JP2011150820A - Additive material for lithium-ion secondary battery electrolyte - Google Patents

Additive material for lithium-ion secondary battery electrolyte Download PDF

Info

Publication number
JP2011150820A
JP2011150820A JP2010009634A JP2010009634A JP2011150820A JP 2011150820 A JP2011150820 A JP 2011150820A JP 2010009634 A JP2010009634 A JP 2010009634A JP 2010009634 A JP2010009634 A JP 2010009634A JP 2011150820 A JP2011150820 A JP 2011150820A
Authority
JP
Japan
Prior art keywords
fluorine
secondary battery
borate
ion secondary
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010009634A
Other languages
Japanese (ja)
Other versions
JP5421803B2 (en
Inventor
Masahiro Aoki
雅裕 青木
Hideyuki Mimura
英之 三村
Kentaro Kono
憲太郎 河野
Hisao Eguchi
久雄 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Original Assignee
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp filed Critical Tosoh Finechem Corp
Priority to JP2010009634A priority Critical patent/JP5421803B2/en
Publication of JP2011150820A publication Critical patent/JP2011150820A/en
Application granted granted Critical
Publication of JP5421803B2 publication Critical patent/JP5421803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an additive material for producing a non-aqueous electrolyte achieving both of improvement in flame retardancy and battery performance in the non-aqueous electrolyte, especially in the electrolyte for a lithium-ion battery. <P>SOLUTION: Boric-acid ester containing fluorine is shown in a general formula (1), in which R<SB>1</SB>, R<SB>2</SB>, and R<SB>3</SB>may be the same or different 1-10C alkyl group or fluorine-containing alkyl group. At least one of R<SB>1</SB>, R<SB>2</SB>, and R<SB>3</SB>is the fluorine-containing alkyl group. The additive material containing the boric-acid ester containing fluorine to improve its self-extinguishing characteristic is added to the non-aqueous electrolyte. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水電解液、特にリチウムイオン二次電池電解液の改質剤として用いられる含フッ素ホウ酸エステルを含む非水電解液に関する。   The present invention relates to a nonaqueous electrolytic solution, particularly a nonaqueous electrolytic solution containing a fluorine-containing boric acid ester used as a modifier for a lithium ion secondary battery electrolytic solution.

非水電解液二次電池、特にリチウムイオン二次電池はノートブック型パーソナルコンピューター、携帯電話などの民生用機器の蓄電池として汎用されている。
これらのリチウム系の電池ではその高い作動電圧のために、基本的には水溶液は使用できず、電気化学的に安定な電位範囲(電位窓)が広い非水溶媒が使用されている。
Non-aqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, are widely used as storage batteries for consumer devices such as notebook personal computers and mobile phones.
In these lithium-based batteries, due to the high operating voltage, an aqueous solution cannot be used basically, and a nonaqueous solvent having a wide electrochemically stable potential range (potential window) is used.

しかし、リチウム二次電池に用いられる非水溶媒、例えば、エチレンカーボネートやジメチルカーボネートは揮発性、引火性を有しており、これまでにも製造時の不具合等で使用中に電極が短絡し、電解液へ引火することによって、電池が燃えるという事故が発生している。   However, non-aqueous solvents used in lithium secondary batteries, such as ethylene carbonate and dimethyl carbonate, have volatility and flammability, and the electrodes have been short-circuited during use so far due to problems during production, etc. There is an accident that the battery burns by igniting the electrolyte.

一方で、近年、リチウムイオン二次電池は電気自動車やハイブリッド自動車の電源、太陽光発電、水力発電などの蓄電用として注目されており、これらの性能を満足させるためには、更なる大型化、高容量化が求められている(例えば非特許文献1参照)。   On the other hand, in recent years, lithium ion secondary batteries have attracted attention as power sources for electric vehicles and hybrid vehicles, solar power generation, hydroelectric power generation, etc. In order to satisfy these performances, further enlargement, There is a demand for higher capacity (see Non-Patent Document 1, for example).

しかし、電池が大型化するにつれて、更なる安全性を求めて引火の恐れがない非水電解液が望まれており、難燃性もしくは自己消火性を有する非水電解液を用いる技術が注目されている(非特許文献2)。   However, as batteries increase in size, non-aqueous electrolytes that do not pose a risk of fire are desired for further safety, and technology using non-aqueous electrolytes that have flame retardancy or self-extinguishing properties has attracted attention. (Non-Patent Document 2).

このような非水電解液の難燃化の方法として、樹脂材料の難燃剤として知られるリン酸エステルの添加が検討されている(例えば特許文献1、2参照)。   As a method for making the non-aqueous electrolyte flame-retardant, addition of a phosphoric acid ester known as a flame retardant for resin materials has been studied (for example, see Patent Documents 1 and 2).

