WO2016002481A1 - Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same - Google Patents

Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same Download PDF

Info

Publication number
WO2016002481A1
WO2016002481A1 PCT/JP2015/067049 JP2015067049W WO2016002481A1 WO 2016002481 A1 WO2016002481 A1 WO 2016002481A1 JP 2015067049 W JP2015067049 W JP 2015067049W WO 2016002481 A1 WO2016002481 A1 WO 2016002481A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
electrolyte
aqueous electrolyte
oxalato
electrolyte battery
Prior art date
Application number
PCT/JP2015/067049
Other languages
French (fr)
Japanese (ja)
Inventor
孝敬 森中
幹弘 高橋
益隆 新免
誠 久保
渉 河端
寛樹 松崎
建太 山本
憲治 久保
勝也 久保
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2016002481A1 publication Critical patent/WO2016002481A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a non-aqueous electrolyte battery containing at least lithium hexafluorophosphate as a solute and a non-aqueous electrolyte battery using the same.
  • non-aqueous electrolyte batteries such as lithium ion batteries, lithium batteries, and lithium ion capacitors have been actively developed.
  • Non-aqueous electrolyte battery One problem with such a non-aqueous electrolyte battery is that the battery is swollen due to gas generation accompanying the electrochemical decomposition reaction of the components contained in the electrolyte during use of the battery, and the battery characteristics are deteriorated accordingly.
  • the present applicant has previously determined that the high-temperature cycle characteristics and 45 ° C. of the non-aqueous electrolyte battery can be obtained without impairing the battery characteristics by suppressing the gas generation associated with the electrochemical decomposition reaction of the components contained in the electrolyte.
  • Patent Document 1 A patent application was filed for an invention relating to an electrolyte solution for a non-aqueous electrolyte battery for improving durability such as high-temperature storage stability
  • This electrolyte is In a non-aqueous electrolyte battery electrolyte containing a non-aqueous organic solvent and a solute, First compound consisting of bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, tetrafluoro (oxalato) phosphate as additives At least one compound selected from the group; It includes at least one compound selected from the group consisting of an imide salt having a predetermined structure and an imide salt having a sulfonate group, and an imide salt having a predetermined structure and having a phosphoryl group. .
  • the electrolyte for a non-aqueous electrolyte battery described above it is possible to suppress the generation of gas accompanying the electrochemical decomposition reaction of components contained in the electrolyte, thereby reducing the performance of the non-aqueous electrolyte battery.
  • durability such as high-temperature cycle characteristics and high-temperature storage stability of 45 ° C. or higher can be improved
  • the amount of gas generated when used as a battery is preferably as small as possible, and the amount of gas generated can be further suppressed without impairing battery characteristics.
  • An electrolyte for a non-aqueous electrolyte battery may be required.
  • the present invention provides an electrolyte for a non-aqueous electrolyte battery that can further suppress the amount of gas generated during a charge / discharge cycle without impairing the battery characteristics when used in a non-aqueous electrolyte battery, and uses the same.
  • An object of the present invention is to provide a nonaqueous electrolyte battery.
  • non-aqueous electrolyte for a non-aqueous electrolyte battery containing a non-aqueous solvent and a solute, Containing at least lithium hexafluorophosphate as a solute, Containing at least one imide salt having a phosphoryl group in which at least one fluorine atom is bonded to a phosphorus atom; Substantially free of bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, and tetrafluoro (oxalato) phosphate, non- As an electrolyte for water electrolyte batteries, It has been found that when the electrolyte is used in a non-aqueous electrolyte battery, the amount of gas generation can be further suppressed without
  • the present invention provides a nonaqueous electrolyte solution for a nonaqueous electrolyte battery containing a nonaqueous solvent and a solute, Containing at least lithium hexafluorophosphate as a solute, Containing at least one imide salt having a phosphoryl group represented by the general formula (I) (hereinafter sometimes simply referred to as “imide salt”), Substantially free of bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, and tetrafluoro (oxalato) phosphate.
  • imide salt having a phosphoryl group represented by the general formula (I) (hereinafter sometimes simply referred to as “imide salt”)
  • R 1 to R 4 are each independently a fluorine atom or an organic group represented by —OR 5 ;
  • R 5 is a linear or branched alkyl group, alkenyl group having 1 to 10 carbon atoms, or And at least one organic group selected from an alkynyl group, a cycloalkyl group or a cycloalkenyl group having 3 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and a fluorine atom or an oxygen atom in the organic group
  • Unsaturated bonds can also be present.
  • M represents an alkali metal cation, an alkaline earth metal cation, or an onium cation, and m represents an integer equal to the valence of the corresponding cation. However, at least one of R 1 to R 4 represents a fluorine atom. ]
  • the imide salt represented by the general formula (I) the more PF bonds, the more excellent the cycle characteristics and the internal resistance characteristics when the electrolyte containing the imide salt is used in a non-aqueous electrolyte battery. Since it is easy to exhibit, it is preferable that the imide salt represented by the general formula (I) is a compound in which R 1 to R 4 are all fluorine atoms.
  • the imide salt represented by the general formula (I) is a compound in which the organic group represented by R 5 is at least one group selected from a hydrocarbon group having 6 or less carbon atoms which may contain a fluorine atom. It is preferable that
  • the group represented by R 5 is a methyl group, an ethyl group, a propyl group, a vinyl group, an allyl group, an ethynyl group, a 2-propynyl group, a phenyl group, From 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2,2,3,3-tetrafluoropropyl group, and 1,1,1,3,3,3-hexafluoroisopropyl group A compound which is at least one selected group is preferable.
  • the counter cation of the imide salt represented by the general formula (I) is preferably at least one counter cation selected from the group consisting of lithium ions, sodium ions, potassium ions, and tetraalkylammonium ions.
  • the addition amount of the imide salt represented by the general formula (I) is preferably in the range of 0.01 to 5.0% by mass with respect to the total amount of the electrolyte for the nonaqueous electrolyte battery.
  • the imide salt represented by the general formula (I) is preferably highly pure, and particularly preferably the Cl (chlorine) content is 5000 mass ppm or less, particularly 1000 mass ppm or less. Further preferred.
  • lithium tetrafluoroborate LiBF 4
  • bis (fluorosulfonyl) imide lithium LiN (FSO 2 ) 2
  • bis (trifluoromethanesulfonyl) imide lithium LiN (CF 3 SO 2 ) 2
  • at least one selected from the group consisting of lithium difluorophosphate LiPO 2 F 2
  • LiBF 4 lithium tetrafluoroborate
  • bis (fluorosulfonyl) imide lithium LiN (FSO 2 ) 2
  • bis (trifluoromethanesulfonyl) imide lithium LiN (CF 3 SO 2 ) 2
  • at least one selected from the group consisting of lithium difluorophosphate LiPO 2 F 2
  • the non-aqueous solvent is at least one selected from the group consisting of cyclic carbonates, chain carbonates, cyclic esters, chain esters, cyclic ethers, chain ethers, sulfone compounds, sulfoxide compounds, and ionic liquids. Is preferred.
  • the present invention also provides a nonaqueous electrolyte battery comprising at least a positive electrode, a negative electrode, and an electrolyte for a nonaqueous electrolyte battery, wherein the electrolyte for the nonaqueous electrolyte battery is the above-described electrolysis for a nonaqueous electrolyte battery. It is a nonaqueous electrolyte battery characterized by being a liquid.
  • the electrolyte of the present invention When the electrolyte of the present invention is used in a non-aqueous electrolyte battery, the amount of gas generated during a high-temperature charge / discharge cycle can be greatly suppressed, and battery characteristics (cycle characteristics, internal resistance characteristics) associated with gas generation can be reduced. ) Can be suppressed.
  • the non-aqueous electrolyte battery electrolyte of the present invention is a non-aqueous electrolyte battery non-aqueous electrolyte solution containing a non-aqueous solvent and a solute. Containing at least lithium hexafluorophosphate as a solute, Containing at least one imide salt having a phosphoryl group represented by the general formula (I), Substantially free of bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, and tetrafluoro (oxalato) phosphate. It is the electrolyte solution for non-aqueous electrolyte batteries characterized.
  • the electrolyte substantially comprises bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, and tetrafluoro (oxalato) phosphate.
  • the electrolyte is used in a non-aqueous electrolyte battery, the amount of gas generated can be further suppressed. “Substantially not contained” means that the concentration of the total amount of the above compounds in the electrolytic solution is 100 ppm by mass or less.
  • examples of the alkyl group represented by R 5 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, secondary butyl group, tertiary butyl group, pentyl group, 2, 2 -Carbon atoms such as difluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3-tetrafluoropropyl, and 1,1,1,3,3,3-hexafluoroisopropyl
  • Examples of the alkenyl group include vinyl group, allyl group, 1-propenyl group, isopropenyl group, 2-butenyl group, and 1,3-butadienyl group.
  • Examples include alkenyl groups having 2 to 8 carbon atoms or fluorine-containing alkenyl groups.
  • alkynyl groups include ethynyl group, 2-propynyl group, and 1,1 dimethyl-2-propynyl group. Examples thereof include alkynyl groups having 2 to 8 carbon atoms or fluorine-containing alkynyl groups.
  • cycloalkyl groups include cycloalkyl groups having 3 to 10 carbon atoms such as cyclopentyl groups and cyclohexyl groups or fluorine-containing cycloalkyl groups.
  • Examples of the cycloalkenyl group include a cycloalkenyl group having 3 to 10 carbon atoms such as a cyclopentenyl group and a cyclohexenyl group or a fluorine-containing cycloalkenyl group.
  • Examples of the aryl group include a phenyl group, a tolyl group, and Examples thereof include aryl groups having 6 to 10 carbon atoms such as xylyl groups and fluorine-containing aryl groups.
  • examples of the anion of the imide salt represented by the general formula (I) include the following compound Nos. 1-No. 10 etc. are mentioned.
  • the imide salt used in the present invention is not limited by the following examples.
  • R 1 to R 4 is a fluorine atom. The reason is not clear, but unless at least one is a fluorine atom, the effect of suppressing the internal resistance of a battery using the electrolytic solution is not sufficient.
  • the organic group represented by R 5 is preferably at least one group selected from hydrocarbon groups having 6 or less carbon atoms which may contain a fluorine atom.
  • the number of carbon atoms is large, the internal resistance tends to be relatively large when a film is formed on the electrode. It is preferable that the number of carbon atoms is 6 or less because the above-mentioned internal resistance tends to be smaller.
  • methyl group, ethyl group, propyl group, vinyl group, allyl group, ethynyl group, 2-propynyl group, phenyl group, 2 , 2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2,2,3,3-tetrafluoropropyl group, and 1,1,1,3,3,3-hexafluoroisopropyl group It is preferable that at least one group is obtained because a nonaqueous electrolyte battery that is superior in cycle characteristics and internal resistance characteristics can be obtained.
  • the imide salt represented by the above general formula (I) is preferably highly pure, and in particular, the Cl (chlorine) content is preferably 5000 ppm by mass or less, more preferably 1000 ppm by mass or less, and still more preferably Is 100 mass ppm or less.
  • Cl (chlorine) remains at a high concentration is not preferable because it tends to corrode battery members.
  • an imide salt (compound No. 1) in which all of R 1 to R 4 are fluorine atoms is, for example, Z. Anorg. Allg. Chem. 412 ( 1), 65-70, (1975).
  • An imide salt in which at least one of R 1 to R 4 has an organic group represented by —OR 5 is exemplified by, for example, Compound No. 1 can be obtained by adding a corresponding alcohol (HOR 5 ) and a base to react.
  • the electrolytic solution of the present invention tends to be able to suppress decomposition of lithium hexafluorophosphate, which is a solute, during high temperature storage.
  • the imide salt represented by the general formula (I) at least one of R 1 to R 4 is preferably a fluorine atom because the effect of improving the thermal stability of lithium hexafluorophosphate is easily exhibited.
  • the imide salt interacts with phosphorus pentafluoride to prevent phosphorus pentafluoride from causing a reaction other than the above reaction formula, so that the equilibrium of the above reaction formula is prevented from being tilted to the right. It is estimated that the thermal stability of lithium acid acid is improved.
  • the imide salt is a salt having a high degree of ionic dissociation in the solution, it does not cause a decrease in the ionic conductivity of the electrolytic solution. Does not increase resistance. Further, when a fluorine atom is bonded to phosphorus of an imide salt, the electron withdrawing effect causes delocalization of electrons in the anion, and the degree of ion dissociation can be further increased. In addition, it is considered that the imide salt according to the present invention is partially decomposed at the interface between the positive electrode and the electrolytic solution and the interface between the negative electrode and the electrolytic solution to form a film.
  • This film suppresses direct contact between the non-aqueous solvent or solute and the active material, prevents decomposition of the non-aqueous solvent or solute, and suppresses deterioration of battery performance.
  • the mechanism is not clear, it is thought that when fluorine atoms are bonded to phosphorus of imide salt, the charge of the film formed by the electron withdrawing effect is biased, and the film has high lithium conductivity, that is, low resistance. .
  • the above effect tends to increase as the number of PF bonds increases in the imide salt represented by the general formula (I).
  • a suitable addition amount of the imide salt used in the present invention is 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on the total amount of the nonaqueous electrolytic solution.
  • an upper limit is 5.0 mass% or less, Preferably it is 4.0 mass% or less, More preferably, it is 3.0 mass% or less. If the amount added is less than 0.01% by mass, it is not preferable because the effect of improving battery characteristics is hardly obtained. On the other hand, if the amount added exceeds 5.0% by mass, it is not preferable because it is not only useless because no further effect is obtained, but also because resistance is increased due to excessive film formation and deterioration of battery performance is likely to occur. .
