assembly and a to-be-attached conducting wire assembly. 取付予定導線集積体の移動経路例を示す図である。It is a figure which shows the example of a movement path | route of an attachment scheduled conducting wire assembly. 全ての導線集積体を組み付けて解放した直後の状態を示す平面図である。It is a top view which shows the state immediately after assembling and releasing all the conducting wire assemblies. 製造装置から取り出した後のワーク(全導線集積体)を示す斜視図である。It is a perspective view which shows the workpiece | work (all the conductor assembly) after taking out from the manufacturing apparatus. 導線の端部を加工した後の状態を示す斜視図である。It is a perspective view which shows the state after processing the edge part of conducting wire. 固定子鉄心の構成例を示す図である。It is a figure which shows the structural example of a stator core. ワークを固定子鉄心に組み付けた固定子を示す斜視図である。It is a perspective view which shows the stator which assembled | attached the workpiece | work to the stator core. 図30に示す固定子を備えた回転電機を示す断面図である。It is sectional drawing which shows the rotary electric machine provided with the stator shown in FIG.

以下、本発明を実施するための形態について、図面に基づいて説明する。なお、上下左右等の方向を示すときは該当する図面の記載に従うものとする。また、固定子巻線を製造する際の組み付けは、二つ以上の導線からなる導線集積体ごとに行う例である。さらに、断面図では見易くするためにハッチの図示を省略する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In addition, when showing directions, such as up and down, right and left, it shall follow a description of an applicable drawing. Moreover, the assembly at the time of manufacturing a stator winding | winding is an example performed for every conducting wire integrated body which consists of two or more conducting wires. Further, the hatch is not shown in the cross-sectional view for easy viewing.

まず、固定子巻線を製造する製造装置(以下では「巻線製造装置」と呼ぶ。)の構成例について、図1〜図13を参照しながら説明する。固定子巻線は、後述する回転電機MG(図31を参照)に備えられるものであり、複数の導線を積層して組み付けられる組み付け体である。図1には巻線製造装置の構成例を斜視図で示す。図2には把持機構の構成例を斜視図で示す。図1の一部分を拡大した拡大図を図3および図4に示す。図3には斜視図を示し、図4(A)には平面図を示し、図4(B)には側面図を示す。   First, a configuration example of a manufacturing apparatus for manufacturing a stator winding (hereinafter referred to as “winding manufacturing apparatus”) will be described with reference to FIGS. The stator winding is provided in a rotating electrical machine MG (see FIG. 31) described later, and is an assembly that is assembled by laminating a plurality of conductive wires. FIG. 1 is a perspective view showing a configuration example of a winding manufacturing apparatus. FIG. 2 is a perspective view showing a configuration example of the gripping mechanism. An enlarged view of a part of FIG. 1 is shown in FIGS. 3 is a perspective view, FIG. 4A is a plan view, and FIG. 4B is a side view.

巻線製造装置10は、固定子巻線を製造するための各種要素を基台18上に備える。具体的には、図1に示す芯材11,把持機構12,テーブル部材14,スライドプレート15,変形保持具16等を備える。また、図3および図4に示す円筒部材13やホルダ部材20なども備える。以下では、各構成要素の機能や作用等について説明する。   The winding manufacturing apparatus 10 includes various elements on the base 18 for manufacturing a stator winding. Specifically, the core 11, the gripping mechanism 12, the table member 14, the slide plate 15, the deformation holder 16 and the like shown in FIG. 1 are provided. Moreover, the cylindrical member 13 shown in FIG. 3 and FIG. 4, the holder member 20, etc. are provided. In the following, the function and action of each component will be described.

基台18は任意の形状に成形してよく、本形態ではテーブル部材14に対応する円形状の貫通穴をあけた立方体で成形する。芯材11,17は、径が異なる点を除き、ともに円柱状に成形された棒状部材である。芯材11と芯材17は回転中心を同一とするものの(図4(B)を参照)、個別に回転可能に備える。芯材11,17は、円筒部材13やテーブル部材14等の支軸となる。   The base 18 may be formed in an arbitrary shape, and in this embodiment, the base 18 is formed by a cube having a circular through hole corresponding to the table member 14. The cores 11 and 17 are rod-shaped members that are both formed into a cylindrical shape, except that the diameters are different. Although the core material 11 and the core material 17 have the same rotation center (see FIG. 4B), they are individually rotatable. The core members 11 and 17 serve as support shafts for the cylindrical member 13, the table member 14, and the like.

把持機構12の構成例について、図2を参照しながら説明する。把持機構12は「ワーク把持部」とも呼ばれ、これから組み付けようとする導線集積体CGを把持して保持する機能を担う。この把持機構12は、図2(A)に示すように、上部プレート12a,シャフト12b,規制部12c,把持部12e,下部プレート12fなどを有する。把持機構12は芯材11および円筒部材13によって支持される(図1および図4(B)を参照)。下部プレート12fは複数本のシャフト12bと規制部12cとを備え、芯材11に取り付けた後の下面側は円筒部材13上面と接触する(図4(B)を参照)。上部プレート12aは上下方向(軸方向Z)に移動可能に構成され、下面側に複数本の規制部12cおよび把持部12eを備える。把持機構12の移動は、複数本のシャフト12bを支軸として、芯材11の回転方向に従って上方向または下方向に移動する。複数本の規制部12cは、これから組み付けようとする導線集積体CGを広げた状態(外径方向に変形させた状態)を保持する。把持部12eは、下部プレート12fを貫通する支持体12dの先端部に備えられ、後述するターミナル部21(図6を参照)を保持する。   A configuration example of the gripping mechanism 12 will be described with reference to FIG. The gripping mechanism 12 is also called a “work gripping part” and has a function of gripping and holding the conductor assembly CG to be assembled. As shown in FIG. 2A, the gripping mechanism 12 includes an upper plate 12a, a shaft 12b, a restricting portion 12c, a gripping portion 12e, a lower plate 12f, and the like. The gripping mechanism 12 is supported by the core member 11 and the cylindrical member 13 (see FIGS. 1 and 4B). The lower plate 12f includes a plurality of shafts 12b and restricting portions 12c, and the lower surface side after being attached to the core material 11 is in contact with the upper surface of the cylindrical member 13 (see FIG. 4B). The upper plate 12a is configured to be movable in the vertical direction (axial direction Z), and includes a plurality of restricting portions 12c and gripping portions 12e on the lower surface side. The gripping mechanism 12 moves in the upward or downward direction according to the rotation direction of the core member 11 with the plurality of shafts 12b as the support shafts. The plurality of restricting portions 12c hold a state where the conductor assembly CG to be assembled is expanded (a state in which the conductor assembly 12c is deformed in the outer diameter direction). The grip portion 12e is provided at the distal end portion of the support 12d that penetrates the lower plate 12f, and holds a terminal portion 21 (see FIG. 6) described later.

上述したように構成された把持機構12は、図19に示すターミナル部21およびチャック機構22で保持された導線集積体CGを把持部12eで把持する。把持と同時に、組み付け時に導線C同士の干渉を回避するため、複数本の規制部12cによって曲線形状の導線集積体CGを広げた状態で保持する。この保持状態のままで芯材11を回転させて、導線集積体CG相互間のクリアランス内に導線集積体CGを下降させる。下降させたときの状態を図2(B)に示す。そして、対応する台座部23にターミナル部21を固定した後、把持部12eからターミナル部21を解放して、導線集積体CGの組み付けを完了する。組み付け後は次回の組み付けに準備するため、芯材11を逆回転させて上部プレート12aを図2(A)に示す最上部位置に戻す。   The gripping mechanism 12 configured as described above grips the conductor assembly CG held by the terminal portion 21 and the chuck mechanism 22 shown in FIG. 19 by the gripping portion 12e. At the same time as gripping, in order to avoid interference between the conductors C during assembly, the curved conductor assembly CG is held in an expanded state by the plurality of restricting portions 12c. The core material 11 is rotated in this holding state, and the conductor assembly CG is lowered within the clearance between the conductor assemblies CG. The state when it is lowered is shown in FIG. And after fixing the terminal part 21 to the corresponding base part 23, the terminal part 21 is released from the holding part 12e, and the assembly | attachment of conducting wire assembly CG is completed. After assembling, in order to prepare for the next assembling, the core member 11 is reversely rotated to return the upper plate 12a to the uppermost position shown in FIG.

図3において、円筒部材13は芯材11およびテーブル部材14によって支持される。すなわち芯材11は円筒部材13の筒内に通され、テーブル部材14は円筒部材13の下面に接触して支持する(図4(B)を参照)。円筒部材13の外周面は、接触(当接)させることで複数のホルダ部材20を径方向Xに対する所定位置(例えば後述する第2位置)に位置決めする機能を担う。なお、「径方向X」は水平方向に相当し、芯材11の中心軸を基準点(始点または終点)とする放射方向を意味する。   In FIG. 3, the cylindrical member 13 is supported by the core member 11 and the table member 14. That is, the core member 11 is passed through the cylinder of the cylindrical member 13, and the table member 14 is in contact with and supported by the lower surface of the cylindrical member 13 (see FIG. 4B). The outer peripheral surface of the cylindrical member 13 has a function of positioning the plurality of holder members 20 at a predetermined position (for example, a second position described later) with respect to the radial direction X by making contact (contact). The “radial direction X” corresponds to the horizontal direction and means a radial direction with the central axis of the core material 11 as a reference point (start point or end point).

テーブル部材14は「導線ターミナル取付プレート」とも呼ばれ、円盤状に成形されるとともに、基台18に対して回転可能に取り付けられる。またテーブル部材14は、上述した芯材17に固定され(図4(B)を参照)、上面側にホルダ部材20を複数の位置で移動可能かつ着脱可能に搭載する。さらにテーブル部材14は、凹状部位14a、整列部位14b、段差14c,14d,14f、長穴14e等を有する。凹状部位14aは、図4(B)に示すように、上面(表面)位置が整列部位14bよりも低くなっており、ホルダ部材20を搭載可能な内周側の領域である。   The table member 14 is also referred to as a “conductor terminal mounting plate”, is formed in a disk shape, and is rotatably attached to the base 18. Further, the table member 14 is fixed to the core member 17 described above (see FIG. 4B), and the holder member 20 is mounted on the upper surface side so as to be movable and detachable at a plurality of positions. Further, the table member 14 has a concave portion 14a, an alignment portion 14b, steps 14c, 14d, 14f, a long hole 14e, and the like. As shown in FIG. 4B, the concave portion 14a is an area on the inner peripheral side where the holder member 20 can be mounted, with the upper surface (surface) position being lower than the alignment portion 14b.

整列部位14bは、図4(B)の右側に二点鎖線で示すように、ホルダ部材20によって保持された導線集積体CGを軸方向Zに整列する外周側の領域である。整列は完成品となる固定子巻線(ワーク)Wの外形状に合わせて行うため、直線状に限らず、曲線状となる場合もある。直線状の場合には整列部位14bを平面に成形し、曲線状の場合には整列部位14bを曲面に成形すればよい。   The alignment part 14b is a region on the outer periphery side where the conductor assembly CG held by the holder member 20 is aligned in the axial direction Z, as indicated by a two-dot chain line on the right side of FIG. Since the alignment is performed in accordance with the outer shape of the stator winding (work) W that is a finished product, the alignment is not limited to a straight line but may be a curved line. In the case of a straight line, the aligned part 14b may be formed into a flat surface, and in the case of a curved line, the aligned part 14b may be formed into a curved surface.

段差14cは、凹状部位14aの外周側と整列部位14bとの境界に成形される。段差14dは、凹状部位14aの内周側に成形される。これらの段差14c,14dは、ホルダ部材20が径方向Xに移動可能な範囲を規制するストッパ機能を担う。貫通穴14fは、図7(B)に示すように段部を有し、当該段部の壁面と接触する移動カム24のカム部24bが入る。長穴14eは、図7(B)に示すように、ホルダ部材20に固定する固定部材S2が移動可能に入る。   The step 14c is formed at the boundary between the outer peripheral side of the concave portion 14a and the alignment portion 14b. The step 14d is formed on the inner peripheral side of the concave portion 14a. These steps 14c and 14d have a stopper function for restricting the range in which the holder member 20 can move in the radial direction X. As shown in FIG. 7B, the through hole 14f has a stepped portion, and the cam portion 24b of the moving cam 24 that comes into contact with the wall surface of the stepped portion enters. As shown in FIG. 7 (B), the long hole 14e allows the fixing member S2 fixed to the holder member 20 to move.

スライドプレート15は、基台18の上面側に備えられる。図1の構成例では、基台18の四隅に対応して備える。各スライドプレート15は個別に径方向Xに移動可能に構成され、組み付けた導線集積体CGを規定位置に押し当てる規制部材である。押し当てによって、以後組み付けようとする導線集積体CGを挿入するための空間(すなわちクリアランス)を確保するように構成されていればよい。すなわち、径方向Xにスライドを行うための部材や、規定位置に維持する部材(例えばネジやボルト等)などを含む。   The slide plate 15 is provided on the upper surface side of the base 18. In the configuration example of FIG. 1, the base 18 is provided corresponding to the four corners. Each slide plate 15 is configured to be individually movable in the radial direction X, and is a regulating member that presses the assembled conductor assembly CG to a specified position. What is necessary is just to be comprised so that the space (namely, clearance) for inserting conducting wire assembly CG which will be assembled | attached after that may be ensured by pressing. That is, a member for sliding in the radial direction X, a member (for example, a screw or a bolt) that is maintained at a specified position, and the like are included.

変形保持具16は「拡張保持具」とも呼ばれ、周方向Y(矢印D1方向)に回転可能であり、径方向X(矢印D2方向)に移動可能に基台18の上面側に備えられる。この変形保持具16は、ホルダ部材20によって保持された導線集積体CGのうちで一つ以上の導線集積体CGの全体を、曲線形状に復元しようとする復元力に抗する方向(本形態では径方向X)に変形して保持する機能を担う。この機能は、未だ組み付けていない導線集積体CGを順次組み付けるためのクリアランスを確保することを目的とする。   The deformation holder 16 is also referred to as an “expansion holder”, and can be rotated in the circumferential direction Y (arrow D1 direction) and provided on the upper surface side of the base 18 so as to be movable in the radial direction X (arrow D2 direction). The deformation holder 16 has a direction (in this embodiment) that resists a restoring force that attempts to restore one or more of the conductor aggregates CG out of the conductor aggregates CG held by the holder member 20 to a curved shape. It bears the function of being deformed and held in the radial direction X). This function aims to secure a clearance for sequentially assembling the conductor assembly CG that has not yet been assembled.