しかし、非水電解液を電気自動車などに使用するためには安全性だけでなく、高い電池性能が要求されるが、これらのリン酸エステルを含む非水電解液は、電池の充放電効率、エネルギー密度、さらには電池寿命等の電池性能の点で必ずしも満足できるものではなかった。   However, in order to use a non-aqueous electrolyte in an electric vehicle or the like, not only safety but also high battery performance is required, but the non-aqueous electrolyte containing these phosphate esters is the charge / discharge efficiency of the battery, It was not always satisfactory in terms of battery performance such as energy density and battery life.

一方、ホウ素系の化合物は一般的にルイス酸性が高く、非水系二次電池の電解液に添加した場合、イオン伝導度やイオン溶解性を向上することが知られている。
例えば、トリス(ペンタフルオロフェニル)ボランもしくはホウ酸トリス(2H−ヘキサフルオロイソプロピル)を少量添加することでリチウム二次電池の大電流充放電特性を改善する方法が提案されている(例えば特許文献3、特許文献4、特許文献5参照)。
これら特許文献3〜5の実施例ではホウ酸トリス(2H−ヘキサフルオロイソプロピル)(HFPB)に関しては、最大12wt%添加した例が示されている。
On the other hand, boron compounds generally have high Lewis acidity, and it is known that when added to the electrolyte of a non-aqueous secondary battery, ion conductivity and ion solubility are improved.
For example, a method for improving large current charge / discharge characteristics of a lithium secondary battery by adding a small amount of tris (pentafluorophenyl) borane or tris (2H-hexafluoroisopropyl) borate has been proposed (for example, Patent Document 3). , Patent Document 4 and Patent Document 5).
In these Examples of Patent Documents 3 to 5, an example in which tris (2H-hexafluoroisopropyl) borate (HFPB) is added at a maximum of 12 wt% is shown.

さらにこの様なホウ素化合物は、イオン半径の小さなLi塩(例えば、LiFやLiCl、CFCOOLiなど)の解離性を向上し、非水系電解質二次電池で充放電が可能になることなども報告されている(例えば特許文献6、特許文献7、特許文献8および非特許文献3参照)。 Furthermore, such boron compounds have also been reported to improve the dissociation properties of Li salts with small ionic radii (for example, LiF, LiCl, CF 3 COOLi, etc.) and enable charge / discharge in non-aqueous electrolyte secondary batteries. (See, for example, Patent Document 6, Patent Document 7, Patent Document 8, and Non-Patent Document 3).

特開平8−22839号公報JP-A-8-22839 特開平11−260401号公報JP-A-11-260401 特開2008−198499号公報JP 2008-198499 A 特開2008−198542号公報JP 2008-198542 A 特開2009−43597号公報JP 2009-43597 A 米国特許第6022643号明細書US Pat. No. 6,022,463 米国特許第6352798号明細書US Pat. No. 6,352,798 特表2008−543002号公報Special table 2008-543002

富士経済,2008 電池関連市場実態調査 上巻 2008年Fuji Keizai, 2008 Battery-related market research 1st volume 2008 株式会社エヌティーエス、電子とイオンの機能化学シリーズvol.3、次世代型リチウム二次電池NTS Co., Ltd., Electron and ion functional chemistry series vol. 3. Next-generation lithium secondary battery Jounal of the Electrochemical Society, 151(9), A1429, 2004年Journal of the Electrochemical Society, 151 (9), A1429, 2004.

ここまで示したように、公知の難燃剤により、非水電解液の難燃性を向上するためには充放電特性やリサイクル特性といった電池性能を犠牲にしなければならなかった。
また、一方で、電池性能を向上するホウ素系化合物が難燃性を発現することについての報告例は知られておらず、その添加量についても難燃性を発現するような添加量ではなかった。
このように電池の安全性と性能の向上は相反するものであり、それぞれに必要な材料を選定する必要があった。
しかし、電池の大型化が進むにつれて、安全性と大電流充放電特性などの電池性能に対する要求は益々高くなっており、これらの性能を両立する材料が求められていた。
As described above, in order to improve the flame retardance of the non-aqueous electrolyte with a known flame retardant, battery performance such as charge / discharge characteristics and recycling characteristics must be sacrificed.
On the other hand, there is no known report about the boron-based compound that improves battery performance and exhibits flame retardancy, and the amount added is not an amount that exhibits flame retardancy. .
As described above, the improvement in the safety and performance of the batteries are contradictory, and it is necessary to select materials necessary for each.
However, as the size of batteries has increased, demands for battery performance such as safety and large current charge / discharge characteristics have been increasing, and materials that satisfy both of these performances have been demanded.