  • These imide salts may be used alone as long as they do not exceed 5.0% by mass, or two or more of them may be used in any combination and ratio according to the application.
  • the type of the non-aqueous solvent used in the non-aqueous electrolyte battery electrolyte of the present invention is not particularly limited, and any non-aqueous solvent can be used.
  • Specific examples include cyclic carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate, cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone, methyl acetate, and propion.
  • Examples include chain esters such as methyl acid, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and dioxane, chain ethers such as dimethoxyethane and diethyl ether, sulfone compounds such as dimethyl sulfoxide and sulfolane, and sulfoxide compounds.
  • chain esters such as methyl acid
  • cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and dioxane
  • chain ethers such as dimethoxyethane and diethyl ether
  • sulfone compounds such as dimethyl sulfoxide and sulfolane
  • sulfoxide compounds e.g., butanethoxyethane and diethyl ether
  • sulfone compounds such as dimethyl sulfoxide and sulfolane
  • sulfoxide compounds e.g.,
  • propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate are particularly preferred from the viewpoint of electrochemical stability against redox and chemical stability related to the reaction with heat and the above solute.
  • the kind of the other solute that may coexist with lithium hexafluorophosphate used in the electrolyte solution for a non-aqueous electrolyte battery of the present invention is not particularly limited, and a conventionally known lithium salt can be used.
  • One kind of these solutes may be used alone, or two or more kinds thereof may be used in any combination and in any ratio according to the application.
  • LiBF 4 LiN (CF 3 SO 2 ) 2 , LiN (FSO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , and LiPO 2 F 2 is preferred.
  • the suitable concentration of these solutes is not particularly limited, but the lower limit is 0.5 mol / L or more, preferably 0.7 mol / L or more, more preferably 0.9 mol.
  • the upper limit is 2.5 mol / L or less, preferably 2.0 mol / L or less, and more preferably 1.5 mol / L or less. If the concentration is less than 0.5 mol / L, the ionic conductivity tends to decrease and the cycle characteristics and output characteristics of the nonaqueous electrolyte battery tend to decrease. On the other hand, if the concentration exceeds 2.5 mol / L, the nonaqueous electrolyte battery is used. When the viscosity of the electrolytic solution increases, the ionic conductivity also tends to be lowered, and the cycle characteristics and output characteristics of the nonaqueous electrolytic battery may be lowered.
  • the temperature of the non-aqueous electrolyte may increase due to the heat of dissolution of the solute.
  • the liquid temperature rises remarkably decomposition of the lithium salt containing fluorine atoms is accelerated and hydrogen fluoride may be generated. Hydrogen fluoride is not preferable because it causes deterioration of battery performance.
  • the liquid temperature when dissolving the solute in the non-aqueous solvent is not particularly limited, but is preferably ⁇ 20 to 80 ° C., more preferably 0 to 60 ° C.
  • the electrolyte solution for a non-aqueous electrolyte battery of the present invention is generally used as long as the gist of the present invention is not impaired.
  • non-aqueous electrolyte battery electrolyte in a quasi-solid state with a gelling agent or a crosslinked polymer as used in a non-aqueous electrolyte battery called a lithium polymer battery.
  • the non-aqueous electrolyte battery according to the present invention is characterized by using the above-described electrolyte for a non-aqueous electrolyte battery according to the present invention, and the other components are those used in general non-aqueous electrolyte batteries. Is used. That is, it comprises a positive electrode and a negative electrode capable of inserting and extracting lithium, a current collector, a separator, a container, and the like.
  • the negative electrode material is not particularly limited, but lithium metal, alloys of lithium and other metals or intermetallic compounds, various carbon materials, artificial graphite, natural graphite, metal oxides, metal nitrides, tin (single), A tin compound, silicon (simple substance), a silicon compound, activated carbon, a conductive polymer, or the like is used.
  • the positive electrode material is not particularly limited.
  • lithium-containing transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , and lithium-containing transition metals A composite oxide in which a plurality of transition metals such as Co, Mn, Ni, etc.
  • transition metal in the lithium-containing transition metal composite oxide is replaced with a metal other than the transition metal, olivine and LiFePO 4, LiCoPO 4, phosphoric acid compound of a transition metal such as LiMnPO 4 called, oxides such as TiO 2, V 2 O 5, MoO 3, TiS 2, sulfides such as FeS, or polyacetylene, polyparaphenylene, polyaniline , And conductive polymers such as polypyrrole, activated carbon, polymers that generate radicals, carbon materials, etc. It is use.
  • acetylene black, ketjen black, carbon fiber, graphite as a conductive material, polytetrafluoroethylene, polyvinylidene fluoride, SBR resin, etc. as a binder to the positive electrode or negative electrode material, and forming into a sheet shape It can be an electrode sheet.
  • a separator for preventing contact between the positive electrode and the negative electrode a nonwoven fabric or a porous sheet made of polypropylene, polyethylene, paper, glass fiber, or the like is used.
  • a non-aqueous electrolyte battery having a coin shape, cylindrical shape, square shape, aluminum laminate sheet shape or the like is assembled from the above elements.
  • Table 1 shows the preparation conditions of the non-aqueous electrolyte
  • Table 2 shows the storage stability evaluation results of the electrolyte
  • Table 3 shows the evaluation results of the battery using the electrolyte.
  • the values of the cycle characteristics, internal resistance characteristics, and gas generation amount of the batteries in Table 3 are the values of the electrolyte No. 1 before standing for one month after preparation. This is a relative value when the discharge capacity retention rate and internal resistance after the cycle test of the laminate cell produced using No. 33 and the amount of gas generated due to cycle characteristic evaluation are set to 100, respectively.
  • a mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 2 was used as the non-aqueous solvent, LiPF 6 was 1.0 mol / L as a solute in the solvent, and the imide compound No. 1 was used as an additive.
  • 1 lithium salt (Cl content in the imide salt is 90 mass ppm) was dissolved to a concentration of 0.03% by mass to prepare an electrolyte for a non-aqueous electrolyte battery. The above preparation was carried out while maintaining the liquid temperature in the range of 20-30 ° C.
  • the free acid of the electrolyte was measured by neutralization titration.
  • the measurement sample is an electrolytic solution within one day after preparation (electrolytic solution before standing at 75 ° C.) and an electrolytic solution after one month of standing at 75 ° C. after preparation.
  • the free acid was measured at room temperature.
  • As a titration indicator a 0.1 w / v% bromophenol blue ethanol (50%) solution was used.
  • Examples 1-2 to 1-29 A nonaqueous electrolytic solution was prepared in the same procedure as in Example 1-1 except that the conditions for preparing the nonaqueous electrolytic solution shown in Table 1 were followed. In addition, all Cl content in the imide salt used in the Example was about 90 mass ppm. In addition, in Examples 1-24 to 1-29, other electrolytes other than the imide salt and lithium hexafluorophosphate in Example 1-1 (hereinafter, may be simply referred to as “other electrolytes”) It is an experiment example regarding the electrolyte solution which contains.
  • Examples 1-2 to 1-29 bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate in the electrolytic solution
  • the total concentration of tetrafluoro (oxalato) phosphate was less than 100 ppm by mass.
  • Table 2 shows the results of evaluating the storage stability of the electrolytic solution
  • Table 3 shows the results of evaluating batteries using the electrolytic solution.
  • Comparative Examples 1-1 to 1-10 A nonaqueous electrolytic solution was prepared in the same procedure as in Example 1-1 except that the conditions for preparing the nonaqueous electrolytic solution shown in Table 1 were followed.
  • Comparative Examples 1-1 to 1-3 each of the following compound Nos. 11, no. 12 lithium salt is used, or instead of compound no. 13 is an experimental example relating to an electrolytic solution using 13 (amide compound).
  • Comparative Example 1-4 was prepared in the same manner as Example 1-1 except that neither imide salt nor other electrolyte was added. It is an experiment example regarding electrolyte solution.
  • Comparative Examples 1-1 to 1-4 bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate in the electrolytic solution
  • the total concentration of tetrafluoro (oxalato) phosphate was less than 100 ppm by mass.
  • Comparative Examples 1-5 to 1-10 as other electrolytes, were bis (oxalato) lithium borate, difluorobis (oxalato) lithium phosphate, tetrafluoro (oxalato) lithium phosphate, difluoro (oxalato), respectively.
  • Example 4 shows the evaluation results of the battery in which the negative electrode body used in Example 1-1 was changed.
  • a non-aqueous electrolyte No. 1 is used as an electrolyte for a non-aqueous electrolyte battery.
  • the cycle characteristics, internal resistance characteristics, and gas generation amount were evaluated in the same manner as in Example 1-1.
  • the negative electrode active material is Li 4 Ti 5 O 12
  • the negative electrode body is 90% by mass of Li 4 Ti 5 O 12 powder.
  • Example 33 are set to 100 (Comparative Example 2-1).
  • the negative electrode active material is graphite (silicon-containing)
  • the negative electrode body is composed of 80% by mass of graphite powder and 10% by mass of silicon powder.
  • PVDF polyvinylidene fluoride
  • Examples 3-1 to 3-4, Comparative examples 3-1 to 3-2 Table 4 shows the evaluation results of the batteries in which the positive electrode used in Example 1-1 was changed.
  • a non-aqueous electrolyte No. 1 is used as an electrolyte for a non-aqueous electrolyte battery.
  • the cycle characteristics, internal resistance characteristics, and gas generation amount were evaluated in the same manner as in Example 1-1.
  • the positive electrode body in which the positive electrode active material is LiCoO 2 is a mixture of 90% by mass of LiCoO 2 powder, 5% by mass of polyvinylidene fluoride (PVDF) as a binder and 5% by mass of acetylene black as a conductive material, and N-methyl. Pyrrolidone was added, and the resulting paste was applied on an aluminum foil and dried. The end-of-charge voltage during battery evaluation was 4.2 V, and the end-of-discharge voltage was 3.0 V.
  • the values of the cycle characteristics, internal resistance characteristics, and gas generation amount of the batteries are the same as those of the electrolyte No. 1 before standing for one month after preparation. This is a relative value when the discharge capacity retention rate after the cycle test, the internal resistance, and the gas generation amount associated with the cycle characteristic evaluation of the laminate cell produced using No. 33 are each 100 (Comparative Example 3-1).
  • Example 4-1 to 4-4 Comparative Examples 4-1 to 4-2
  • Table 4 shows the evaluation results of the batteries in which the positive electrode used in Example 1-1 was changed.
  • a non-aqueous electrolyte No. 1 is used as an electrolyte for a non-aqueous electrolyte battery.
  • the cycle characteristics, internal resistance characteristics, and gas generation amount were evaluated in the same manner as in Example 1-1.
  • the positive electrode body in which the positive electrode active material is LiNi 0.8 Co 0.15 Al 0.05 O 2 is composed of 90% by mass of LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, 5% by mass of polyvinylidene fluoride (PVDF) as a binder, and acetylene as a conductive material. Black was mixed at 5% by mass, N-methylpyrrolidone was further added, and the obtained paste was applied on an aluminum foil and dried.
  • the end-of-charge voltage during battery evaluation was 4.2 V, and the end-of-discharge voltage was 3.0 V.
  • Examples 4-1 to 4-4 and Comparative Example 4-2 the values of the cycle characteristics, internal resistance characteristics, and gas generation amount of the batteries are the same as those of the electrolyte No. 1 before standing for one month after preparation. This is a relative value when the discharge capacity retention rate, the internal resistance, and the gas generation amount associated with the cycle characteristics evaluation after the cycle test of the laminate cell produced using No. 33 are each 100 (Comparative Example 4-1).
  • Examples 5-1 to 5-4, Comparative Examples 5-1 to 5-2 Table 4 shows the evaluation results of the batteries in which the positive electrode used in Example 1-1 was changed.
  • a non-aqueous electrolyte No. 1 is used as an electrolyte for a non-aqueous electrolyte battery.
  • the cycle characteristics, internal resistance characteristics, and gas generation amount were evaluated in the same manner as in Example 1-1.
  • the positive electrode body in which the positive electrode active material is LiFePO 4 is obtained by adding 90% by mass of LiFePO 4 powder coated with amorphous carbon to 5% by mass of polyvinylidene fluoride (PVDF) as a binder and 5% by mass of acetylene black as a conductive material. %, Further N-methylpyrrolidone was added, and the resulting paste was applied on an aluminum foil and dried.
  • the end-of-charge voltage during battery evaluation was 4.1 V, and the end-of-discharge voltage was 2.5 V.
  • the values of the cycle characteristics, internal resistance characteristics, and gas generation amount of the batteries are the same as those of the electrolyte solution No. This is a relative value when the discharge capacity retention rate after the cycle test, the internal resistance, and the gas generation amount associated with the cycle characteristic evaluation of the laminate cell produced using No. 33 are each 100 (Comparative Example 5-1).
  • the laminate cell using the electrolyte for the non-aqueous electrolyte battery of the present invention It was confirmed that the cycle characteristics, internal resistance characteristics, and gas generation amount were superior to the corresponding comparative examples. Therefore, by using the electrolyte for a non-aqueous electrolyte battery of the present invention, a non-aqueous electrolyte battery exhibiting excellent cycle characteristics, internal resistance characteristics, and gas generation amount suppression can be obtained regardless of the type of the positive electrode active material. It was shown that.
  • the laminate cell using the electrolyte solution for a non-aqueous electrolyte battery of the present invention. It was confirmed that the cycle characteristics, internal resistance characteristics, and gas generation amount were superior to the corresponding comparative examples. Therefore, by using the electrolyte for a non-aqueous electrolyte battery of the present invention, a non-aqueous electrolyte battery exhibiting excellent cycle characteristics, internal resistance characteristics, and gas generation amount suppression can be obtained regardless of the type of the negative electrode active material. It was shown that.