上記導線集積体CGの変形は、弾性変形が許容される変形許容範囲内において、所定部位(例えば自由端の端部)を外径方向または内径方向に強制的に移動させることで実現する。「変形許容範囲」は導線集積体CGによる弾性変形が許容される範囲である。具体的には、曲線形状に成形された導線集積体CGが変形後に正規寸法に戻ることができる範囲が望ましい。ただし、変形後に正規寸法に戻らない場合でも、完成品としての固定子巻線を組み付けることが可能な変形の範囲を適用してもよい。   The deformation of the conductor assembly CG is realized by forcibly moving a predetermined portion (for example, the end of the free end) in the outer diameter direction or the inner diameter direction within a deformation allowable range in which elastic deformation is allowed. The “deformation allowable range” is a range in which elastic deformation by the conductor assembly CG is allowed. Specifically, a range in which the conductor assembly CG formed into a curved shape can return to a normal dimension after deformation is desirable. However, even if the dimensions do not return to normal dimensions after deformation, a range of deformation that allows assembly of the stator winding as a finished product may be applied.

ホルダ部材20は、図4(A)に示すように移動カム24の作用によって径方向Xに移動可能であり、導線集積体CGの一部分を保持可能に構成される。「一部分」は、導線集積体CGであれば任意の部分(部位)で設定可能である。本形態では、後述する図29(A)に示す固定子鉄心30のスロット31内に収容される部位、すなわち図18(B)に示すスロット収容部Ccとする。   As shown in FIG. 4A, the holder member 20 is movable in the radial direction X by the action of the moving cam 24, and is configured to be able to hold a part of the conductor assembly CG. The “part” can be set at an arbitrary part (part) in the case of the conductor assembly CG. In this embodiment, a portion accommodated in a slot 31 of a stator core 30 shown in FIG. 29A described later, that is, a slot accommodating portion Cc shown in FIG. 18B.

またホルダ部材20は、形状についても任意に設定可能である。本形態では、図4(A)に示すように複数(具体的には8)のホルダ部材20を搭載するため、各ホルダ部材20はいずれも上から見てほぼ扇形状に成形する。すなわち、同一に構成される複数のホルダ部材20を同心円上に揃えるとドーナツ形状になる。   Moreover, the holder member 20 can also be arbitrarily set also about a shape. In this embodiment, as shown in FIG. 4A, a plurality of (specifically, eight) holder members 20 are mounted, and thus each holder member 20 is formed in a substantially fan shape when viewed from above. That is, when a plurality of holder members 20 that are configured identically are aligned on a concentric circle, a donut shape is obtained.

次に、一のホルダ部材20の構成例について、図5〜図13を参照しながら説明する。図5にはホルダ部材の外観を斜視図で示す。図6にはホルダ部材20を分解した分解斜視図を示す。図7(A)にはホルダ部材20の平面図を示し、図7(B)には図7(A)のVIB−VIB線矢視の断面図を示す。チャック機構の構成例について、図8(A)には斜視図を示し、図8(B)には図8(A)の矢印Db方向から見た側面図を示し、図8(C)には図8(A)の矢印Dc方向から見た側面図を示す。図9(A)には導線Cを保持しない状態を示し、図9(B)には導線Cを保持する状態を示す。連結部材22dの構成例について、図10(A)には側面図を示し、図10(B)には平面図を示す。連結部材22dの間隙伸縮機能を図11(A),図11(B),図11(C)に示し、同じく連結状態変更機能を図11(D)に示す。ホルダ部材20を位置決めする複数の位置について、図12には側面図で示し、図13には断面図で示す。   Next, a configuration example of one holder member 20 will be described with reference to FIGS. FIG. 5 is a perspective view showing the appearance of the holder member. FIG. 6 shows an exploded perspective view in which the holder member 20 is disassembled. 7A shows a plan view of the holder member 20, and FIG. 7B shows a cross-sectional view taken along line VIB-VIB in FIG. 7A. 8A shows a perspective view, FIG. 8B shows a side view seen from the direction of arrow Db in FIG. 8A, and FIG. 8C shows a configuration example of the chuck mechanism. The side view seen from the arrow Dc direction of FIG. 8 (A) is shown. FIG. 9A shows a state where the conductor C is not held, and FIG. 9B shows a state where the conductor C is held. About the structural example of 22 d of connection members, a side view is shown in FIG. 10 (A) and a top view is shown in FIG.10 (B). The gap expansion / contraction function of the connecting member 22d is shown in FIGS. 11 (A), 11 (B), and 11 (C), and the connection state changing function is shown in FIG. 11 (D). About the several position which positions the holder member 20, it shows with a side view in FIG. 12, and shows with sectional drawing in FIG.

図5に示すように、ホルダ部材20はターミナル部21,チャック機構22,台座部23などを有する。ターミナル部21と台座部23については、図6および図7を参照しながら説明する。チャック機構22については、図8〜図11を参照しながら説明する。   As shown in FIG. 5, the holder member 20 includes a terminal portion 21, a chuck mechanism 22, a pedestal portion 23, and the like. The terminal portion 21 and the pedestal portion 23 will be described with reference to FIGS. 6 and 7. The chuck mechanism 22 will be described with reference to FIGS.

まず、「ターミナルホルダ」とも呼ばれるターミナル部21の構成例を説明する。図6に示すターミナル部21は、ボルトやネジ等の固定部材S1を用いて台座部23に固定可能に構成され、一体成形された基部21aと凸状部21dとを有する。基部21aには、一の貫通穴21bや、複数の貫通穴21e(図7(B)を参照)、固定部材S1を通す複数の貫通穴などを備える。凸状部21dには、複数の貫通穴21cを備える。   First, a configuration example of the terminal unit 21 that is also called a “terminal holder” will be described. The terminal portion 21 shown in FIG. 6 is configured to be fixed to the pedestal portion 23 using a fixing member S1 such as a bolt or a screw, and has a base portion 21a and a convex portion 21d that are integrally formed. The base 21a includes one through hole 21b, a plurality of through holes 21e (see FIG. 7B), a plurality of through holes through which the fixing member S1 passes. The convex portion 21d includes a plurality of through holes 21c.

図7(A)に示すように、複数の貫通穴21cと複数の貫通穴21eとはそれぞれが同心円の円周上に沿って配置される。具体的には、後述するチャック機構22のコマ部22T(図8,図9を参照)で保持される導線Cの間隔が正規寸法となるように配置される。貫通穴21cの数は支軸22a(図8(A)を参照)の数に対応する。貫通穴21eの数は、後述する操作軸22f(図8(A)を参照)の数に対応する。なお本形態では、同時に保持する導線Cの数「6」に合わせて、貫通穴21cと貫通穴21eの数をそれぞれ「6」とする。   As shown in FIG. 7A, each of the plurality of through holes 21c and the plurality of through holes 21e is arranged along a concentric circle. Specifically, they are arranged such that the interval between the conductors C held by a piece 22T (see FIGS. 8 and 9) of the chuck mechanism 22 described later has a normal dimension. The number of through holes 21c corresponds to the number of support shafts 22a (see FIG. 8A). The number of through holes 21e corresponds to the number of operation shafts 22f (see FIG. 8A) to be described later. In this embodiment, the number of the through holes 21c and the through holes 21e is set to “6” in accordance with the number “6” of the conductive wires C held simultaneously.

次に、「ターミナルホルダ取り付け部」とも呼ばれる台座部23の構成例について説明する。図6に示す台座部23は、テーブル部材14上を移動可能に構成され、一体成形された凸状部23bと基部23eとを有する。凸状部23bには、移動カム24を通す一の貫通穴(すなわち図7(B)に示す貫通穴23g)や、固定部材S1と締結するためのネジ穴23aなどが設けられる。   Next, a configuration example of the pedestal portion 23, which is also called a “terminal holder attachment portion”, will be described. The pedestal portion 23 shown in FIG. 6 is configured to be movable on the table member 14, and has a convex portion 23b and a base portion 23e that are integrally formed. The convex portion 23b is provided with one through hole (that is, a through hole 23g shown in FIG. 7B) through which the moving cam 24 is passed, a screw hole 23a for fastening to the fixing member S1, and the like.

基部23eには、複数の支持穴23c,23dや、ストッパ23f、貫通穴23g(図7(B)を参照)などを備える。複数の支持穴23cは、上述した複数の貫通穴21eに対応する位置に設けられる。複数の支持穴23dは、上述した複数の貫通穴21cに対応する位置に設けられる。ストッパ23fは外周側下方角部に設けられる凹部であり、図7(B)に示す段差14cに対応する形状(すなわち断面がL字状の凹み)に成形される。貫通穴23gは、図7(B)に示すように移動カム24を通すための穴である。   The base 23e includes a plurality of support holes 23c and 23d, a stopper 23f, a through hole 23g (see FIG. 7B), and the like. The plurality of support holes 23c are provided at positions corresponding to the plurality of through holes 21e described above. The plurality of support holes 23d are provided at positions corresponding to the plurality of through holes 21c described above. The stopper 23f is a recess provided in the lower corner portion on the outer peripheral side, and is formed into a shape corresponding to the step 14c shown in FIG. 7B (that is, a recess having an L-shaped cross section). The through hole 23g is a hole for passing the moving cam 24 as shown in FIG.

移動カム24は、一端側に操作子24aを備え、他端側にカム部24bを備える。操作子24aは、操作部材(例えばマイナスドライバー等)を用いて移動カム24自体を回転させるのに用いられる。カム部24bは、テーブル部材14に設けられる貫通穴14fに入り、当該貫通穴14fの壁面と接触する。なお、移動カム24の操作に伴うホルダ部材20の移動については後述する(図13を参照)。   The moving cam 24 includes an operation element 24a on one end side and a cam portion 24b on the other end side. The operation element 24a is used to rotate the movable cam 24 itself using an operation member (for example, a flathead screwdriver). The cam portion 24b enters a through hole 14f provided in the table member 14, and contacts the wall surface of the through hole 14f. The movement of the holder member 20 accompanying the operation of the moving cam 24 will be described later (see FIG. 13).

次に、チャック機構22の構成例を説明する。図8に示すチャック機構22は、支軸22a,コマ部22T,連結部材22d,操作軸22fなどを有する。支軸22a,コマ部22Tおよび操作軸22fの数は任意に設定可能であるが、本形態ではそれぞれ6ずつ備える。これらは上下二組の連結部材22dを用いて連結される(特に図8(B)を参照)。図8(C)に示すように、一の支軸22aと、一のコマ部22Tと、一の操作軸22fとによって、一の導線について保持や解放を行う。よって、複数の導線Cについて一部分を保持するとともに、導線Cの間隔を伸縮自在に保持する機能を担う。   Next, a configuration example of the chuck mechanism 22 will be described. The chuck mechanism 22 shown in FIG. 8 includes a support shaft 22a, a piece 22T, a connecting member 22d, an operation shaft 22f, and the like. The number of the support shafts 22a, the top portions 22T, and the operation shafts 22f can be arbitrarily set, but in the present embodiment, six are provided. These are connected using two sets of upper and lower connecting members 22d (see in particular FIG. 8B). As shown in FIG. 8C, one lead wire is held and released by one support shaft 22a, one piece portion 22T, and one operation shaft 22f. Therefore, while holding a part about the some conducting wire C, it bears the function to hold | maintain the space | interval of the conducting wire C so that expansion-contraction is possible.

支軸22aは、図7(B)に示すように、一端側がターミナル部21の貫通穴21cに入り、他端側が台座部23の支持穴23dに入って支持される。ターミナル部21を台座部23に固定する際に、支軸22aを貫通穴21cと支持穴23dとに入れることで、チャック機構22を支持する。逆に固定部材S1の締結を解除すれば、チャック機構22を取り出すことができる。よって、チャック機構22はホルダ部材20において着脱可能となる。また、支軸22aは次に説明するコマ部22Tを支持する。   As shown in FIG. 7B, one end of the support shaft 22a enters the through hole 21c of the terminal portion 21, and the other end of the support shaft 22a enters the support hole 23d of the pedestal portion 23 and is supported. When the terminal part 21 is fixed to the pedestal part 23, the chuck mechanism 22 is supported by inserting the support shaft 22a into the through hole 21c and the support hole 23d. Conversely, if the fastening of the fixing member S1 is released, the chuck mechanism 22 can be taken out. Therefore, the chuck mechanism 22 can be attached to and detached from the holder member 20. Further, the support shaft 22a supports a top portion 22T described below.

コマ部22Tは、一端側で導線Cの保持と解放を自在に行う機能を担うべく、不動コマ22cと可動コマ22bとを有する。図9に示すように、不動コマ22cは、支軸22aと操作軸22fとによって支持されるために動かない。可動コマ22bは、図9(A)に示すように支軸22aを中心に導線C表面に対して法線方向(矢印D3方向)に動くように構成される。不動コマ22cと可動コマ22bとの間には、一端側(図面上側)に弾性体22hを介在させる。弾性体22hには、例えばバネやゴム等を用いる。なお図11に示すように、可動コマ22bはチャック機構22の中心側に配置される。また、複数のコマ部22Tは左側の3つと右側の3つとに分けられ、チャック機構22の中心線を基準として対称的に取り付けられる(すなわち取り付け方向を異ならせる)。   The top part 22T has a non-moving piece 22c and a movable piece 22b so as to have a function of freely holding and releasing the conducting wire C on one end side. As shown in FIG. 9, the immovable piece 22c does not move because it is supported by the support shaft 22a and the operation shaft 22f. As shown in FIG. 9A, the movable piece 22b is configured to move in the normal direction (arrow D3 direction) with respect to the surface of the conducting wire C around the support shaft 22a. Between the stationary piece 22c and the movable piece 22b, an elastic body 22h is interposed on one end side (the upper side in the drawing). For example, a spring or rubber is used for the elastic body 22h. As shown in FIG. 11, the movable piece 22 b is disposed on the center side of the chuck mechanism 22. The plurality of top portions 22T are divided into three on the left side and three on the right side, and are mounted symmetrically with respect to the center line of the chuck mechanism 22 (that is, the mounting directions are different).