本発明者らは、電池性能の向上について鋭意検討してきた結果、大電流での充放電特性を向上することが出来るフッ素系ホウ酸エステルをある一定量用いることで、電解液の難燃性、自己消火性を発現することを見出し、本発明を完成させるに至った。
従来からフッ素系ホウ酸エステルは少量添加することで充放電特性及び充放電容量が向上し、大量に添加すると充放電特性及び充放電容量が悪化することが知られている。しかしながら、本発明者らは一定の範囲の添加であれば、若干充放電特性及び充放電容量を犠牲にするが、電解液の難燃性、自己消火性を発現することを見出した。
As a result of earnestly examining the improvement of battery performance, the present inventors have used a certain amount of a fluorine-based borate capable of improving the charge / discharge characteristics at a large current, so that the flame retardancy of the electrolyte solution, It has been found that self-extinguishing properties are exhibited, and the present invention has been completed.
Conventionally, it is known that charging and discharging characteristics and charging and discharging capacity are improved by adding a small amount of a fluorine-based borate ester, and charging and discharging characteristics and charging and discharging capacity are deteriorated when added in a large amount. However, the present inventors have found that if the addition is within a certain range, the charge / discharge characteristics and charge / discharge capacity are sacrificed to some extent, but the flame retardancy and self-extinguishing properties of the electrolyte are exhibited.

すなわち、本発明は非水電解液、特にリチウムイオン二次電池の電解液において、難燃性と電池性能の向上を両立した含フッ素ホウ酸エステルを含む非水電解液を提供することにある。   That is, an object of the present invention is to provide a nonaqueous electrolytic solution containing a fluorinated boric acid ester that has both improved flame retardancy and improved battery performance in a nonaqueous electrolytic solution, particularly an electrolytic solution of a lithium ion secondary battery.

以下に本発明を詳細に説明する。
本発明において、電解液に使用される含フッ素ホウ酸エステルは、下記一般式(1)
(式中、R1、R2、R3は同一、もしくは異なっていても良い炭素数1〜10のアルキル基、含フッ素アルキル基を示し、少なくともR1、R2、R3のうち、一つは含フッ素アルキル基である)で示されるホウ酸エステルである。
The present invention is described in detail below.
In the present invention, the fluorine-containing boric acid ester used in the electrolytic solution is represented by the following general formula (1)
(In the formula, R1, R2 and R3 may be the same or different and each represents an alkyl group having 1 to 10 carbon atoms or a fluorine-containing alkyl group, and at least one of R1, R2 and R3 is a fluorine-containing alkyl group. It is a borate ester represented by

アルキル基としては、メチル基、エチル基、分枝、および直鎖状のプロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素数1〜10のアルキル基を挙げることができる。また、含フッ素アルキル基としては、モノフルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、テトラフルオロエチル基、ペンタフルオロエチル基、オクタフルオロブチル基、ノナフルオロブチル基、ドデカフルオロヘキシル基、トリデカフルオロヘキシル基、ヘキサデカフルオロオクチル基、ヘプタデカフルオロオクチル基、エイコサフルオロデシル基等の炭素数1〜10の含フッ素アルキル基を挙げることができる。 Examples of the alkyl group include 1 to 10 carbon atoms such as methyl, ethyl, branched, and linear propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, and decyl groups. An alkyl group can be mentioned. Examples of the fluorine-containing alkyl group include a monofluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a tetrafluoroethyl group, a pentafluoroethyl group, an octafluorobutyl group, a nonafluorobutyl group, a dodecafluorohexyl group, and a trideca group. Examples thereof include fluorine-containing alkyl groups having 1 to 10 carbon atoms such as a fluorohexyl group, a hexadecafluorooctyl group, a heptadecafluorooctyl group, and an eicosafluorodecyl group.

このような含フッ素ホウ酸エステルの例として、ホウ酸トリス(2−モノフルオロエチル)、ホウ酸トリス(2,2−ジフルオロエチル)、ホウ酸トリス(2,2,2−トリフルオロエチル)、ホウ酸トリス(2,2,3,3−テトラフルオロプロピル)、ホウ酸トリス(2,2,3,3,3−ペンタフルオロプロピル)、ホウ酸トリス(ヘキサフルオロイソプロピル)、ホウ酸トリス(2,2,3,3,4,4,5,5−オクタフルオロペンチル)、ホウ酸トリス(2,2,2,3,3,4,4,5,5−ノナフルオロペンチル)、ホウ酸トリス(2,2,3,3,4,4,5,5,6,6,7,7−ドデカフルオロヘプチル)、ホウ酸トリス(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9−ヘキサデカフルオロノニル)、ホウ酸トリス(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11−エイコサデカフルオロウンデシル)等を挙げることができる。 Examples of such fluorinated boric acid esters include tris (2-monofluoroethyl) borate, tris (2,2-difluoroethyl) borate, tris (2,2,2-trifluoroethyl) borate, Tris borate (2,2,3,3-tetrafluoropropyl), tris borate (2,2,3,3,3-pentafluoropropyl), tris borate (hexafluoroisopropyl), tris borate (2 , 2,3,3,4,4,5,5-octafluoropentyl), tris borate (2,2,2,3,3,4,4,5,5-nonafluoropentyl), tris borate (2,2,3,3,4,5,5,6,6,7,7-dodecafluoroheptyl), tris borate (2,2,3,3,4,4,5,5,5) 6,6,7,7,8,8,9,9-hexadecafluorono ), Tris borate (2,2,3,3,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11-eicosadeca) Fluoroundecyl) and the like.