Abstract

An electrolyte solution for nonaqueous electrolyte batteries containing a nonaqueous solvent and a solute, which contains at least lithium hexafluorophosphate as the solute, while containing at least one imide salt represented by formula M[R1R2OPNPOR3R4]m and having a phosphoryl group, but not substantially containing a bis(oxalato)borate, a difluoro(oxalato)borate, a tris(oxalato)phosphate, a difluorobis(oxalato)phosphate and a tetrafluoro(oxalato)phosphate. This electrolyte solution for nonaqueous electrolyte batteries is capable of further suppressing the amount of gas generation without deteriorating the battery characteristics.

Description

非水電解液電池用電解液、及びこれを用いた非水電解液電池Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
 本発明は、溶質として少なくともヘキサフルオロリン酸リチウムを含有する非水電解液電池用電解液及びそれを用いた非水電解液電池に関するものである。 The present invention relates to an electrolyte for a non-aqueous electrolyte battery containing at least lithium hexafluorophosphate as a solute and a non-aqueous electrolyte battery using the same.
 近年、情報関連機器、通信機器、即ちパソコン、ビデオカメラ、デジタルスチールカメラ、携帯電話等の小型、高エネルギー密度用途向けの蓄電システムや電気自動車、ハイブリッド車、燃料電池車補助電源、電力貯蔵等の大型、パワー用途向けの蓄電システムが注目を集めている。その一つの候補としてリチウムイオン電池、リチウム電池、リチウムイオンキャパシタ等の非水電解液電池が盛んに開発されている。 In recent years, information-related equipment, communication equipment, such as personal computers, video cameras, digital still cameras, mobile phones, and other small-sized, high energy density power storage systems, electric vehicles, hybrid vehicles, fuel cell vehicle auxiliary power supplies, power storage, etc. Large-scale, power storage systems for power applications are attracting attention. As one candidate, non-aqueous electrolyte batteries such as lithium ion batteries, lithium batteries, and lithium ion capacitors have been actively developed.
 このような非水電解液電池の一つの問題点として、電池の使用中の電解液に含まれる成分の電気化学的な分解反応に伴うガス発生による電池の膨れやそれに伴う電池特性の低下がある。
 本出願人は、先に、電解液に含まれる成分の電気化学的な分解反応に伴うガス発生を抑制することにより、電池特性を損なうことなく、非水電解液電池の高温サイクル特性や45℃以上の高温保存性等の耐久性を向上させるための非水電解液電池用電解液に関する発明を特許出願した(特許文献1)。
 この電解液は、
非水有機溶媒と溶質を含む非水電解液電池用電解液において、
添加剤として、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、テトラフルオロ(オキサラト)リン酸塩からなる第一化合物群から選ばれた少なくとも一つの化合物と、
所定の構造を有する、スルホン酸エステル基を有するイミド塩、及び、所定の構造を有する、ホスホリル基を有するイミド塩からなる第二化合物群から選ばれた少なくとも一つの化合物を含むことを特徴とする。
One problem with such a non-aqueous electrolyte battery is that the battery is swollen due to gas generation accompanying the electrochemical decomposition reaction of the components contained in the electrolyte during use of the battery, and the battery characteristics are deteriorated accordingly. .
The present applicant has previously determined that the high-temperature cycle characteristics and 45 ° C. of the non-aqueous electrolyte battery can be obtained without impairing the battery characteristics by suppressing the gas generation associated with the electrochemical decomposition reaction of the components contained in the electrolyte. A patent application was filed for an invention relating to an electrolyte solution for a non-aqueous electrolyte battery for improving durability such as high-temperature storage stability (Patent Document 1).
This electrolyte is
In a non-aqueous electrolyte battery electrolyte containing a non-aqueous organic solvent and a solute,
First compound consisting of bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, tetrafluoro (oxalato) phosphate as additives At least one compound selected from the group;
It includes at least one compound selected from the group consisting of an imide salt having a predetermined structure and an imide salt having a sulfonate group, and an imide salt having a predetermined structure and having a phosphoryl group. .
特開2013-051122号公報JP 2013-051122 A
 前記の非水電解液電池用電解液を用いると、電解液に含まれる成分の電気化学的な分解反応に伴うガス発生を抑制することで、電池性能を損なうことなく、非水電解液電池の高温サイクル特性や45℃以上の高温保存性等の耐久性を向上させることができるが、電池として用いた際のガス発生量は少ないほど望ましく、電池特性を損なうことなくガス発生量をより抑制できる非水電解液電池用電解液が求められる場合がある。 By using the electrolyte for a non-aqueous electrolyte battery described above, it is possible to suppress the generation of gas accompanying the electrochemical decomposition reaction of components contained in the electrolyte, thereby reducing the performance of the non-aqueous electrolyte battery. Although durability such as high-temperature cycle characteristics and high-temperature storage stability of 45 ° C. or higher can be improved, the amount of gas generated when used as a battery is preferably as small as possible, and the amount of gas generated can be further suppressed without impairing battery characteristics. An electrolyte for a non-aqueous electrolyte battery may be required.
 本発明は、非水電解液電池に用いた場合に電池特性を損なうことなく、充放電サイクル時のガス発生量をより抑制することができる、非水電解液電池用電解液、及びこれを用いた非水電解液電池を提供することを目的とする。 The present invention provides an electrolyte for a non-aqueous electrolyte battery that can further suppress the amount of gas generated during a charge / discharge cycle without impairing the battery characteristics when used in a non-aqueous electrolyte battery, and uses the same. An object of the present invention is to provide a nonaqueous electrolyte battery.
 本発明者らは、かかる問題に鑑み鋭意検討の結果、
非水溶媒と溶質とを含む非水電解液電池用非水電解液において、
溶質として少なくともヘキサフルオロリン酸リチウムを含有し、
リン原子に少なくとも1つのフッ素原子が結合したホスホリル基を有するイミド塩を少なくとも一つ含有し、
ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、及びテトラフルオロ(オキサラト)リン酸塩を実質的に含有しない、非水電解液電池用電解液とすると、
該電解液を非水電解液電池に用いた場合に、電池特性(サイクル特性や内部抵抗特性)を損なうことなく、ガス発生量をより抑制することができることを見出し、本発明に至った。
As a result of intensive studies in view of such problems, the present inventors have
In a non-aqueous electrolyte for a non-aqueous electrolyte battery containing a non-aqueous solvent and a solute,
Containing at least lithium hexafluorophosphate as a solute,
Containing at least one imide salt having a phosphoryl group in which at least one fluorine atom is bonded to a phosphorus atom;
Substantially free of bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, and tetrafluoro (oxalato) phosphate, non- As an electrolyte for water electrolyte batteries,
It has been found that when the electrolyte is used in a non-aqueous electrolyte battery, the amount of gas generation can be further suppressed without impairing battery characteristics (cycle characteristics and internal resistance characteristics), and the present invention has been achieved.
 すなわち本発明は、非水溶媒と溶質とを含む非水電解液電池用非水電解液において、
溶質として少なくともヘキサフルオロリン酸リチウムを含有し、
一般式(I)で示されるホスホリル基を有するイミド塩(以降、単に「イミド塩」と記載する場合がある)を少なくとも一つ含有し、
ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、及びテトラフルオロ(オキサラト)リン酸塩を実質的に含有しないことを特徴とする、非水電解液電池用電解液である。
Figure JPOXMLDOC01-appb-I000002
[式中、R1~R4 はそれぞれ互いに独立して、フッ素原子、又は-OR5で示される有機基;R5は炭素数1~10の直鎖あるいは分岐状のアルキル基、アルケニル基又はアルキニル基、炭素数が3~10のシクロアルキル基又はシクロアルケニル基、及び、炭素数が6~10のアリール基から選ばれる少なくとも1つの有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。Mはアルカリ金属カチオン、アルカリ土類金属カチオン、又はオニウムカチオンで、mは該当するカチオンの価数と同数の整数を表す。但し、R1~R4の少なくとも一つはフッ素原子を示す。]
That is, the present invention provides a nonaqueous electrolyte solution for a nonaqueous electrolyte battery containing a nonaqueous solvent and a solute,
Containing at least lithium hexafluorophosphate as a solute,
Containing at least one imide salt having a phosphoryl group represented by the general formula (I) (hereinafter sometimes simply referred to as “imide salt”),
Substantially free of bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, and tetrafluoro (oxalato) phosphate. It is the electrolyte solution for non-aqueous electrolyte batteries characterized.
Figure JPOXMLDOC01-appb-I000002
[Wherein R 1 to R 4 are each independently a fluorine atom or an organic group represented by —OR 5 ; R 5 is a linear or branched alkyl group, alkenyl group having 1 to 10 carbon atoms, or And at least one organic group selected from an alkynyl group, a cycloalkyl group or a cycloalkenyl group having 3 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and a fluorine atom or an oxygen atom in the organic group Unsaturated bonds can also be present. M represents an alkali metal cation, an alkaline earth metal cation, or an onium cation, and m represents an integer equal to the valence of the corresponding cation. However, at least one of R 1 to R 4 represents a fluorine atom. ]
 上記一般式(I)で示されるイミド塩において、P-F結合が多いほど、該イミド塩を含有する電解液を非水電解液電池に用いた場合に、優れたサイクル特性及び内部抵抗特性を発揮しやすいため、上記一般式(I)で示されるイミド塩が、R1~R4が全てフッ素原子である化合物であることが好ましい。 In the imide salt represented by the general formula (I), the more PF bonds, the more excellent the cycle characteristics and the internal resistance characteristics when the electrolyte containing the imide salt is used in a non-aqueous electrolyte battery. Since it is easy to exhibit, it is preferable that the imide salt represented by the general formula (I) is a compound in which R 1 to R 4 are all fluorine atoms.
 また、上記一般式(I)で示されるイミド塩が、R5で表される有機基がフッ素原子を含んでいてもよい炭素数6以下の炭化水素基から選ばれる少なくとも1つの基である化合物であることが好ましい。 In addition, the imide salt represented by the general formula (I) is a compound in which the organic group represented by R 5 is at least one group selected from a hydrocarbon group having 6 or less carbon atoms which may contain a fluorine atom. It is preferable that
 また、上記一般式(I)で示されるイミド塩が、R5で表される基が、メチル基、エチル基、プロピル基、ビニル基、アリル基、エチニル基、2-プロピニル基、フェニル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、及び1,1,1,3,3,3-ヘキサフルオロイソプロピル基から選ばれる少なくとも1つの基である化合物であることが好ましい。 In the imide salt represented by the general formula (I), the group represented by R 5 is a methyl group, an ethyl group, a propyl group, a vinyl group, an allyl group, an ethynyl group, a 2-propynyl group, a phenyl group, From 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2,2,3,3-tetrafluoropropyl group, and 1,1,1,3,3,3-hexafluoroisopropyl group A compound which is at least one selected group is preferable.
 上記一般式(I)で示されるイミド塩の対カチオンが、リチウムイオン、ナトリウムイオン、カリウムイオン、及びテトラアルキルアンモニウムイオンからなる群から選ばれる少なくとも一つの対カチオンであることが好ましい。 The counter cation of the imide salt represented by the general formula (I) is preferably at least one counter cation selected from the group consisting of lithium ions, sodium ions, potassium ions, and tetraalkylammonium ions.
 上記一般式(I)で示されるイミド塩の添加量が、非水電解液電池用電解液の総量に対して0.01~5.0質量%の範囲であることが好ましい。 The addition amount of the imide salt represented by the general formula (I) is preferably in the range of 0.01 to 5.0% by mass with respect to the total amount of the electrolyte for the nonaqueous electrolyte battery.
 上記一般式(I)で示されるイミド塩は、高純度であることが好ましく、特にCl(塩素)の含有量が5000質量ppm以下であることが好ましく、特には1000質量ppm以下であることがさらに好ましい。 The imide salt represented by the general formula (I) is preferably highly pure, and particularly preferably the Cl (chlorine) content is 5000 mass ppm or less, particularly 1000 mass ppm or less. Further preferred.
 また、上記溶質として、さらに、テトラフルオロホウ酸リチウム(LiBF4)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO22)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3SO22)、及びジフルオロリン酸リチウム(LiPO22)からなる群から選ばれる少なくとも一つを含有させてもよい。 Further, as the solute, lithium tetrafluoroborate (LiBF 4 ), bis (fluorosulfonyl) imide lithium (LiN (FSO 2 ) 2 ), bis (trifluoromethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) 2 ), and at least one selected from the group consisting of lithium difluorophosphate (LiPO 2 F 2 ) may be contained.
 また、上記非水溶媒が、環状カーボネート、鎖状カーボネート、環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、スルホン化合物、スルホキシド化合物、及びイオン液体からなる群から選ばれる少なくとも一つであることが好ましい。 The non-aqueous solvent is at least one selected from the group consisting of cyclic carbonates, chain carbonates, cyclic esters, chain esters, cyclic ethers, chain ethers, sulfone compounds, sulfoxide compounds, and ionic liquids. Is preferred.
 また、本発明は、少なくとも正極と、負極と、非水電解液電池用電解液とを備えた非水電解液電池において、該非水電解液電池用電解液が上記の非水電解液電池用電解液であることを特徴とする、非水電解液電池である。 The present invention also provides a nonaqueous electrolyte battery comprising at least a positive electrode, a negative electrode, and an electrolyte for a nonaqueous electrolyte battery, wherein the electrolyte for the nonaqueous electrolyte battery is the above-described electrolysis for a nonaqueous electrolyte battery. It is a nonaqueous electrolyte battery characterized by being a liquid.