操作軸22fは、図7(B)に示すように、一端側がターミナル部21の貫通穴21eに入り、他端側が台座部23の支持穴23cに入って支持される。この操作軸22fは、図8(C)に示すように、操作子22gと保持カム22eとを備える。操作子22gは両端部に備えられ、操作部材を用いて操作軸22f自体を回転させる。保持カム22eは、図9に示すように、支軸22aを介して他端側(図面下側)に備えられる。この保持カム22eは、操作子22gの回転操作に伴ってコマ部22Tを開閉するため、可動コマ22bの他端側と接触したり接触しなかったりする形状に成形される。   As shown in FIG. 7B, the operation shaft 22 f is supported by one end side entering the through hole 21 e of the terminal portion 21 and the other end side entering the support hole 23 c of the pedestal portion 23. As shown in FIG. 8C, the operation shaft 22f includes an operation element 22g and a holding cam 22e. The operation element 22g is provided at both ends, and the operation shaft 22f itself is rotated using an operation member. As shown in FIG. 9, the holding cam 22e is provided on the other end side (lower side in the drawing) via the support shaft 22a. The holding cam 22e is formed into a shape that contacts or does not contact the other end of the movable piece 22b in order to open and close the piece 22T in accordance with the rotation operation of the operation element 22g.

保持カム22eが可動コマ22bの他端側と接触しないように操作子22gを回転操作すると、図9(A)に示す姿勢となる。すなわち、弾性体22hの付勢力によって不動コマ22cと可動コマ22bとの一端側が開き、導線Cを把持しない(解放する)。一方、保持カム22eが可動コマ22bの他端側と接触するように操作子22gを回転操作すると、図9(B)に示す姿勢となる。すなわち、弾性体22hの付勢力に抗して不動コマ22cと可動コマ22bとの一端側が閉じるので、導線Cを把持(保持)する。   When the operating element 22g is rotated so that the holding cam 22e does not come into contact with the other end of the movable piece 22b, the posture shown in FIG. That is, one end side of the stationary piece 22c and the movable piece 22b is opened by the urging force of the elastic body 22h, and the lead wire C is not gripped (released). On the other hand, when the operating element 22g is rotated so that the holding cam 22e contacts the other end of the movable piece 22b, the posture shown in FIG. That is, since the one end side of the stationary piece 22c and the movable piece 22b is closed against the urging force of the elastic body 22h, the conductive wire C is held (held).

連結部材22dは、コマ部22Tどうしの間隔および連結状態のうち一方または双方を自在に変更可能にする機能を担う。図10(A)に示すようにチェーン状に成形され、隣接する相互の支軸22a同士を連結することで全ての支軸22aを連結する。図10(A)に例示する連結部材22dは、6本の支軸22aを連結するため、5枚の板状部材で構成する。1枚の板状部材は、図10(B)に示すように両端部に長穴22iを有する。本形態では、長穴を陸上競技場の周回走路(トラック)に似せて成形するが、楕円形状等の他の形状で成形してもよい。この構成によれば、長手方向D4に伸縮して間隙伸縮機能を担い、短手方向D5に曲折して連結状態変更機能を担う。   The connecting member 22d has a function of making it possible to freely change one or both of the interval between the pieces 22T and the connecting state. As shown in FIG. 10 (A), all the support shafts 22a are connected by connecting the adjacent support shafts 22a to each other. The connecting member 22d illustrated in FIG. 10A is composed of five plate-like members for connecting the six spindles 22a. One plate-like member has elongated holes 22i at both ends as shown in FIG. In the present embodiment, the long hole is formed to resemble the circuit track (track) of the athletic stadium, but may be formed in another shape such as an elliptical shape. According to this structure, it expands / contracts in the longitudinal direction D4 and bears a gap expansion / contraction function, and it bends in the short direction D5 and bears a connection state changing function.

長手方向D4に伸縮させると、コマ部22Tの位置を図11(A)に示す伸縮幅B1や、図11(B)に示す伸縮幅B2(B2<B1)、図11(C)に示す伸縮幅B3(B3<B2)などに変化させることができる。また、図11(D)に示すように扇状にコマ部22Tを配置したり、他の形態(例えばジグザグ状)でコマ部22Tを配置したりすることもできる。よって連結部材22dで連結された支軸22aは、貫通穴21cおよび支持穴23dの配置に合わせて容易に入れることができる(図5,図6を参照)。   When expanded and contracted in the longitudinal direction D4, the position of the top portion 22T is expanded and contracted as shown in FIG. 11A, expanded and contracted width B2 shown in FIG. 11B (B2 <B1), and expanded and contracted as shown in FIG. The width can be changed to B3 (B3 <B2). Further, as shown in FIG. 11D, the frame portion 22T may be arranged in a fan shape, or the frame portion 22T may be arranged in another form (for example, zigzag shape). Therefore, the support shaft 22a connected by the connecting member 22d can be easily inserted in accordance with the arrangement of the through hole 21c and the support hole 23d (see FIGS. 5 and 6).

上述したように構成されるホルダ部材20は、移動可能にテーブル部材14に備えられる。各ホルダ部材20が移動可能な位置について、テーブル部材14に搭載する一部のホルダ部材20を図示した図12および図13を参照しながら説明する。図12では、中央上部に配置されたホルダ部材20の移動例を示す。参考のために、第2位置のホルダ部材20を左右両側に示し、円筒部材13を二点鎖線で示す。図13では、右側のホルダ部材20にかかる移動例を示す。参考のために、第2位置のホルダ部材20を左側に示す。   The holder member 20 configured as described above is provided on the table member 14 so as to be movable. The position where each holder member 20 can move will be described with reference to FIGS. 12 and 13 illustrating some of the holder members 20 mounted on the table member 14. In FIG. 12, the example of a movement of the holder member 20 arrange | positioned at the center upper part is shown. For reference, the holder member 20 in the second position is shown on the left and right sides, and the cylindrical member 13 is shown by a two-dot chain line. In FIG. 13, the example of a movement concerning the right holder member 20 is shown. For reference, the holder member 20 in the second position is shown on the left side.

操作部材を用いて移動カム24の操作子24aを回転操作すると、移動可能な範囲内でホルダ部材20を任意の位置に移動させることができる。「任意の位置」には第1位置,第2位置,第3位置が含まれ、各位置について以下に説明する。   When the operation member 24a of the moving cam 24 is rotated using the operation member, the holder member 20 can be moved to an arbitrary position within the movable range. The “arbitrary position” includes a first position, a second position, and a third position, and each position will be described below.

第1位置は、図12(A)および図13(A)に示すように、芯材11から距離L1だけ離れる位置である。また、後述するように導線集積体CGを少なくとも軸方向を含む第1経路に沿って移動させた位置でもある(図19を参照)。図13(A)に示すように、ストッパ23fと段差14cとが接触しているため、間隙G1はほぼゼロである。   As shown in FIGS. 12A and 13A, the first position is a position that is separated from the core material 11 by a distance L1. Further, as will be described later, this is also the position where the conductor assembly CG is moved along the first path including at least the axial direction (see FIG. 19). As shown in FIG. 13A, the gap G1 is substantially zero because the stopper 23f and the step 14c are in contact with each other.

第2位置は、図12(B)および図13(B)に示すように、芯材11から距離L2(L2<L1)だけ離れる位置である。また、後述するように導線集積体CGを少なくとも水平方向を含む第2経路に沿って移動させた位置である(図25を参照)。図13(B)に示すように、円筒部材13の外周面に接触するホルダ部材20は、第1位置よりも径方向Xの内側(すなわち芯材11に接近する側)にずれた位置である。ストッパ23fと段差14cとの間には間隙G2(G2>G1)が生じる。   As shown in FIGS. 12B and 13B, the second position is a position away from the core material 11 by a distance L2 (L2 <L1). Further, as will be described later, this is the position where the conductor assembly CG is moved along the second path including at least the horizontal direction (see FIG. 25). As shown in FIG. 13B, the holder member 20 that contacts the outer peripheral surface of the cylindrical member 13 is a position that is shifted to the inner side in the radial direction X (that is, the side closer to the core material 11) than the first position. . A gap G2 (G2> G1) is generated between the stopper 23f and the step 14c.

第3位置は、固定子巻線Wとホルダ部材20(チャック機構22)とを分離する位置である。図12(C)および図13(C)に示すように、芯材11から距離L3(L3<L2)だけ離れる位置であり、第2位置よりも更に径方向Xの内側にずれた位置でもある。ホルダ部材20を第3位置に位置決めする際には、図13(C)に示すように円筒部材13を取り外す必要がある。ストッパ23fと段差14cとの間には間隙G3(G3>G2)が生じ、ホルダ部材20(具体的には図7(B)に示す台座部23)の内周側壁面が段差14dに接触する。   The third position is a position where the stator winding W and the holder member 20 (chuck mechanism 22) are separated. As shown in FIGS. 12C and 13C, the position is a distance L3 (L3 <L2) away from the core material 11, and is also a position shifted further inward in the radial direction X than the second position. . When positioning the holder member 20 at the third position, it is necessary to remove the cylindrical member 13 as shown in FIG. A gap G3 (G3> G2) is generated between the stopper 23f and the step 14c, and the inner peripheral side wall surface of the holder member 20 (specifically, the pedestal portion 23 shown in FIG. 7B) contacts the step 14d. .

以上のように構成された巻線製造装置10を作動させて、複数の導線Cを用いて固定子巻線Wを製造するまでの工程について図14〜図26を参照しながら説明する。導線Cの成形例について、延伸方向に成形する例を図14に示し、径方向Xに成形する例を図16に示す。図17には複数の導線Cを用いて導線集積体CGを組み合わせる例を斜視図で示す。図17には導線Cのスロット収容部およびターン部の成形例を示す。図18には導線集積体CG(複数の導線C1〜C6)をチャック機構22で保持した状態を斜視図で示す。図19には導線集積体CGを組み付ける過程を斜視図で示す。図20には導線集積体CGを組み付けた後の状態を斜視図で示す。図21には1番目の導線集積体CG1を変形させた状態を平面図で示す。図22には2番目の導線集積体CG2を組み付ける過程を平面図で示す。図23には2番目の導線集積体CG2を組み付けた後の状態を平面図で示す。図24には取付済導線集積体と取付予定導線集積体との関係を平面図で示す。図25には取付予定導線集積体の移動経路例を図で示す。図26には全ての導線集積体CG1〜CG8を組み付けて解放した直後の状態を平面図で示す。   A process until the stator winding W is manufactured using the plurality of conductors C by operating the winding manufacturing apparatus 10 configured as described above will be described with reference to FIGS. 14 to 26. An example of forming the conductor C in the drawing direction is shown in FIG. 14 and an example of forming in the radial direction X is shown in FIG. FIG. 17 is a perspective view showing an example in which a conductor assembly CG is combined using a plurality of conductors C. FIG. 17 shows an example of forming the slot accommodating portion and the turn portion of the conductor C. FIG. 18 is a perspective view showing a state where the conductor assembly CG (the plurality of conductors C1 to C6) is held by the chuck mechanism 22. FIG. FIG. 19 is a perspective view showing a process of assembling the conductor assembly CG. FIG. 20 is a perspective view showing a state after the conductor assembly CG is assembled. FIG. 21 is a plan view showing a state where the first conductor assembly CG1 is deformed. FIG. 22 is a plan view showing the process of assembling the second conductor assembly CG2. FIG. 23 is a plan view showing a state after the second conductor assembly CG2 is assembled. FIG. 24 is a plan view showing the relationship between the installed conductor assembly and the scheduled conductor assembly. FIG. 25 is a diagram illustrating an example of a moving path of the scheduled conductor assembly. FIG. 26 is a plan view showing a state immediately after assembling and releasing all the conductor assembly CG1 to CG8.

各工程を説明する前に、固定子巻線Wを構成する導線Cの成形例について説明する。一の導線Cにかかる延伸方向の成形例を図14(A)と図14(B)とに平面図で示す。一の導線Cは、1周分を超える長さを有し、1本の連続導体(すなわち平角線)を加工装置等による加工が行われて成形される。この導線Cには、終端部Ca,Cb、スロット収容部Cc、ターン部Cdなどを有する。一点鎖線内に示す終端部Ca,Cbは、導線C同士の接続や外部装置との接続等に応じて、実線または二点鎖線で示す各形状に成形される。終端部Ca,Cbの相互間は、スロット収容部Ccとターン部Cdとが繰り返される。スロット収容部Ccは軸方向Z(図面上下方向)に直線状に成形される。ターン部Cdは軸方向Zに凸形状に成形される。   Before explaining each process, an example of forming the conductor C constituting the stator winding W will be described. 14A and 14B are plan views showing examples of forming in the extending direction of one conductor C. FIG. One conductor C has a length exceeding one turn, and is formed by processing one continuous conductor (that is, a flat wire) by a processing device or the like. The conducting wire C has terminal portions Ca and Cb, a slot accommodating portion Cc, a turn portion Cd, and the like. The terminal portions Ca and Cb shown in the alternate long and short dash line are formed into respective shapes shown by a solid line or a two-dot chain line in accordance with the connection between the conducting wires C or the connection with an external device. The slot accommodating portion Cc and the turn portion Cd are repeated between the end portions Ca and Cb. The slot accommodating portion Cc is formed linearly in the axial direction Z (the vertical direction in the drawing). The turn part Cd is formed in a convex shape in the axial direction Z.