このような含フッ素ホウ酸エステルは例えば、Journal of the Chemical Society, 2895−2897頁,(1985年)に記載の、三塩化ホウ素から合成する方法やJournal of the Electrochemical Society, 145巻(8号),2813−2818頁 (1998年)記載のボラン・ジメチルスルフィド錯体から合成する方法が知られている。   Such a fluorinated boric acid ester is, for example, described in Journal of the Chemical Society, pages 2895-2897, (1985), or a method of synthesizing from boron trichloride, or Journal of the Electrochemical Society, Vol. 145 (8). , 2813-2818 (1998), a method of synthesizing from a borane-dimethyl sulfide complex is known.

次に本発明の含フッ素ホウ酸エステルを含有する非水系電解液について説明する。
非水電解液として通常用いられる有機溶媒として代表的なものは、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート等の環状カーボネート、γ−ブチロラクトン、γ−バレロラクトン、プロピオラクトン等の環状エステル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジフェニルカーボネート等の鎖状カーボネート、酢酸メチル、酪酸メチル等の鎖状エステル、テトラヒドロフラン、1,3−ジオキサン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、メチルジグライム等のエーテル類、アセトニトリル、ベンゾニトリル等のニトリル類、ジオキソラン又はその誘導体等の単独又はそれら2種以上の混合物等を挙げることができる。
Next, the nonaqueous electrolytic solution containing the fluorinated boric acid ester of the present invention will be described.
Representative examples of organic solvents that are usually used as non-aqueous electrolytes include, for example, cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, and chloroethylene carbonate, γ-butyrolactone, γ-valerolactone, and propiolactone. Cyclic esters, chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, diphenyl carbonate, chain esters such as methyl acetate, methyl butyrate, tetrahydrofuran, 1,3-dioxane, dimethoxyethane, diethoxyethane, methoxyethoxyethane , Ethers such as methyl diglyme, nitriles such as acetonitrile and benzonitrile, dioxolane or a derivative thereof alone or a mixture of two or more thereof. wear.

非水系電解液を構成する電解質塩としては、非水系二次電池に使用される広電位領域において安定であるリチウム塩が使用できる。このような電解質塩として、例えば、LiBF、LiPF、LiClO、LiCFSO、LiN(CFSO、LiN(CSO、LiC(CFSO等が挙げられる。これらは単独で用いてもよく、2種以上混合して用いてもよい。なお、電池の高率充放電特性を良好なものとするため、非水系電解液における電解質塩の濃度は1〜2.5 mol/Lの範囲とすることが望ましい。 As the electrolyte salt constituting the non-aqueous electrolyte solution, a lithium salt that is stable in a wide potential region used in a non-aqueous secondary battery can be used. Examples of the electrolyte salt include LiBF 4 , LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC (CF 3 SO 2 ). 3 etc. are mentioned. These may be used alone or in combination of two or more. In order to improve the high rate charge / discharge characteristics of the battery, it is desirable that the concentration of the electrolyte salt in the non-aqueous electrolyte is in the range of 1 to 2.5 mol / L.

本発明において、非水電解液二次電池の難燃性、電池性能を良好なものとするため、非水系電解液における含フッ素ホウ酸エステルの濃度は10容積%以上、50容積%以下とすることが望ましく、さらには15容積%以上、30容積%以下であることが好ましい。   In the present invention, in order to improve the flame retardancy and battery performance of the non-aqueous electrolyte secondary battery, the concentration of the fluorinated boric acid ester in the non-aqueous electrolyte is 10% by volume or more and 50% by volume or less. Desirably, it is preferably 15% by volume or more and 30% by volume or less.

先に述べたように、フッ素原子を含有するホウ酸エステルはルイス酸性が高く、電池に少量添加することで電池性能を向上することが知られており、添加量が10容積%未満の場合でも、イオンの解離性促進や電極と界面の抵抗成分の制御などに効果を発揮すると考えられる。   As mentioned earlier, boric acid esters containing fluorine atoms have high Lewis acidity and are known to improve battery performance by adding a small amount to the battery, even when the addition amount is less than 10% by volume. It is considered that this is effective in promoting ion dissociation and controlling resistance components between the electrode and the interface.

