JP2011150789A - Membrane electrode assembly, and method for producing the same - Google Patents

Membrane electrode assembly, and method for producing the same Download PDF

Info

Publication number
JP2011150789A
JP2011150789A JP2008126378A JP2008126378A JP2011150789A JP 2011150789 A JP2011150789 A JP 2011150789A JP 2008126378 A JP2008126378 A JP 2008126378A JP 2008126378 A JP2008126378 A JP 2008126378A JP 2011150789 A JP2011150789 A JP 2011150789A
Authority
JP
Japan
Prior art keywords
membrane
fuel
electrode assembly
electrode
membrane electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008126378A
Other languages
Japanese (ja)
Inventor
Tomohisa Yoshie
智寿 吉江
Toshiyuki Fujita
敏之 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008126378A priority Critical patent/JP2011150789A/en
Priority to PCT/JP2009/058814 priority patent/WO2009139369A1/en
Publication of JP2011150789A publication Critical patent/JP2011150789A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1097Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane electrode assembly and a manufacturing method of the same, which prevent mixing of a fuel and air as well as leakage of the fuel outside a battery, and enable areas of a fuel electrode and an air electrode to be designed large under the condition of a restricted fuel cell installation area. <P>SOLUTION: The membrane electrode assembly includes an electrolyte film, the fuel electrode formed on one surface of the electrolyte film, and the air electrode formed on the other surface of the electrolyte film. The assembly has, at least on one side of the same, a side face composed of a continuous surface of at least a fuel electrode end face, an electrolyte film end face and an air electrode end face, and also includes an insulated sealing layer to cover the side face. Also, there is disclosed the manufacturing method of the same. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、燃料極および空気極の大面積化が可能であり、燃料と空気の混合や電池外部へ燃料の漏洩を防止可能な膜電極複合体およびその製造方法に関する。   The present invention relates to a membrane electrode assembly capable of increasing the area of a fuel electrode and an air electrode, and capable of preventing mixing of fuel and air and leakage of fuel to the outside of a battery, and a method for manufacturing the same.

燃料電池は、ユーザが1回燃料補充することで電子機器を従来よりも長く利用できる長時間駆動の点や、ユーザが外出先で電池を使い切ってしまっても、電池の充電を待たずに燃料を購入し補充することで直ぐに電子機器が利用できる利便性の点から、情報化社会を支える携帯用電子機器の新規電源として実用化の期待が高まっている。   Fuel cells can be used for a long time, allowing users to use the electronic equipment longer than before by refilling the fuel once, and even if the user runs out of the battery on the go, the fuel cell does not have to wait for charging. From the point of convenience that an electronic device can be used immediately by purchasing and replenishing it, there is an increasing expectation for practical use as a new power source for portable electronic devices that support the information society.

燃料電池は一般的に、燃料極で炭化水素系ガスや水素ガス、アルコール水溶液等の燃料を酸化し、空気極で空気中の酸素を還元する酸化還元反応を利用することで電子機器に電力を供給する。   In general, a fuel cell oxidizes fuel such as hydrocarbon gas, hydrogen gas, and aqueous alcohol solution at a fuel electrode, and uses an oxidation-reduction reaction in which oxygen in the air is reduced at an air electrode. Supply.

燃料電池は、使用する電解質材料や燃料の分類から、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型、ダイレクトアルコール型等に分類される。特に、電解質材料に固体高分子であるイオン交換膜を用いる固体高分子型燃料電池やダイレクトアルコール型燃料電池は、電解質膜がサブミリ以下の薄膜であり、常温で高い発電効率が得られることから、携帯電子機器への応用を目的とした小型燃料電池としての実用化が検討されている。   Fuel cells are classified into a phosphoric acid type, a molten carbonate type, a solid electrolyte type, a solid polymer type, a direct alcohol type, and the like according to the classification of the electrolyte material and fuel used. In particular, solid polymer fuel cells and direct alcohol fuel cells that use an ion exchange membrane that is a solid polymer as an electrolyte material are electrolyte films that are sub-millimeter thin films, and high power generation efficiency can be obtained at room temperature. Practical application as a small fuel cell for the purpose of application to portable electronic devices is being studied.

ダイレクトアルコール型燃料電池は、燃料極にアルコール水溶液を供給すると、燃料極に接触したアルコール水溶液が酸化されて、二酸化炭素等のガスおよびプロトンに分離される。たとえばアルコールとしてメタノールを用いた場合では、
CH3OH+H2O→CO2↑+6H++6e-
の酸化反応により二酸化炭素が燃料極側で発生する。
In the direct alcohol fuel cell, when an alcohol aqueous solution is supplied to the fuel electrode, the alcohol aqueous solution in contact with the fuel electrode is oxidized and separated into a gas such as carbon dioxide and protons. For example, when methanol is used as the alcohol,
CH 3 OH + H 2 O → CO 2 ↑ + 6H + + 6e
Carbon dioxide is generated on the fuel electrode side by the oxidation reaction.

プロトンは電解質膜を経て空気極側に伝達される。空気極に該プロトンと空気中の酸素が供給され、
3/2O2+6H++6e-→3H2
の還元反応により水が生成する。このときに電子が外部の電子機器(負荷)を通過して燃料極から空気極に移動し電力として利用できる。
Protons are transmitted to the air electrode side through the electrolyte membrane. The proton and oxygen in the air are supplied to the air electrode,
3 / 2O 2 + 6H + + 6e → 3H 2 O
Water is produced by the reduction reaction. At this time, electrons pass through an external electronic device (load), move from the fuel electrode to the air electrode, and can be used as electric power.

このような電力を取り出すための中心部材となる燃料極と電解質膜と空気極とを一体化したものを膜電極複合体と呼んでいる。   Such a fuel electrode, an electrolyte membrane, and an air electrode, which are central members for taking out electric power, are called a membrane electrode assembly.

一般に、電解質膜は、燃料極や空気極よりも外周が1〜2センチ程度大きく構成される。これは、電解質膜を隔膜として用い、燃料と空気の混合や電池外部へ燃料の漏洩を防止するとともに、燃料極と空気極との電気的短絡を防止するためである。このような電解質膜の外周部分、すなわち燃料極や空気極が形成されていない電解質膜部分は、燃料や空気が供給されても酸化還元反応に寄与できない。このような電解質膜の外周部分の面積は、電気自動車用電源や家庭用電源等の大電力用途の膜電極複合体においては、ほとんど問題視されていない。これは、燃料極や空気極の面積は数十〜百数十cm2にも及ぶため、電解質膜の外周部分の面積は、膜電極複合体の総面積に対して非常に小さいためである。 Generally, the electrolyte membrane is configured to have an outer periphery that is about 1 to 2 cm larger than the fuel electrode and the air electrode. This is because the electrolyte membrane is used as a diaphragm to prevent mixing of fuel and air, leakage of fuel to the outside of the cell, and electrical shorting between the fuel electrode and the air electrode. Such an outer peripheral portion of the electrolyte membrane, that is, an electrolyte membrane portion where no fuel electrode or air electrode is formed cannot contribute to the oxidation-reduction reaction even if fuel or air is supplied. Such an area of the outer peripheral portion of the electrolyte membrane is hardly regarded as a problem in a membrane electrode assembly for high power applications such as an electric vehicle power source and a household power source. This is because the area of the outer periphery of the electrolyte membrane is very small relative to the total area of the membrane electrode assembly because the area of the fuel electrode and the air electrode reaches several tens to hundreds of centimeters cm 2 .

しかし、数ワットクラスの消費電力である携帯電子機器への応用、特に携帯電子機器への搭載用途の膜電極複合体では、燃料極や空気極の面積は数cm2程度であり、電解質膜の外周部分の面積は、膜電極複合体の総面積に対して非常に大きくなる。 However, in the case of membrane electrode composites for use in portable electronic devices that consume power of several watts, particularly for use in portable electronic devices, the area of the fuel electrode and air electrode is about several cm 2 , The area of the outer peripheral portion is very large with respect to the total area of the membrane electrode assembly.

特許文献1には、電極構成部材の側面にシール部を形成し、シール部の中心で裁断することにより電極構成部材を得る方法が報告されている。
特開2001−93548号公報
Patent Document 1 reports a method of obtaining an electrode constituent member by forming a seal portion on the side surface of the electrode constituent member and cutting at the center of the seal portion.
JP 2001-93548 A

電解質膜が外周部分をもたない膜電極複合体において、従来のように単に膜電極複合体の側面にシール剤を塗布するだけでは、燃料の漏洩が起こりやすく、特にメタノール水溶液やギ酸等の液体燃料を用いた場合に、液体燃料がシール部に接触し膜電極複合体とシール部の界面で接合強度が弱くなり、燃料と空気の混合や、特に燃料電池の外部へ液体燃料が漏洩することを十分に防止することができない課題を抱えている。   In a membrane electrode assembly in which the electrolyte membrane does not have an outer peripheral portion, it is easy to cause fuel leakage by simply applying a sealant to the side surface of the membrane electrode assembly as in the past, and in particular, a liquid such as methanol aqueous solution or formic acid. When fuel is used, the liquid fuel comes into contact with the seal part and the bonding strength is weakened at the interface between the membrane electrode assembly and the seal part, and the liquid fuel leaks to the outside of the fuel cell, especially the mixture of fuel and air. Have problems that cannot be prevented sufficiently.

本発明は上記の課題を解決し、電解質膜が外周部分をもたない膜電極複合体において、数ワットクラスの消費電力である携帯電子機器への応用、特に携帯電子機器搭載型の燃料電池への応用を目的とした膜電極複合体において、燃料と空気の混合や電池外部への燃料の漏洩を防止するとともに、制限された燃料電池の設置面積に対して、燃料極および空気極の面積を大きく設計できる膜電極複合体およびその製造方法を提供することを目的とする。   The present invention solves the above problems, and in a membrane electrode assembly in which the electrolyte membrane does not have an outer peripheral portion, it is applied to a portable electronic device having a power consumption of several watts, particularly to a fuel cell mounted on a portable electronic device. In the membrane electrode assembly for the purpose of application, the fuel and air mixing and the leakage of fuel to the outside of the cell are prevented, and the area of the fuel electrode and air electrode is reduced with respect to the limited installation area of the fuel cell. An object of the present invention is to provide a membrane electrode assembly that can be designed to be large and a method for producing the same.

本発明は、電解質膜と、該電解質膜の一方の表面に形成された燃料極と、該電解質膜の他方の表面に形成された空気極と、を備えた複合体であって、該複合体は、その少なくとも一辺において、少なくとも燃料極端面と電解質膜端面と空気極端面とから構成される連続面からなる側面を有し、該側面を被覆する絶縁封止層を備える膜電極複合体に関する。   The present invention is a composite comprising an electrolyte membrane, a fuel electrode formed on one surface of the electrolyte membrane, and an air electrode formed on the other surface of the electrolyte membrane, the composite The present invention relates to a membrane electrode assembly having a side surface composed of a continuous surface composed of at least a fuel extreme surface, an electrolyte membrane end surface and an air extreme surface on at least one side thereof, and an insulating sealing layer covering the side surface.

上記側面は凹凸形状を有していることが好ましく、特に凹凸形状は、該側面がその投影面積に対して2倍以上の表面積を有するように形成されることがより好ましい。   It is preferable that the side surface has a concavo-convex shape, and it is more preferable that the concavo-convex shape is formed so that the side surface has a surface area more than twice the projected area.