上述したターン部Cdの構成例について、斜視図で示す図15(A)を参照しながら説明する。図15(A)に示すターン部Cdは、スロット収容部Ccの相互間に成形され、全体的に見て山形状(三角形状)に成形される。このターン部Cdは、段状部位Cd1,Cd3とクランク部位Cd2とを有する。段状部位Cd1,Cd3はそれぞれクランク部位Cd2に向かって登るような階段状に成形される。クランク部位Cd2は、図16(B)にも示すように、導線Cの延伸方向およびスロット収容部Ccの延伸方向に直交する方向に順次段差が生じるように成形される屈曲状部位である。   A configuration example of the turn part Cd described above will be described with reference to FIG. The turn portion Cd shown in FIG. 15A is formed between the slot accommodating portions Cc, and is formed into a mountain shape (triangular shape) as a whole. The turn portion Cd has stepped portions Cd1 and Cd3 and a crank portion Cd2. The stepped portions Cd1 and Cd3 are each formed in a staircase shape that climbs toward the crank portion Cd2. As shown in FIG. 16 (B), the crank portion Cd2 is a bent portion that is formed so that steps are successively formed in a direction perpendicular to the extending direction of the conducting wire C and the extending direction of the slot accommodating portion Cc.

また、一の導線Cにかかる径方向Xの成形例について、図16(A)に斜視図を示し、図16(B)に平面図を示す。なお図16(B)には、一のホルダ部材20に対応する領域を一点鎖線で示す。図16(A)および図16(B)に示すように、導線Cは加工装置等によって径方向Xに曲線形状(すなわち渦巻き状)に曲げて成形される。成形は、スプリングバック後に正規寸法となるように、曲率をやや大きくして行われる。   Moreover, about the example of shaping | molding of the radial direction X concerning one conducting wire C, a perspective view is shown to FIG. 16 (A), and a top view is shown to FIG. 16 (B). In FIG. 16B, a region corresponding to one holder member 20 is indicated by a one-dot chain line. As shown in FIGS. 16 (A) and 16 (B), the conducting wire C is formed by bending into a curved shape (that is, a spiral shape) in the radial direction X by a processing device or the like. Molding is performed with a slightly larger curvature so that it becomes a regular dimension after springback.

上述した複数の導線Cを用いて導線集積体CGを組み合わせる例について、斜視図で示す図17および図15(B)を参照しながら説明する。複数の導線Cを組み合わせる際には、延伸方向にずらして積層する。こうして組み合わせた後の積層状態を図17に示す。図17に示す導線集積体CGは、図示の都合により4本の導線Cを組み合わせたものであるが、本形態では6本の導線Cを組み合わせる。図17に示す導線集積体CGについて、ターン部Cdを中心に拡大すると図15(B)のようになる。図15(B)に示す導線集積体CGは、6本の導線C1〜C6を組み合わせた例である。ターン部Cdについては、段状部位Cd1,Cd3でそれぞれ軸方向Z(図面上下方向)に重なるとともに、クランク部位Cd2がずれて順次現れるように積層される。   An example of combining the conductor assembly CG using the plurality of conductors C described above will be described with reference to FIG. 17 and FIG. When combining a plurality of conducting wires C, they are stacked while being shifted in the extending direction. FIG. 17 shows the stacked state after such a combination. The conductor assembly CG shown in FIG. 17 is a combination of four conductors C for convenience of illustration, but in this embodiment, six conductors C are combined. When the conductor assembly CG shown in FIG. 17 is enlarged around the turn part Cd, the result is as shown in FIG. A conducting wire assembly CG shown in FIG. 15B is an example in which six conducting wires C1 to C6 are combined. The turn portions Cd are stacked such that the stepped portions Cd1 and Cd3 overlap each other in the axial direction Z (vertical direction in the drawing), and the crank portions Cd2 appear sequentially shifted.

(グループ化工程)
巻線製造装置10によって製造する固定子巻線W(図27を参照)には、48本の導線Cを用いる。一方、ホルダ部材20のチャック機構22は、図8に示すように同時に6本の導線Cを保持することができる。そこでグループ化工程では、48本の導線Cを6本ごとにグループ化し、8群の導線集積体CGとする。
(Grouping process)
For the stator winding W (see FIG. 27) manufactured by the winding manufacturing apparatus 10, 48 conductors C are used. On the other hand, the chuck mechanism 22 of the holder member 20 can simultaneously hold six conductors C as shown in FIG. Therefore, in the grouping step, the 48 conductors C are grouped every 6 to obtain 8 groups of conductor assemblies CG.

(積層工程)
グループ化工程で得られた各導線集積体CGについて、グループ化された6本の導線Cを延伸方向にずらして積層させる。各導線Cは正規寸法に成形されていることから、組み付けを行う際に導線C同士が干渉するのを回避するために、延伸方向にずらしたうえで積層する。こうして積層した状態を上述した図17および図15(B)に示す。
(Lamination process)
For each conductor assembly CG obtained in the grouping step, the grouped six conductors C are stacked while being shifted in the extending direction. Since each conducting wire C is formed in a regular dimension, in order to avoid interference between the conducting wires C when assembling, the conducting wires C are laminated after being shifted in the extending direction. The stacked state is shown in FIGS. 17 and 15B described above.

(保持工程)
積層工程で得られた積層状態を維持するため、図18(A)に示すように、チャック機構22を用いて導線集積体CG(導線C1〜C6)の各導線Cについて一部分を保持する。具体的には、操作部材を用いて操作軸22fの操作子22gを回転操作し、図9(B)に示すようにコマ部22Tを閉じて各導線Cを保持する。各導線Cの端部に位置するスロット収容部Ccを保持した状態を図18(B)に示す。なおコマ部22Tによる各導線Cを保持は、上述した積層工程で6本の導線Cを延伸方向にずらしているので、図11(A)に示す伸縮幅B1のように広げた状態で行う。
(Holding process)
In order to maintain the laminated state obtained in the laminating process, as shown in FIG. 18A, a part of each conductor C of the conductor assembly CG (conductors C1 to C6) is held using the chuck mechanism 22. Specifically, the operating element 22g of the operating shaft 22f is rotated using the operating member, and the piece portion 22T is closed and the conductive wires C are held as shown in FIG. 9B. FIG. 18B shows a state in which the slot accommodating portion Cc located at the end of each conductor C is held. Note that the lead wires C are held by the top portion 22T in a state where the lead wires C are widened as shown in FIG. 11A because the six lead wires C are shifted in the extending direction in the above-described laminating process.

(間隔伸縮工程)
保持工程で各チャック機構22に保持された導線集積体CGについて、延伸方向にずらした6本の導線Cの間隔は正規寸法ではない。そこで間隔伸縮工程では、6本の導線Cの間隔を正規寸法にするため、チャック機構22を構成する全ての支軸22aと操作軸22fをターミナル部21で支持する。具体的には図7(B)に示すように、各支軸22aの一端側を貫通穴21cに入れ、各操作軸22fの一端側を貫通穴21eに入れる。この際にコマ部22Tの間隔は、図11(A)に示す伸縮幅B1から図11(B)に示す状態を経て図11(C)に示す伸縮幅B3に縮まる。また、コマ部22Tの連結状態は、図11(A)に示す直線状から図11(D)に示す扇状の連結状態になる。
(Interval expansion / contraction process)
Regarding the conductor assembly CG held by each chuck mechanism 22 in the holding step, the interval between the six conductors C shifted in the extending direction is not a regular dimension. Therefore, in the interval expansion / contraction process, all the support shafts 22a and the operation shafts 22f constituting the chuck mechanism 22 are supported by the terminal portion 21 in order to make the interval between the six conductors C regular. Specifically, as shown in FIG. 7B, one end side of each support shaft 22a is put into the through hole 21c, and one end side of each operation shaft 22f is put into the through hole 21e. At this time, the interval between the frame portions 22T is reduced from the expansion / contraction width B1 shown in FIG. 11 (A) to the expansion / contraction width B3 shown in FIG. 11 (C) through the state shown in FIG. 11 (B). Moreover, the connection state of the top part 22T changes from the linear shape shown in FIG. 11A to the fan-like connection state shown in FIG.

ターミナル部21を用いて、一の導線集積体CGにかかる6本の導線Cの間隔を正規寸法にした状態を図19に示す。続いて図2に示す把持機構12を用い、ターミナル部21によって正規寸法で保持されたチャック機構22を矢印D4で示すように下ろし、テーブル部材14上の対応する台座部23に取り付ける。具体的には図7(B)に示すように、各支軸22aの他端側を支持穴23dに入れ、各操作軸22fの他端側を支持穴23cに入れる。さらに、固定部材S1を用いてターミナル部21と台座部23とを固定(締結)すると、斜視図で示す図20のような状態になる。なお、図20では見易くするために、テーブル部材14上に取り付けた一の台座部23のみを示す。   FIG. 19 shows a state in which the distance between the six conductors C applied to one conductor assembly CG is set to a normal dimension using the terminal portion 21. Subsequently, using the gripping mechanism 12 shown in FIG. 2, the chuck mechanism 22 held in the normal dimension by the terminal portion 21 is lowered as indicated by the arrow D4 and attached to the corresponding pedestal portion 23 on the table member 14. Specifically, as shown in FIG. 7B, the other end side of each support shaft 22a is put in the support hole 23d, and the other end side of each operation shaft 22f is put in the support hole 23c. Furthermore, when the terminal portion 21 and the pedestal portion 23 are fixed (fastened) using the fixing member S1, the state shown in FIG. In FIG. 20, only one pedestal portion 23 attached on the table member 14 is shown for easy viewing.

(変形保持工程)
上述した積層工程,保持工程および間隔伸縮工程を行って得られる各導線集積体CGは、6本の導線Cの形状および間隔はいずれも正規寸法になっている。以下では、ホルダ部材20を用いて組み付ける順番に従って導線集積体CG1,導線集積体CG2,…,導線集積体CG8と表記する。図20に示すように、1番目の導線集積体CG1をホルダ部材20で組み付けた状態のままでは、2番目以降の導線集積体CG2〜CG8を組み付ける際に導線C同士が干渉する可能性がある。
(Deformation holding process)
Each conductor assembly CG obtained by performing the above-described laminating process, holding process, and interval expansion / contraction process has regular dimensions for the shapes and intervals of the six conductors C. Hereinafter, the conductor assembly CG1, the conductor assembly CG2,..., And the conductor assembly CG8 are described in the order of assembly using the holder member 20. As shown in FIG. 20, when the first conductor assembly CG1 is assembled with the holder member 20, the conductors C may interfere when the second and subsequent conductor assemblies CG2 to CG8 are assembled. .

そこで変形保持工程では、2番目以降の導線集積体CG2等を組み付ける前に、組み付け済みの導線集積体CG1等を変形して保持することでクリアランスを確保する。例えば図21に示すように、変形保持具16を用いて1番目の導線集積体CG1にかかる終端部Geを外径方向(矢印D5方向)に曲げてクリアランスCL1を確保する。終端部Geは、図14に示す一端側の終端部Ca,Cbに相当する。クリアランスCL1は、ホルダ部材20に保持された内周側の導線集積体CGと変形保持具16との距離であり、未だ組み付けていない導線集積体CG(すなわち2番目以降の導線集積体CG2等)を組み付ける際に導線C同士の干渉を回避するのに十分な距離である。導線集積体CG1を外径方向に曲げるのは、二点鎖線で示す正規寸法の曲線形状に復元しようとする復元力に抗する方向に変形することを意味する。二点鎖線で示す正規寸法の導線集積体CG1は、変形保持具16によって実線で示す導線集積体CG1のように変形されて保持される。   Therefore, in the deformation holding step, before assembling the second and subsequent conductor aggregates CG2 and the like, the assembled conductor aggregates CG1 and the like are deformed and held to ensure clearance. For example, as shown in FIG. 21, the clearance CL <b> 1 is secured by bending the terminal end Ge of the first conductor assembly CG <b> 1 in the outer diameter direction (arrow D <b> 5 direction) using the deformation holder 16. The termination portion Ge corresponds to the termination portions Ca and Cb on one end side shown in FIG. The clearance CL1 is the distance between the inner-conductor-side conductor assembly CG held by the holder member 20 and the deformation holder 16, and the conductor assembly CG that has not yet been assembled (ie, the second and subsequent conductor-assembly CG2). This is a distance sufficient to avoid interference between the conductors C when assembling. Bending the conductor assembly CG1 in the outer diameter direction means that the conductor assembly CG1 is deformed in a direction against a restoring force to restore the curved shape having a normal dimension indicated by a two-dot chain line. The conductor assembly CG1 having a regular dimension indicated by a two-dot chain line is deformed and held by the deformation holder 16 like the conductor assembly CG1 indicated by a solid line.

(順次組付工程)
変形保持工程を行って1番目の導線集積体CG1を変形させてクリアランスCL1を確保できたので、当該クリアランスCL1を通して2番目以降の導線集積体CG2〜CG8を順次組み付ける。まず、2番目の導線集積体CG2の組み付けについて説明する。導線集積体CG2は、上述した積層工程,保持工程および間隔伸縮工程を先に行う。これらの工程が行われた導線集積体CG2は、図19の上部に示される導線集積体CGと同様の状態になり、ターミナル部21とチャック機構22とで保持される。この導線集積体CG2を台座部23に取り付けようとする過程を図22に示す。取り付け対象となる台座部23は、導線集積体CG1を保持するホルダ部材20の左隣に位置する。そして、導線集積体CG2の組み付けた後の状態は図23のようになり、クリアランスCL2は導線集積体CG2が入った分だけクリアランスCL1よりも狭まる。導線集積体CG3〜CG7についても導線集積体CG2と同様に行い、導線集積体CG8の組み付けでは次の移動工程および組付工程を行う。
(Sequential assembly process)
Since the first holding assembly CG1 is deformed by the deformation holding process and the clearance CL1 can be secured, the second and subsequent conducting assemblies CG2 to CG8 are sequentially assembled through the clearance CL1. First, the assembly of the second conductor assembly CG2 will be described. The conducting wire assembly CG2 first performs the above-described laminating step, holding step, and interval stretching step. The conductor assembly CG2 subjected to these steps is in the same state as the conductor assembly CG shown in the upper part of FIG. 19 and is held by the terminal portion 21 and the chuck mechanism 22. A process of attaching the conductor assembly CG2 to the pedestal 23 is shown in FIG. The pedestal portion 23 to be attached is located on the left side of the holder member 20 that holds the conductor assembly CG1. Then, the state after the assembly of the conductor assembly CG2 is as shown in FIG. 23, and the clearance CL2 is narrower than the clearance CL1 by the amount of the conductor assembly CG2. The conducting wire assemblies CG3 to CG7 are also performed in the same manner as the conducting wire assembly CG2, and the following moving process and assembling process are performed in assembling the conducting wire assembly CG8.