 本発明の電解液は、非水電解液電池に用いた場合に、高温充放電サイクル時のガス発生量を大幅に抑制することが可能となり、ガス発生に伴う電池特性(サイクル特性、内部抵抗特性)の劣化を抑制できる。 When the electrolyte of the present invention is used in a non-aqueous electrolyte battery, the amount of gas generated during a high-temperature charge / discharge cycle can be greatly suppressed, and battery characteristics (cycle characteristics, internal resistance characteristics) associated with gas generation can be reduced. ) Can be suppressed.
 以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の一例であり、これらの具体的内容に限定はされない。その要旨の範囲内で種々変形して実施することができる。 Hereinafter, although the present invention will be described in detail, the description of the constituent elements described below is an example of the embodiment of the present invention, and the specific contents thereof are not limited. Various modifications can be made within the scope of the gist.
 本発明の非水電解液電池用電解液は、非水溶媒と溶質とを含む非水電解液電池用非水電解液において、
溶質として少なくともヘキサフルオロリン酸リチウムを含有し、
上記一般式(I)で示されるホスホリル基を有するイミド塩を少なくとも一つ含有し、
ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、及びテトラフルオロ(オキサラト)リン酸塩を実質的に含有しないことを特徴とする、非水電解液電池用電解液である。
The non-aqueous electrolyte battery electrolyte of the present invention is a non-aqueous electrolyte battery non-aqueous electrolyte solution containing a non-aqueous solvent and a solute.
Containing at least lithium hexafluorophosphate as a solute,
Containing at least one imide salt having a phosphoryl group represented by the general formula (I),
Substantially free of bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, and tetrafluoro (oxalato) phosphate. It is the electrolyte solution for non-aqueous electrolyte batteries characterized.
 上記電解液が、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、及びテトラフルオロ(オキサラト)リン酸塩を実質的に含有しないことにより、該電解液を非水電解液電池に用いた場合に、ガス発生量をより抑制することができる。なお、「実質的に含有しない」とは、電解液中の上記の化合物の総量の濃度が100質量ppm以下であることを意味する。 The electrolyte substantially comprises bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, and tetrafluoro (oxalato) phosphate. When the electrolyte is used in a non-aqueous electrolyte battery, the amount of gas generated can be further suppressed. “Substantially not contained” means that the concentration of the total amount of the above compounds in the electrolytic solution is 100 ppm by mass or less.
 上記一般式(I)において、R5で表されるアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、第二ブチル基、第三ブチル基、ペンチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、及び1,1,1,3,3,3-ヘキサフルオロイソプロピル基等の炭素原子数1~10のアルキル基又は含フッ素アルキル基が挙げられ、アルケニル基としては、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、及び1,3-ブダジエニル基等の炭素原子数2~8のアルケニル基又は含フッ素アルケニル基が挙げられ、アルキニル基としては、エチニル基、2-プロピニル基、及び1,1ジメチル-2-プロピニル基等の炭素原子数2~8のアルキニル基又は含フッ素アルキニル基が挙げられ、シクロアルキル基としては、シクロペンチル基、及びシクロヘキシル基等の炭素数が3~10のシクロアルキル基又は含フッ素シクロアルキル基が挙げられ、シクロアルケニル基としては、シクロペンテニル基、及びシクロヘキセニル基等の炭素数が3~10のシクロアルケニル基又は含フッ素シクロアルケニル基が挙げられ、アリール基としては、フェニル基、トリル基、及びキシリル基等の炭素原子数6~10のアリール基又は含フッ素アリール基が挙げられる。 In the general formula (I), examples of the alkyl group represented by R 5 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, secondary butyl group, tertiary butyl group, pentyl group, 2, 2 -Carbon atoms such as difluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3-tetrafluoropropyl, and 1,1,1,3,3,3-hexafluoroisopropyl Examples of the alkenyl group include vinyl group, allyl group, 1-propenyl group, isopropenyl group, 2-butenyl group, and 1,3-butadienyl group. Examples include alkenyl groups having 2 to 8 carbon atoms or fluorine-containing alkenyl groups. Examples of alkynyl groups include ethynyl group, 2-propynyl group, and 1,1 dimethyl-2-propynyl group. Examples thereof include alkynyl groups having 2 to 8 carbon atoms or fluorine-containing alkynyl groups. Examples of cycloalkyl groups include cycloalkyl groups having 3 to 10 carbon atoms such as cyclopentyl groups and cyclohexyl groups or fluorine-containing cycloalkyl groups. Examples of the cycloalkenyl group include a cycloalkenyl group having 3 to 10 carbon atoms such as a cyclopentenyl group and a cyclohexenyl group or a fluorine-containing cycloalkenyl group. Examples of the aryl group include a phenyl group, a tolyl group, and Examples thereof include aryl groups having 6 to 10 carbon atoms such as xylyl groups and fluorine-containing aryl groups.
 上記一般式(I)で表されるイミド塩の陰イオンとしては、より具体的には、例えば以下の化合物No.1~No.10等が挙げられる。但し、本発明で用いられるイミド塩は、以下の例示により何ら制限を受けるものではない。 More specifically, examples of the anion of the imide salt represented by the general formula (I) include the following compound Nos. 1-No. 10 etc. are mentioned. However, the imide salt used in the present invention is not limited by the following examples.
化合物No.1
Figure JPOXMLDOC01-appb-I000003
化合物No.2
Figure JPOXMLDOC01-appb-I000004
化合物No.3
Figure JPOXMLDOC01-appb-I000005
化合物No.4
Figure JPOXMLDOC01-appb-I000006
化合物No.5
Figure JPOXMLDOC01-appb-I000007
化合物No.6
Figure JPOXMLDOC01-appb-I000008
化合物No.7
Figure JPOXMLDOC01-appb-I000009
化合物No.8
Figure JPOXMLDOC01-appb-I000010
化合物No.9
Figure JPOXMLDOC01-appb-I000011
化合物No.10
Figure JPOXMLDOC01-appb-I000012
Compound No. 1
Figure JPOXMLDOC01-appb-I000003
Compound No. 2
Figure JPOXMLDOC01-appb-I000004
Compound No. 3
Figure JPOXMLDOC01-appb-I000005
Compound No. 4
Figure JPOXMLDOC01-appb-I000006
Compound No. 5
Figure JPOXMLDOC01-appb-I000007
Compound No. 6
Figure JPOXMLDOC01-appb-I000008
Compound No. 7
Figure JPOXMLDOC01-appb-I000009
Compound No. 8
Figure JPOXMLDOC01-appb-I000010
Compound No. 9
Figure JPOXMLDOC01-appb-I000011
Compound No. 10
Figure JPOXMLDOC01-appb-I000012
 また、上記一般式(I)において、R1~R4の少なくとも一つはフッ素原子であることが重要である。理由は定かではないが、少なくとも一つはフッ素原子でないと該電解液を用いた電池の内部抵抗を抑制する効果が十分でない。 In the general formula (I), it is important that at least one of R 1 to R 4 is a fluorine atom. The reason is not clear, but unless at least one is a fluorine atom, the effect of suppressing the internal resistance of a battery using the electrolytic solution is not sufficient.
 上記一般式(I)において、R5で表される有機基は、フッ素原子を含んでいてもよい炭素数6以下の炭化水素基から選ばれる少なくとも1つの基であることが好ましい。炭素数が多いと電極上に皮膜を形成した際の内部抵抗が比較的大きい傾向がある。炭素数が6以下であると、上記の内部抵抗がより小さい傾向があるため好ましく、特にメチル基、エチル基、プロピル基、ビニル基、アリル基、エチニル基、2-プロピニル基、フェニル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、及び1,1,1,3,3,3-ヘキサフルオロイソプロピル基から選ばれる少なくとも1つの基であると、サイクル特性及び内部抵抗特性により優れた非水電解液電池を得られるため好ましい。 In the above general formula (I), the organic group represented by R 5 is preferably at least one group selected from hydrocarbon groups having 6 or less carbon atoms which may contain a fluorine atom. When the number of carbon atoms is large, the internal resistance tends to be relatively large when a film is formed on the electrode. It is preferable that the number of carbon atoms is 6 or less because the above-mentioned internal resistance tends to be smaller. Particularly, methyl group, ethyl group, propyl group, vinyl group, allyl group, ethynyl group, 2-propynyl group, phenyl group, 2 , 2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2,2,3,3-tetrafluoropropyl group, and 1,1,1,3,3,3-hexafluoroisopropyl group It is preferable that at least one group is obtained because a nonaqueous electrolyte battery that is superior in cycle characteristics and internal resistance characteristics can be obtained.
 上記一般式(I)で示されるイミド塩は、高純度であることが好ましく、特にCl(塩素)の含有量が5000質量ppm以下であることが好ましく、より好ましくは1000質量ppm以下、さらに好ましくは100質量ppm以下である。Cl(塩素)が高濃度に残留するイミド塩を用いると電池部材を腐食させてしまう傾向があるため好ましくない。 The imide salt represented by the above general formula (I) is preferably highly pure, and in particular, the Cl (chlorine) content is preferably 5000 ppm by mass or less, more preferably 1000 ppm by mass or less, and still more preferably Is 100 mass ppm or less. Use of an imide salt in which Cl (chlorine) remains at a high concentration is not preferable because it tends to corrode battery members.
 上記一般式(I)で示されるイミド塩の製造法としては、R1~R4がすべてフッ素原子であるイミド塩(化合物No.1)は、例えば、Z. Anorg. Allg. Chem. 412(1), 65-70, (1975年)に記載されている。R1~R4の少なくとも一つが、-OR5で示される有機基を有するイミド塩は、例えば、化合物No.1に、対応するアルコール(HOR5)と塩基を加えて反応させることで得ることができる。 As a method for producing the imide salt represented by the general formula (I), an imide salt (compound No. 1) in which all of R 1 to R 4 are fluorine atoms is, for example, Z. Anorg. Allg. Chem. 412 ( 1), 65-70, (1975). An imide salt in which at least one of R 1 to R 4 has an organic group represented by —OR 5 is exemplified by, for example, Compound No. 1 can be obtained by adding a corresponding alcohol (HOR 5 ) and a base to react.
 また、本発明の電解液は、高温保存に対して、溶質であるヘキサフルオロリン酸リチウムの分解を抑制することができる傾向がある。ヘキサフルオロリン酸リチウムの熱安定性を向上させる効果が発現しやすいため、上記一般式(I)で示されるイミド塩において、R1~R4の少なくとも一つはフッ素原子であることが好ましい。 Moreover, the electrolytic solution of the present invention tends to be able to suppress decomposition of lithium hexafluorophosphate, which is a solute, during high temperature storage. In the imide salt represented by the general formula (I), at least one of R 1 to R 4 is preferably a fluorine atom because the effect of improving the thermal stability of lithium hexafluorophosphate is easily exhibited.
 本発明の電解液におけるヘキサフルオロリン酸リチウムの分解を抑制する作用機構については明確ではないが、上記イミド塩と、ヘキサフルオロリン酸リチウムの分解生成物である五フッ化リンとの相互作用によるものと考えられる。ヘキサフルオロリン酸リチウムの熱分解はまず下記反応式のような平衡反応による五フッ化リンとフッ化リチウムへの分解が起こることが知られている。
            LiPF6 ⇔ PF5 + LiF
上記イミド塩を含有していない電解液では、この五フッ化リンがさらに溶媒や溶媒中に少量含まれているアルコールや水分と反応することで、電解液の着色やフッ酸の生成が起こる。五フッ化リンが反応消費されることで、さらに上記反応式の平衡が右に傾きヘキサフルオロリン酸リチウムの分解が進行すると推定される。従って、上記イミド塩を含有していない電解液では、上記のような熱分解によって生じた分解物による電解液の着色や、フッ化水素の発生等の電解液の変性が起こり、電池への悪影響を生じる恐れがある。上記イミド塩は五フッ化リンと相互作用することで、五フッ化リンが上記反応式以外の反応を生じることを抑制するため、上記反応式の平衡が右に傾くことを防ぎ、ヘキサフルオロリン酸リチウムの熱安定性が向上すると推定される。
Although the action mechanism for suppressing the decomposition of lithium hexafluorophosphate in the electrolytic solution of the present invention is not clear, it is due to the interaction between the imide salt and phosphorus pentafluoride which is a decomposition product of lithium hexafluorophosphate. It is considered a thing. It is known that the thermal decomposition of lithium hexafluorophosphate is first decomposed into phosphorus pentafluoride and lithium fluoride by an equilibrium reaction as shown in the following reaction formula.
LiPF 6 ⇔ PF 5 + LiF
In the electrolytic solution not containing the imide salt, coloring of the electrolytic solution and generation of hydrofluoric acid occur when this phosphorus pentafluoride further reacts with a solvent or alcohol or water contained in a small amount in the solvent. As phosphorus pentafluoride is consumed by reaction, it is presumed that the equilibrium of the above reaction formula is further tilted to the right and the decomposition of lithium hexafluorophosphate proceeds. Therefore, in the electrolyte solution that does not contain the imide salt, the electrolyte solution is colored by the decomposition product generated by the thermal decomposition as described above, and the electrolyte solution is denatured such as generation of hydrogen fluoride. May result. The imide salt interacts with phosphorus pentafluoride to prevent phosphorus pentafluoride from causing a reaction other than the above reaction formula, so that the equilibrium of the above reaction formula is prevented from being tilted to the right. It is estimated that the thermal stability of lithium acid acid is improved.