しかし、本発明において、電池の安全性および高性能化を両立するために、15容積%以下では電解液の難燃化効果が充分でないことがある。
一方で、50容積%を超える量のホウ酸エステルを混合した場合、難燃化効果は充分であるが、電解質の溶解度が低下し、最適な電池性能を発揮できないことがある。
本発明の非水系二次電池は、上記組成の電解液を使用するものであり、少なくとも正極、負極、セパレータから成る電池である。
However, in the present invention, in order to achieve both the safety and high performance of the battery, the flame retarding effect of the electrolytic solution may not be sufficient at 15% by volume or less.
On the other hand, when boric acid ester in an amount exceeding 50% by volume is mixed, the flame retarding effect is sufficient, but the solubility of the electrolyte is lowered, and optimal battery performance may not be exhibited.
The non-aqueous secondary battery of the present invention uses an electrolytic solution having the above composition, and is a battery comprising at least a positive electrode, a negative electrode, and a separator.

本発明の方法によれば、非水電解液二次電池、特にリチウムイオン二次電池の電解液において、難燃性と電池性能の向上を両立した含フッ素ホウ酸エステルを含む非水系電解液を提供することが出来る。   According to the method of the present invention, in a non-aqueous electrolyte secondary battery, in particular, an electrolyte of a lithium ion secondary battery, a non-aqueous electrolyte containing a fluorinated boric acid ester having both improved flame retardancy and battery performance is obtained. Can be provided.

コイン型リチウムイオン二次電池の構造を示す図である。It is a figure which shows the structure of a coin-type lithium ion secondary battery.

以下、本発明を実施例にて説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.

1.電解液の調製
電解液溶媒としてエチレンカーボネート(以下ECと略す)、ジメチルカーボネート(以下DMCと略す)を体積比1:1の割合で混合した溶媒を用い、これにホウ酸トリス(2,2,2−トリフルオロエチル)(以下TFEBと略す)を所定量混合したものに、電解質として六フッ化リン酸リチウム(LiPF)を1.0mol/L溶解させた。また、比較例として、ECおよびDMCの混合溶媒のみ、さらにフッ素を含有しないホウ酸トリス(トリメチル)を所定の割合で混合した混合溶媒に電解質としてLiPFを同量用いた電解液を用意した。
1. Preparation of Electrolyte Solution As an electrolyte solvent, a solvent in which ethylene carbonate (hereinafter abbreviated as EC) and dimethyl carbonate (hereinafter abbreviated as DMC) were mixed at a volume ratio of 1: 1 was used. In a mixture of a predetermined amount of 2-trifluoroethyl) (hereinafter abbreviated as TFEB), 1.0 mol / L of lithium hexafluorophosphate (LiPF 6 ) was dissolved as an electrolyte. As a comparative example, an electrolytic solution was prepared using the same amount of LiPF 6 as an electrolyte in a mixed solvent obtained by mixing only a mixed solvent of EC and DMC, and further tris borate (trimethyl) containing no fluorine at a predetermined ratio.

2.難燃性(自己消火性)試験
0.25gのグラスウールに電解液0.5gを約2cmの円状に滴下した。この電解液を浸漬したグラスウールを炎にさらして引火させ、引火の有無、さらに引火した場合は消火するまでの時間を測定した。この試験を5回測定し、5回のうち上下2点を除いた、3点の平均値を1g当りの消火時間(SET、sec/g)として比較した。
なお、ホウ酸トリス(2,2,3,3−テトラフルオロプロピル)(TFPB)、ホウ酸トリス(2H−ヘキサフルオロイソプロピル)(HFPB)を用いて同様の難燃化(自己消化性)試験を行った結果を表−1に示す。
2. Flame retardancy (self-extinguishing) test 0.5 g of electrolyte solution was dropped into 0.25 g of glass wool in a circular shape of about 2 cm. The glass wool in which this electrolyte solution was immersed was exposed to flame and ignited, and the presence or absence of ignition and the time until extinguishing when ignited were measured. This test was measured 5 times, and the average value of 3 points, excluding the upper and lower 2 points out of 5 times, was compared as the fire extinguishing time per 1 g (SET, sec / g).
The same flame retardant (self-digestibility) test was conducted using tris (2,2,3,3-tetrafluoropropyl) borate (TFPB) and tris (2H-hexafluoroisopropyl) borate (HFPB). The results are shown in Table-1.