また、本発明は、燃料極に隣接して設けられた流路板をさらに備え、該絶縁封止層は、流路板の端面および/または燃料極側表面の一部を被覆する膜電極複合体に関する。   The present invention further includes a flow path plate provided adjacent to the fuel electrode, and the insulating sealing layer covers the end surface of the flow path plate and / or a part of the fuel electrode side surface. About the body.

本発明の膜電極複合体は、流路板の流路を覆うように、かつ、燃料極に隣接するように配置された浸透膜をさらに備えることが好ましい。   The membrane electrode assembly of the present invention preferably further includes a permeable membrane disposed so as to cover the flow path of the flow path plate and adjacent to the fuel electrode.

また、本発明は、複合体の少なくとも対向する二辺において、少なくとも燃料極端面と電解質膜端面と空気極端面とから構成される連続面からなる側面を有し、該側面を被覆する絶縁封止層を備えており、該複合体の長さLと幅Hとの比率L/Hが10以上である膜電極複合体に関する。   In addition, the present invention has a side surface composed of a continuous surface composed of at least a fuel extreme surface, an electrolyte membrane end surface, and an air extreme surface on at least two opposite sides of the composite, and an insulating seal that covers the side surface The present invention relates to a membrane electrode assembly having a layer, wherein the ratio L / H of the length L to the width H of the composite is 10 or more.

本発明においては、空気極に隣接して設けられた金属導電層をさらに備え、該金属導電層の少なくとも一部は、電解質膜に接していることが好ましい。   In the present invention, it is preferable that a metal conductive layer provided adjacent to the air electrode is further provided, and at least a part of the metal conductive layer is in contact with the electrolyte membrane.

また、本発明は、膜電極複合体の複数を、対向する二辺と平行または略平行に配列してなる膜電極複合体スタックに関する。   The present invention also relates to a membrane electrode composite stack in which a plurality of membrane electrode composites are arranged in parallel or substantially in parallel with two opposing sides.

さらに、本発明は、燃料極と電解質膜と空気極との積層構造を有する第1複合体を切断し、該第1複合体より面積の小さい第2複合体を作製する複合体切断工程と、少なくとも第2複合体の切断面に絶縁封止層を形成する絶縁封止層形成工程と、を有する膜電極複合体の製造方法に関する。   Furthermore, the present invention includes a composite cutting step of cutting a first composite having a laminated structure of a fuel electrode, an electrolyte membrane, and an air electrode to produce a second composite having a smaller area than the first composite; An insulating sealing layer forming step of forming an insulating sealing layer on a cut surface of at least a second composite.

本発明の膜電極複合体の製造方法は、絶縁封止層形成工程が絶縁封止層の前駆体溶液を塗布する工程を含むことが好ましく、特に、絶縁封止層の前駆体溶液に、電解質膜を溶解可能な溶媒が含まれ、該溶媒により電解質膜の一部を溶解し絶縁封止層を形成することがより好ましい。   In the method for producing a membrane electrode assembly of the present invention, the insulating sealing layer forming step preferably includes a step of applying a precursor solution of the insulating sealing layer, and in particular, the electrolyte solution is added to the precursor solution of the insulating sealing layer. It is more preferable that a solvent capable of dissolving the film is contained, and the insulating sealing layer is formed by dissolving a part of the electrolyte film with the solvent.

本発明の膜電極複合体の製造方法は、複合体切断工程の後に、第2複合体の燃料極に流路板を接合する工程をさらに備えていてもよい。この場合、絶縁封止層の前駆体溶液は、流路板を溶解可能な溶媒を含み、該溶媒により流路版の一部を溶解し、絶縁封止層を形成することが好ましい。   The method for producing a membrane electrode assembly of the present invention may further include a step of joining the flow path plate to the fuel electrode of the second composite after the composite cutting step. In this case, it is preferable that the precursor solution of the insulating sealing layer contains a solvent capable of dissolving the flow path plate, and a part of the flow path plate is dissolved with the solvent to form the insulating sealing layer.

上記複合体切断工程においては、第1複合体の切断部周辺を圧迫しながら、第1複合体を切断してもよい。   In the complex cutting step, the first complex may be cut while pressing around the cut portion of the first complex.

本発明によれば、電解質膜端面と燃料極端面と空気極端面とからなる膜電極複合体側面と絶縁封止層の界面の接着強度を強くすることができ、燃料と空気の混合や、電池外部へ燃料の漏洩が適時防止される。これにより、電解質膜の外周部分の面積を限りなく小さくでき、限られた搭載面積しか許されない携帯電子機器へ搭載する場合であっても、燃料極および空気極の面積を可能な限り大きく設計できるため、消費電力に必要な数ワットクラスの電力を供給することができる。   According to the present invention, it is possible to increase the adhesive strength of the interface between the side surface of the membrane electrode assembly composed of the end surface of the electrolyte membrane, the fuel extreme surface, and the air extreme surface and the insulating sealing layer, and to mix fuel and air, The leakage of fuel to the outside is prevented in a timely manner. As a result, the area of the outer peripheral portion of the electrolyte membrane can be reduced as much as possible, and the area of the fuel electrode and the air electrode can be designed as large as possible even when mounted on a portable electronic device that allows only a limited mounting area. Therefore, the power of several watts class required for power consumption can be supplied.

<実施の形態1>
図1は、本発明の膜電極複合体の好ましい構成の例を模式的に示す表面図であり、図2は、図1のA−A’面における断面図である。図1および図2に示す膜電極複合体100は、電解質膜101と、電解質膜101の一方の表面に形成された燃料極102と、電解質膜101の他方の表面に形成された空気極103と、膜電極複合体の対向する2辺における、燃料極102端面と電解質膜101端面と空気極103端面とによって形成された側面に接するように形成された絶縁封止層104を少なくとも備える。該側面は、燃料極102端面と電解質膜101端面と空気極103端面とから構成される連続面からなる。絶縁封止層104は、該側面を被覆するように形成されている。
<Embodiment 1>
FIG. 1 is a surface view schematically showing an example of a preferred configuration of the membrane electrode assembly of the present invention, and FIG. 2 is a cross-sectional view taken along the plane AA ′ of FIG. A membrane electrode assembly 100 shown in FIGS. 1 and 2 includes an electrolyte membrane 101, a fuel electrode 102 formed on one surface of the electrolyte membrane 101, and an air electrode 103 formed on the other surface of the electrolyte membrane 101. And at least an insulating sealing layer 104 formed so as to be in contact with the side surfaces formed by the end face of the fuel electrode 102, the end face of the electrolyte membrane 101, and the end face of the air electrode 103 on two opposing sides of the membrane electrode assembly. The side surface is a continuous surface composed of the end surface of the fuel electrode 102, the end surface of the electrolyte membrane 101, and the end surface of the air electrode 103. The insulating sealing layer 104 is formed so as to cover the side surface.

このように、燃料極端面と電解質膜端面と空気極端面とからなる膜電極複合体側面に絶縁封止層が形成されることにより、電解質膜の外周部分を隔膜として用いずとも、安定して燃料極と空気極の電気的短絡を防止することができる。また、膜電極複合体側面を、燃料極端面と電解質膜端面と空気極端面とから構成される連続面とすることにより、該側面を被覆するように配置される絶縁封止層を均一な厚みで形成できるため、外部環境の変化による絶縁封止層の膨潤や収縮による該側面における局所的な応力集中が起きず、該側面に対する接着強度を向上させることができる。   As described above, the insulating sealing layer is formed on the side surface of the membrane electrode assembly including the fuel extreme surface, the electrolyte membrane end surface, and the air extreme surface, so that the outer peripheral portion of the electrolyte membrane can be stably used without being used as a diaphragm. An electrical short circuit between the fuel electrode and the air electrode can be prevented. Further, by forming the side surface of the membrane electrode assembly as a continuous surface composed of the fuel extreme surface, the electrolyte membrane end surface, and the air extreme surface, the insulating sealing layer disposed so as to cover the side surface has a uniform thickness. Therefore, local stress concentration on the side surface due to swelling or shrinkage of the insulating sealing layer due to a change in the external environment does not occur, and the adhesive strength to the side surface can be improved.

また、鉄イオン、カルシウムイオン等のカチオンや、塩化物イオン、フッ素イオン等のアニオンが、電解質膜の表面に接触してしまうと、電解質膜に含まれるプロトン(水素イオン)やオキソニウムイオンと、イオン交換が生じ、該カチオンや該アニオンが電解質膜中に取り込まれてしまう。一般に、プロトンやオキソニウムイオンに比べ、金属イオンや塩化物イオンは移動度が低いことが知られており、不純物イオンの混入により電解質膜のプロトンを伝導する機能(プロトン伝導性)が低下するため、膜電極複合体の内部抵抗が高くなり出力が低下してしまう。本発明においては、電解質膜の外周部分を必ずしも必要とせず、さらに絶縁封止層により電解質膜側面の露出面積が減少するため、電解質膜へ不純物イオンの混入が抑制され、膜電極複合体の出力の長期信頼性を得ることができる。以下、膜電極複合体を構成する各部材の典型的な態様について説明する。   Moreover, when cations such as iron ions and calcium ions, and anions such as chloride ions and fluorine ions come into contact with the surface of the electrolyte membrane, protons (hydrogen ions) and oxonium ions contained in the electrolyte membrane, Ion exchange occurs, and the cations and the anions are taken into the electrolyte membrane. In general, metal ions and chloride ions are known to have low mobility compared to protons and oxonium ions, and the function of conducting protons in the electrolyte membrane (proton conductivity) decreases due to the inclusion of impurity ions. The internal resistance of the membrane electrode assembly increases and the output decreases. In the present invention, the outer peripheral portion of the electrolyte membrane is not necessarily required, and further, the exposed area of the side surface of the electrolyte membrane is reduced by the insulating sealing layer, so that impurity ions are prevented from being mixed into the electrolyte membrane, and the output of the membrane electrode assembly is reduced. Long-term reliability. Hereinafter, typical aspects of each member constituting the membrane electrode assembly will be described.

(絶縁封止層)
本発明の膜電極複合体における絶縁封止層は、燃料と空気の混合や、燃料の漏洩を防止し、燃料極と空気極との電気的絶縁性を保ち、短絡を防止する機能を有する。絶縁封止層は、絶縁封止層の前駆体液を燃料極端面と電解質膜端面と空気極端面とから構成される連続面からなる側面に塗布することにより形成されることが好ましい。前駆体液の塗布により、絶縁封止層を形成することで、絶縁封止層の膜厚をサブミリオーダで制御することができる。このため、絶縁封止層を1mm以下の膜厚で制御し、燃料の漏洩を防止しつつ、膜電極複合体の外周部分の面積を限りなく小さくすることができる。絶縁封止層の前駆体液とは、たとえば、絶縁封止層を構成する樹脂等を含有する溶液や、感光または重合開始剤の添加等により硬化するモノマー樹脂である。
(Insulating sealing layer)
The insulating sealing layer in the membrane electrode assembly of the present invention has a function of preventing mixing of fuel and air, fuel leakage, maintaining electrical insulation between the fuel electrode and the air electrode, and preventing a short circuit. The insulating sealing layer is preferably formed by applying the precursor liquid of the insulating sealing layer to a side surface composed of a continuous surface composed of the fuel extreme surface, the electrolyte membrane end surface, and the air extreme surface. By forming the insulating sealing layer by applying the precursor liquid, the film thickness of the insulating sealing layer can be controlled on a submillimeter order. For this reason, the area of the outer peripheral portion of the membrane electrode assembly can be reduced as much as possible while controlling the insulating sealing layer with a film thickness of 1 mm or less and preventing fuel leakage. The precursor liquid of the insulating sealing layer is, for example, a solution containing a resin or the like constituting the insulating sealing layer, or a monomer resin that is cured by addition of photosensitivity or a polymerization initiator.