 また、本発明による電池特性向上の作用機構については、明確ではないが、上記イミド塩は溶液中でイオン解離度の大きい塩であるため、電解液のイオン伝導度の低下を招くことはないため抵抗を上昇させることはない。また、イミド塩のリンにフッ素原子が結合するとその電子吸引効果により陰イオン中の電子の非局在化が生じイオン解離度をさらに大きくすることが可能となる。また、本発明によるイミド塩は正極と電解液との界面、及び負極と電解液との界面において一部分解し、皮膜を形成すると考えられる。この皮膜は、非水溶媒や溶質と活物質との間の直接の接触を抑制して非水溶媒や溶質の分解を防ぎ、電池性能の劣化を抑制する。メカニズムは定かではないが、イミド塩のリンにフッ素原子が結合するとその電子吸引効果により形成した皮膜の電荷に偏りが生じ、リチウム導電性の高い、すなわち抵抗の小さい皮膜となっていると考えられる。上記の効果は、一般式(I)で示されるイミド塩において、P-F結合が多いほど、大きくなる傾向がある。 Further, although the mechanism of action for improving battery characteristics according to the present invention is not clear, since the imide salt is a salt having a high degree of ionic dissociation in the solution, it does not cause a decrease in the ionic conductivity of the electrolytic solution. Does not increase resistance. Further, when a fluorine atom is bonded to phosphorus of an imide salt, the electron withdrawing effect causes delocalization of electrons in the anion, and the degree of ion dissociation can be further increased. In addition, it is considered that the imide salt according to the present invention is partially decomposed at the interface between the positive electrode and the electrolytic solution and the interface between the negative electrode and the electrolytic solution to form a film. This film suppresses direct contact between the non-aqueous solvent or solute and the active material, prevents decomposition of the non-aqueous solvent or solute, and suppresses deterioration of battery performance. Although the mechanism is not clear, it is thought that when fluorine atoms are bonded to phosphorus of imide salt, the charge of the film formed by the electron withdrawing effect is biased, and the film has high lithium conductivity, that is, low resistance. . The above effect tends to increase as the number of PF bonds increases in the imide salt represented by the general formula (I).
 本発明で用いるイミド塩の好適な添加量は、非水電解液の総量に対して0.01質量%以上、好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上であり、また、上限は5.0質量%以下、好ましくは4.0質量%以下、さらに好ましくは3.0質量%以下である。上記添加量が0.01質量%を下回ると、電池特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記添加量が5.0質量%を超えると、それ以上の効果は得られずに無駄であるだけでなく、過剰な皮膜形成により抵抗が増加し電池性能の劣化を引き起こし易いため好ましくない。これらのイミド塩は、5.0質量%を超えない範囲であれば一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。 A suitable addition amount of the imide salt used in the present invention is 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, based on the total amount of the nonaqueous electrolytic solution. Moreover, an upper limit is 5.0 mass% or less, Preferably it is 4.0 mass% or less, More preferably, it is 3.0 mass% or less. If the amount added is less than 0.01% by mass, it is not preferable because the effect of improving battery characteristics is hardly obtained. On the other hand, if the amount added exceeds 5.0% by mass, it is not preferable because it is not only useless because no further effect is obtained, but also because resistance is increased due to excessive film formation and deterioration of battery performance is likely to occur. . These imide salts may be used alone as long as they do not exceed 5.0% by mass, or two or more of them may be used in any combination and ratio according to the application.
 本発明の非水電解液電池用電解液に用いる非水溶媒の種類は、特に限定されず、任意の非水溶媒を用いることができる。具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート、γ―ブチロラクトン、γ―バレロラクトン等の環状エステル、酢酸メチル、プロピオン酸メチル等の鎖状エステル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン等の環状エーテル、ジメトキシエタン、ジエチルエーテル等の鎖状エーテル、ジメチルスルホキシド、スルホラン等のスルホン化合物やスルホキシド化合物等が挙げられる。また、非水溶媒とはカテゴリーが異なるがイオン液体等も挙げることができる。また、本発明に用いる非水溶媒は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。これらの中ではその酸化還元に対する電気化学的な安定性と熱や上記溶質との反応に関わる化学的安定性の観点から、特にプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが好ましい。 The type of the non-aqueous solvent used in the non-aqueous electrolyte battery electrolyte of the present invention is not particularly limited, and any non-aqueous solvent can be used. Specific examples include cyclic carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate, cyclic esters such as γ-butyrolactone and γ-valerolactone, methyl acetate, and propion. Examples include chain esters such as methyl acid, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and dioxane, chain ethers such as dimethoxyethane and diethyl ether, sulfone compounds such as dimethyl sulfoxide and sulfolane, and sulfoxide compounds. Moreover, although a category differs from a nonaqueous solvent, an ionic liquid etc. can also be mentioned. Moreover, the nonaqueous solvent used for this invention may be used individually by 1 type, and may mix and use two or more types by arbitrary combinations and a ratio according to a use. Of these, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate are particularly preferred from the viewpoint of electrochemical stability against redox and chemical stability related to the reaction with heat and the above solute. .
 本発明の非水電解液電池用電解液に用いるヘキサフルオロリン酸リチウムと共存させることのあるその他の溶質の種類は、特に限定されず、従来公知のリチウム塩を用いることができる。具体例としては、LiBF4、LiClO4、LiAsF6、LiSbF6、LiCF3SO3、LiN(CF3SO22、LiN(FSO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiPF3(C373、LiB(CF34、LiBF3(C25)、及びLiPO22などに代表される電解質リチウム塩が挙げられる。これらの溶質は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、任意の比率で混合して用いても良い。中でも、電池としてのエネルギー密度、出力特性、寿命等から考えると、LiBF4、LiN(CF3SO22、LiN(FSO22、LiN(C25SO22、及びLiPO22が好ましい。 The kind of the other solute that may coexist with lithium hexafluorophosphate used in the electrolyte solution for a non-aqueous electrolyte battery of the present invention is not particularly limited, and a conventionally known lithium salt can be used. As specific examples, LiBF 4 , LiClO 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (FSO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiPF 3 (C 3 F 7 ) 3 , LiB (CF 3 ) 4 , LiBF 3 (C 2 F 5 ), And electrolyte lithium salts represented by LiPO 2 F 2 and the like. One kind of these solutes may be used alone, or two or more kinds thereof may be used in any combination and in any ratio according to the application. Among them, considering the energy density, output characteristics, life, etc. as a battery, LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiN (FSO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , and LiPO 2 F 2 is preferred.
 これら溶質の好適な濃度(ヘキサフルオロリン酸リチウムと合わせた濃度)については、特に制限はないが、下限は0.5mol/L以上、好ましくは0.7mol/L以上、さらに好ましくは0.9mol/L以上であり、また、上限は2.5mol/L以下、好ましくは2.0mol/L以下、さらに好ましくは1.5mol/L以下の範囲である。0.5mol/Lを下回るとイオン伝導度が低下することにより非水電解液電池のサイクル特性、出力特性が低下する傾向があり、一方、2.5mol/Lを超えると非水電解液電池用電解液の粘度が上昇することにより、やはりイオン伝導度を低下させる傾向があり、非水電解液電池のサイクル特性、出力特性を低下させる恐れがある。 The suitable concentration of these solutes (concentration combined with lithium hexafluorophosphate) is not particularly limited, but the lower limit is 0.5 mol / L or more, preferably 0.7 mol / L or more, more preferably 0.9 mol. The upper limit is 2.5 mol / L or less, preferably 2.0 mol / L or less, and more preferably 1.5 mol / L or less. If the concentration is less than 0.5 mol / L, the ionic conductivity tends to decrease and the cycle characteristics and output characteristics of the nonaqueous electrolyte battery tend to decrease. On the other hand, if the concentration exceeds 2.5 mol / L, the nonaqueous electrolyte battery is used. When the viscosity of the electrolytic solution increases, the ionic conductivity also tends to be lowered, and the cycle characteristics and output characteristics of the nonaqueous electrolytic battery may be lowered.
 一度に多量の該溶質を非水溶媒に溶解すると、溶質の溶解熱のため非水電解液の温度が上昇することがある。該液温が著しく上昇すると、フッ素原子を含有するリチウム塩の分解が促進されてフッ化水素が生成する恐れがある。フッ化水素は電池性能の劣化の原因となるため好ましくない。このため、該溶質を非水溶媒に溶解する際の液温は特に限定されないが、-20~80℃が好ましく、0~60℃がより好ましい。 When a large amount of the solute is dissolved in a non-aqueous solvent at one time, the temperature of the non-aqueous electrolyte may increase due to the heat of dissolution of the solute. When the liquid temperature rises remarkably, decomposition of the lithium salt containing fluorine atoms is accelerated and hydrogen fluoride may be generated. Hydrogen fluoride is not preferable because it causes deterioration of battery performance. For this reason, the liquid temperature when dissolving the solute in the non-aqueous solvent is not particularly limited, but is preferably −20 to 80 ° C., more preferably 0 to 60 ° C.
 以上が本発明の非水電解液電池用電解液の基本的な構成についての説明であるが、本発明の要旨を損なわない限りにおいて、本発明の非水電解液電池用電解液に一般的に用いられる添加剤を任意の比率で添加しても良い。具体例としては、シクロヘキシルベンゼン、ビフェニル、t-ブチルベンゼン、ビニレンカーボネート、ビニルエチレンカーボネート、ジフルオロアニソール、フルオロエチレンカーボネート、プロパンサルトン、ジメチルビニレンカーボネート等の過充電防止効果、負極皮膜形成効果や正極保護効果を有する化合物が挙げられる。また、リチウムポリマー電池と呼ばれる非水電解液電池に使用される場合のように非水電解液電池用電解液をゲル化剤や架橋ポリマーにより擬固体化して使用することも可能である。 The above is the description of the basic configuration of the electrolyte solution for a non-aqueous electrolyte battery of the present invention. Generally, the electrolyte solution for a non-aqueous electrolyte battery of the present invention is generally used as long as the gist of the present invention is not impaired. You may add the additive used in arbitrary ratios. Specific examples include cyclohexylbenzene, biphenyl, t-butylbenzene, vinylene carbonate, vinyl ethylene carbonate, difluoroanisole, fluoroethylene carbonate, propane sultone, dimethyl vinylene carbonate, etc., overcharge prevention effect, negative electrode film formation effect and positive electrode protection Examples thereof include compounds having an effect. Moreover, it is also possible to use the non-aqueous electrolyte battery electrolyte in a quasi-solid state with a gelling agent or a crosslinked polymer as used in a non-aqueous electrolyte battery called a lithium polymer battery.
 次に本発明の非水電解液電池の構成について説明する。本発明の非水電解液電池は、上記の本発明の非水電解液電池用電解液を用いることが特徴であり、その他の構成部材には一般の非水電解液電池に使用されているものが用いられる。即ち、リチウムの吸蔵及び放出が可能な正極及び負極、集電体、セパレータ、容器等から成る。 Next, the configuration of the nonaqueous electrolyte battery of the present invention will be described. The non-aqueous electrolyte battery according to the present invention is characterized by using the above-described electrolyte for a non-aqueous electrolyte battery according to the present invention, and the other components are those used in general non-aqueous electrolyte batteries. Is used. That is, it comprises a positive electrode and a negative electrode capable of inserting and extracting lithium, a current collector, a separator, a container, and the like.
 負極材料としては、特に限定されないが、リチウム金属、リチウムと他の金属との合金又は金属間化合物や種々のカーボン材料、人造黒鉛、天然黒鉛、金属酸化物、金属窒化物、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、活性炭、導電性ポリマー等が用いられる。 The negative electrode material is not particularly limited, but lithium metal, alloys of lithium and other metals or intermetallic compounds, various carbon materials, artificial graphite, natural graphite, metal oxides, metal nitrides, tin (single), A tin compound, silicon (simple substance), a silicon compound, activated carbon, a conductive polymer, or the like is used.
 正極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、例えば、LiCoO2、LiNiO2、LiMnO2、LiMn24等のリチウム含有遷移金属複合酸化物、それらのリチウム含有遷移金属複合酸化物のCo、Mn、Ni等の遷移金属が複数混合したもの、それらのリチウム含有遷移金属複合酸化物の遷移金属の一部が他の遷移金属以外の金属に置換されたもの、オリビンと呼ばれるLiFePO4、LiCoPO4、LiMnPO4等の遷移金属のリン酸化合物、TiO2、V25、MoO3等の酸化物、TiS2、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が使用される。 The positive electrode material is not particularly limited. In the case of lithium batteries and lithium ion batteries, for example, lithium-containing transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , and lithium-containing transition metals A composite oxide in which a plurality of transition metals such as Co, Mn, Ni, etc. are mixed, a part of the transition metal in the lithium-containing transition metal composite oxide is replaced with a metal other than the transition metal, olivine and LiFePO 4, LiCoPO 4, phosphoric acid compound of a transition metal such as LiMnPO 4 called, oxides such as TiO 2, V 2 O 5, MoO 3, TiS 2, sulfides such as FeS, or polyacetylene, polyparaphenylene, polyaniline , And conductive polymers such as polypyrrole, activated carbon, polymers that generate radicals, carbon materials, etc. It is use.
 正極や負極材料には、導電材としてアセチレンブラック、ケッチェンブラック、炭素繊維、黒鉛、結着材としてポリテトラフルオロエチレン、ポリフッ化ビニリデン、SBR樹脂等が加えられ、シート状に成型されることにより電極シートにすることができる。 By adding acetylene black, ketjen black, carbon fiber, graphite as a conductive material, polytetrafluoroethylene, polyvinylidene fluoride, SBR resin, etc. as a binder to the positive electrode or negative electrode material, and forming into a sheet shape It can be an electrode sheet.