3.電池の充放電効率およびサイクル特性
正極活物質としてコバルト酸リチウム(LiCoO)を用い、これに導電助剤としてカーボンブラック、バインダーとしてポリフッ化ビニリデン(PVDF)をLiCoO:カーボンブラック:PVDF=85:7:8となるように配合し、1−メチル−2−ピロリドンを用いてスラリー化したものをアルミニウム集電体上に一定の膜圧で塗布し、乾燥させて正極を得た。
3. Charging / discharging efficiency and cycle characteristics of the battery Lithium cobaltate (LiCoO 2 ) was used as the positive electrode active material, and carbon black was used as the conductive additive, and polyvinylidene fluoride (PVDF) was used as the binder, LiCoO 2 : carbon black: PVDF = 85: What was blended so as to be 7: 8 and slurried using 1-methyl-2-pyrrolidone was applied onto the aluminum current collector at a constant film pressure and dried to obtain a positive electrode.

負極活物質としてはリチウム金属箔を用い、銅集電体に圧着して負極を得た。
セパレータとしてはグラスフィルターを用いた。
EC:DMCを体積比で1:1に混合しこれにTFEBを所定量添加した。この混合溶媒にLiPFを1.0モル/Lになるように溶解したものを電解液として使用した。
A lithium metal foil was used as the negative electrode active material, and a negative electrode was obtained by pressure bonding to a copper current collector.
A glass filter was used as the separator.
EC: DMC was mixed at a volume ratio of 1: 1, and a predetermined amount of TFEB was added thereto. A solution obtained by dissolving LiPF 6 in the mixed solvent to be 1.0 mol / L was used as the electrolyte.

以上の構成要素を用いて、図1に示した構造のコイン型リチウムイオン二次電池を作成した。尚、電池としてはコイン型に限らず円筒型など任意である。
動作原理は、集電体2,4間に直流電圧を印加して充電を行うと、正極3のLiCoOの層間に存在するLiイオンが電解液を通り、負極1に堆積し、放電時にはエネルギー的に安定な化学ポテンシャルが低い状態である正極3のLiCoOの層間にLiイオンが戻る。このエネルギー差によって電圧が発生する。
A coin-type lithium ion secondary battery having the structure shown in FIG. 1 was prepared using the above components. Note that the battery is not limited to a coin type, and may be a cylindrical type.
The operating principle is that when charging is performed by applying a DC voltage between the current collectors 2 and 4, Li ions existing between the LiCoO 2 layers of the positive electrode 3 pass through the electrolytic solution and deposit on the negative electrode 1. Li ions return between the LiCoO 2 layers of the positive electrode 3 in a state where the stable chemical potential is low. This energy difference generates a voltage.

この様に作成した電池を25℃の恒温条件下、1.0mAの電流で上限電圧を4.2Vとして充電し、続いて1.0mAの電流で3.0Vとなるまで放電した際の充放電効率を測定した。このような充放電サイクルを200回繰返し、初回の放電容量に対する200回目の放電容量比をサイクル維持率として算出した。   Charging / discharging when the battery thus prepared was charged at a constant current of 25 ° C. with a current of 1.0 mA and an upper limit voltage of 4.2 V, and then discharged with a current of 1.0 mA to 3.0 V. Efficiency was measured. Such a charge / discharge cycle was repeated 200 times, and the ratio of the 200th discharge capacity to the initial discharge capacity was calculated as the cycle maintenance ratio.

また、同様に作成した電池を25℃の恒温条件下、10mAの電流で上限電圧を4.2Vとして定電流・定電圧充電した後、30mAの電流で3.0Vとなるまで放電した際の充放電効率を測定した。この試験を200回繰返し、初回の充放電効率に対する200回目の放電容量を高率充放電維持率として算出した。結果を表1に示す。   In addition, after charging a battery prepared in the same manner at a constant current of 25 mA and a constant current / constant voltage with a current of 10 mA and an upper limit voltage of 4.2 V, the battery was discharged to 3.0 V with a current of 30 mA. The discharge efficiency was measured. This test was repeated 200 times, and the 200th discharge capacity with respect to the initial charge / discharge efficiency was calculated as a high rate charge / discharge maintenance rate. The results are shown in Table 1.

なお、ホウ酸トリス(2,2,3,3−テトラフルオロプロピル)(TFPB)、ホウ酸トリス(2H−ヘキサフルオロイソプロピル)(HFPB)を用いて同様のサイクル維持率、および高率充放電維持率の測定を行った結果を併せて表1に示す。















It should be noted that tricycle (2,2,3,3-tetrafluoropropyl) borate (TFPB) and tris (2H-hexafluoroisopropyl) borate (HFPB) were used to maintain the same cycle maintenance rate and high rate charge / discharge maintenance. The results of the rate measurement are also shown in Table 1.
