絶縁封止層の材質は、電解質膜との接合性のよい材質であれば特に限定されず、有機高分子や無機高分子を用いることができる。有機高分子としては、たとえばエポキシ系樹脂、アクリル系樹脂、ポリイソブチレン系樹脂、フッ素系樹脂等を用いることができ、無機高分子としては、シリコーン樹脂を用いることができる。   The material of the insulating sealing layer is not particularly limited as long as the material has good bonding property with the electrolyte membrane, and an organic polymer or an inorganic polymer can be used. As the organic polymer, for example, an epoxy resin, an acrylic resin, a polyisobutylene resin, a fluorine resin, or the like can be used. As the inorganic polymer, a silicone resin can be used.

また、絶縁封止層の前駆体液には、電解質膜を溶解または軟化させる有機溶媒が含まれていることが好ましい。電解質膜として、後述するパーフルオロスルホン酸系ポリマを用いる場合には、有機溶媒として、メタノールやエタノール等のアルコール溶媒を用いることにより、電解質膜を軟化させることができ、軟化した電解質膜により絶縁封止層との接合面積が増加するため、電解質膜と強固に接着することができる。一方、電解質膜として後述する炭化水素系ポリマを用いる場合には、アルコール溶媒よりもさらに溶解性の高い、ジメチルアセトアミド、テトラヒドロフラン等の有機溶媒を用いることにより、電解質膜を一旦溶解させ、絶縁封止層の形成とともに再固化させることで、電解質膜と強固に接着することができる。   The precursor liquid of the insulating sealing layer preferably contains an organic solvent that dissolves or softens the electrolyte membrane. When the perfluorosulfonic acid polymer described later is used as the electrolyte membrane, the electrolyte membrane can be softened by using an alcohol solvent such as methanol or ethanol as the organic solvent. Since the bonding area with the stop layer increases, it can be firmly bonded to the electrolyte membrane. On the other hand, when using a hydrocarbon polymer, which will be described later, as the electrolyte membrane, the electrolyte membrane is once dissolved by using an organic solvent such as dimethylacetamide or tetrahydrofuran, which has higher solubility than the alcohol solvent, and is insulated and sealed. By resolidifying with the formation of the layer, it can be firmly bonded to the electrolyte membrane.

(電解質膜)
本発明の膜電極複合体における電解質膜は、燃料極から空気極へプロトンを伝達する機能と、燃料極と空気極との電気的絶縁性を保ち、短絡を防止する機能を有する。電解質膜の材質は、プロトン伝導性を有し、かつ電気的絶縁性を有する材質であれば特に限定されず、高分子膜、無機膜またはコンポジット膜を用いることができる。高分子膜としては、たとえばパーフルオロスルホン酸系電解質膜である、ナフィオン(登録商標、デュポン社製)、アシプレックス(登録商標、旭化成社製)、フレミオン(登録商標、旭硝子社製)などが挙げられる。また、スチレン系グラフト重合体、トリフルオロスチレン誘導体共重合体、スルホン化ポリアリーレンエーテル、スルホン化ポリエーテルエーテルケトン、スルホン化ポリイミド、スルホン化ポリベンゾイミダゾール、ホスホン化ポリベンゾイミダゾール、スルホン化ポリフォスファゼンなどの炭化水素系電解質膜なども挙げられる。
(Electrolyte membrane)
The electrolyte membrane in the membrane electrode assembly of the present invention has a function of transmitting protons from the fuel electrode to the air electrode, a function of maintaining electrical insulation between the fuel electrode and the air electrode, and preventing a short circuit. The material of the electrolyte membrane is not particularly limited as long as it has proton conductivity and electrical insulation, and a polymer membrane, an inorganic membrane, or a composite membrane can be used. Examples of the polymer membrane include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei), Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.), which are perfluorosulfonic acid electrolyte membranes. It is done. Also, styrene-based graft polymer, trifluorostyrene derivative copolymer, sulfonated polyarylene ether, sulfonated polyetheretherketone, sulfonated polyimide, sulfonated polybenzimidazole, phosphonated polybenzimidazole, sulfonated polyphosphazene. And hydrocarbon-based electrolyte membranes.

無機膜としては、たとえばリン酸ガラス、硫酸水素セシウム、ポリタングストリン酸、ポリリン酸アンモニウムなどが挙げられる。コンポジット膜としては、タングステン酸、硫酸水素セシウム、ポリタングストリン酸等の無機物とポリイミド、ポリエーテルエーテルケトン、パーフルオロスルホン酸等の有機物とのコンポジットなどが挙げられる。   Examples of the inorganic film include phosphate glass, cesium hydrogen sulfate, polytungstophosphoric acid, and ammonium polyphosphate. Examples of the composite film include composites of inorganic materials such as tungstic acid, cesium hydrogen sulfate, and polytungstophosphoric acid, and organic materials such as polyimide, polyether ether ketone, and perfluorosulfonic acid.

(燃料極、空気極)
本発明の膜電極複合体における燃料極および空気極には、少なくとも触媒と電解質とを有する多孔質層からなる触媒層が設けられる。燃料極用の触媒は、水素ガスやメタノール水溶液等の燃料をプロトンと電子に分解し、電解質は、生成した該プロトンを電解質膜へ伝導する機能を有する。空気極用の触媒は、電解質を伝導してきたプロトンと空気中の酸素から水を生成する機能を有する。
(Fuel electrode, air electrode)
The fuel electrode and air electrode in the membrane electrode assembly of the present invention are provided with a catalyst layer comprising a porous layer having at least a catalyst and an electrolyte. The catalyst for the fuel electrode decomposes fuel such as hydrogen gas or aqueous methanol solution into protons and electrons, and the electrolyte has a function of conducting the generated protons to the electrolyte membrane. The catalyst for an air electrode has a function of generating water from protons conducted through an electrolyte and oxygen in the air.

燃料極および空気極用の触媒は、カーボンやチタン等の導電体の表面に担持されていてもよいが、この場合、該触媒や導電体は、サブミクロンオーダであることが好ましく、また、燃料極および空気極用の電解質は、有機高分子材料であることが好ましい。これは、後述する電解質膜と燃料極と空気極とを備える複合体を切断して膜電極複合体を得る製造プロセスにおいて、触媒層を構成する触媒および導電体部材がサブミクロンオーダであると、切断歯に対して触媒層はほぼ均一層として扱うことができ、燃料極および空気極を切断しても、両極の電気的短絡を起こさずに膜電極複合体を得ることができるためである。   The catalyst for the fuel electrode and the air electrode may be supported on the surface of a conductor such as carbon or titanium. In this case, the catalyst or conductor is preferably in the submicron order, and the fuel The electrolyte for the electrode and the air electrode is preferably an organic polymer material. This is because, in the manufacturing process of obtaining a membrane electrode composite by cutting a composite comprising an electrolyte membrane, a fuel electrode, and an air electrode, which will be described later, the catalyst and conductor member constituting the catalyst layer are on the order of submicrons. This is because the catalyst layer can be handled as a substantially uniform layer with respect to the cutting teeth, and even when the fuel electrode and the air electrode are cut, a membrane electrode assembly can be obtained without causing an electrical short circuit between the two electrodes.

図3は、本発明の膜電極複合体の好ましい製造方法の例を模式的に示す図である。図1に示すような本発明の膜電極複合体は、図3に示されるように、燃料極と電解質膜と空気極との積層構造を有する第1複合体301の当該燃料極と電解質膜と空気極とを切断することで、第1複合体301より面積の小さい第2複合体302を作製した後に、該第2複合体302の切断面に絶縁封止層を形成することにより作製される。すなわち、上記燃料極端面と電解質膜端面と空気極端面とから構成される連続面からなる側面は、第1複合体を切断することにより形成される切断面からなる。   FIG. 3 is a diagram schematically showing an example of a preferred method for producing the membrane electrode assembly of the present invention. As shown in FIG. 3, the membrane electrode assembly of the present invention as shown in FIG. 1 includes the fuel electrode and electrolyte membrane of the first composite 301 having a laminated structure of a fuel electrode, an electrolyte membrane, and an air electrode. The second composite body 302 having a smaller area than the first composite body 301 is manufactured by cutting the air electrode, and then an insulating sealing layer is formed on the cut surface of the second composite body 302. . That is, the side surface composed of a continuous surface composed of the fuel extreme surface, the electrolyte membrane end surface, and the air extreme surface is a cut surface formed by cutting the first composite.

本発明の膜電極複合体の製造方法においては、十分に大きなサイズの膜電極複合体(第1複合体)を製造した後に、所望のサイズの膜電極複合体(第2複合体)に切り分けるため、様々な消費電力の携帯電子機器に搭載するために、サイズの異なる膜電極複合体の製造ラインを設ける必要がなくなる。このため、複雑な燃料極、空気極の製造や複合体の製造ラインを1つに集約することで、製造コストを大幅に削減することができる。   In the method for producing a membrane electrode assembly of the present invention, a sufficiently large membrane electrode complex (first complex) is produced, and then the membrane electrode complex (second complex) having a desired size is separated. Therefore, it is not necessary to provide a production line for membrane electrode composites having different sizes in order to be mounted on portable electronic devices having various power consumptions. For this reason, the manufacturing cost can be significantly reduced by consolidating the production lines of complex fuel electrodes and air electrodes and the production line of the composite into one.

<実施の形態2>
図4は、本発明の膜電極複合体の別の好ましい構成の例を模式的に示す表面図である。図4に示す膜電極複合体400は、電解質膜401と、電解質膜401の一方の表面に形成された燃料極402(図示せず)と、電解質膜401の他方の表面に形成された空気極403と、膜電極複合体の対向する2辺における、燃料極402端面と電解質膜401端面と空気極403端面とによって形成された側面に接するように形成された絶縁封止層404を少なくとも備える。該側面は、実施の形態1と同様、燃料極402端面と電解質膜401端面と空気極403端面とから構成される連続面からなる。
<Embodiment 2>
FIG. 4 is a surface view schematically showing another preferred configuration example of the membrane electrode assembly of the present invention. A membrane electrode assembly 400 shown in FIG. 4 includes an electrolyte membrane 401, a fuel electrode 402 (not shown) formed on one surface of the electrolyte membrane 401, and an air electrode formed on the other surface of the electrolyte membrane 401. 403 and at least an insulating sealing layer 404 formed so as to be in contact with the side surface formed by the end face of the fuel electrode 402, the end face of the electrolyte membrane 401, and the end face of the air electrode 403 on two opposing sides of the membrane electrode assembly. As in the first embodiment, the side surface is a continuous surface composed of the end surface of the fuel electrode 402, the end surface of the electrolyte membrane 401, and the end surface of the air electrode 403.