(移動工程および組付工程)
既に組み付けた導線集積体CG(以下では「取付済導線集積体」と呼ぶ。)に続いて、未だ組み付けていない導線集積体CG(以下では「取付予定導線集積体」と呼ぶ。)を組み付けようとする場合、皮膜の損傷を抑制するために導線C同士の干渉を回避する必要がある。そこで、取付予定導線集積体は導線C同士の干渉を回避する経路で移動させる。例えば図24には、取付済導線集積体として導線集積体CG1〜CG7を適用し、取付予定導線集積体としての導線集積体CG8を適用した例である。なお、図24では導線集積体CG2〜CG6にそれぞれ対応するホルダ部材20の図示を省略している。
(Transfer process and assembly process)
After the conductor assembly CG that has already been assembled (hereinafter referred to as “attached conductor assembly”), a conductor assembly CG that has not yet been assembled (hereinafter referred to as “scheduled conductor assembly”) will be assembled. In order to suppress damage to the coating, it is necessary to avoid interference between the conductors C. Therefore, the scheduled conductor assembly is moved along a path that avoids interference between the conductors C. For example, FIG. 24 shows an example in which the conductor assembly CG1 to CG7 is applied as the attached conductor assembly and the conductor assembly CG8 as the conductor assembly to be attached is applied. In FIG. 24, illustration of the holder member 20 corresponding to each of the conductive wire assemblies CG2 to CG6 is omitted.

図24(A)に示す経路(矢印D6)に沿って導線集積体CG8を保持するホルダ部材20を移動させると、図24(B)で円内部位に示すように導線集積体CG8が導線集積体CG1や導線集積体CG7に干渉してしまう。この干渉を回避するための回避策について、以下に説明する。   When the holder member 20 that holds the conductor assembly CG8 is moved along the path (arrow D6) shown in FIG. 24 (A), the conductor assembly CG8 is integrated as shown in the circle in FIG. 24 (B). It interferes with the body CG1 and the conductor assembly CG7. A workaround for avoiding this interference will be described below.

第1の回避策は、図24(C)を参照しながら説明する。まず、導線集積体CG1を保持するホルダ部材20を外径方向(矢印D7方向)に移動させるとともに、導線集積体CG7を保持するホルダ部材20を内径方向(矢印D8方向)に移動させ、導線集積体CG1と導線集積体CG7との間にクリアランスを確保する。こうして確保されたクリアランスに上方から下方に向けて、導線集積体CG8を保持するホルダ部材20を移動させると図24(C)のようになる。最後に、予め移動させたホルダ部材20を元の位置に戻す。   The first workaround will be described with reference to FIG. First, the holder member 20 that holds the conductor assembly CG1 is moved in the outer diameter direction (arrow D7 direction), and the holder member 20 that holds the conductor assembly CG7 is moved in the inner diameter direction (arrow D8 direction). A clearance is secured between the body CG1 and the conductor assembly CG7. When the holder member 20 that holds the conductor assembly CG8 is moved from above to below the clearance thus secured, the result is as shown in FIG. Finally, the holder member 20 moved in advance is returned to the original position.

第2の回避策は、図24(D)を参照しながら説明する。まず、導線集積体CG8を保持するホルダ部材20を回転方向(矢印D9方向)に回転角θ1だけ回転させる。回転角θ1は、導線集積体CG8が導線集積体CG1および導線集積体CG7に干渉しない角度である。回転後の状態を維持しながら、導線集積体CG8を保持するホルダ部材20を上方から下方に向けて移動させると図24(D)のようになる。最後に、回転方向と逆方向に回転角θ1だけ回転させてホルダ部材20を元の状態に戻す。   The second workaround will be described with reference to FIG. First, the holder member 20 that holds the conductor assembly CG8 is rotated by the rotation angle θ1 in the rotation direction (arrow D9 direction). The rotation angle θ1 is an angle at which the conductor assembly CG8 does not interfere with the conductor assembly CG1 and the conductor assembly CG7. When the holder member 20 that holds the conductor assembly CG8 is moved from above to below while maintaining the state after rotation, the state is as shown in FIG. Finally, the holder member 20 is returned to the original state by rotating it by the rotation angle θ1 in the direction opposite to the rotation direction.

第3の回避策は、図25(A)を参照しながら説明する。まず、導線集積体CG8を保持するホルダ部材20を傾斜方向(矢印D10方向)に傾斜角θ2だけ傾斜させる。傾斜角θ2は、導線集積体CG8が導線集積体CG1および導線集積体CG7に干渉しない角度である。傾斜後の状態を維持しながら、導線集積体CG8を保持するホルダ部材20を上方から下方に向けて移動させる。最後に、傾斜方向と逆方向に傾斜角θ2だけ傾斜させてホルダ部材20を直立状態に戻す。   The third workaround will be described with reference to FIG. First, the holder member 20 holding the conductor assembly CG8 is inclined by the inclination angle θ2 in the inclination direction (arrow D10 direction). The inclination angle θ2 is an angle at which the conductor assembly CG8 does not interfere with the conductor assembly CG1 and the conductor assembly CG7. While maintaining the state after the inclination, the holder member 20 that holds the conductor assembly CG8 is moved downward from above. Finally, the holder member 20 is returned to the upright state by being inclined by the inclination angle θ2 in the direction opposite to the inclination direction.

第4の回避策は、図25(B)および図25(C)を参照しながら説明する。上述した第1の回避策から第3の回避策まではホルダ部材20を挿入する際の回避策であるのに対し、第4の回避策は導線Cの凸状部(すなわち図17に示すターン部Cd)を積層させる際の回避策である点で異なる。この第4の回避策では、導線集積体CGに含まれる導線Cのターン部Cd同士が干渉するのを回避するため、第1経路R1と第2経路R2とに沿って移動させる。なお「移動」は、ロボットアームによる自動的な移動や、作業者による手動的な移動等を含め、任意である。以下では、取付済導線集積体を導線集積体CG7とし、取付予定導線集積体を導線集積体CG8とした例について説明する。   The fourth workaround will be described with reference to FIGS. 25 (B) and 25 (C). The first workaround to the third workaround described above are workarounds when inserting the holder member 20, whereas the fourth workaround is the convex portion of the conductor C (that is, the turn shown in FIG. 17). It is different in that it is a workaround when stacking part Cd). In this 4th avoidance measure, in order to avoid that the turn parts Cd of the conducting wire C included in the conducting wire assembly CG interfere with each other, the moving is performed along the first route R1 and the second route R2. The “movement” is arbitrary including automatic movement by the robot arm and manual movement by the operator. Hereinafter, an example will be described in which the attached conductor assembly is a conductor assembly CG7 and the scheduled conductor assembly is a conductor assembly CG8.

図25(B)に示す第1経路R1は、導線集積体CG7に対して導線集積体CG8を相対的に軸方向Z(図面下方向)に沿って移動させる。導線集積体CG7を構成する導線Cの数やクリアランスCL1の大きさ等のような組み付け条件によっては、第1経路R1よりも大きく移動させる第1経路R5や、斜め方向(軸方向Zおよび径方向Xの同時移動)に移動させる第1経路R3に沿って移動させてもよい。   The first path R1 shown in FIG. 25B moves the conductor assembly CG8 relative to the conductor assembly CG7 along the axial direction Z (downward in the drawing). Depending on the assembly conditions such as the number of conductors C constituting the conductor assembly CG7, the size of the clearance CL1, etc., the first path R5 to be moved larger than the first path R1, or the oblique direction (axial direction Z and radial direction) X may be moved along the first route R3.

また、第2経路R2は径方向X(図面左方向)に沿って移動させる。具体的には、ホルダ部材20を第1位置(図12(A)および図13(A)を参照)から第2位置(第1位置(図12(B)および図13(B)を参照)に移動させることで実現する。上記組み付け条件によっては、第2経路R2よりも小さく移動させる第2経路R4や、L字状(軸方向Zと径方向Xとの非同時移動)に移動させる第2経路R6に沿って移動させてもよい。こうして第1経路R1と第2経路R2とに沿って移動させると、導線集積体CG7と導線集積体CG8とは図25(C)に示すようにターン部Cdが積層される。   Further, the second route R2 is moved along the radial direction X (the left direction in the drawing). Specifically, the holder member 20 is moved from the first position (see FIGS. 12A and 13A) to the second position (first position (see FIGS. 12B and 13B)). Depending on the above assembling conditions, the second path R4 may be moved smaller than the second path R2, or may be moved in an L shape (non-simultaneous movement between the axial direction Z and the radial direction X). As shown in FIG. 25C, the conductor assembly CG7 and the conductor assembly CG8 may be moved along the first route R1 and the second route R2. The turn part Cd is stacked.

(変形解除工程)
全ての導線集積体CG(導線集積体CG1〜CG8)を組み付けた後、変形解除工程を行う。変形解除工程では、順次組付工程の前に行った変形保持工程によって変形して保持されている導線集積体CG1を解除する。すなわち図21に実線で示す導線集積体CG1を二点鎖線で示す導線集積体CG1に戻して、組み付けた全ての導線集積体CGを正規寸法にする。
(Deformation release process)
After assembling all the conductor aggregates CG (conductor aggregates CG1 to CG8), a deformation release step is performed. In the deformation release process, the conductor assembly CG1 that is deformed and held by the deformation holding process that is performed before the assembly process is released. That is, the conductor assembly CG1 indicated by a solid line in FIG. 21 is returned to the conductor assembly CG1 indicated by a two-dot chain line, and all the assembled conductor assemblies CG are made to have normal dimensions.

(解放工程)
上述した順次組付工程(移動工程および組付工程を含む)と変形解除工程とを行って、全ての導線集積体CG(すなわち導線集積体CG1〜CG8)について組み付けを行う。組み付けを終えると、芯材17に固定されたテーブル部材14を反時計回りに回転させて導線集積体CGを巻き戻し、導線集積体CGに巻き付けさせる。さらに、全てのホルダ部材20にかかる操作子22gを回転操作し、チャック機構22のコマ部22Tから全ての導線集積体CG1〜CG8を解放する。こうして解放した直後の状態を図26に示す。図26では、どのホルダ部材20がどの導線集積体CGを保持していたかを示すために、各ホルダ部材20の括弧内に対応する符号(CG1〜CG8)を示す。符号で示す順番から明らかなように、本形態では導線集積体CGを反時計回りに順次組み付けている。
(Release process)
The above-described sequential assembling process (including the moving process and the assembling process) and the deformation releasing process are performed to assemble all the conductor assembly CG (that is, the conductor assemblies CG1 to CG8). When the assembly is finished, the table member 14 fixed to the core member 17 is rotated counterclockwise to rewind the conductor assembly CG, and is wound around the conductor assembly CG. Further, the operating elements 22g applied to all the holder members 20 are rotated, and all the conductor integrated bodies CG1 to CG8 are released from the top portion 22T of the chuck mechanism 22. The state immediately after the release is shown in FIG. In FIG. 26, in order to indicate which holder member 20 holds which conductor assembly CG, reference numerals (CG1 to CG8) corresponding to the parentheses of each holder member 20 are shown. As is apparent from the order indicated by the reference numerals, in this embodiment, the conductor assembly CG is sequentially assembled in the counterclockwise direction.

解放工程を行うと、固定子巻線Wを巻線製造装置10から取り出すことができ、取り出した状態を図27に示す。図27(A)には斜視図で示し、図27(B)には側面図で示す。これらの図から明らかなように、固定子巻線Wは導線集積体CGの組み付け体(集合体)である。各導線集積体CGを構成する導線Cの終端部Ca,Cbは直立状態であるため、後述する回転子51(図31を参照)の相数(例えばU相,V相,W相の三相)に合わせて折り曲げおよび接合を行う。こうして後述する固定子鉄心30(図29を参照)に組み付け可能な状態となった固定子巻線Wを図28に斜視図で示す。   When the releasing process is performed, the stator winding W can be taken out from the winding manufacturing apparatus 10, and the taken-out state is shown in FIG. FIG. 27A is a perspective view, and FIG. 27B is a side view. As apparent from these drawings, the stator winding W is an assembly (aggregate) of the conductor assembly CG. Since the terminal portions Ca and Cb of the conductor C constituting each conductor assembly CG are in an upright state, the number of phases (for example, three phases of U phase, V phase, and W phase) of a rotor 51 (see FIG. 31) to be described later ) And bend and bond to match. FIG. 28 is a perspective view showing the stator winding W that can be assembled to a stator core 30 (see FIG. 29) described later.

固定子鉄心30の構成例について、図29を参照しながら説明する。図29(A)には固定子鉄心30の平面図を示し、図29(B)には分割コア32の平面図を示す。図29(A)に示す固定子鉄心30は、図29(B)に示す分割コア32を所定数連結して円環状に成形され、内周側に複数のスロット31を備える。分割コア32については後述する。複数のスロット31は、内周面から外周側に向けて(すなわち径方向X)放射状に成形した溝状部位である。スロット31の数は、後述する回転子51(図31を参照)の磁極数に対応して成形するのが望ましく、図29(A)の構成例では48個である。   A configuration example of the stator core 30 will be described with reference to FIG. FIG. 29A shows a plan view of the stator core 30, and FIG. 29B shows a plan view of the split core 32. A stator core 30 shown in FIG. 29A is formed in an annular shape by connecting a predetermined number of split cores 32 shown in FIG. 29B, and includes a plurality of slots 31 on the inner peripheral side. The split core 32 will be described later. The plurality of slots 31 are groove-shaped portions that are radially formed from the inner peripheral surface toward the outer peripheral side (that is, in the radial direction X). The number of slots 31 is desirably formed corresponding to the number of magnetic poles of a rotor 51 (see FIG. 31) described later, and is 48 in the configuration example of FIG.