4.LiPF溶解性試験
EC:DMCを体積比で1:1に混合しこれにTFEBを10容積%から50容積%まで添加し、この混合溶媒にLiPFを加熱溶解させ、冷却により結晶析出した上澄みの飽和溶解度を19F−NMRにより測定した。その結果を表2に示す。
4). LiPF 6 Solubility Test EC: 1 of DMC at a volume ratio of: 1 mixture was added TFEB from 10 volume% to up to 50 volume%, the LiPF 6 dissolved by heating in the mixed solvent, the supernatant was crystallized out by cooling The saturation solubility of was measured by 19F-NMR. The results are shown in Table 2.


1 負極(リチウム箔)
2 集電体(Cu)
3 正極(LiCoO
4 集電体(Al)
5 セパレータ(グラスフィルター)
1 Negative electrode (lithium foil)
2 Current collector (Cu)
3 Positive electrode (LiCoO 2 )
4 Current collector (Al)
5 Separator (glass filter)

Claims (5)

下記一般式(1)
(式中、R1、R2、R3は同一、もしくは異なっていても良い炭素数1〜10のアルキル基、含フッ素アルキル基を示し、少なくともR1、R2、R3のうち、一つは含フッ素アルキル基である)に示される含フッ素ホウ酸エステルを自己消火性を高めるために含むリチウムイオン二次電池電解液用添加材。
The following general formula (1)
(In the formula, R1, R2 and R3 may be the same or different and each represents an alkyl group having 1 to 10 carbon atoms or a fluorine-containing alkyl group, and at least one of R1, R2 and R3 is a fluorine-containing alkyl group. An additive for an electrolytic solution of a lithium ion secondary battery containing the fluorinated boric acid ester shown in FIG.
上記含フッ素ホウ酸エステルがホウ酸トリス(2,2,2−トリフルオロエチル)である請求項1記載のリチウムイオン二次電池電解液用添加材。 The additive for a lithium ion secondary battery electrolyte according to claim 1, wherein the fluorinated boric acid ester is tris (2,2,2-trifluoroethyl) borate. 上記含フッ素ホウ酸エステルがホウ酸トリス(2,2,3,3−テトラフルオロプロピル)である請求項1記載のリチウムイオン二次電池電解液用添加材。 The additive for an electrolytic solution of a lithium ion secondary battery according to claim 1, wherein the fluorinated boric acid ester is tris (2,2,3,3-tetrafluoropropyl) borate. 上記含フッ素ホウ酸エステルがホウ酸トリス(2H−ヘキサフルオロイソプロピル)である請求項1記載のリチウムイオン二次電池電解液用添加材。 The additive for an electrolytic solution of a lithium ion secondary battery according to claim 1, wherein the fluorinated boric acid ester is tris borate (2H-hexafluoroisopropyl). 上記一般式(1)の含フッ素ホウ酸エステルの含有量が非水電解液に対して15容積%から50容積%の範囲内で混合する請求項1乃至請求項4に記載のリチウムイオン二次電池電解液用添加材。 5. The lithium ion secondary according to claim 1, wherein the content of the fluorine-containing borate ester of the general formula (1) is mixed within a range of 15% by volume to 50% by volume with respect to the nonaqueous electrolytic solution. Additive for battery electrolyte.
JP2010009634A 2010-01-20 2010-01-20 Additive for lithium ion secondary battery electrolyte Active JP5421803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010009634A JP5421803B2 (en) 2010-01-20 2010-01-20 Additive for lithium ion secondary battery electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010009634A JP5421803B2 (en) 2010-01-20 2010-01-20 Additive for lithium ion secondary battery electrolyte

Publications (2)

Publication Number Publication Date
JP2011150820A true JP2011150820A (en) 2011-08-04
JP5421803B2 JP5421803B2 (en) 2014-02-19

Family

ID=44537645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010009634A Active JP5421803B2 (en) 2010-01-20 2010-01-20 Additive for lithium ion secondary battery electrolyte

Country Status (1)

Country Link
JP (1) JP5421803B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108011125A (en) * 2017-12-13 2018-05-08 哈尔滨工业大学 A kind of purposes containing boron element and fluorine-containing functional group's material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534775A (en) * 1999-01-05 2002-10-15 エス・アール・アイ・インターナシヨナル Fabrication of electrodes and devices containing electrodes
JP2003132946A (en) * 2001-10-24 2003-05-09 Mitsui Chemicals Inc Nonaqueous electrolytic solution and secondary battery using the same
JP2003317800A (en) * 2002-04-25 2003-11-07 Mitsui Chemicals Inc Manufacturing method of nonaqueous electrolyte battery and nonaqueous electrolyte battery provided by method
JP2008198499A (en) * 2007-02-13 2008-08-28 Sony Corp Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using it
JP2008198542A (en) * 2007-02-15 2008-08-28 Sony Corp Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using it
JP2008543002A (en) * 2005-05-26 2008-11-27 カリフォルニア インスティテュート オブ テクノロジー High voltage and high specific capacity dual intercalation electrode Li-ion battery
JP2008300525A (en) * 2007-05-30 2008-12-11 Bridgestone Corp Nonaqueous electrolyte for capacitor, and nonaqueous electrolyte capacitor having the nanoqueous electrolyte
JP2008300125A (en) * 2007-05-30 2008-12-11 Bridgestone Corp Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2009043597A (en) * 2007-08-09 2009-02-26 Sony Corp Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using the same
WO2011037263A1 (en) * 2009-09-28 2011-03-31 国立大学法人静岡大学 Solvent for electrolytic solution, electrolytic solution, and gel-like electrolyte