ここで、本実施形態の膜電極複合体においては、絶縁封止層404が設けられる2辺における側面が、燃料極/電解質膜/空気極の積層方向からみたときに、山形の凹凸形状を有している。このように、燃料極端面と電解質膜端面と空気極端面とからなる側面が凹凸形状をしていることにより、該側面と絶縁封止層の接着面積が増加し、燃料と空気の混合や、電池外部へ燃料の漏洩を効果的に防止することができる。   Here, in the membrane electrode assembly of the present embodiment, the side surfaces on the two sides where the insulating sealing layer 404 is provided have a mountain-shaped uneven shape when viewed from the stacking direction of the fuel electrode / electrolyte membrane / air electrode. is doing. Thus, the side surface consisting of the fuel extreme surface, the electrolyte membrane end surface, and the air extreme surface has an uneven shape, thereby increasing the adhesion area of the side surface and the insulating sealing layer, mixing of fuel and air, It is possible to effectively prevent fuel leakage to the outside of the battery.

凹凸形状は必ずしも山形形状でなくとも良いが、側面がその投影面積に対して2倍以上の表面積を有するように、凹凸形状が形成されることがより好ましい。ここにおける側面の投影面積とは、当該側面の1辺の長さと厚さから求める面積であり、側面の表面積とは、当該側面の1辺の辺長と厚さから求める面積のことをいう。すなわち、山形形状を例にすると、側面の1辺の長さをA、厚さをBとすると、側面の投影面積S1は
S1=A×B
で表される。山形形状が正三角形の集合体である場合には、側面の1辺の辺長は2Aで表されるから、側面の表面積S2は
S2=2A×B
で表される。つまり、山形形状の場合には、頂点が60°以下の内角を有する場合に、側面は、その投影面積に対して2倍以上の表面積を有する。
The concavo-convex shape may not necessarily be a mountain shape, but it is more preferable that the concavo-convex shape is formed so that the side surface has a surface area that is twice or more the projected area. Here, the projected area of the side surface is an area obtained from the length and thickness of one side of the side surface, and the surface area of the side surface means an area obtained from the side length and thickness of one side of the side surface. That is, taking a mountain shape as an example, if the length of one side of the side surface is A and the thickness is B, the projected area S1 of the side surface is S1 = A × B
It is represented by When the chevron shape is an aggregate of equilateral triangles, the side length of one side of the side surface is represented by 2A, so the surface area S2 of the side surface is S2 = 2A × B.
It is represented by That is, in the case of a mountain shape, when the vertex has an inner angle of 60 ° or less, the side surface has a surface area that is twice or more the projected area.

<実施の形態3>
図5は、本発明の膜電極複合体の別の好ましい構成の例を模式的に示す表面図である。図5に示す膜電極複合体500は、上記実施形態と同様に、電解質膜501と、電解質膜501の一方の表面に形成された燃料極502(図示せず)と、電解質膜501の他方の表面に形成された空気極503と、膜電極複合体の対向する2辺における、燃料極502端面と電解質膜501端面と空気極503端面とによって形成された側面に接するように形成された絶縁封止層504を少なくとも備える。該側面は、燃料極502端面と電解質膜501端面と空気極503端面とから構成される連続面からなる。ここで、膜電極複合体の長さLと幅Hの比率L/Hは10以上である。このように、比率L/Hを10以上とし、少なくとも当該長辺における側面に絶縁封止層を設ける構成とすることにより、電解質膜の外周部分の面積をより小さくでき、したがって、膜電極複合体の面積に対する燃料極および空気極の面積を大きく設計することが可能となる。
<Embodiment 3>
FIG. 5 is a surface view schematically showing an example of another preferred configuration of the membrane electrode assembly of the present invention. The membrane electrode assembly 500 shown in FIG. 5 includes an electrolyte membrane 501, a fuel electrode 502 (not shown) formed on one surface of the electrolyte membrane 501, and the other of the electrolyte membrane 501, as in the above embodiment. Insulation seal formed so as to be in contact with the side surface formed by the end face of the fuel electrode 502, the end face of the electrolyte membrane 501, and the end face of the air electrode 503 on the two opposite sides of the air electrode 503 formed on the surface. At least a stop layer 504 is provided. The side surface is a continuous surface composed of an end surface of the fuel electrode 502, an end surface of the electrolyte membrane 501, and an end surface of the air electrode 503. Here, the ratio L / H between the length L and the width H of the membrane electrode assembly is 10 or more. Thus, by setting the ratio L / H to 10 or more and providing an insulating sealing layer on at least the side surface of the long side, the area of the outer peripheral portion of the electrolyte membrane can be further reduced, and therefore the membrane electrode assembly It is possible to design a large area of the fuel electrode and the air electrode with respect to the area.

<実施の形態4>
図6は、本発明の膜電極複合体の別の好ましい構成の例を模式的に示す表面図である。図6に示す膜電極複合体600は、上記実施の形態3と類似するが、膜電極複合体の対向する2辺と、さらにそれに交わる一辺に、燃料極602(図示せず)端面と電解質膜601端面と空気極603端面とから構成される連続面からなる側面を有し、これらの側面に絶縁封止層604が形成されている。このように、3辺において絶縁封止層を形成することにより、燃料と空気の混合や、電池外部への燃料の漏洩をより効果的に防止できるとともに、電解質膜側面の露出面積がさらに減少するため、電解質膜へ不純物イオンの混入が抑制され、膜電極複合体の出力の長期信頼性をより高めることができる。なお、膜電極複合体の4辺すべてにおける、燃料極端面と電解質膜端面と空気極端面とから構成される側面に絶縁封止層が形成されてもよい。
<Embodiment 4>
FIG. 6 is a surface view schematically showing another preferred configuration example of the membrane electrode assembly of the present invention. A membrane electrode assembly 600 shown in FIG. 6 is similar to that of the above-described third embodiment. However, an end face of a fuel electrode 602 (not shown) and an electrolyte membrane are formed on two opposing sides of the membrane electrode assembly and further on one side that intersects the two sides. The side surface is a continuous surface composed of the end surface 601 and the end surface of the air electrode 603, and the insulating sealing layer 604 is formed on these side surfaces. Thus, by forming the insulating sealing layer on the three sides, it is possible to more effectively prevent the mixing of fuel and air and the leakage of the fuel to the outside of the battery, and the exposed area of the side surface of the electrolyte membrane is further reduced. Therefore, mixing of impurity ions into the electrolyte membrane is suppressed, and the long-term reliability of the output of the membrane electrode assembly can be further improved. An insulating sealing layer may be formed on the side surface composed of the fuel extreme surface, the electrolyte membrane end surface, and the air extreme surface on all four sides of the membrane electrode assembly.

ここで、本発明においては、膜電極複合体の幅Hは10mm以下であることが好ましい。幅Hを10mm以下とすることによって、空気中の酸素が取り込まれやすく、所定の空間を設けて、膜電極複合体の空気極の上部に、他の膜電極複合体を積層したとしても、幅Hが短いため、酸素が不足することによる出力の低下を抑制できる。   Here, in the present invention, the width H of the membrane electrode assembly is preferably 10 mm or less. By setting the width H to 10 mm or less, oxygen in the air is easily taken in, and even if another membrane electrode composite is laminated on the air electrode of the membrane electrode composite by providing a predetermined space, the width Since H is short, it is possible to suppress a decrease in output due to lack of oxygen.

<実施の形態5>
図7は、本発明の膜電極複合体を複数配置したスタック構造(膜電極複合体スタック)の例を模式的に示す表面図である。図7に示す膜電極複合体スタックは、たとえば後述する図12に示されるような構造を有する膜電極複合体700を、絶縁封止層が設けられた側面に平行または略平行に、所定の間隔を設けて複数配置してなる。このように、電解質膜の外周部分のない方向に、他の膜電極複合体が配列されると、膜電極複合体間の間隔を広くとることができるため、他の膜電極複合体を積層したとしても空気極に空気が供給されやすくなる。
<Embodiment 5>
FIG. 7 is a surface view schematically showing an example of a stack structure (membrane electrode composite stack) in which a plurality of membrane electrode composites of the present invention are arranged. The membrane electrode composite stack shown in FIG. 7 has a predetermined distance between, for example, a membrane electrode composite 700 having a structure as shown in FIG. 12 described later in parallel or substantially parallel to the side surface on which the insulating sealing layer is provided. A plurality of them are arranged. As described above, when other membrane electrode composites are arranged in a direction without the outer peripheral portion of the electrolyte membrane, the gap between the membrane electrode composites can be widened, so that the other membrane electrode composites are laminated. However, air is easily supplied to the air electrode.

本実施形態における絶縁封止層を構成する材料は、出力を取り出すことにより、空気極でプロトンと電子と空気中の酸素が反応することにより水が生成し、絶縁封止層に接触するため、耐水性樹脂であることが好ましい。また、スタック構造により出力が高くなると、放熱面積に対する発熱量が増加し、膜電極複合体は高温で動作することになる。このため、絶縁封止層を構成する材料は、100℃前後の耐熱性を有する耐熱性樹脂であることが好ましい。これにより、長期間の動作においても、絶縁封止層の機能を長期に安定的に維持することが可能となる。   The material constituting the insulating sealing layer in the present embodiment generates water by reacting protons, electrons, and oxygen in the air at the air electrode by taking out the output, and contacts the insulating sealing layer. A water-resistant resin is preferred. Further, when the output is increased due to the stack structure, the amount of heat generated with respect to the heat radiation area increases, and the membrane electrode assembly operates at a high temperature. For this reason, it is preferable that the material which comprises an insulating sealing layer is a heat resistant resin which has the heat resistance of about 100 degreeC. Thereby, even in a long-term operation, the function of the insulating sealing layer can be stably maintained for a long time.

<実施の形態6>
図8は、本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。図8に示す膜電極複合体800は、実施の形態1と同様の膜電極複合体と、その燃料極802に隣接して配置された、膜電極複合体と同幅を有する流路板805とを備え、流路板805端面と燃料極802端面と電解質膜801端面と空気極803端面とからなる側面に、絶縁封止層804を備える。該側面は、流路板805端面と燃料極802端面と電解質膜801端面と空気極803端面とから構成される連続面からなる。このように、燃料極802と電解質膜801と空気極803とからなる積層構造が、絶縁封止層804により流路板805に接合されていることにより、燃料を流路板805の流路806に供給した場合に、燃料の漏洩を防止することができる。
<Embodiment 6>
FIG. 8 is a cross-sectional view schematically showing another preferred configuration example of the membrane electrode assembly of the present invention. A membrane electrode assembly 800 shown in FIG. 8 includes a membrane electrode assembly similar to that in Embodiment 1, and a flow path plate 805 having the same width as the membrane electrode assembly, which is disposed adjacent to the fuel electrode 802. And an insulating sealing layer 804 is provided on a side surface including the end face of the flow path plate 805, the end face of the fuel electrode 802, the end face of the electrolyte membrane 801, and the end face of the air electrode 803. The side surface includes a continuous surface composed of an end surface of the flow path plate 805, an end surface of the fuel electrode 802, an end surface of the electrolyte membrane 801, and an end surface of the air electrode 803. As described above, the laminated structure including the fuel electrode 802, the electrolyte membrane 801, and the air electrode 803 is joined to the flow path plate 805 by the insulating sealing layer 804, so that the fuel is supplied to the flow path 806 of the flow path plate 805. When supplied to the fuel, it is possible to prevent fuel leakage.