図29(B)に示す分割コア32は、一のスロット31を備えるとともに、隣接する分割コア32との間に一のスロット31を構成する。別の観点から見ると、中心に向けて延びる一対のティース部33と、ティース部33の外周側で連結するバックコア部34とを有する。この分割コア32は、複数枚の電磁鋼板を積層させて成形されている。積層された電磁鋼板の間には絶縁薄膜が配置される。なお、電磁鋼板の積層体に限らず、従来公知の金属薄板および絶縁薄膜を用いて成形してもよい。   A split core 32 shown in FIG. 29B includes one slot 31 and forms one slot 31 between adjacent split cores 32. Viewed from another viewpoint, it has a pair of teeth portions 33 extending toward the center and a back core portion 34 connected on the outer peripheral side of the teeth portions 33. The split core 32 is formed by laminating a plurality of electromagnetic steel plates. An insulating thin film is disposed between the laminated electrical steel sheets. In addition, you may shape | mold using not only the laminated body of an electromagnetic steel plate but a conventionally well-known metal thin plate and an insulating thin film.

図30に示す固定子40は、固定子巻線Wと固定子鉄心30とを備える。具体的には、固定子巻線Wを構成する導線Cのスロット収容部Cc(図18(B)を参照)を、固定子鉄心30のスロット31内に収容する。導線Cには絶縁用の皮膜が施されるが、さらに固定子巻線Wと固定子鉄心30との間に絶縁部材(例えば絶縁紙等)を介在させてもよい。固定子鉄心30(具体的には連結された複数の分割コア32)の外周側には、連結状態を維持する外筒部材35を嵌合する。   A stator 40 shown in FIG. 30 includes a stator winding W and a stator core 30. Specifically, the slot accommodating portion Cc (see FIG. 18B) of the conducting wire C constituting the stator winding W is accommodated in the slot 31 of the stator core 30. The conductor C is coated with an insulating film, but an insulating member (such as insulating paper) may be interposed between the stator winding W and the stator core 30. An outer cylinder member 35 that maintains the connected state is fitted to the outer peripheral side of the stator core 30 (specifically, the plurality of connected divided cores 32).

固定子巻線Wを有する固定子40を備えた回転電機の構成例について、図31を参照しながら説明する。図31に示す回転電機MGは、例えば発電機能と電動機能とを兼ね備える発電電動機が該当する。この回転電機MGは上述した固定子40の他に、フレーム(筐体)50、回転子51、シャフト(主軸または回転軸)53などを有する。すなわちフレーム50内には、固定子40とともに、シャフト53を回転自在(例えば矢印D11方向への回転)に備える。シャフト53はベアリング52を介してフレーム50に固定し、回転子51を固定する。固定子40と回転子51とは対向しており、固定子40に巻装された導線C(導線集積体CG1〜CG8)への電通により回転磁界を発生させ、この回転磁界に伴って回転子51を回転させる。したがって、固定子巻線Wの特徴を備えた回転電機MGを提供することができる。   A configuration example of the rotating electrical machine including the stator 40 having the stator winding W will be described with reference to FIG. The rotating electrical machine MG shown in FIG. 31 corresponds to a generator motor having both a power generation function and an electric function, for example. In addition to the stator 40 described above, the rotating electrical machine MG includes a frame (housing) 50, a rotor 51, a shaft (main shaft or rotating shaft) 53, and the like. That is, in the frame 50, together with the stator 40, a shaft 53 is rotatably provided (for example, rotated in the direction of arrow D11). The shaft 53 is fixed to the frame 50 via a bearing 52, and the rotor 51 is fixed. The stator 40 and the rotor 51 are opposed to each other, and a rotating magnetic field is generated by conduction to the conducting wire C (conductor assembly CG1 to CG8) wound around the stator 40, and the rotor is accompanied by the rotating magnetic field. Rotate 51. Therefore, the rotating electrical machine MG having the features of the stator winding W can be provided.

上述した実施の形態によれば、以下に示す各効果を得ることができる。まず請求項1および請求項6に対応し、導線集積体CG(複数の導線C1〜C6)の一部分を保持可能なホルダ部材20と、ホルダ部材20を複数の位置で移動可能に搭載するテーブル部材14とを備える構成とした(図4,図12,図13を参照)。また、導線集積体CGについて、第1経路R1(R3,R5)に沿って相対移動させる移動工程と、第2経路R2(R4,R6)に沿って移動させて組み付ける組付工程とを行う構成とした(図25(B)を参照)。この構成によれば、移動工程では導線集積体CGを第1経路R1(R3,R5)に沿って移動させ、導線集積体CG相互間のクリアランスを確保する。組付工程では移動させた導線集積体CGを第2経路R2(R4,R6)に沿って移動させて組み付ける。したがって、正規寸法に成形された導線集積体CG同士の干渉を回避しながらも、組み付けを容易にして固定子巻線Wを製造することができる。   According to the embodiment described above, the following effects can be obtained. First, in accordance with claims 1 and 6, a holder member 20 capable of holding a part of the conductor assembly CG (a plurality of conductors C1 to C6), and a table member on which the holder member 20 is movably mounted at a plurality of positions. 14 (see FIGS. 4, 12, and 13). In addition, a configuration is performed in which the lead wire assembly CG is moved along the first route R1 (R3, R5) and moved and assembled along the second route R2 (R4, R6). (See FIG. 25B). According to this configuration, in the moving step, the conductor assembly CG is moved along the first path R1 (R3, R5), and a clearance between the conductor assemblies CG is ensured. In the assembling step, the moved conductor assembly CG is moved along the second path R2 (R4, R6) and assembled. Therefore, it is possible to manufacture the stator winding W while facilitating the assembly while avoiding interference between the conductor assembly CG formed in the normal dimension.

請求項2に対応し、移動工程では導線集積体CGを径方向Xおよび周方向Yのうち一方または双方の方向に移動させる構成とした(図25(B)を参照)。この構成によれば、径方向Xや周方向Yへの移動を含むことにより、例えば未だ組み付けていない新たな導線集積体CGを組み付けようとする際に、既に組み付けた導線集積体CGとの干渉を回避する。したがって、複数の導線集積体CGを組み付ける過程において、導線集積体CG同士の干渉をより確実に回避することができる。   Corresponding to claim 2, in the moving step, the conductor assembly CG is moved in one or both of the radial direction X and the circumferential direction Y (see FIG. 25B). According to this configuration, by including movement in the radial direction X and the circumferential direction Y, for example, when trying to assemble a new conductor assembly CG that has not yet been assembled, interference with the conductor assembly CG that has already been assembled. To avoid. Therefore, in the process of assembling the plurality of conductor assembly CG, interference between the conductor assemblies CG can be avoided more reliably.

請求項3に対応し、組付工程では、導線集積体CGを移動工程とは反対方向に動かす構成とした(図24(C)を参照)。この構成によれば、移動工程においてホルダ部材20を外径方向(図24(C)の矢印D7方向)に移動させるが、組付工程ではその逆方向に移動させる。図24(D)に示す矢印D9方向への回転や、図25(A)に示す矢印D10方向への傾斜についても同様である。したがって、複数の導線集積体CGを組み付ける過程において、導線集積体CGの正規寸法をより確実に維持することができる。   Corresponding to claim 3, in the assembling step, the conductor assembly CG is moved in the direction opposite to the moving step (see FIG. 24C). According to this configuration, the holder member 20 is moved in the outer diameter direction (the direction of arrow D7 in FIG. 24C) in the moving process, but is moved in the opposite direction in the assembling process. The same applies to the rotation in the direction of arrow D9 shown in FIG. 24D and the inclination in the direction of arrow D10 shown in FIG. Therefore, the normal dimension of the conductor assembly CG can be more reliably maintained in the process of assembling the plurality of conductor assemblies CG.

請求項4および請求項9に対応し、移動カム24の作用によってホルダ部材20の位置を移動させ、当該ホルダ部材20のチャック機構22に保持された導線集積体CGを移動させる構成とした(図7,図12,図13を参照)。この構成によれば、移動カム24を回転させるだけで簡単にホルダ部材20(ひいては導線集積体CG)を移動させることができる。したがって、モータなどの動力源を必要とせず、簡素な仕組みで実現できるので、コストを低く抑えることができる。   Corresponding to claims 4 and 9, the position of the holder member 20 is moved by the action of the moving cam 24, and the conductor assembly CG held by the chuck mechanism 22 of the holder member 20 is moved (see FIG. 7, see FIGS. 12 and 13). According to this configuration, the holder member 20 (and consequently the conductor assembly CG) can be moved simply by rotating the moving cam 24. Therefore, a power source such as a motor is not required, and a simple mechanism can be realized, so that the cost can be kept low.

請求項5に対応し、複数の導線Cを複数の導線集積体CG1〜CG8にグループ化するグループ化工程を行う構成とした(図17および図15(B)を参照)。グループ化された複数の導線集積体CG1〜CG8に対し、導線集積体CGごとに移動工程および組付工程を行う。この構成によれば、複数の導線集積体CGについて、導線集積体CG同士の干渉を回避しながらも、組み付けを容易にして固定子巻線Wを製造することができる。   Corresponding to claim 5, a grouping step of grouping a plurality of conductors C into a plurality of conductor assemblies CG1 to CG8 is performed (see FIGS. 17 and 15B). A moving process and an assembling process are performed for each conductor assembly CG with respect to the grouped conductor assemblies CG1 to CG8. According to this configuration, the stator winding W can be manufactured with ease of assembly while avoiding interference between the conductor aggregates CG with respect to the plurality of conductor aggregates CG.

請求項7に対応し、ホルダ部材20は、導線集積体CGを少なくとも軸方向Zを含む第1経路R1(R3,R5)に沿って移動させるときの第1位置と、導線集積体CGを少なくとも水平方向を含む第2経路R2(R4,R6)に沿って移動させるときの第2位置とを含んで移動可能に構成する構成とした(図12,図13,図25(B),図25(C)を参照)。この構成によれば、導線集積体CGは第1経路R1(R3,R5)に沿って第1位置に移動し、第2経路R2(R4,R6)に沿って第2位置に移動する。したがって、正規寸法に成形された導線集積体CG同士の干渉をより確実に回避しながら、複数の導線集積体CGの組み付けを行って、組付体である固定子巻線Wを製造することができる。   Corresponding to claim 7, the holder member 20 has at least a first position when the conductor assembly CG is moved along the first path R1 (R3, R5) including at least the axial direction Z, and at least the conductor assembly CG. The second position when moving along the second path R2 (R4, R6) including the horizontal direction is configured to be movable (FIGS. 12, 13, 25B, 25). (See (C)). According to this configuration, the conductor assembly CG moves to the first position along the first path R1 (R3, R5) and moves to the second position along the second path R2 (R4, R6). Therefore, it is possible to manufacture the stator winding W that is an assembly by assembling the plurality of conductor assemblies CG while more reliably avoiding interference between the conductor assemblies CG formed into regular dimensions. it can.

請求項8に対応し、ホルダ部材20は、第2位置よりも更に径方向Xにずれている第3位置に移動可能に構成する構成とした(図12(C),図13(C),図26を参照)。この構成によれば、保持している導線集積体CGを第2位置で解放した後、第3位置にホルダ部材20を移動させるだけで、簡単に完成品としての固定子巻線Wを取り出すことができる。したがって、完成品と治具との分離を行う際にも干渉が回避される。   Corresponding to claim 8, the holder member 20 is configured to be movable to a third position that is further displaced in the radial direction X from the second position (FIG. 12C, FIG. 13C, (See FIG. 26). According to this configuration, after releasing the held conductor assembly CG at the second position, the stator winding W as a finished product can be easily taken out simply by moving the holder member 20 to the third position. Can do. Therefore, interference is avoided even when the finished product and the jig are separated.

請求項10に対応し、ホルダ部材20によって保持する導線Cの一部分は、固定子鉄心30のスロット31内に収容されるスロット収容部Ccである構成とした(図18(B)を参照)。この構成によれば、導線Cのスロット収容部Ccは直線形状に成形されるので、スロット収容部Ccを保持するためのホルダ部材20も直線形状に構成される。したがって、簡単に保持を行え、ホルダ部材20を曲線形状等の複雑な形状に構成する場合に比べてコストを低く抑えることができる。   Corresponding to claim 10, a part of the conducting wire C held by the holder member 20 is configured to be a slot accommodating portion Cc accommodated in the slot 31 of the stator core 30 (see FIG. 18B). According to this structure, since the slot accommodating part Cc of the conducting wire C is formed in a linear shape, the holder member 20 for holding the slot accommodating part Cc is also configured in a linear shape. Therefore, it can hold | maintain easily and cost can be restrained low compared with the case where the holder member 20 is comprised in complicated shapes, such as a curve shape.

請求項11に対応し、複数のホルダ部材20を第2位置に位置決め可能な円筒部材13を備える構成とした(図1,図12(B),図13(B)を参照)。この構成によれば、円筒部材13の外周面が第2位置となり、円筒部材13の外周面と接触するまで複数のホルダ部材20を移動させるだけで、簡単に一律に第2位置に位置決めすることができる。したがって、完成品となる固定子巻線Wの内周面を均一にすることができる。   Corresponding to the eleventh aspect of the present invention, the cylindrical member 13 capable of positioning the plurality of holder members 20 at the second position is provided (see FIGS. 1, 12B, and 13B). According to this configuration, the outer peripheral surface of the cylindrical member 13 becomes the second position, and the plurality of holder members 20 are simply moved to the second position simply by moving them until they contact the outer peripheral surface of the cylindrical member 13. Can do. Therefore, the inner peripheral surface of the stator winding W to be a finished product can be made uniform.