 正極と負極の接触を防ぐためのセパレータとしては、ポリプロピレン、ポリエチレン、紙、及びガラス繊維等で作られた不織布や多孔質シートが使用される。 As a separator for preventing contact between the positive electrode and the negative electrode, a nonwoven fabric or a porous sheet made of polypropylene, polyethylene, paper, glass fiber, or the like is used.
 以上の各要素からコイン形、円筒形、角形、アルミラミネートシート型等の形状の非水電解液電池が組み立てられる。 A non-aqueous electrolyte battery having a coin shape, cylindrical shape, square shape, aluminum laminate sheet shape or the like is assembled from the above elements.
 以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples.
[実施例1-1]
 非水電解液の調製条件を表1に、電解液の保存安定性評価結果を表2に、該電解液を用いた電池の評価結果を表3に示す。なお、表3中の電池のサイクル特性、内部抵抗特性及びガス発生量のそれぞれの値は、調製後1ヶ月静置前の電解液No.33を用いて作製したラミネートセルのサイクル試験後の放電容量維持率と内部抵抗、及びサイクル特性評価に伴うガス発生量をそれぞれ100としたときの相対値である。
[Example 1-1]
Table 1 shows the preparation conditions of the non-aqueous electrolyte, Table 2 shows the storage stability evaluation results of the electrolyte, and Table 3 shows the evaluation results of the battery using the electrolyte. In addition, the values of the cycle characteristics, internal resistance characteristics, and gas generation amount of the batteries in Table 3 are the values of the electrolyte No. 1 before standing for one month after preparation. This is a relative value when the discharge capacity retention rate and internal resistance after the cycle test of the laminate cell produced using No. 33 and the amount of gas generated due to cycle characteristic evaluation are set to 100, respectively.
 非水溶媒としてエチレンカーボネートとエチルメチルカーボネートの体積比1:2の混合溶媒を用い、該溶媒中に溶質としてLiPF6を1.0mol/L、添加剤として上記イミド化合物No.1のリチウム塩(該イミド塩中のCl含有量は90質量ppm)を0.03質量%の濃度となるように溶解し、非水電解液電池用電解液を調製した。上記の調製は、液温を20~30℃の範囲に維持しながら行った。なお、電解液中の、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、及びテトラフルオロ(オキサラト)リン酸塩の総量の濃度は100質量ppm未満であった。 A mixed solvent of ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 2 was used as the non-aqueous solvent, LiPF 6 was 1.0 mol / L as a solute in the solvent, and the imide compound No. 1 was used as an additive. 1 lithium salt (Cl content in the imide salt is 90 mass ppm) was dissolved to a concentration of 0.03% by mass to prepare an electrolyte for a non-aqueous electrolyte battery. The above preparation was carried out while maintaining the liquid temperature in the range of 20-30 ° C. In addition, bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, and tetrafluoro (oxalato) phosphate in the electrolytic solution The total concentration was less than 100 ppm by mass.
 [電解液の保存安定性評価]
 調製した電解液をアルゴン雰囲気下において75℃にて1か月間静置する前後で、電解液の着色と電解液中の遊離酸量を測定することで、溶質であるヘキサフルオロリン酸リチウムの分解抑制効果を評価した。電解液の色相評価は石油製品色試験機(OME-2000日本電色工業株式会社製)を用いて評価した。測定試料は調製後貯蔵1日以内の電解液(75℃静置前の電解液)と調製後75℃静置1か月後の電解液である。
電解液の遊離酸測定は、中和滴定にて行った。測定試料は調製後1日以内の電解液(75℃静置前の電解液)と調製後75℃静置1か月後の電解液である。遊離酸の測定は室温にて行った。滴定指示薬は0.1w/v%ブロモフェノールブルーエタノール(50%)溶液を用いた。
[Evaluation of storage stability of electrolyte]
Decomposition of lithium hexafluorophosphate, which is a solute, by measuring the color of the electrolyte and the amount of free acid in the electrolyte before and after leaving the prepared electrolyte at 75 ° C. for 1 month in an argon atmosphere. The inhibitory effect was evaluated. The hue of the electrolyte was evaluated using a petroleum product color tester (OME-2000 manufactured by Nippon Denshoku Industries Co., Ltd.). The measurement samples are an electrolytic solution within 1 day of storage after preparation (electrolytic solution before standing at 75 ° C.) and an electrolytic solution after 1 month of standing at 75 ° C. after preparation.
The free acid of the electrolyte was measured by neutralization titration. The measurement sample is an electrolytic solution within one day after preparation (electrolytic solution before standing at 75 ° C.) and an electrolytic solution after one month of standing at 75 ° C. after preparation. The free acid was measured at room temperature. As a titration indicator, a 0.1 w / v% bromophenol blue ethanol (50%) solution was used.
 [電池特性評価]
 調製後1日以内の電解液を用いてLiNi1/3Co1/3Mn1/32を正極材料、黒鉛を負極材料としてセルを作成し、実際に電池のサイクル特性、内部抵抗特性を評価した。試験用セルは以下のように作成した。
[Battery characteristics evaluation]
Using the electrolyte within one day after preparation, a cell was created using LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode material and graphite as the negative electrode material. evaluated. The test cell was prepared as follows.
 LiNi1/3Co1/3Mn1/32粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、ペースト状にした。このペーストをアルミニウム箔上に塗布して、乾燥させることにより、試験用正極体とした。また、黒鉛粉末90質量%に、バインダーとして10質量%のポリフッ化ビニリデン(PVDF)を混合し、さらにN-メチルピロリドンを添加し、スラリー状にした。このスラリーを銅箔上に塗布して、120℃で12時間乾燥させることにより、試験用負極体とした。そして、ポリエチレン製セパレータに電解液を浸み込ませてアルミラミネート外装の50mAhセルを組み立てた。 90% by mass of LiNi 1/3 Co 1/3 Mn 1/3 O 2 powder is mixed with 5% by mass of 5% by mass of polyvinylidene fluoride (PVDF) as a binder and 5% by mass of acetylene black as a conductive material, and further with N-methylpyrrolidone. Added to paste. The paste was applied on an aluminum foil and dried to obtain a test positive electrode body. Further, 90% by mass of graphite powder was mixed with 10% by mass of polyvinylidene fluoride (PVDF) as a binder, and N-methylpyrrolidone was further added to form a slurry. This slurry was applied on a copper foil and dried at 120 ° C. for 12 hours to obtain a test negative electrode body. Then, an electrolytic solution was immersed in a polyethylene separator to assemble a 50 mAh cell with an aluminum laminate exterior.
 [高温サイクル特性]
 上記のセルを用いて、75℃の環境温度での充放電試験を実施し、サイクル特性を評価した。充電、放電ともに電流密度3.5mA/cm2で行い、充電は、4.3Vに達した後、1時間4.3Vを維持、放電は、3.0Vまで行い、充放電サイクルを繰り返した。そして、500サイクル後の放電容量維持率でセルの劣化の具合を評価した(サイクル特性評価)。放電容量維持率は下記式で求めた。
<500サイクル後の放電容量維持率>
放電容量維持率(%)=(500サイクル後の放電容量/初放電容量)×100
[High temperature cycle characteristics]
Using the above cell, a charge / discharge test was conducted at an environmental temperature of 75 ° C. to evaluate the cycle characteristics. Both charging and discharging were performed at a current density of 3.5 mA / cm 2. After charging reached 4.3 V, 4.3 V was maintained for 1 hour, and discharging was performed up to 3.0 V, and the charge / discharge cycle was repeated. Then, the degree of deterioration of the cell was evaluated based on the discharge capacity maintenance rate after 500 cycles (cycle characteristic evaluation). The discharge capacity retention rate was determined by the following formula.
<Discharge capacity maintenance rate after 500 cycles>
Discharge capacity retention rate (%) = (discharge capacity after 500 cycles / initial discharge capacity) × 100
 [内部抵抗特性(25℃)]
 サイクル試験後のセルを25℃の環境温度で、電流密度0.35mA/cm2で4.3Vまで充電した後に、電池の内部抵抗を測定した。
[Internal resistance characteristics (25 ℃)]
The cell after the cycle test was charged to 4.3 V at an ambient temperature of 25 ° C. and a current density of 0.35 mA / cm 2 , and then the internal resistance of the battery was measured.
 [ガス発生量]
 上記高温サイクル特性試験の前後において、シリコンオイルを用いた浮力法によりセルの容積の増大量を見積もることで、ガス発生量を評価した。
[Gas generation amount]
Before and after the high temperature cycle characteristic test, the amount of gas generation was evaluated by estimating the amount of increase in cell volume by the buoyancy method using silicon oil.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
[実施例1-2~1-29]
 表1に示す非水電解液の調製条件に従う以外は実施例1-1と同様の手順で非水電解液を調製した。なお、実施例で用いたイミド塩中のCl含有量は、すべて約90質量ppmであった。また、実施例1-24~1-29は、上記実施例1-1において、イミド塩及びヘキサフルオロリン酸リチウム以外のその他の電解質(以降、単に「その他の電解質」と記載する場合がある)を含有させた電解液に関する実験例である。なお、実施例1-2~1-29において、電解液中の、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、及びテトラフルオロ(オキサラト)リン酸塩の総量の濃度は100質量ppm未満であった。表2に電解液の保存安定性評価結果を示し、表3に該電解液を用いた電池の評価結果を示す。
[Examples 1-2 to 1-29]
A nonaqueous electrolytic solution was prepared in the same procedure as in Example 1-1 except that the conditions for preparing the nonaqueous electrolytic solution shown in Table 1 were followed. In addition, all Cl content in the imide salt used in the Example was about 90 mass ppm. In addition, in Examples 1-24 to 1-29, other electrolytes other than the imide salt and lithium hexafluorophosphate in Example 1-1 (hereinafter, may be simply referred to as “other electrolytes”) It is an experiment example regarding the electrolyte solution which contains. In Examples 1-2 to 1-29, bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate in the electrolytic solution The total concentration of tetrafluoro (oxalato) phosphate was less than 100 ppm by mass. Table 2 shows the results of evaluating the storage stability of the electrolytic solution, and Table 3 shows the results of evaluating batteries using the electrolytic solution.
[比較例1-1~1-10]
 表1に示す非水電解液の調製条件に従う以外は実施例1-1と同様の手順で非水電解液を調製した。なお、比較例1-1~1-3は、それぞれ、イミド塩として下記の化合物No.11、No.12のリチウム塩を用いるか、代わりに化合物No.13(アミド化合物)を用いた電解液に関する実験例であり、比較例1-4は、イミド塩及びその他の電解質ともに添加せずに、それ以外は、上記実施例1-1と同様に調製した電解液に関する実験例である。なお、比較例1-1~1-4において、電解液中の、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、及びテトラフルオロ(オキサラト)リン酸塩の総量の濃度は100質量ppm未満であった。また、比較例1-5~1-10は、その他の電解質として、それぞれ、ビス(オキサラト)ホウ酸リチウム、ジフルオロビス(オキサラト)リン酸リチウム、テトラフルオロ(オキサラト)リン酸リチウム、ジフルオロ(オキサラト)ホウ酸リチウム、及びトリス(オキサラト)リン酸リチウムを含有させた電解液に関する実験例である。なお、比較例で用いたイミド塩中のCl含有量は、すべて約90質量ppmであった。表2に電解液の保存安定性評価結果を示し、表3に該電解液を用いた電池の評価結果を示す。
[Comparative Examples 1-1 to 1-10]
A nonaqueous electrolytic solution was prepared in the same procedure as in Example 1-1 except that the conditions for preparing the nonaqueous electrolytic solution shown in Table 1 were followed. In Comparative Examples 1-1 to 1-3, each of the following compound Nos. 11, no. 12 lithium salt is used, or instead of compound no. 13 is an experimental example relating to an electrolytic solution using 13 (amide compound). Comparative Example 1-4 was prepared in the same manner as Example 1-1 except that neither imide salt nor other electrolyte was added. It is an experiment example regarding electrolyte solution. In Comparative Examples 1-1 to 1-4, bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate in the electrolytic solution The total concentration of tetrafluoro (oxalato) phosphate was less than 100 ppm by mass. In addition, Comparative Examples 1-5 to 1-10, as other electrolytes, were bis (oxalato) lithium borate, difluorobis (oxalato) lithium phosphate, tetrafluoro (oxalato) lithium phosphate, difluoro (oxalato), respectively. It is an experiment example regarding the electrolyte solution which contained lithium borate and tris (oxalato) lithium phosphate. In addition, all Cl content in the imide salt used by the comparative example was about 90 mass ppm. Table 2 shows the results of evaluating the storage stability of the electrolytic solution, and Table 3 shows the results of evaluating batteries using the electrolytic solution.
化合物No.11
Figure JPOXMLDOC01-appb-I000014
化合物No.12
Figure JPOXMLDOC01-appb-I000015
化合物No.13
Figure JPOXMLDOC01-appb-I000016
Compound No. 11
Figure JPOXMLDOC01-appb-I000014
Compound No. 12
Figure JPOXMLDOC01-appb-I000015
Compound No. 13
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 以上の結果を比較すると、上記一般式(I)で示されるイミド塩を含有する場合において、調製後75℃の高温で静置しても遊離酸の増加量、色相の変化量が抑制される傾向が見られた。イミド塩を含まない場合(比較例1-4)やP-F結合を含まないイミド塩やアミド化合物を用いた場合(比較例1-1~1-3)では、サイクル特性(サイクル試験後の容量維持率)が比較的低く内部抵抗が比較的高い。それに対して、P-F結合を含有するイミド塩を用いた場合では、良好なサイクル特性と内部抵抗特性を示した。また、これらイミド塩とその他の電解質を併用した場合においても、良好なサイクル特性と内部抵抗特性を示した。さらに、実施例1-1~1-29では、サイクル試験後のガス発生量が、比較例1-5~1-10に比べてより抑制されていることが確認できた。
従って、本発明の電解液は、非水電解液電池に用いた場合に、電池特性を損なうことなく、ガス発生量をより抑制できるものである。
When the above results are compared, in the case of containing the imide salt represented by the above general formula (I), the increase in free acid and the change in hue are suppressed even after standing at a high temperature of 75 ° C. There was a trend. In the case where no imide salt was contained (Comparative Example 1-4) or the case where an imide salt or amide compound containing no PF bond was used (Comparative Examples 1-1 to 1-3), the cycle characteristics (after the cycle test) (Capacity maintenance ratio) is relatively low and internal resistance is relatively high. In contrast, when an imide salt containing a PF bond was used, good cycle characteristics and internal resistance characteristics were exhibited. Further, even when these imide salts and other electrolytes were used in combination, good cycle characteristics and internal resistance characteristics were exhibited. Further, in Examples 1-1 to 1-29, it was confirmed that the amount of gas generated after the cycle test was further suppressed as compared with Comparative Examples 1-5 to 1-10.