本実施形態の膜電極複合体における流路板は、燃料極に燃料を供給する機能を有する。流路板の材質は、アクリル、ABS、ポリ塩化ビニル、ポリエチレン、ポリエチレンテレフタラート、ポリエーテルエーテルケトン、テフロン等の高分子材料(プラスチック材料)や、銅、ステンレス、チタン等の金属材料を用いることができる。特に、流路板の材質に金属材料を用いることが好ましく、さらには、ステンレスやチタン等の耐腐食性金属材料を用いることがより好ましい。これは、流路板の材質が金属であることにより、燃料極からの電子を集電する効果が付与され、膜電極複合体の内部抵抗を低下し、出力の低下を抑制できるためである。また、耐腐食性金属材料を用いることにより、流路板からの金属イオンの溶出が抑制され、膜電極複合体へのイオン交換を抑制できるため、同様に膜電極複合体の内部抵抗の低下を抑制でき、これにより、出力低下を抑制できる。流路板としてアクリル、ABS、ポリ塩化ビニル、ポリエチレン、ポリエチレンテレフタラート等のプラスチック材料を用いる場合には、絶縁封止層の前駆体液には、流路板を溶解または軟化させるジエチルエーテル、酢酸エチル等のエーテル化合物や、アセトン、メチルエチルケトン等のケトン化合物や、トルエン、ベンゼン等の芳香族化合物の有機溶剤が含まれていることが好ましい。このような有機溶媒を用いることにより、流路板を一旦溶解させ、絶縁封止層の形成とともに再固化させることで、流路板を強固に接着することができる。   The flow path plate in the membrane electrode assembly of the present embodiment has a function of supplying fuel to the fuel electrode. For the material of the flow path plate, use polymer materials (plastic materials) such as acrylic, ABS, polyvinyl chloride, polyethylene, polyethylene terephthalate, polyetheretherketone, and Teflon, and metal materials such as copper, stainless steel, and titanium. Can do. In particular, it is preferable to use a metal material for the material of the flow path plate, and it is more preferable to use a corrosion-resistant metal material such as stainless steel or titanium. This is because when the material of the flow path plate is metal, the effect of collecting electrons from the fuel electrode is imparted, the internal resistance of the membrane electrode assembly is reduced, and the reduction in output can be suppressed. In addition, by using a corrosion-resistant metal material, elution of metal ions from the flow path plate is suppressed, and ion exchange to the membrane electrode assembly can be suppressed. Similarly, the internal resistance of the membrane electrode assembly is reduced. It is possible to suppress this, and it is possible to suppress a decrease in output. When plastic materials such as acrylic, ABS, polyvinyl chloride, polyethylene, and polyethylene terephthalate are used as the flow path plate, diethyl ether or ethyl acetate that dissolves or softens the flow path plate is used as the precursor liquid of the insulating sealing layer. An organic solvent such as an ether compound such as acetone, a ketone compound such as acetone or methyl ethyl ketone, or an aromatic compound such as toluene or benzene is preferably contained. By using such an organic solvent, the flow path plate is once dissolved and re-solidified together with the formation of the insulating sealing layer, whereby the flow path plate can be firmly bonded.

<実施の形態7>
図9は、本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。図9に示す膜電極複合体900は、燃料極902と電解質膜901と空気極903とからなる積層構造よりも大きな幅を有する流路板905を燃料極902に隣接して備え、燃料極902端面と電解質膜901端面と空気極903端面とからなる側面と、流路板905の表面(燃料極902側表面)の一部を覆うようにして形成された絶縁封止層904を備える。上記側面は、燃料極902端面と電解質膜901端面と空気極903端面とから構成される連続面からなる。すなわち、絶縁封止層904は、上記側面を覆うように形成されるとともに、燃料極902と電解質膜901と空気極903とからなる積層構造が積層されていない流路板905表面に接するように形成されており、当該流路板表面を被覆している。
<Embodiment 7>
FIG. 9 is a cross-sectional view schematically showing another preferred configuration example of the membrane electrode assembly of the present invention. A membrane electrode assembly 900 shown in FIG. 9 includes a flow path plate 905 having a larger width than the laminated structure including the fuel electrode 902, the electrolyte membrane 901, and the air electrode 903 adjacent to the fuel electrode 902. An insulating sealing layer 904 is provided so as to cover a side surface including an end surface, an end surface of the electrolyte membrane 901, and an end surface of the air electrode 903, and a part of the surface of the flow path plate 905 (the surface on the fuel electrode 902 side). The side surface is a continuous surface composed of the end surface of the fuel electrode 902, the end surface of the electrolyte membrane 901, and the end surface of the air electrode 903. That is, the insulating sealing layer 904 is formed so as to cover the side surface, and is in contact with the surface of the flow path plate 905 on which the laminated structure including the fuel electrode 902, the electrolyte membrane 901, and the air electrode 903 is not laminated. It is formed and covers the flow path plate surface.

膜電極複合体の幅の精度は、絶縁封止層が塗布により形成されるため、絶縁封止層の膜厚の精度によって左右される。本実施形態においては、流路板の幅よりも電解質膜、燃料極、空気極の幅を小さく設けているため、流路板の幅を超えて絶縁封止層が形成されることがなく、膜電極複合体の幅を精度よく調整することができる。このような膜電極複合体の幅を制御することは、本発明の膜電極複合体を複数配列させた図7のようなスタック構造を構築する場合において、膜電極複合体の間隔の精度が向上することにつながり、空気中の酸素の供給を意図に反して阻害することが無くなる。   The accuracy of the width of the membrane electrode assembly depends on the accuracy of the film thickness of the insulating sealing layer because the insulating sealing layer is formed by coating. In this embodiment, since the width of the electrolyte membrane, the fuel electrode, and the air electrode is smaller than the width of the flow path plate, the insulating sealing layer is not formed beyond the width of the flow path plate, The width of the membrane electrode assembly can be adjusted with high accuracy. Controlling the width of such a membrane electrode assembly improves the accuracy of the interval between the membrane electrode assemblies when a stack structure as shown in FIG. 7 in which a plurality of membrane electrode assemblies of the present invention are arranged is constructed. This prevents the supply of oxygen in the air from being obstructed unintentionally.

<実施の形態8>
図10は、本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。図10に示す膜電極複合体1000は、流路板として、その燃料極1002側表面に絶縁封止層1004が浸透するための溝が設けられた流路板1005を用いていること以外は、上記実施の形態6と同様である。すなわち、絶縁封止層1004は、燃料極1002端面と電解質膜1001端面と空気極1003端面とから構成される連続面からなる側面を被覆するとともに、流路板1005の端面および燃料極1002側表面の一部を被覆している。これにより、燃料極1002の側面と流路板1005側表面の一部が絶縁封止層1004と接着されるため、燃料の漏洩をより効果的に防止することができる。
<Eighth embodiment>
FIG. 10 is a cross-sectional view schematically showing another preferred configuration example of the membrane electrode assembly of the present invention. The membrane electrode assembly 1000 shown in FIG. 10 uses, as a flow path plate, a flow path plate 1005 in which a groove for allowing the insulating sealing layer 1004 to permeate the surface of the fuel electrode 1002 is used. This is the same as in the sixth embodiment. That is, the insulating sealing layer 1004 covers a side surface composed of a continuous surface composed of the end surface of the fuel electrode 1002, the end surface of the electrolyte membrane 1001, and the end surface of the air electrode 1003, and the end surface of the flow path plate 1005 and the surface on the fuel electrode 1002 side. A part of is covered. As a result, the side surface of the fuel electrode 1002 and a part of the surface on the flow path plate 1005 side are bonded to the insulating sealing layer 1004, so that fuel leakage can be more effectively prevented.

<実施の形態9>
図11は、本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。図11に示す膜電極複合体1100は、流路板として、側面(端面)が山形の凹凸形状を有する流路板1105を用いていること以外は、上記実施の形態6と同様である。これにより、流路板1105の側面と絶縁封止層1104とが強固に接着されるため、燃料の漏洩をより効果的に防止することができる。
<Embodiment 9>
FIG. 11 is a cross-sectional view schematically showing another preferred configuration example of the membrane electrode assembly of the present invention. A membrane electrode assembly 1100 shown in FIG. 11 is the same as Embodiment 6 except that a flow path plate 1105 having a side surface (end surface) having a mountain-shaped uneven shape is used as the flow path plate. Thereby, since the side surface of the flow path plate 1105 and the insulating sealing layer 1104 are firmly bonded, the leakage of fuel can be more effectively prevented.

<実施の形態10>
図12は、本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。図12に示す膜電極複合体1200は、燃料極1202と流路板1205との間に配置された浸透膜1207を備えている。浸透膜1207は、流路板1205の流路1206を覆い、燃料極1202に隣接するように形成されている。これ以外の構成は、上記実施の形態7と同様である。絶縁封止層1204は、浸透膜1207端面と燃料極1202端面と電解質膜1201端面と空気極1203端面とからなる側面を覆うように形成されるとともに、浸透膜1207と燃料極1202と電解質膜1201と空気極1203とからなる積層構造が積層されていない流路板1205表面に接するように形成されており、当該流路板表面を被覆している。
<Embodiment 10>
FIG. 12 is a cross-sectional view schematically showing another preferred configuration example of the membrane electrode assembly of the present invention. A membrane electrode assembly 1200 shown in FIG. 12 includes a permeable membrane 1207 disposed between the fuel electrode 1202 and the flow path plate 1205. The osmosis membrane 1207 is formed so as to cover the flow path 1206 of the flow path plate 1205 and to be adjacent to the fuel electrode 1202. Other configurations are the same as those in the seventh embodiment. The insulating sealing layer 1204 is formed so as to cover the side surface including the end surface of the osmotic membrane 1207, the end surface of the fuel electrode 1202, the end surface of the electrolyte membrane 1201, and the end surface of the air electrode 1203, and the osmotic membrane 1207, the fuel electrode 1202, and the electrolyte membrane 1201. And the air electrode 1203 are formed so as to be in contact with the surface of the non-laminated channel plate 1205 and cover the surface of the channel plate.

浸透膜としては、液体燃料を浸透し拡散することにより通過させる膜を用いることができる。浸透膜の具体例としては、透析や逆浸透法、浸透気化等の膜分離プロセスに用いられる膜を用いることができる。本実施形態のように、浸透膜によって流路板の流路が覆うことにより、燃料の漏洩を抑制することができる。   As the osmotic membrane, a membrane that allows liquid fuel to permeate and diffuse can be used. As a specific example of the osmosis membrane, a membrane used in a membrane separation process such as dialysis, reverse osmosis, and pervaporation can be used. As in the present embodiment, the leakage of fuel can be suppressed by covering the flow path of the flow path plate with the permeable membrane.

浸透膜は、燃料極への液体燃料の供給速度を制限する機能も付与することができるため、使用する浸透膜の種類を選択することによって、燃料極への液体燃料の供給速度を容易に制御できる。これにより、たとえばプロトン伝導性が非常に高い電解質は、液体燃料に対して高い溶解性を示すため、このような電解質を含む燃料極触媒層を形成するような場合にも、浸透膜によって燃料極への液体燃料の供給速度を調整し、該電解質が溶解し、燃料極の触媒層から流出することを抑制することができる。   Since the osmosis membrane can also give the function of limiting the supply rate of liquid fuel to the fuel electrode, the liquid fuel supply rate to the fuel electrode can be easily controlled by selecting the type of osmosis membrane to be used. it can. Thus, for example, an electrolyte with very high proton conductivity exhibits high solubility in liquid fuel. Therefore, even when a fuel electrode catalyst layer containing such an electrolyte is formed, the fuel electrode is formed by the osmotic membrane. The supply speed of the liquid fuel to the fuel electrode can be adjusted, and the electrolyte can be prevented from dissolving and flowing out from the catalyst layer of the fuel electrode.