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002534775A (en) * 1999-01-05 2002-10-15 エス・アール・アイ・インターナシヨナル Fabrication of electrodes and devices containing electrodes
JP2003132946A (en) * 2001-10-24 2003-05-09 Mitsui Chemicals Inc Nonaqueous electrolytic solution and secondary battery using the same
JP2003317800A (en) * 2002-04-25 2003-11-07 Mitsui Chemicals Inc Manufacturing method of nonaqueous electrolyte battery and nonaqueous electrolyte battery provided by method
JP2008543002A (en) * 2005-05-26 2008-11-27 カリフォルニア インスティテュート オブ テクノロジー High voltage and high specific capacity dual intercalation electrode Li-ion battery
JP2008198499A (en) * 2007-02-13 2008-08-28 Sony Corp Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using it
JP2008198542A (en) * 2007-02-15 2008-08-28 Sony Corp Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using it
JP2008300525A (en) * 2007-05-30 2008-12-11 Bridgestone Corp Nonaqueous electrolyte for capacitor, and nonaqueous electrolyte capacitor having the nanoqueous electrolyte
JP2008300125A (en) * 2007-05-30 2008-12-11 Bridgestone Corp Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same
JP2009043597A (en) * 2007-08-09 2009-02-26 Sony Corp Nonaqueous electrolyte solution and nonaqueous electrolyte solution secondary battery using the same
WO2011037263A1 (en) * 2009-09-28 2011-03-31 国立大学法人静岡大学 Solvent for electrolytic solution, electrolytic solution, and gel-like electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108011125A (en) * 2017-12-13 2018-05-08 哈尔滨工业大学 A kind of purposes containing boron element and fluorine-containing functional group's material

Also Published As

Publication number Publication date
JP5421803B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP6255722B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP5622424B2 (en) Electrolyte for secondary battery
JP5484078B2 (en) Nonaqueous electrolyte containing fluorine-containing phosphoric ester amide
KR20180093700A (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
JP2019057356A (en) Electrolytic solution for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using the same
JP6799085B2 (en) Lithium ion battery
WO2016080063A1 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte lithium battery
WO2013187073A1 (en) METHOD FOR STABILIZING LiPF6, ELECTROLYTE SOLUTION FOR NONAQUEOUS SECONDARY BATTERIES HAVING EXCELLENT THERMAL STABILITY, AND NONAQUEOUS SECONDARY BATTERY HAVING EXCELLENT THERMAL STABILITY
WO2012011507A1 (en) Non-aqueous electrolyte for secondary batteries, and secondary battery
WO2012147566A1 (en) Non-aqueous electrolyte solution for secondary cell, and non-aqueous electrolyte secondary cell
WO2012117852A1 (en) Nonaqueous electrolytic solution for secondary cell, and nonaqueous electrolytic solution secondary cell
JP5903286B2 (en) Non-aqueous electrolyte secondary battery
CN110970662B (en) Non-aqueous electrolyte and lithium ion battery
WO2016002481A1 (en) Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
WO2013094602A1 (en) Organic electrolyte, and organic electrolyte storage battery
JP2017004603A (en) Non-aqueous electrolyte and non-aqueous secondary battery
JP5877109B2 (en) Phosphorus-containing sulfonic acid ester compound, additive for non-aqueous electrolyte, non-aqueous electrolyte, and electricity storage device
JP6681721B2 (en) Non-aqueous electrolyte and non-aqueous secondary battery using the same
CN110970663A (en) Non-aqueous electrolyte and lithium ion battery
CN110970660A (en) Non-aqueous electrolyte and lithium ion battery
JP5421803B2 (en) Additive for lithium ion secondary battery electrolyte
JP2013069512A (en) Nonaqueous electrolytic solution, lithium ion secondary battery, and module
JP2017004638A (en) Electrolyte salt, non-aqueous electrolytic solution containing electrolyte salt, and power storage device using non-aqueous electrolytic solution
JP2011165449A (en) Lithium secondary battery
WO2015075811A1 (en) Electrolyte solution for lithium ion secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

R150 Certificate of patent or registration of utility model

Ref document number: 5421803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250