請求項12に対応し、複数の導線Cを二つ以上の導線Cからなる複数の導線集積体CGにグループ化し、ホルダ部材20(特にチャック機構22)は導線集積体CGの各導線C1〜C6を保持する構成とした(図8〜図11を参照)。この構成によれば、ホルダ部材20は導線集積体CG(二つ以上の導線C)を全体で保持し、複数の位置に移動させることができる。固定子巻線Wの製造にあたっては導線集積体CGの数だけ組み付けを行えばよく、導線集積体CG間で干渉する可能性が大幅に低下する。したがって、正規寸法に成形された導線集積体CG同士の干渉をさらに確実に回避することができる。   Corresponding to claim 12, the plurality of conductors C are grouped into a plurality of conductor assemblies CG composed of two or more conductors C, and the holder member 20 (particularly the chuck mechanism 22) is connected to each conductor C1 to C6 of the conductor assembly CG. (Refer to FIGS. 8 to 11). According to this configuration, the holder member 20 can hold the conductor assembly CG (two or more conductors C) as a whole and move it to a plurality of positions. When manufacturing the stator winding W, it is only necessary to assemble as many as the conductor assembly CG, and the possibility of interference between the conductor assemblies CG is greatly reduced. Therefore, it is possible to more reliably avoid interference between the conductive wire assemblies CG formed into regular dimensions.

請求項13に対応し、回転電機MGは巻線製造装置10によって製造された固定子巻線Wを備える構成とした(図31を参照)。この構成によれば、導線集積体CG同士の干渉を回避して組み付けられた固定子巻線Wを備えるので、導線集積体CG相互間の絶縁抵抗が確実に確保され、回転電機MGの所要の性能を発揮することができる。   Corresponding to claim 13, the rotating electrical machine MG is configured to include the stator winding W manufactured by the winding manufacturing apparatus 10 (see FIG. 31). According to this configuration, since the stator winding W is assembled so as to avoid interference between the conductor aggregates CG, the insulation resistance between the conductor aggregates CG is reliably ensured, and the required electrical machine MG is required. Performance can be demonstrated.

〔他の実施の形態〕
以上では本発明を実施するための形態について説明したが、本発明は当該形態に何ら限定されるものではない。言い換えれば、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施することもできる。例えば、次に示す各形態を実現してもよい。
[Other Embodiments]
Although the form for implementing this invention was demonstrated above, this invention is not limited to the said form at all. In other words, various forms can be implemented without departing from the scope of the present invention. For example, the following forms may be realized.

上述した実施の形態では、導線Cは径方向Xに曲げて成形する曲線形状として、渦巻き状を適用した(図16(B)を参照)。この形態に代えて、円弧状等の他の曲線形状を適用してもよく、一部に直線形状を含む曲線形状を適用してもよい。他の曲線形状を適用した場合でも、正規寸法に成形された導線C同士の干渉を回避しながらも、組み付けを容易にして固定子巻線Wを製造することができる。   In the embodiment described above, the conductive wire C has a spiral shape (see FIG. 16B) as a curved shape that is bent and shaped in the radial direction X. Instead of this form, another curved shape such as an arc shape may be applied, or a curved shape including a linear shape in part may be applied. Even when other curved shapes are applied, it is possible to manufacture the stator winding W while facilitating assembly while avoiding interference between the conductors C formed into regular dimensions.

上述した実施の形態では、固定子巻線Wを製造するのに必要な導線Cの総数が48本の場合を適用し、チャック機構22の構造に従って導線集積体CGを6本の導線Cで構成し、8群の導線集積体CGにグループ化した(特に図8,図18を参照)。この形態に代えて、導線Cの総数や、導線集積体CGを構成する導線Cの数、導線集積体CGの数について上述した実施の形態で示した数値以外の数値を適用してもよい。例えば、導線Cの総数が50本であるとき、導線集積体CGを5本の導線Cで構成し、導線集積体CGの数を10群としてもよい。各々にどのような数値を適用するかは、固定子巻線Wを用いて構成する固定子40や、回転電機MGの種類等の条件を考慮して設定する。いずれの数値を適用した場合でも、正規寸法に成形された導線C同士の干渉を回避しながらも、組み付けを容易にして固定子巻線Wを製造することができる。   In the above-described embodiment, the case where the total number of conductors C necessary for manufacturing the stator winding W is 48 is applied, and the conductor assembly CG is configured with six conductors C according to the structure of the chuck mechanism 22. Then, they were grouped into 8 groups of conductor aggregates CG (see particularly FIGS. 8 and 18). Instead of this form, numerical values other than the numerical values shown in the above-described embodiments may be applied to the total number of conductive wires C, the number of conductive wires C constituting the conductive wire assembly CG, and the number of conductive wire assemblies CG. For example, when the total number of conducting wires C is 50, the conducting wire assembly CG may be composed of 5 conducting wires C, and the number of conducting wire assemblies CG may be 10 groups. The numerical value to be applied to each is set in consideration of the conditions such as the type of the stator 40 configured using the stator winding W and the rotating electrical machine MG. Regardless of which numerical value is applied, the stator winding W can be manufactured with ease of assembly while avoiding interference between the conductors C formed into regular dimensions.

上述した実施の形態では、固定子巻線Wの製造に必要な数の導線Cを導線集積体CGにグループ化し、導線集積体CGごとに組み付けを行った(図17〜図26を参照)。この形態に代えて、グループ化を行わずに、図16に示す導線Cの状態のままで組み付けを行ってもよい。例えば導線Cの総数が48本の場合は組み付けを48回行えばよく、組み付けの対象物が導線集積体CGから導線Cに変わるだけである。この場合、ホルダ部材20は1本の導線Cを保持するように構成すればよい。具体的には、チャック機構22は支軸22a,コマ部22T,連結部材22d,操作軸22fなどを一ずつ備える。導線集積体CGごとに組み付ける場合に比べると組み付け回数が増えるが、他の点については上述した実施の形態と同様である。したがって、正規寸法に成形された導線C同士の干渉を回避しながらも、組み付けを容易にして固定子巻線Wを製造することができる。   In the above-described embodiment, the number of conductors C necessary for manufacturing the stator winding W is grouped into the conductor assembly CG and assembled for each conductor assembly CG (see FIGS. 17 to 26). It replaces with this form and you may assemble | attach in the state of the conducting wire C shown in FIG. 16, without performing grouping. For example, when the total number of conductors C is 48, assembly may be performed 48 times, and the assembly target is simply changed from the conductor assembly CG to the conductor C. In this case, the holder member 20 may be configured to hold one conductive wire C. Specifically, the chuck mechanism 22 includes a support shaft 22a, a piece portion 22T, a connecting member 22d, an operation shaft 22f, and the like. The number of times of assembling increases as compared with the case of assembling for each conductor assembly CG, but the other points are the same as in the above-described embodiment. Therefore, it is possible to manufacture the stator winding W while facilitating assembly while avoiding interference between the conductive wires C formed into regular dimensions.

上述した実施の形態では、チャック機構22は6つのコマ部22Tを備える構成とした(図8,図11,図18(B)を参照)。この形態に代えて、他の数(すなわち6以外の数)のコマ部22Tを備える構成としてもよい。チャック機構22は導線集積体CGのグループに関連し、軸方向Zに積層させるターン部Cdの形状(図15を参照)に関連する。これらの関連から設定される数であれば任意である。他の数のコマ部22Tで構成した場合でも、導線C同士の干渉を回避しながらも、組み付けを容易にして固定子巻線Wを製造することができる。   In the above-described embodiment, the chuck mechanism 22 includes six pieces 22T (see FIGS. 8, 11, and 18B). Instead of this form, another number (ie, a number other than 6) of frame portions 22T may be provided. The chuck mechanism 22 is related to the group of conductor assembly CG, and is related to the shape of the turn part Cd to be laminated in the axial direction Z (see FIG. 15). Any number can be set as long as it is set based on these relations. Even when configured with other numbers of top portions 22T, it is possible to manufacture the stator winding W with ease of assembly while avoiding interference between the conductors C.

上述した実施の形態では、複数のコマ部22Tはチャック機構22の中心線を基準として対称的に取り付ける構成とした(図11を参照)。この形態に代えて、複数のコマ部22Tのうちで一つ以上のコマ部22Tを他のコマ部22Tとの取り付け方向を異ならせて取り付ける構成としてもよい。言い換えれば、取り付け方向を異ならせる個数は、導線Cがコマ部22Tに干渉しない数であれば任意である。例えば、2つのコマ部22Tと、4つのコマ部22Tとで取り付け方向を逆向きにする。このように一つ以上のコマ部22Tを他のコマ部22Tとの取り付け方向を異ならせる場合でも、導線Cの保持と解放を行う際に、導線Cに施された絶縁用の被覆が損傷するのをより確実に回避できる。   In the above-described embodiment, the plurality of top portions 22T are configured to be mounted symmetrically with respect to the center line of the chuck mechanism 22 (see FIG. 11). Instead of this form, one or more piece portions 22T among the plurality of piece portions 22T may be attached with different attachment directions with respect to the other piece portions 22T. In other words, the number of attachment directions to be different is arbitrary as long as the conducting wire C does not interfere with the top portion 22T. For example, the mounting direction is reversed between the two frame portions 22T and the four frame portions 22T. As described above, even when one or more pieces 22T are attached to different pieces 22T, the insulation coating applied to the lead C is damaged when the lead C is held and released. Can be avoided more reliably.

上述した実施の形態では、コマ部22Tは導線Cの保持と解放を行う際に導線C表面の法線方向に作動する構成とした(図9を参照)。この形態に代えて、導線Cがコマ部22Tに当たらないことを条件として、法線方向以外の他方向に作動する構成としてもよい。コマ部22Tが他方向に作動する場合でも、導線Cとコマ部22Tとが干渉しないので、導線Cに施された絶縁用の被覆が損傷するのをより確実に回避できる。   In the above-described embodiment, the top portion 22T is configured to operate in the normal direction of the surface of the conductor C when the conductor C is held and released (see FIG. 9). Instead of this form, it may be configured to operate in directions other than the normal direction on condition that the conducting wire C does not hit the top portion 22T. Even when the top portion 22T operates in the other direction, since the conducting wire C and the top portion 22T do not interfere with each other, it is possible to more reliably avoid damage to the insulating coating applied to the conducting wire C.

上述した実施の形態では、可動コマ22bはチャック機構22の中心側に配置する構成とした(図11を参照)。この形態に代えて、導線Cの保持と解放を容易に行え、かつ、導線Cと干渉しないことを条件として、一つ以上の可動コマ22bについてチャック機構22の外側(中心から離れる側)に配置する構成としてもよい。可動コマ22bについてチャック機構22の外側に配置する場合でも、導線Cと可動コマ22bが干渉しないので、導線Cに施された絶縁用の被覆が損傷するのをより確実に回避できる。   In the embodiment described above, the movable piece 22b is arranged on the center side of the chuck mechanism 22 (see FIG. 11). Instead of this form, one or more movable pieces 22b are arranged outside the chuck mechanism 22 (on the side away from the center) on the condition that the conducting wire C can be easily held and released and does not interfere with the conducting wire C. It is good also as composition to do. Even when the movable piece 22b is arranged outside the chuck mechanism 22, the conducting wire C and the movable piece 22b do not interfere with each other, so that it is possible to more reliably avoid damage to the insulating coating applied to the conducting wire C.

上述した実施の形態では、チャック機構22のコマ部22Tは不動コマ22cと可動コマ22bとを備える構成とした(図9を参照)。この形態に代えて、導線Cの保持と解放を容易に行え、かつ、導線Cと干渉しないことを条件として、二の可動コマ22bを備える構成としてもよい。すなわち、洗濯鋏のように双方のコマが動く構成である。二の可動コマ22bを備える場合でも、導線Cとの干渉がないので、導線Cに施された絶縁用の被覆が損傷するのをより確実に回避できる。   In the above-described embodiment, the top portion 22T of the chuck mechanism 22 includes the non-moving top 22c and the movable top 22b (see FIG. 9). Instead of this configuration, the second movable piece 22b may be provided on the condition that the conducting wire C can be easily held and released and does not interfere with the conducting wire C. That is, both pieces move like a laundry basket. Even when the second movable piece 22b is provided, since there is no interference with the conductor C, it is possible to more reliably avoid damage to the insulating coating applied to the conductor C.

上述した実施の形態では、チャック機構22はコマ部22Tごとに対応して操作子22gを備える構成とした(図8を参照)。この形態に代えて、コマ部群(二つ以上のコマ部22T)が連動して開閉動作する構成の場合には、コマ部群ごとに対応して操作子22gを備える構成としてもよい。コマ部群が連動して開閉動作するためには、一の操作子22gと複数のコマ部22Tとの間に、操作子22gの回転動力を各コマ部22Tに伝達する動力伝達機構(例えばギア機構等)を介在させる必要がある。こうすれば、操作子22gの数を減らし、回転操作を行う回数を減らすことができる。そのため、導線Cの保持と解放に要する時間を短縮することができる。   In the above-described embodiment, the chuck mechanism 22 includes the operation element 22g corresponding to each piece 22T (see FIG. 8). In place of this configuration, in the case of a configuration in which the frame unit group (two or more frame units 22T) is operated to open and close in conjunction, a configuration may be provided that includes an operator 22g corresponding to each frame unit group. In order for the top section group to open and close in conjunction, a power transmission mechanism (for example, a gear) that transmits the rotational power of the operating section 22g to each top section 22T between one operating section 22g and a plurality of top sections 22T. Mechanism). In this way, the number of operation elements 22g can be reduced, and the number of rotation operations can be reduced. Therefore, the time required for holding and releasing the conducting wire C can be shortened.

上述した実施の形態では、チャック機構22(特にコマ部22T)が保持する導線Cの一部分は、固定子鉄心30のスロット31内に収容されるスロット収容部Ccである構成とした(図18(B)を参照)。この形態に代えて(あるいは加えて)、導線Cのターン部Cdを保持する構成としてもよい。チャック機構22が導線Cを保持するのは、導線Cの位置・姿勢を規制し、導線C相互間のクリアランスを確保することである。この条件を満たせば、ターン部Cdを保持しても同様の作用効果が得られる。   In the embodiment described above, a part of the conducting wire C held by the chuck mechanism 22 (particularly the top portion 22T) is configured to be the slot accommodating portion Cc accommodated in the slot 31 of the stator core 30 (FIG. 18 ( See B)). Instead of (or in addition to) this configuration, the turn portion Cd of the conductor C may be held. The chuck mechanism 22 holds the conducting wire C by restricting the position and posture of the conducting wire C and ensuring the clearance between the conducting wires C. If this condition is satisfied, a similar effect can be obtained even if the turn part Cd is held.