浸透膜としては、柔軟性があり亀裂や破れが生じにくい点で、高分子膜、特に有機高分子膜であることが好ましい。さらに、電解質膜とプロトン伝導経路の連続性が保たれていない燃料極触媒層中の触媒の利用効率も向上させることができる点で、該有機高分子膜は固体高分子電解質膜であることが特に好ましい。固体高分子電解質膜としては、たとえば炭化水素系固体高分子電解質膜等を例示できる。炭化水素系固体高分子電解質膜は、液体燃料との接触に対する膨潤率が小さいため、燃料極や流路板との界面にかかる応力が生じにくく、浸透膜の剥離による燃料の漏洩を抑制することができる。また、液体燃料の透過性が低いため、高濃度の液体燃料を用いた際にも、燃料極に到達する液体燃料の供給速度を所望の程度に制限することが容易である。これにより、膜電極複合体の電解質膜を液体燃料が透過する現象(すなわちクロスオーバー現象)を抑制することができる。   The osmotic membrane is preferably a polymer membrane, particularly an organic polymer membrane, because it is flexible and hardly cracks or breaks. Furthermore, the organic polymer membrane is a solid polymer electrolyte membrane in that the utilization efficiency of the catalyst in the fuel electrode catalyst layer in which the continuity between the electrolyte membrane and the proton conduction path is not maintained can be improved. Particularly preferred. Examples of the solid polymer electrolyte membrane include a hydrocarbon solid polymer electrolyte membrane. Hydrocarbon solid polymer electrolyte membranes have a low swelling rate with respect to contact with liquid fuel, so that stress applied to the interface with the fuel electrode and the channel plate is unlikely to occur, and fuel leakage due to separation of the osmotic membrane is suppressed. Can do. In addition, since the permeability of the liquid fuel is low, it is easy to limit the supply speed of the liquid fuel reaching the fuel electrode to a desired level even when a high concentration liquid fuel is used. Thereby, the phenomenon (namely, crossover phenomenon) which a liquid fuel permeate | transmits the electrolyte membrane of a membrane electrode assembly can be suppressed.

固体高分子電解質膜の具体例としては、パーフルオロスルホン酸、スチレン系グラフト重合体、トリフルオロスチレン誘導体共重合体、スルホン化ポリアリーレンエーテル、スルホン化ポリエーテルエーテルケトン、スルホン化ポリイミド、スルホン化ポリベンゾイミダゾール、ホスホン化ポリベンゾイミダゾール、スルホン化ポリフォスファゼン等の高いプロトン伝導性を有した固体高分子電解質膜が挙げられる。特に、スチレン系グラフト重合体、スルホン化ポリアリーレンエーテル、スルホン化ポリエーテルエーテルケトン、スルホン化ポリイミドからなる群から選ばれる1以上の高分子材料からなる炭化水素系固体高分子電解質膜は好ましい。   Specific examples of the solid polymer electrolyte membrane include perfluorosulfonic acid, styrene-based graft polymer, trifluorostyrene derivative copolymer, sulfonated polyarylene ether, sulfonated polyether ether ketone, sulfonated polyimide, sulfonated poly Examples thereof include solid polymer electrolyte membranes having high proton conductivity such as benzimidazole, phosphonated polybenzimidazole, and sulfonated polyphosphazene. In particular, a hydrocarbon solid polymer electrolyte membrane made of one or more polymer materials selected from the group consisting of styrene graft polymers, sulfonated polyarylene ethers, sulfonated polyether ether ketones, and sulfonated polyimides is preferred.

また、浸透膜には、たとえば、ヒドロキシル基、アミノ基、カルボキシル基、スルホン基、リン酸基、エーテル基、ケトン基等の官能基を有した高分子膜を用いても良い。具体的には、ハイドロキシエチルメタクリレート、ポリビニルリドン、ジメチルアクリルアミド、グリセロールメタクリレート等の高分子材料を組み合わせて共重合させた膜を用いることが好ましい。   Further, as the osmotic membrane, for example, a polymer membrane having a functional group such as hydroxyl group, amino group, carboxyl group, sulfone group, phosphoric acid group, ether group, and ketone group may be used. Specifically, it is preferable to use a film obtained by copolymerizing a combination of polymer materials such as hydroxyethyl methacrylate, polyvinylidone, dimethylacrylamide, and glycerol methacrylate.

<実施の形態11>
図13は、本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。図13に示す膜電極複合体1300は、流路板として、浸透膜1307側表面に凹凸形状を有する流路板1305を用いており、該凹凸形状の内部にまで浸透した浸透膜が形成されている。これ以外の構成は、上記実施の形態10と同様である。これにより、流路板と浸透膜の接着力が強固になるため、流路を流れる燃料の漏洩を十分に防止することができる。
<Embodiment 11>
FIG. 13 is a cross-sectional view schematically showing another preferred configuration example of the membrane electrode assembly of the present invention. The membrane electrode assembly 1300 shown in FIG. 13 uses a flow path plate 1305 having a concavo-convex shape on the surface of the osmotic membrane 1307 as a flow path plate, and a permeation membrane that has penetrated into the concavo-convex shape is formed. Yes. Other configurations are the same as those in the tenth embodiment. Thereby, since the adhesive force of a flow-path board and a permeable membrane becomes strong, the leakage of the fuel which flows through a flow path can fully be prevented.

<実施の形態12>
図14は、本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。図14に示す膜電極複合体1400は、電解質膜1401と、電解質膜1401の一方の表面に形成された燃料極1402と、電解質膜1401の他方の表面に形成された空気極1403と、燃料極1402端面と電解質膜1401端面と空気極1403端面とによって形成された側面に接するように形成された絶縁封止層1404と、さらに、空気極1403上に隣接して形成された金属導電層1408とを備える。金属導電層1408の一部は、電解質膜1401に接している。これ以外の構成は、上記実施の形態4と同様である。このように、金属導電層を設けると、燃料極から取り出された電子を、空気極へ均一に供給することができるため、膜電極複合体の内部抵抗が低下し、出力を高く維持することができる。
<Embodiment 12>
FIG. 14 is a cross-sectional view schematically showing another preferred configuration example of the membrane electrode assembly of the present invention. A membrane electrode assembly 1400 shown in FIG. 14 includes an electrolyte membrane 1401, a fuel electrode 1402 formed on one surface of the electrolyte membrane 1401, an air electrode 1403 formed on the other surface of the electrolyte membrane 1401, and a fuel electrode. An insulating sealing layer 1404 formed so as to be in contact with the side surface formed by the end surface 1402, the end surface of the electrolyte membrane 1401, and the end surface of the air electrode 1403; and a metal conductive layer 1408 formed adjacent to the air electrode 1403. Is provided. A part of the metal conductive layer 1408 is in contact with the electrolyte membrane 1401. Other configurations are the same as those in the fourth embodiment. Thus, when the metal conductive layer is provided, electrons taken out from the fuel electrode can be uniformly supplied to the air electrode, so that the internal resistance of the membrane electrode assembly is reduced and the output can be kept high. it can.

本実施形態の膜電極複合体における金属導電層は、空気極に電子を供給する機能と、電気的配線を行なう機能とを有する。金属導電層の材質は、比抵抗が小さく、面方向に電流を取り出しても電圧の低下が抑制されことが好ましく、電子伝導性を有し、酸性雰囲気下で耐腐食性を有する金属材質であればより好ましい。具体的には、Au、Pt、Pd等の貴金属、C、Ti、Ta、W、Nb、Ni、Al、Cr、Ag、Cu、Zn、Su等の金属やSiおよびこれらの金属の窒化物、炭化物等、さらにステンレス、Cu−Cr、Ni−Cr、Ti−Pt等の合金等を用いることが好ましく、Pt、Ti、Au、Ag、Cu、Ni、Wからなる群より選ばれる少なくとも一つの元素を含むことがより好ましい。   The metal conductive layer in the membrane electrode assembly of the present embodiment has a function of supplying electrons to the air electrode and a function of performing electrical wiring. The material of the metal conductive layer is preferably a metal material that has a small specific resistance and suppresses a decrease in voltage even when current is taken in the plane direction, has electronic conductivity, and has corrosion resistance in an acidic atmosphere. More preferable. Specifically, noble metals such as Au, Pt, and Pd, metals such as C, Ti, Ta, W, Nb, Ni, Al, Cr, Ag, Cu, Zn, and Su, and nitrides of these metals, It is preferable to use carbide or the like, or an alloy such as stainless steel, Cu—Cr, Ni—Cr, or Ti—Pt, and at least one element selected from the group consisting of Pt, Ti, Au, Ag, Cu, Ni, and W It is more preferable to contain.

また、Cu、Ag、Zn等の、酸性雰囲気下で耐腐食性に乏しい金属を用いる場合には、Au、Pt、Pdなどの耐腐食性を有する貴金属および金属材質に加え、導電性高分子、導電性窒化物、導電性炭化物、導電性酸化物等を表面コーティングとして用いることができる。この場合燃料電池の寿命を延ばすことができる。また、上記実施の形態1の説明において示したように、本実施形態の膜電極複合体を第1複合体の切断により得る場合には、金属導電層の材質は、硬さの柔らかいAu、Cu、Ag、Zn、Su等を用いることが好ましい。これにより、金属導電層を容易に切断することができ、燃料極と空気極の電気的短絡を起こさずに膜電極複合体を得ることができる。金属導電層の形状を箔(板)状とする場合には、その厚みは100μm以下が好ましく、また、金属導電層を不織布から形成する場合、繊維の平均繊維径は100μm以下が好ましく、さらに、金属導電層を発砲金属から形成する場合には、その空隙率は70%以上が好ましい。これにより、電解質膜や燃料極や酸素極と一緒に金属導電層も容易に切断することができる。   In addition, when using a metal having poor corrosion resistance in an acidic atmosphere such as Cu, Ag, Zn, in addition to noble metals and metal materials having corrosion resistance such as Au, Pt, Pd, a conductive polymer, Conductive nitride, conductive carbide, conductive oxide, etc. can be used as the surface coating. In this case, the life of the fuel cell can be extended. Further, as shown in the description of the first embodiment, when the membrane electrode assembly of the present embodiment is obtained by cutting the first composite, the metal conductive layer is made of a soft material such as Au or Cu. , Ag, Zn, Su or the like is preferably used. Thereby, the metal conductive layer can be easily cut, and a membrane electrode assembly can be obtained without causing an electrical short circuit between the fuel electrode and the air electrode. When the shape of the metal conductive layer is a foil (plate), the thickness is preferably 100 μm or less, and when the metal conductive layer is formed from a nonwoven fabric, the average fiber diameter of the fibers is preferably 100 μm or less, When the metal conductive layer is formed from foamed metal, the porosity is preferably 70% or more. Thereby, a metal conductive layer can also be easily cut | disconnected with an electrolyte membrane, a fuel electrode, and an oxygen electrode.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

<実施例1>
電解質膜として、サイズ40×40mm、厚さ約175μmのナフィオン(登録商標)117(デュポン社製)を用いた。
<Example 1>
As the electrolyte membrane, Nafion (registered trademark) 117 (manufactured by DuPont) having a size of 40 × 40 mm and a thickness of about 175 μm was used.

触媒ペーストは以下の手順で作成した。Pt粒子とRu粒子とカーボン粒子とからなる、Pt担持量が32.5wt%、Ru担持量が16.9wt%の触媒担持カーボン粒子(TEC66E50、田中貴金属社製)と、20wt%のナフィオンのアルコール溶液(アルドリッチ社製)と、n−プロパノールと、イソプロパノールと、ジルコニアボールとを、所定の割合でフッ素系ポリマ製の容器に入れ、攪拌機を用いて500rpmで50分間の混合を行なうことにより、燃料極用の触媒ペーストを作製した。一方、Pt粒子とカーボン粒子とからなるPt担持量が46.8wt%の触媒担持カーボン粒子(TEC10E50E、田中貴金属社製)を用いて、燃料極用の触媒ペーストの作製条件と同様に、空気極用の触媒ペーストを作製した。   The catalyst paste was prepared by the following procedure. A catalyst-supported carbon particle (TEC66E50, manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt loading amount of 32.5 wt% and a Ru loading amount of 16.9 wt%, and 20 wt% of Nafion alcohol composed of Pt particles, Ru particles and carbon particles. A solution (manufactured by Aldrich), n-propanol, isopropanol, and zirconia balls are placed in a fluorine polymer container at a predetermined ratio and mixed for 50 minutes at 500 rpm using a stirrer. An electrode catalyst paste was prepared. On the other hand, using catalyst-supported carbon particles (TEC10E50E, manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt support amount of 46.8 wt% made of Pt particles and carbon particles, A catalyst paste was prepared.

また、23×23mmの片面に撥水層が形成された一組のカーボンペーパ(25BC、SGL社製)のそれぞれの撥水層上に、上記の燃料極用の触媒ペーストと、空気極用の触媒ペーストを、それぞれ触媒担持量が約3mg/cm2と、1mg/cm2なるように、23×23mmのウィンドウを有したスクリーン印刷版を用いて、塗布し乾燥させることで、約300μmの厚みの燃料極と、空気極を形成した。 Further, on each water-repellent layer of a set of carbon paper (25BC, manufactured by SGL) having a water-repellent layer formed on one side of 23 × 23 mm, the fuel electrode catalyst paste and the air electrode the catalyst paste, each of about 3 mg / cm 2 is catalyst loading, 1 mg / cm 2 so as to, using a screen printing plate having a window 23 × 23 mm, that is applied and dried, a thickness of about 300μm The fuel electrode and the air electrode were formed.

次に、燃料極および空気極の触媒ペーストを塗布した面を電解質膜と接するように、電解質膜の表裏の中心に、それぞれ燃料極と空気極の位置が重なるように合わせ、130℃で、2分間のホットプレスを行なうことで、燃料極と空気極を電解質膜に張り合わせて、膜電極複合体を作製した。   Next, the surface of the fuel electrode and the air electrode coated with the catalyst paste is in contact with the electrolyte membrane so that the positions of the fuel electrode and the air electrode overlap with the centers of the front and back surfaces of the electrolyte membrane, respectively, By performing a hot press for a minute, the fuel electrode and the air electrode were bonded to the electrolyte membrane to produce a membrane electrode assembly.

上記膜電極複合体の対向する2辺と並行に、2mm間隔で切断部以外の膜電極複合体表面をアクリル板で押さえつけながら、ステンレス製の刃先で膜電極複合体に対して垂直に切断することで、複数の幅2mm、長さ40mmの膜電極複合体を得た。   In parallel with the two opposing sides of the membrane electrode assembly, the membrane electrode assembly surface other than the cutting portion is pressed with an acrylic plate at intervals of 2 mm, and cut perpendicularly to the membrane electrode assembly with a stainless steel blade edge. Thus, a plurality of membrane electrode composites having a width of 2 mm and a length of 40 mm were obtained.

得られた2mm幅の膜電極複合体を、2枚のアクリル板で挟持し、アクリル板の側面と膜電極複合体の切断面を一致させるように位置あわせを行い、切断面およびアクリル板の側面にエポキシ樹脂を塗布した後に、アクリル製のスキージをスライドさせることにより、切断面の全面にエポキシ樹脂を塗布し絶縁封止層を形成した。得られたエポキシ樹脂の膜厚は、約100μmであり、最終的に得た膜電極複合体の幅は約2.2mm、長さは40mmであった。   The obtained membrane electrode composite having a width of 2 mm is sandwiched between two acrylic plates, aligned so that the side surfaces of the acrylic plate and the cut surface of the membrane electrode composite are aligned, and the cut surface and the side surfaces of the acrylic plate After applying an epoxy resin, an acrylic squeegee was slid to apply an epoxy resin to the entire cut surface to form an insulating sealing layer. The film thickness of the obtained epoxy resin was about 100 μm, and the width of the finally obtained membrane electrode assembly was about 2.2 mm and the length was 40 mm.

得られた膜電極複合体の断面観察の結果、エポキシ樹脂は、電解質膜、空気極および燃料極のそれぞれの端面に十分に接合していることが確認された。   As a result of cross-sectional observation of the obtained membrane electrode assembly, it was confirmed that the epoxy resin was sufficiently bonded to each end face of the electrolyte membrane, the air electrode, and the fuel electrode.

<実施例2>
切断歯として、振幅0.5mmで正三角形の山形状の刃先を用いたこと以外は、実施例1と同様に膜電極複合体を作製した。得られた膜電極複合体の断面観察の結果、エポキシ樹脂は、電解質膜、空気極および燃料極のそれぞれの端面に十分に接合していた。
<Example 2>
A membrane electrode assembly was produced in the same manner as in Example 1 except that a regular triangular crest-shaped cutting edge with an amplitude of 0.5 mm was used as the cutting tooth. As a result of cross-sectional observation of the obtained membrane electrode assembly, the epoxy resin was sufficiently bonded to the respective end faces of the electrolyte membrane, the air electrode, and the fuel electrode.

<実施例3>
実施例1の膜電極複合体のエポキシ樹脂を切断面に塗布する前に、流路形状が深さ0.2mm、幅1.0mmで、幅が2.0mmである流路板に、膜電極複合体の燃料極を接触させてアクリル板2枚で挟持し、その後、流路板端面と燃料極端面と電解質膜端面と空気極端面とからなる側面にエポキシ樹脂を塗布形成した。得られた膜電極複合体の流路板の流路の一方にテフロンチューブをつなぎ、0.1ml/minで3mol/Lのメタノール水溶液を送液ポンプで供給した。このとき、エポキシ樹脂により流路板と膜電極複合体を接着した部位からの燃料の漏洩は認められなかった。
<Example 3>
Before applying the epoxy resin of the membrane electrode composite of Example 1 to the cut surface, the membrane electrode was applied to the channel plate having a channel shape of 0.2 mm depth, 1.0 mm width, and 2.0 mm width. The fuel electrode of the composite was brought into contact and sandwiched between two acrylic plates, and then an epoxy resin was applied and formed on the side surface consisting of the end face of the flow path plate, the fuel extreme face, the electrolyte membrane end face, and the air extreme face. A Teflon tube was connected to one of the channels of the channel plate of the obtained membrane electrode composite, and a 3 mol / L aqueous methanol solution was supplied at a rate of 0.1 ml / min with a liquid feed pump. At this time, no leakage of fuel from the portion where the flow path plate and the membrane electrode assembly were bonded by the epoxy resin was observed.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

制限された燃料電池の設置面積に対して燃料極および空気極の面積を大きく設計でき、燃料と空気の混合や電池外部へ燃料の漏洩を防止できる本発明の膜電極複合体は、携帯電子機器に対して好適に適用され得る。   The membrane electrode assembly of the present invention, which can design the area of the fuel electrode and the air electrode larger than the limited installation area of the fuel cell and prevent the mixture of fuel and air and the leakage of fuel to the outside of the battery, It can be suitably applied to.

本発明の膜電極複合体の好ましい構成の例を模式的に示す表面図である。It is a surface view which shows typically the example of the preferable structure of the membrane electrode assembly of this invention. 図1のA−A’面における断面図である。It is sectional drawing in the A-A 'surface of FIG. 本発明の膜電極複合体の好ましい製造方法の例を模式的に示す図である。It is a figure which shows typically the example of the preferable manufacturing method of the membrane electrode assembly of this invention. 本発明の膜電極複合体の別の好ましい構成の例を模式的に示す表面図である。It is a surface view which shows typically the example of another preferable structure of the membrane electrode assembly of this invention. 本発明の膜電極複合体の別の好ましい構成の例を模式的に示す表面図である。It is a surface view which shows typically the example of another preferable structure of the membrane electrode assembly of this invention. 本発明の膜電極複合体の別の好ましい構成の例を模式的に示す表面図である。It is a surface view which shows typically the example of another preferable structure of the membrane electrode assembly of this invention. 本発明の膜電極複合体を複数配置したスタック構造(膜電極複合体スタック)の例を模式的に示す表面図である。It is a surface view which shows typically the example of the stack structure (membrane electrode composite stack) which has arrange | positioned two or more the membrane electrode composites of this invention. 本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of another preferable structure of the membrane electrode assembly of this invention. 本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of another preferable structure of the membrane electrode assembly of this invention. 本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of another preferable structure of the membrane electrode assembly of this invention. 本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of another preferable structure of the membrane electrode assembly of this invention. 本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of another preferable structure of the membrane electrode assembly of this invention. 本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of another preferable structure of the membrane electrode assembly of this invention. 本発明の膜電極複合体の別の好ましい構成の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of another preferable structure of the membrane electrode assembly of this invention.

符号の説明Explanation of symbols

100,400,500,600,700,800,900,1000,1100,1200,1300,1400 膜電極複合体、101,401,501,601,801,901,1001,1101,1201,1301,1401 電解質膜、102,402,502,602,802,902,1002,1102,1202,1302,1402 燃料極、103,403,503,603,803,903,1003,1103,1203,1303,1403 空気極、104,404,504,604,804,904,1004,1104,1204,1304,1404 絶縁封止層、301 第1複合体、302 第2複合体、805,905,1005,1105,1205,1305 流路板、806,906,1006,1106,1206,1306 流路、1207,1307 浸透膜、1408 金属導電層。   100,400,500,600,700,800,900,1000,1100,1200,1300,1400 Membrane electrode composite, 101,401,501,601,801,901,1001,1101,1201,1301,1401 Electrolyte Membrane, 102, 402, 502, 602, 802, 902, 1002, 1102, 1202, 1302, 1402 Fuel electrode, 103, 403, 503, 603, 803, 903, 1003, 1103, 1203, 1303, 1403 Air electrode, 104, 404, 504, 604, 804, 904, 1004, 1104, 1204, 1304, 1404 Insulation sealing layer, 301 first composite, 302 second composite, 805, 905, 1005, 1105, 1205, 1305 Road plate, 806, 906, 1 006, 1106, 1206, 1306 flow path, 1207, 1307 permeation membrane, 1408 metal conductive layer.

Claims (14)

電解質膜と、前記電解質膜の一方の表面に形成された燃料極と、前記電解質膜の他方の表面に形成された空気極と、を備えた複合体であって、
前記複合体は、その少なくとも一辺において、少なくとも前記燃料極端面と前記電解質膜端面と前記空気極端面とから構成される連続面からなる側面を有し、
前記側面を被覆する絶縁封止層を備える、膜電極複合体。
A composite comprising an electrolyte membrane, a fuel electrode formed on one surface of the electrolyte membrane, and an air electrode formed on the other surface of the electrolyte membrane,
The composite has, on at least one side thereof, a side surface comprising a continuous surface composed of at least the fuel extreme surface, the electrolyte membrane end surface, and the air extreme surface,
A membrane electrode assembly comprising an insulating sealing layer covering the side surface.
前記側面は凹凸形状を有している、請求項1に記載の膜電極複合体。   The membrane electrode assembly according to claim 1, wherein the side surface has an uneven shape. 前記凹凸形状は、前記側面がその投影面積に対して2倍以上の表面積を有するように形成される、請求項2に記載の膜電極複合体。   The membrane electrode assembly according to claim 2, wherein the concavo-convex shape is formed such that the side surface has a surface area that is twice or more the projected area. 前記燃料極に隣接して設けられた流路板をさらに備え、
前記絶縁封止層は、前記流路板の端面および/または前記燃料極側表面の一部を被覆する請求項1〜3のいずれかに記載の膜電極複合体。
A flow path plate provided adjacent to the fuel electrode;
The membrane electrode assembly according to any one of claims 1 to 3, wherein the insulating sealing layer covers an end face of the flow path plate and / or a part of the fuel electrode side surface.
前記流路板の流路を覆うように、かつ、前記燃料極に隣接するように配置された浸透膜をさらに備える、請求項4に記載の膜電極複合体。   The membrane electrode assembly according to claim 4, further comprising a permeable membrane disposed so as to cover the flow path of the flow path plate and adjacent to the fuel electrode. 前記複合体の少なくとも対向する二辺において、少なくとも前記燃料極端面と前記電解質膜端面と前記空気極端面とから構成される連続面からなる側面を有し、
前記側面を被覆する絶縁封止層を備えており、
前記複合体の長さLと幅Hとの比率L/Hが10以上である、請求項1〜5のいずれかに記載の膜電極複合体。
In at least two opposite sides of the composite, the composite has at least a side surface composed of a continuous surface composed of the fuel extreme surface, the electrolyte membrane end surface, and the air extreme surface,
An insulating sealing layer covering the side surface;
The membrane electrode assembly according to any one of claims 1 to 5, wherein a ratio L / H between a length L and a width H of the composite is 10 or more.
前記空気極に隣接して設けられた金属導電層をさらに備え、
前記金属導電層の少なくとも一部は、前記電解質膜に接している、請求項1〜6のいずれかに記載の膜電極複合体。
A metal conductive layer provided adjacent to the air electrode;
The membrane electrode assembly according to claim 1, wherein at least a part of the metal conductive layer is in contact with the electrolyte membrane.
請求項6または7に記載の膜電極複合体の複数を、前記対向する二辺と平行または略平行に配列してなる膜電極複合体スタック。   A membrane electrode composite stack comprising a plurality of membrane electrode composites according to claim 6 or 7 arranged in parallel or substantially parallel to the two opposing sides. 燃料極と電解質膜と空気極との積層構造を有する第1複合体を切断し、前記第1複合体より面積の小さい第2複合体を作製する複合体切断工程と、
少なくとも前記第2複合体の切断面に絶縁封止層を形成する絶縁封止層形成工程と、
を有する請求項1に記載の膜電極複合体の製造方法。
Cutting a first composite having a laminated structure of a fuel electrode, an electrolyte membrane, and an air electrode to produce a second composite having a smaller area than the first composite; and
An insulating sealing layer forming step of forming an insulating sealing layer on at least the cut surface of the second composite;
The manufacturing method of the membrane electrode assembly of Claim 1 which has these.
前記絶縁封止層形成工程は、前記絶縁封止層の前駆体溶液を塗布する工程を含む、請求項10に記載の膜電極複合体の製造方法。   The method for producing a membrane electrode assembly according to claim 10, wherein the insulating sealing layer forming step includes a step of applying a precursor solution of the insulating sealing layer. 前記絶縁封止層の前駆体溶液は、前記電解質膜を溶解可能な溶媒を含む、請求項11に記載の膜電極複合体の製造方法。   The method for producing a membrane electrode assembly according to claim 11, wherein the precursor solution of the insulating sealing layer includes a solvent capable of dissolving the electrolyte membrane. 前記複合体切断工程の後に、前記第2複合体の燃料極に流路板を接合する工程をさらに備える請求項9〜11のいずれかに記載の膜電極複合体の製造方法。   The method for producing a membrane electrode assembly according to any one of claims 9 to 11, further comprising a step of joining a flow path plate to the fuel electrode of the second complex after the complex cutting step. 前記絶縁封止層の前駆体溶液は、前記流路板を溶解可能な溶媒を含む、請求項12に記載の膜電極複合体の製造方法。   The method for producing a membrane electrode assembly according to claim 12, wherein the precursor solution of the insulating sealing layer includes a solvent capable of dissolving the flow path plate. 前記複合体切断工程において、前記第1複合体の切断部周辺を圧迫しながら、前記第1複合体を切断する請求項9〜13のいずれかに記載の膜電極複合体の製造方法。   The method for producing a membrane electrode assembly according to any one of claims 9 to 13, wherein, in the complex cutting step, the first complex is cut while pressing around a cut portion of the first complex.
JP2008126378A 2008-05-13 2008-05-13 Membrane electrode assembly, and method for producing the same Pending JP2011150789A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008126378A JP2011150789A (en) 2008-05-13 2008-05-13 Membrane electrode assembly, and method for producing the same
PCT/JP2009/058814 WO2009139369A1 (en) 2008-05-13 2009-05-12 Membrane electrode assembly and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126378A JP2011150789A (en) 2008-05-13 2008-05-13 Membrane electrode assembly, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2011150789A true JP2011150789A (en) 2011-08-04

Family

ID=41318736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126378A Pending JP2011150789A (en) 2008-05-13 2008-05-13 Membrane electrode assembly, and method for producing the same

Country Status (2)

Country Link
JP (1) JP2011150789A (en)
WO (1) WO2009139369A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074286A (en) * 2010-09-29 2012-04-12 Dainippon Printing Co Ltd Membrane-electrode assembly intermediate, membrane-electrode assembly, solid polymer fuel cell, and method for manufacturing membrane-electrode assembly intermediate and membrane-electrode assembly
JP2017039129A (en) * 2012-05-25 2017-02-23 ピービーアイ・パフォーマンス・プロダクツ・インコーポレーテッド Method for dehydration of acidic material with acid-resistant pbi membrane
JP2022156005A (en) * 2021-03-31 2022-10-14 森村Sofcテクノロジー株式会社 Fuel battery single cell and fuel battery stack

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503158A (en) * 1995-12-22 2000-03-14 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Continuous production method of membrane electrode assembly (MEA)
JP2001093548A (en) * 1999-09-27 2001-04-06 Matsushita Electric Ind Co Ltd Method for manufacturing polyelectrolyte fuel cell
JP2006236957A (en) * 2005-01-31 2006-09-07 Uchiyama Mfg Corp Constituent member for fuel cell
WO2007058839A1 (en) * 2005-11-14 2007-05-24 3M Innovative Properties Company Gasket molding system for membrane electrode assemblies
WO2007084472A2 (en) * 2006-01-17 2007-07-26 Henkel Corporation Sealant integrated fuel cell components and methods and systems for producing the same
JP2007188849A (en) * 2006-01-11 2007-07-26 Kokichi Uematsu Fuel cell and stack structure
JP2007329083A (en) * 2006-06-09 2007-12-20 Toyota Motor Corp Fuel cell
JP2008016436A (en) * 2006-06-06 2008-01-24 Sharp Corp Fuel cell, fuel cell system, and electronic equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503158A (en) * 1995-12-22 2000-03-14 ヘキスト・リサーチ・アンド・テクノロジー・ドイチュラント・ゲーエムベーハー・ウント・コンパニー・カーゲー Continuous production method of membrane electrode assembly (MEA)
JP2001093548A (en) * 1999-09-27 2001-04-06 Matsushita Electric Ind Co Ltd Method for manufacturing polyelectrolyte fuel cell
JP2006236957A (en) * 2005-01-31 2006-09-07 Uchiyama Mfg Corp Constituent member for fuel cell
WO2007058839A1 (en) * 2005-11-14 2007-05-24 3M Innovative Properties Company Gasket molding system for membrane electrode assemblies
JP2007188849A (en) * 2006-01-11 2007-07-26 Kokichi Uematsu Fuel cell and stack structure
WO2007084472A2 (en) * 2006-01-17 2007-07-26 Henkel Corporation Sealant integrated fuel cell components and methods and systems for producing the same
JP2008016436A (en) * 2006-06-06 2008-01-24 Sharp Corp Fuel cell, fuel cell system, and electronic equipment
JP2007329083A (en) * 2006-06-09 2007-12-20 Toyota Motor Corp Fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074286A (en) * 2010-09-29 2012-04-12 Dainippon Printing Co Ltd Membrane-electrode assembly intermediate, membrane-electrode assembly, solid polymer fuel cell, and method for manufacturing membrane-electrode assembly intermediate and membrane-electrode assembly
JP2017039129A (en) * 2012-05-25 2017-02-23 ピービーアイ・パフォーマンス・プロダクツ・インコーポレーテッド Method for dehydration of acidic material with acid-resistant pbi membrane
JP2022156005A (en) * 2021-03-31 2022-10-14 森村Sofcテクノロジー株式会社 Fuel battery single cell and fuel battery stack
JP7402193B2 (en) 2021-03-31 2023-12-20 森村Sofcテクノロジー株式会社 Fuel cell single cell and fuel cell stack

Also Published As

Publication number Publication date
WO2009139369A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP4420960B2 (en) Fuel cell and fuel cell layer
KR20100047890A (en) Reinforced solid polymer electrolyte composite membrane, membrane electrode assembly for solid polymer fuel cell, and solid polymer fuel cell
JP2007533088A (en) Multilayer electrode assembly (ML-MEA) and method of manufacturing the same
JP2009525572A (en) Membrane-electrode assembly having a multi-component sealing rim
JP2015529936A (en) Ion conductive membrane
JP4860264B2 (en) Fuel cell and manufacturing method thereof
JP4553403B2 (en) Membrane electrode composite
WO2003105265A1 (en) Liquid fuel feed type fuel cell
WO2009139369A1 (en) Membrane electrode assembly and method for producing the same
CN104054201A (en) Ion-conducting membrane
JP2007273141A (en) Fuel cell and manufacturing method of fuel cell
JP7310800B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP2005327705A (en) Fuel cell
JP5071378B2 (en) Fuel cell
JP2009037919A (en) Fuel cell and its manufacturing method, and fuel-cell stack
JP5201654B2 (en) FUEL CELL, FUEL CELL SYSTEM, AND ELECTRONIC DEVICE
JP6062154B2 (en) Fuel cell and method of using the same
JP2005032520A (en) Fuel cell and its manufacturing method
JP2012059441A (en) Fuel cell system
JP5447922B2 (en) FUEL CELL, FUEL CELL STACK, AND ELECTRONIC DEVICE PROVIDED WITH FUEL CELL STACK
JP3946228B2 (en) Fuel cell
JP2009059604A (en) Hybrid membrane for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell
WO2013080421A1 (en) Direct oxidation fuel cell and method for producing membrane catalyst layer assembly used in same
JP2015146287A (en) Method for inspecting fuel battery
JP5093800B2 (en) Fuel cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521