Therefore, when the electrolyte solution of the present invention is used in a non-aqueous electrolyte battery, the amount of gas generation can be further suppressed without impairing the battery characteristics.
[実施例2-1~2-8、比較例2-1~2-4]
 表4に、実施例1-1で用いた負極体を変更した電池の評価結果を示す。非水電解液電池用電解液として、非水電解液No.5、9、12、19、33又は34を用いて、実施例1-1と同様に、サイクル特性、内部抵抗特性、ガス発生量を評価した。なお、負極活物質がLi4Ti512である実施例2-1~2-4、及び比較例2-1、2-2において、負極体は、Li4Ti512粉末90質量%に、バインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電剤としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を2.7V、放電終止電圧を1.5Vとした。なお、実施例2-1~2-4、及び比較例2-2において、電池のサイクル特性、内部抵抗特性及びガス発生量のそれぞれの値は、調製後1ヶ月静置前の電解液No.33を用いて作製したラミネートセルのサイクル試験後の放電容量維持率、内部抵抗、及びサイクル特性評価に伴うガス発生量をそれぞれ100としたとき(比較例2-1)の相対値である。また、負極活物質が黒鉛(ケイ素含有)である実施例2-5~2-8、及び比較例2-3、2-4において、負極体は、黒鉛粉末80質量%に、ケイ素粉末10質量%、バインダーとして10質量%のポリフッ化ビニリデン(PVDF)を混合し、さらにN-メチルピロリドンを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧と放電終止電圧は実施例1-1と同様とした。なお、実施例2-5~2-8、及び比較例2-4において、電池のサイクル特性、内部抵抗特性及びガス発生量のそれぞれの値は、調製後1ヶ月静置前の電解液No.33を用いて作製したラミネートセルのサイクル試験後の放電容量維持率、内部抵抗、及びサイクル特性評価に伴うガス発生量をそれぞれ100としたとき(比較例2-3)の相対値である。
[Examples 2-1 to 2-8, Comparative examples 2-1 to 2-4]
Table 4 shows the evaluation results of the battery in which the negative electrode body used in Example 1-1 was changed. As an electrolyte for a non-aqueous electrolyte battery, a non-aqueous electrolyte No. 1 is used. Using 5, 9, 12, 19, 33, or 34, the cycle characteristics, internal resistance characteristics, and gas generation amount were evaluated in the same manner as in Example 1-1. In Examples 2-1 to 2-4 and Comparative Examples 2-1 and 2-2 in which the negative electrode active material is Li 4 Ti 5 O 12 , the negative electrode body is 90% by mass of Li 4 Ti 5 O 12 powder. In addition, 5% by mass of polyvinylidene fluoride (PVDF) as a binder and 5% by mass of acetylene black as a conductive agent are added, N-methylpyrrolidone is added, and the obtained paste is applied onto a copper foil and dried. The end-of-charge voltage was 2.7 V and the end-of-discharge voltage was 1.5 V during battery evaluation. In Examples 2-1 to 2-4 and Comparative Example 2-2, the values of the cycle characteristics, internal resistance characteristics, and gas generation amount of the batteries are the same as the electrolyte solution No. This is a relative value when the discharge capacity retention rate after the cycle test, the internal resistance, and the gas generation amount associated with the cycle characteristic evaluation of the laminate cell produced using No. 33 are set to 100 (Comparative Example 2-1). In Examples 2-5 to 2-8 and Comparative Examples 2-3 and 2-4 in which the negative electrode active material is graphite (silicon-containing), the negative electrode body is composed of 80% by mass of graphite powder and 10% by mass of silicon powder. 10% by weight of polyvinylidene fluoride (PVDF) as a binder, N-methylpyrrolidone is further added, and the resulting paste is applied onto a copper foil and dried to produce a battery for evaluation. The end-of-charge voltage and end-of-discharge voltage were the same as in Example 1-1. In Examples 2-5 to 2-8 and Comparative Example 2-4, the values of the cycle characteristics, internal resistance characteristics, and gas generation amount of the batteries are the same as those of the electrolyte solution No. This is a relative value when the discharge capacity retention rate after the cycle test, the internal resistance, and the gas generation amount associated with the cycle characteristic evaluation of the laminate cell produced using No. 33 are each 100 (Comparative Example 2-3).
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
[実施例3-1~3-4、比較例3-1~3-2]
 表4に、実施例1-1で用いた正極体を変更した電池の評価結果を示す。非水電解液電池用電解液として、非水電解液No.5、9、12、19、33又は34を用いて、実施例1-1と同様に、サイクル特性、内部抵抗特性、ガス発生量を評価した。なお、正極活物質がLiCoO2である正極体は、LiCoO2粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製した。電池評価の際の充電終止電圧を4.2V、放電終止電圧を3.0Vとした。なお、実施例3-1~3-4、及び比較例3-2において、電池のサイクル特性、内部抵抗特性及びガス発生量のそれぞれの値は、調製後1ヶ月静置前の電解液No.33を用いて作製したラミネートセルのサイクル試験後の放電容量維持率、内部抵抗、及びサイクル特性評価に伴うガス発生量をそれぞれ100としたとき(比較例3-1)の相対値である。
[Examples 3-1 to 3-4, Comparative examples 3-1 to 3-2]
Table 4 shows the evaluation results of the batteries in which the positive electrode used in Example 1-1 was changed. As an electrolyte for a non-aqueous electrolyte battery, a non-aqueous electrolyte No. 1 is used. Using 5, 9, 12, 19, 33, or 34, the cycle characteristics, internal resistance characteristics, and gas generation amount were evaluated in the same manner as in Example 1-1. The positive electrode body in which the positive electrode active material is LiCoO 2 is a mixture of 90% by mass of LiCoO 2 powder, 5% by mass of polyvinylidene fluoride (PVDF) as a binder and 5% by mass of acetylene black as a conductive material, and N-methyl. Pyrrolidone was added, and the resulting paste was applied on an aluminum foil and dried. The end-of-charge voltage during battery evaluation was 4.2 V, and the end-of-discharge voltage was 3.0 V. In Examples 3-1 to 3-4 and Comparative Example 3-2, the values of the cycle characteristics, internal resistance characteristics, and gas generation amount of the batteries are the same as those of the electrolyte No. 1 before standing for one month after preparation. This is a relative value when the discharge capacity retention rate after the cycle test, the internal resistance, and the gas generation amount associated with the cycle characteristic evaluation of the laminate cell produced using No. 33 are each 100 (Comparative Example 3-1).
[実施例4-1~4-4、比較例4-1~4-2]
 表4に、実施例1-1で用いた正極体を変更した電池の評価結果を示す。非水電解液電池用電解液として、非水電解液No.5、9、12、19、33又は34を用いて、実施例1-1と同様に、サイクル特性、内部抵抗特性、ガス発生量を評価した。なお、正極活物質がLiNi0.8Co0.15Al0.052である正極体は、LiNi0.8Co0.15Al0.052粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製した。電池評価の際の充電終止電圧を4.2V、放電終止電圧を3.0Vとした。なお、実施例4-1~4-4、及び比較例4-2において、電池のサイクル特性、内部抵抗特性及びガス発生量のそれぞれの値は、調製後1ヶ月静置前の電解液No.33を用いて作製したラミネートセルのサイクル試験後の放電容量維持率、内部抵抗、及びサイクル特性評価に伴うガス発生量をそれぞれ100としたとき(比較例4-1)の相対値である。
[Examples 4-1 to 4-4, Comparative Examples 4-1 to 4-2]
Table 4 shows the evaluation results of the batteries in which the positive electrode used in Example 1-1 was changed. As an electrolyte for a non-aqueous electrolyte battery, a non-aqueous electrolyte No. 1 is used. Using 5, 9, 12, 19, 33, or 34, the cycle characteristics, internal resistance characteristics, and gas generation amount were evaluated in the same manner as in Example 1-1. The positive electrode body in which the positive electrode active material is LiNi 0.8 Co 0.15 Al 0.05 O 2 is composed of 90% by mass of LiNi 0.8 Co 0.15 Al 0.05 O 2 powder, 5% by mass of polyvinylidene fluoride (PVDF) as a binder, and acetylene as a conductive material. Black was mixed at 5% by mass, N-methylpyrrolidone was further added, and the obtained paste was applied on an aluminum foil and dried. The end-of-charge voltage during battery evaluation was 4.2 V, and the end-of-discharge voltage was 3.0 V. In Examples 4-1 to 4-4 and Comparative Example 4-2, the values of the cycle characteristics, internal resistance characteristics, and gas generation amount of the batteries are the same as those of the electrolyte No. 1 before standing for one month after preparation. This is a relative value when the discharge capacity retention rate, the internal resistance, and the gas generation amount associated with the cycle characteristics evaluation after the cycle test of the laminate cell produced using No. 33 are each 100 (Comparative Example 4-1).
[実施例5-1~5-4、比較例5-1~5-2]
 表4に、実施例1-1で用いた正極体を変更した電池の評価結果を示す。非水電解液電池用電解液として、非水電解液No.5、9、12、19、33又は34を用いて、実施例1-1と同様に、サイクル特性、内部抵抗特性、ガス発生量を評価した。なお、正極活物質がLiFePO4である正極体は、非晶質炭素で被覆されたLiFePO4粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製した。電池評価の際の充電終止電圧を4.1V、放電終止電圧を2.5Vとした。なお、実施例5-1~5-4、及び比較例5-2において、電池のサイクル特性、内部抵抗特性及びガス発生量のそれぞれの値は、調製後1ヶ月静置前の電解液No.33を用いて作製したラミネートセルのサイクル試験後の放電容量維持率、内部抵抗、及びサイクル特性評価に伴うガス発生量をそれぞれ100としたとき(比較例5-1)の相対値である。
[Examples 5-1 to 5-4, Comparative Examples 5-1 to 5-2]
Table 4 shows the evaluation results of the batteries in which the positive electrode used in Example 1-1 was changed. As an electrolyte for a non-aqueous electrolyte battery, a non-aqueous electrolyte No. 1 is used. Using 5, 9, 12, 19, 33, or 34, the cycle characteristics, internal resistance characteristics, and gas generation amount were evaluated in the same manner as in Example 1-1. In addition, the positive electrode body in which the positive electrode active material is LiFePO 4 is obtained by adding 90% by mass of LiFePO 4 powder coated with amorphous carbon to 5% by mass of polyvinylidene fluoride (PVDF) as a binder and 5% by mass of acetylene black as a conductive material. %, Further N-methylpyrrolidone was added, and the resulting paste was applied on an aluminum foil and dried. The end-of-charge voltage during battery evaluation was 4.1 V, and the end-of-discharge voltage was 2.5 V. In Examples 5-1 to 5-4 and Comparative Example 5-2, the values of the cycle characteristics, internal resistance characteristics, and gas generation amount of the batteries are the same as those of the electrolyte solution No. This is a relative value when the discharge capacity retention rate after the cycle test, the internal resistance, and the gas generation amount associated with the cycle characteristic evaluation of the laminate cell produced using No. 33 are each 100 (Comparative Example 5-1).
 上記のように、正極活物質として、LiCoO2、LiNi0.8Co0.15Al0.052、LiFePO4を用いたいずれの実施例においても、本発明の非水電解液電池用電解液を用いたラミネートセルのサイクル特性、内部抵抗特性、ガス発生量は、それぞれの対応する比較例に比べて優れていることが確認された。したがって、本発明の非水電解液電池用電解液を用いることで、正極活物質の種類によらず、優れたサイクル特性、内部抵抗特性、ガス発生量抑制を示す非水電解液電池を得られることが示された。 As described above, in any example using LiCoO 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , and LiFePO 4 as the positive electrode active material, the laminate cell using the electrolyte for the non-aqueous electrolyte battery of the present invention It was confirmed that the cycle characteristics, internal resistance characteristics, and gas generation amount were superior to the corresponding comparative examples. Therefore, by using the electrolyte for a non-aqueous electrolyte battery of the present invention, a non-aqueous electrolyte battery exhibiting excellent cycle characteristics, internal resistance characteristics, and gas generation amount suppression can be obtained regardless of the type of the positive electrode active material. It was shown that.
 また、上記のように、負極活物質として、Li4Ti512、黒鉛(ケイ素含有)を用いたいずれの実施例においても、本発明の非水電解液電池用電解液を用いたラミネートセルのサイクル特性、内部抵抗特性、ガス発生量は、それぞれの対応する比較例に比べて優れていることが確認された。したがって、本発明の非水電解液電池用電解液を用いることで、負極活物質の種類によらず、優れたサイクル特性、内部抵抗特性、ガス発生量抑制を示す非水電解液電池を得られることが示された。 Further, as described above, in any example using Li 4 Ti 5 O 12 and graphite (containing silicon) as the negative electrode active material, the laminate cell using the electrolyte solution for a non-aqueous electrolyte battery of the present invention. It was confirmed that the cycle characteristics, internal resistance characteristics, and gas generation amount were superior to the corresponding comparative examples. Therefore, by using the electrolyte for a non-aqueous electrolyte battery of the present invention, a non-aqueous electrolyte battery exhibiting excellent cycle characteristics, internal resistance characteristics, and gas generation amount suppression can be obtained regardless of the type of the negative electrode active material. It was shown that.

Claims (9)

  1. 非水溶媒と溶質とを含む非水電解液電池用非水電解液において、
    溶質として少なくともヘキサフルオロリン酸リチウムを含有し、
    一般式(I)で示されるホスホリル基を有するイミド塩を少なくとも一つ含有し、
    ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、及びテトラフルオロ(オキサラト)リン酸塩を実質的に含有しないことを特徴とする、非水電解液電池用電解液。

    Figure JPOXMLDOC01-appb-I000001
    [式中、R1~R4 はそれぞれ互いに独立して、フッ素原子、又は-OR5で示される有機基;R5は炭素数1~10の直鎖あるいは分岐状のアルキル基、アルケニル基又はアルキニル基、炭素数が3~10のシクロアルキル基又はシクロアルケニル基、及び、炭素数が6~10のアリール基から選ばれる少なくとも1つの有機基であり、その有機基中にフッ素原子、酸素原子、不飽和結合が存在することもできる。Mはアルカリ金属カチオン、アルカリ土類金属カチオン、又はオニウムカチオンで、mは該当するカチオンの価数と同数の整数を表す。但し、R1~R4の少なくとも一つはフッ素原子を示す。]
    In a non-aqueous electrolyte for a non-aqueous electrolyte battery containing a non-aqueous solvent and a solute,
    Containing at least lithium hexafluorophosphate as a solute,
    Containing at least one imide salt having a phosphoryl group represented by the general formula (I),
    Substantially free of bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, and tetrafluoro (oxalato) phosphate. An electrolyte for a non-aqueous electrolyte battery.

    Figure JPOXMLDOC01-appb-I000001
    [Wherein R 1 to R 4 are each independently a fluorine atom or an organic group represented by —OR 5 ; R 5 is a linear or branched alkyl group, alkenyl group having 1 to 10 carbon atoms, or And at least one organic group selected from an alkynyl group, a cycloalkyl group or a cycloalkenyl group having 3 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and a fluorine atom or an oxygen atom in the organic group Unsaturated bonds can also be present. M represents an alkali metal cation, an alkaline earth metal cation, or an onium cation, and m represents an integer equal to the valence of the corresponding cation. However, at least one of R 1 to R 4 represents a fluorine atom. ]
  2. 前記一般式(I)で示されるホスホリル基を有するイミド塩が、R1~R4が全てフッ素原子である化合物である、請求項1に記載の非水電解液電池用電解液。 The electrolyte solution for a non-aqueous electrolyte battery according to claim 1, wherein the imide salt having a phosphoryl group represented by the general formula (I) is a compound in which R 1 to R 4 are all fluorine atoms.
  3. 前記一般式(I)で示されるホスホリル基を有するイミド塩が、R5で表される有機基がフッ素原子を含んでいてもよい炭素数6以下の炭化水素基から選ばれる少なくとも1つの基である化合物である、請求項1に記載の非水電解液電池用電解液。 The imide salt having a phosphoryl group represented by the general formula (I) is at least one group selected from hydrocarbon groups having 6 or less carbon atoms in which the organic group represented by R 5 may contain a fluorine atom. The electrolyte solution for a non-aqueous electrolyte battery according to claim 1, which is a certain compound.
  4. 前記一般式(I)で示されるホスホリル基を有するイミド塩が、R5で表される基が、メチル基、エチル基、プロピル基、ビニル基、アリル基、エチニル基、2-プロピニル基、フェニル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、及び1,1,1,3,3,3-ヘキサフルオロイソプロピル基から選ばれる少なくとも1つの基である化合物である、請求項1又は3に記載の非水電解液電池用電解液。 In the imide salt having a phosphoryl group represented by the general formula (I), the group represented by R 5 is a methyl group, an ethyl group, a propyl group, a vinyl group, an allyl group, an ethynyl group, a 2-propynyl group, a phenyl group, Group, 2,2-difluoroethyl group, 2,2,2-trifluoroethyl group, 2,2,3,3-tetrafluoropropyl group, and 1,1,1,3,3,3-hexafluoroisopropyl The electrolyte solution for nonaqueous electrolyte batteries according to claim 1 or 3, wherein the electrolyte solution is a compound that is at least one group selected from the group.
  5. 前記一般式(I)で示されるホスホリル基を有するイミド塩の対カチオンが、リチウムイオン、ナトリウムイオン、カリウムイオン、及びテトラアルキルアンモニウムイオンからなる群から選ばれる少なくとも一つの対カチオンである、請求項1~4のいずれかに記載の非水電解液電池用電解液。 The counter cation of the imide salt having a phosphoryl group represented by the general formula (I) is at least one counter cation selected from the group consisting of lithium ion, sodium ion, potassium ion, and tetraalkylammonium ion. 5. The electrolyte for a non-aqueous electrolyte battery according to any one of 1 to 4.
  6. 前記一般式(I)で示されるホスホリル基を有するイミド塩の添加量が、非水電解液電池用電解液の総量に対して0.01~5.0質量%の範囲である、請求項1~5のいずれかに記載の非水電解液電池用電解液。 The amount of the imide salt having a phosphoryl group represented by the general formula (I) is in the range of 0.01 to 5.0% by mass with respect to the total amount of the electrolyte for a nonaqueous electrolyte battery. 6. The electrolyte solution for a non-aqueous electrolyte battery according to any one of 1 to 5.
  7. 前記溶質として、さらに、テトラフルオロホウ酸リチウム(LiBF4)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO22)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3SO22)、及びジフルオロリン酸リチウム(LiPO22)からなる群から選ばれる少なくとも一つを含有する、請求項1~6のいずれかに記載の非水電解液電池用電解液。 As the solute, lithium tetrafluoroborate (LiBF 4 ), bis (fluorosulfonyl) imide lithium (LiN (FSO 2 ) 2 ), bis (trifluoromethanesulfonyl) imide lithium (LiN (CF 3 SO 2 ) 2 ) And an electrolyte solution for a non-aqueous electrolyte battery according to claim 1, comprising at least one selected from the group consisting of lithium difluorophosphate (LiPO 2 F 2 ).
  8. 前記非水溶媒が、環状カーボネート、鎖状カーボネート、環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、スルホン化合物、スルホキシド化合物、及びイオン液体からなる群から選ばれる少なくとも一つである、請求項1~7のいずれかに記載の非水電解液電池用電解液。 The non-aqueous solvent is at least one selected from the group consisting of a cyclic carbonate, a chain carbonate, a cyclic ester, a chain ester, a cyclic ether, a chain ether, a sulfone compound, a sulfoxide compound, and an ionic liquid. 8. The non-aqueous electrolyte battery electrolyte according to any one of 1 to 7.
  9. 少なくとも正極と、負極と、非水電解液電池用電解液とを備えた非水電解液電池において、該非水電解液電池用電解液が請求項1~8のいずれかに記載の非水電解液電池用電解液であることを特徴とする、非水電解液電池。 9. A non-aqueous electrolyte battery comprising at least a positive electrode, a negative electrode, and a non-aqueous electrolyte battery electrolyte, wherein the non-aqueous electrolyte battery electrolyte is any one of claims 1 to 8. A non-aqueous electrolyte battery characterized by being a battery electrolyte.
PCT/JP2015/067049 2014-07-01 2015-06-12 Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same WO2016002481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014135787A JP6476611B2 (en) 2014-07-01 2014-07-01 Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP2014-135787 2014-07-01

Publications (1)

Publication Number Publication Date
WO2016002481A1 true WO2016002481A1 (en) 2016-01-07

Family

ID=55019028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067049 WO2016002481A1 (en) 2014-07-01 2015-06-12 Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same

Country Status (2)

Country Link
JP (1) JP6476611B2 (en)
WO (1) WO2016002481A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190304A1 (en) * 2017-04-10 2018-10-18 セントラル硝子株式会社 Method for producing phosphoryl imide salt, method for producing nonaqueous electrolyte solution containing said salt, and method for producing nonaqueous secondary battery
CN112186250A (en) * 2020-09-30 2021-01-05 香河昆仑化学制品有限公司 Electrolyte containing lithium bis (oxalato) phosphoryl imine and lithium ion battery using electrolyte
CN112186254A (en) * 2020-09-30 2021-01-05 香河昆仑化学制品有限公司 Electrolyte containing difluoro oxalic acid phosphorus imide lithium and lithium ion battery using electrolyte
CN112736284A (en) * 2020-12-28 2021-04-30 远景动力技术(江苏)有限公司 Low-impedance long-cycle non-aqueous electrolyte and lithium ion battery based on same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6860783B2 (en) 2016-07-01 2021-04-21 セントラル硝子株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
CN109417199B (en) 2016-07-01 2022-02-11 中央硝子株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte secondary battery
JP6874215B2 (en) * 2018-04-06 2021-05-19 株式会社東芝 Non-aqueous electrolyte batteries and battery packs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511274A (en) * 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク Ionic conductive material with good corrosion resistance
JP2004522681A (en) * 2000-12-29 2004-07-29 ハイドロ−ケベック Method for fluorinating a compound containing a halosulfonyl group or a dihalophosphonyl group
JP2010280586A (en) * 2009-06-03 2010-12-16 Central Glass Co Ltd Method for producing imidic acid salt
JP2013051122A (en) * 2011-08-31 2013-03-14 Central Glass Co Ltd Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511274A (en) * 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク Ionic conductive material with good corrosion resistance
JP2004522681A (en) * 2000-12-29 2004-07-29 ハイドロ−ケベック Method for fluorinating a compound containing a halosulfonyl group or a dihalophosphonyl group
JP2010280586A (en) * 2009-06-03 2010-12-16 Central Glass Co Ltd Method for producing imidic acid salt
JP2013051122A (en) * 2011-08-31 2013-03-14 Central Glass Co Ltd Electrolytic solution for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190304A1 (en) * 2017-04-10 2018-10-18 セントラル硝子株式会社 Method for producing phosphoryl imide salt, method for producing nonaqueous electrolyte solution containing said salt, and method for producing nonaqueous secondary battery
JPWO2018190304A1 (en) * 2017-04-10 2020-04-02 セントラル硝子株式会社 Method for producing phosphorylimide salt, method for producing non-aqueous electrolyte containing salt, and method for producing non-aqueous secondary battery
US10851124B2 (en) 2017-04-10 2020-12-01 Central Glass Co., Ltd. Method for producing phosphoryl imide salt, method for producing nonaqueous electrolyte solution containing said salt, and method for producing nonaqueous secondary battery
US11230564B2 (en) 2017-04-10 2022-01-25 Central Glass Co., Ltd. Method for producing phosphoryl imide salt, method for producing nonaqueous electrolyte solution containing said salt, and method for producing nonaqueous secondary battery
JP7128422B2 (en) 2017-04-10 2022-08-31 セントラル硝子株式会社 Method for producing phosphorylimide salt, method for producing non-aqueous electrolyte containing said salt, and method for producing non-aqueous secondary battery
CN112186250A (en) * 2020-09-30 2021-01-05 香河昆仑化学制品有限公司 Electrolyte containing lithium bis (oxalato) phosphoryl imine and lithium ion battery using electrolyte
CN112186254A (en) * 2020-09-30 2021-01-05 香河昆仑化学制品有限公司 Electrolyte containing difluoro oxalic acid phosphorus imide lithium and lithium ion battery using electrolyte
CN112186254B (en) * 2020-09-30 2022-11-25 香河昆仑新能源材料股份有限公司 Electrolyte containing difluoro oxalic acid phosphoimide lithium and lithium ion battery using electrolyte
CN112736284A (en) * 2020-12-28 2021-04-30 远景动力技术(江苏)有限公司 Low-impedance long-cycle non-aqueous electrolyte and lithium ion battery based on same

Also Published As

Publication number Publication date
JP2016015214A (en) 2016-01-28
JP6476611B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6255722B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP6221365B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP5796417B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery
JP6665396B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
US10847838B2 (en) Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
JP5573313B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
US8841034B2 (en) Electrolyte for electrochemical device, electrolyte solution using same, and non-aqueous electrolyte battery
JP6361486B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP6476611B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
WO2017111143A1 (en) Electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which same is used
JP6396153B2 (en) Lithium secondary battery
JP2019057356A (en) Electrolytic solution for nonaqueous electrolyte battery, and nonaqueous electrolyte battery using the same
WO2016080063A1 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte lithium battery
JP7172015B2 (en) Additive for non-aqueous electrolyte, electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
WO2012161305A1 (en) Nonaqueous electrolyte solution and lithium ion secondary battery using same
WO2012176871A1 (en) Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery
JP5218589B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814081

Country of ref document: EP

Kind code of ref document: A1