上述した実施の形態では、固定子巻線Wを備える回転電機MGとして発電電動機に適用した(図31を参照)。この形態に代えて、発電機や電動機等の他の回転電機に適用してもよい。言い換えれば、固定子巻線Wが必要な回転電機であれば任意である。他の回転電機に適用する場合でも、導線C相互間の絶縁抵抗が確実に確保され、回転電機の所要の性能を発揮することができる。   In embodiment mentioned above, it applied to the generator motor as the rotary electric machine MG provided with the stator coil | winding W (refer FIG. 31). It may replace with this form and may apply to other rotating electrical machines, such as a generator and an electric motor. In other words, any rotating electrical machine that requires the stator winding W is optional. Even when applied to other rotating electrical machines, the insulation resistance between the conductors C can be reliably ensured, and the required performance of the rotating electrical machines can be exhibited.

10 巻線製造装置(固定子巻線の製造装置)
12 把持機構
13 円筒部材
14 テーブル部材
15 スライドプレート
16 変形保持具
20 ホルダ部材
21 ターミナル部
22 チャック機構
22T コマ部
22b 可動コマ
22c 不動コマ
22d 連結部材
22e 保持カム
22g 操作子
23 台座部
24 移動カム
24a 操作子
24b カム部
30 固定子鉄心
40 固定子
MG 回転電機
W 固定子巻線(ワーク)
C(C1,C2,…,C6) 導線
CG(CG1,CG2,…,CG8) 導線集積体
Cc スロット収容部
Cd ターン部
10 Winding manufacturing equipment (stator winding manufacturing equipment)
DESCRIPTION OF SYMBOLS 12 Grip mechanism 13 Cylindrical member 14 Table member 15 Slide plate 16 Deformation holder 20 Holder member 21 Terminal part 22 Chuck mechanism 22T Top part 22b Movable top 22c Non-moving top 22d Connection member 22e Holding cam 22g Operating element 23 Base part 24 Moving cam 24a Operating element 24b Cam part 30 Stator core 40 Stator MG Rotating electric machine W Stator winding (workpiece)
C (C1, C2,..., C6) Conductor CG (CG1, CG2,..., CG8) Conductor assembly Cc Slot accommodating portion Cd Turn portion

Claims (13)

複数の導線を積層して組み付けることにより固定子巻線を製造する固定子巻線の製造方法において、
前記複数の導線に含まれる各導線は、径方向に円弧状や渦巻き状等の曲線形状に成形され、軸方向に凸形状に成形されたものであって、
前記導線を少なくとも軸方向を含む第1経路に沿って相対移動させる移動工程と、
前記導線を少なくとも水平方向を含む第2経路に沿って移動させて組み付ける組付工程と、
を有することを特徴とする固定子巻線の製造方法。
In the stator winding manufacturing method of manufacturing a stator winding by stacking and assembling a plurality of conducting wires,
Each of the conductive wires included in the plurality of conductive wires is formed into a curved shape such as an arc shape or a spiral shape in the radial direction, and is formed into a convex shape in the axial direction,
A moving step of relatively moving the conducting wire along a first path including at least an axial direction;
An assembly step of assembling by moving the conductive wire along a second path including at least a horizontal direction;
A method of manufacturing a stator winding, comprising:
請求項1に記載の固定子巻線の製造方法において、
前記移動工程では、前記導線を径方向および周方向のうち一方または双方の方向に移動させることを特徴とする固定子巻線の製造方法。
In the manufacturing method of the stator winding according to claim 1,
In the moving step, the lead wire is moved in one or both of a radial direction and a circumferential direction.
請求項2に記載の固定子巻線の製造方法において、
前記組付工程では、前記導線を前記移動工程とは反対方向に動かすことを特徴とする固定子巻線の製造方法。
The method of manufacturing a stator winding according to claim 2,
In the assembling step, the lead wire is moved in a direction opposite to the moving step, and the stator winding manufacturing method is characterized.
請求項1から3のいずれか一項に記載の固定子巻線の製造方法において、
前記導線は、移動カムの作用によって移動することを特徴とする固定子巻線の製造方法。
In the manufacturing method of the stator winding according to any one of claims 1 to 3,
The method of manufacturing a stator winding, wherein the conducting wire is moved by the action of a moving cam.
請求項1から4のいずれか一項に記載の固定子巻線の製造方法において、
前記複数の導線を、二つ以上の導線からなる導線集積体にグループ化するグループ化工程を有し、
前記グループ化工程によってグループ化された導線集積体に対して、前記移動工程と前記組付工程とを行うことを特徴とする固定子巻線の製造方法。
In the manufacturing method of the stator winding according to any one of claims 1 to 4,
A grouping step of grouping the plurality of conductors into a conductor assembly comprising two or more conductors;
A method of manufacturing a stator winding, wherein the moving step and the assembling step are performed on the conductor assembly grouped by the grouping step.
複数の導線を積層して組み付けることにより固定子巻線を製造する固定子巻線の製造装置において、
前記複数の導線に含まれる各導線は、径方向に円弧状や渦巻き状等の曲線形状に成形され、軸方向に凸形状に成形されたものであって、
前記導線の一部分を保持可能なホルダ部材と、
前記ホルダ部材を複数の位置で移動可能に搭載するテーブル部材と、
を有することを特徴とする固定子巻線の製造装置。
In a stator winding manufacturing apparatus that manufactures a stator winding by stacking and assembling a plurality of conductive wires,
Each of the conductive wires included in the plurality of conductive wires is formed into a curved shape such as an arc shape or a spiral shape in the radial direction, and is formed into a convex shape in the axial direction,
A holder member capable of holding a part of the conducting wire;
A table member on which the holder member is movably mounted at a plurality of positions;
An apparatus for manufacturing a stator winding, comprising:
請求項6に記載の固定子巻線の製造装置において、
前記ホルダ部材は、前記導線を少なくとも軸方向を含む第1経路に沿って移動させるときの第1位置と、前記導線を少なくとも水平方向を含む第2経路に沿って移動させるときの第2位置と、を含んで移動可能に構成することを特徴とする固定子巻線の製造装置。
In the stator winding manufacturing apparatus according to claim 6,
The holder member has a first position when moving the conductor along a first path including at least an axial direction, and a second position when moving the conductor along a second path including at least a horizontal direction. And a stator winding manufacturing apparatus that is configured to be movable.
請求項6または7に記載の固定子巻線の製造装置において、
前記ホルダ部材は、前記第2位置よりも更に径方向または周方向にずれている第3位置に移動可能に構成することを特徴とする固定子巻線の製造装置。
In the stator winding manufacturing apparatus according to claim 6 or 7,
The apparatus for manufacturing a stator winding according to claim 1, wherein the holder member is configured to be movable to a third position shifted further in a radial direction or a circumferential direction than the second position.
請求項6から8のいずれか一項に記載の固定子巻線の製造装置において、
前記ホルダ部材は、移動カムの作用によって前記複数の位置のうちいずれか一の位置に移動することを特徴とする固定子巻線の製造装置。
In the stator winding manufacturing apparatus according to any one of claims 6 to 8,
The apparatus for manufacturing a stator winding, wherein the holder member moves to any one of the plurality of positions by the action of a moving cam.
請求項6から9のいずれか一項に記載の固定子巻線の製造装置において、
前記ホルダ部材によって保持する導線の一部分は、固定子鉄心のスロット内に収容されるスロット収容部であることを特徴とする固定子巻線の製造装置。
In the stator winding manufacturing apparatus according to any one of claims 6 to 9,
A part of the conducting wire held by the holder member is a slot accommodating portion that is accommodated in a slot of the stator core.
請求項6から10のいずれか一項に記載の固定子巻線の製造装置において、
複数の前記ホルダ部材を、前記第2位置に位置決め可能な円筒部材を有することを特徴とする固定子巻線の製造装置。
In the stator winding manufacturing apparatus according to any one of claims 6 to 10,
An apparatus for manufacturing a stator winding, comprising a cylindrical member capable of positioning a plurality of the holder members at the second position.
請求項6から11のいずれか一項に記載の固定子巻線の製造装置において、
前記複数の導線を二つ以上の導線からなる複数の導線集積体にグループ化し、
前記ホルダ部材は前記導線集積体に含まれる各導線を保持することを特徴とする固定子巻線の製造装置。
In the manufacturing apparatus of the stator winding | coil as described in any one of Claim 6 to 11,
Grouping the plurality of conductors into a plurality of conductor assemblies comprising two or more conductors;
The said holder member hold | maintains each conducting wire contained in the said conducting wire assembly, The manufacturing apparatus of the stator winding | coil characterized by the above-mentioned.
請求項1から12のいずれか一項の記載によって製造された固定子巻線を備えることを特徴とする回転電機。   A rotating electrical machine comprising the stator winding manufactured according to any one of claims 1 to 12.
JP2010012403A 2010-01-22 2010-01-22 Stator winding manufacturing method, manufacturing apparatus thereof, and rotating electric machine Expired - Fee Related JP5428896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012403A JP5428896B2 (en) 2010-01-22 2010-01-22 Stator winding manufacturing method, manufacturing apparatus thereof, and rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012403A JP5428896B2 (en) 2010-01-22 2010-01-22 Stator winding manufacturing method, manufacturing apparatus thereof, and rotating electric machine

Publications (2)

Publication Number Publication Date
JP2011151994A true JP2011151994A (en) 2011-08-04
JP5428896B2 JP5428896B2 (en) 2014-02-26

Family

ID=44538450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012403A Expired - Fee Related JP5428896B2 (en) 2010-01-22 2010-01-22 Stator winding manufacturing method, manufacturing apparatus thereof, and rotating electric machine

Country Status (1)

Country Link
JP (1) JP5428896B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04229053A (en) * 1990-08-27 1992-08-18 Nippondenso Co Ltd Field coil fabricating apparatus
JP2003070197A (en) * 2001-08-29 2003-03-07 Mitsubishi Materials Corp Stator coil and motor using the same, manufacturing method of stator coil and motor, and coil unit and manufacturing method thereof
JP2007336720A (en) * 2006-06-15 2007-12-27 Toyota Industries Corp Setting method and setting device for stator coil, and manufacturing method of rotating electric machine
JP2009195007A (en) * 2008-02-14 2009-08-27 Hitachi Ltd Coil, rotary electric machine, and method of manufacturing rotary electric machine
JP2009247199A (en) * 2008-03-12 2009-10-22 Denso Corp Method of manufacturing stator coil
JP2009268221A (en) * 2008-04-24 2009-11-12 Denso Corp Method of manufacturing stator coil
JP2011147295A (en) * 2010-01-15 2011-07-28 Denso Corp Method of manufacturing stator for electric rotating machine
JP2011151999A (en) * 2010-01-22 2011-08-04 Denso Corp Method and device for manufacturing stator winding, and rotary electric machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04229053A (en) * 1990-08-27 1992-08-18 Nippondenso Co Ltd Field coil fabricating apparatus
JP2003070197A (en) * 2001-08-29 2003-03-07 Mitsubishi Materials Corp Stator coil and motor using the same, manufacturing method of stator coil and motor, and coil unit and manufacturing method thereof
JP2007336720A (en) * 2006-06-15 2007-12-27 Toyota Industries Corp Setting method and setting device for stator coil, and manufacturing method of rotating electric machine
JP2009195007A (en) * 2008-02-14 2009-08-27 Hitachi Ltd Coil, rotary electric machine, and method of manufacturing rotary electric machine
JP2009247199A (en) * 2008-03-12 2009-10-22 Denso Corp Method of manufacturing stator coil
JP2009268221A (en) * 2008-04-24 2009-11-12 Denso Corp Method of manufacturing stator coil
JP2011147295A (en) * 2010-01-15 2011-07-28 Denso Corp Method of manufacturing stator for electric rotating machine
JP2011151999A (en) * 2010-01-22 2011-08-04 Denso Corp Method and device for manufacturing stator winding, and rotary electric machine

Also Published As

Publication number Publication date
JP5428896B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5472725B2 (en) Stator winding manufacturing method, manufacturing apparatus thereof, and rotating electric machine
JP6146219B2 (en) Concentric winding coil forming method and forming apparatus
US10594182B2 (en) Stator manufacturing method and stator
WO2011111682A1 (en) Stator for rotating electrical machine, method for manufacturing stator, and method for manufacturing coil for stator
JP5471501B2 (en) Stator winding manufacturing method, manufacturing apparatus thereof, and rotating electric machine
JP5370491B2 (en) Stator and stator manufacturing method
JP4973544B2 (en) Manufacturing method of wave winding coil for stator
US11018543B2 (en) Method for manufacturing stator of rotary electric machine including a cassette coil
JP6685572B1 (en) Coil terminal connection method, twist jig, and stator of rotating electric machine
JP2009303335A (en) Stator
JP6206051B2 (en) Concentric winding coil forming method and forming apparatus
JP5428896B2 (en) Stator winding manufacturing method, manufacturing apparatus thereof, and rotating electric machine
JP6334823B2 (en) Stator for rotating electrical machine, rotating electrical machine, method for manufacturing stator for rotating electrical machine, method for manufacturing rotating electrical machine
JP6622995B2 (en) Rotating electric machine, manufacturing method of rotating electric machine, stator coil, coil resin structure
JP2002051489A (en) Dynamo-electric machine and manufacturing method thereof
JP2018098925A (en) Stator manufacturing equipment
JP6331978B2 (en) Stator winding manufacturing method
JP2010234400A (en) Square wire conductor bending tool
JP6070496B2 (en) Stator coil winding forming apparatus and winding forming method
JP6206052B2 (en) Concentric winding coil forming method and forming apparatus
JP7019833B2 (en) A method for manufacturing a unit coil for a stator of a rotary electric machine, a device for manufacturing a unit coil for a stator of a rotary electric machine, and a method for manufacturing a rotary electric machine and a rotary electric machine.
JP5672194B2 (en) Stator manufacturing method
JP7474297B2 (en) Rotating electric machine and method for manufacturing the same
JP6106841B2 (en) Electric motor
JP2004364470A (en) Stator for dynamo-electric machine and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R151 Written notification of patent or utility model registration

Ref document number: 5428896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees