JP2011148977A - Method for manufacturing (meth)acrylic polymer - Google Patents

Method for manufacturing (meth)acrylic polymer Download PDF

Info

Publication number
JP2011148977A
JP2011148977A JP2010227581A JP2010227581A JP2011148977A JP 2011148977 A JP2011148977 A JP 2011148977A JP 2010227581 A JP2010227581 A JP 2010227581A JP 2010227581 A JP2010227581 A JP 2010227581A JP 2011148977 A JP2011148977 A JP 2011148977A
Authority
JP
Japan
Prior art keywords
copper
meth
compound
me6tren
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010227581A
Other languages
Japanese (ja)
Inventor
Yasuhisa Kato
泰央 加藤
Kenichi Yoshihashi
健一 吉橋
Sunao Fujita
直 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2010227581A priority Critical patent/JP2011148977A/en
Publication of JP2011148977A publication Critical patent/JP2011148977A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems that a conventional living radically polymerizing method causes a long-hour induction period, can not make a structure regulation such as a molecular weight or a molecular weight distribution, or has not such a polymerization activity that allows to react until a higher monomer conversion, when a catalyst of zerovalent metal copper or of a copper compound in terms of a weight of copper atoms is used in an amount of 300 ppm or less relative to the whole weight of (meth)acrylic-based monomers to constitute the polymer. <P>SOLUTION: This manufacturing method of a living radically polymerizing method for a (meth)acrylic-based monomer uses a reaction system in the presence of an organic halogen compound, a zero-valent metal copper, a monovalent copper compound, and a polyamine compound, wherein the zero-valent copper metal and the monovalent copper compound are combined in a molar ratio (the zero-valent copper metal/the monovalent copper compound) of 1-9. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

リビングラジカル重合法による(メタ)アクリル系重合体の製造方法に関する。   The present invention relates to a method for producing a (meth) acrylic polymer by a living radical polymerization method.

(メタ)アクリル系重合体の製造方法として、例えば有機ハロゲン化物、重合触媒として金属銅又は銅化合物を用いたリビングラジカル重合法が見出されている(特許文献1,2参照)。しかし、これら文献には重合触媒をモノマー重量に対して数百ppmオーダー以下まで低減させる手段は開示されていない。上記の技術を工業的に利用するとき、触媒に用いた大量の金属銅又は銅化合物を除去するために非常に多くの手間とコストを要することになる(特許文献3〜5)。   As a method for producing a (meth) acrylic polymer, for example, a living radical polymerization method using an organic halide and a metal copper or a copper compound as a polymerization catalyst has been found (see Patent Documents 1 and 2). However, these documents do not disclose means for reducing the polymerization catalyst to the order of several hundred ppm or less with respect to the monomer weight. When the above technique is used industrially, a great amount of labor and cost are required to remove a large amount of metallic copper or copper compound used in the catalyst (Patent Documents 3 to 5).

近年、特に0価の金属銅を用いて(メタ)アクリル系重合体をリビングラジカル重合する製造方法として、例えば高極性溶媒中で銅を不均化させることを特徴とするシングル・エレクトロ・トランスファ・リビングラジカル重合(SET−LRP)法が見出されており(特許文献6参照)、数百ppmオーダー以下の0価金属銅で重合が進行することを見出している。   In recent years, as a production method for living radical polymerization of a (meth) acrylic polymer, particularly using zero-valent metal copper, for example, a single electrotransfer characterized by disproportionating copper in a highly polar solvent. A living radical polymerization (SET-LRP) method has been found (see Patent Document 6), and it has been found that the polymerization proceeds with zero-valent metal copper of the order of several hundred ppm or less.

また、遷移金属錯体触媒におけるハロゲン原子を開始剤末端のハロゲン原子よりハロゲン種の周期表における周期を高周期にすること(特許文献7参照)、あるいは二種類のポリアミン化合物を併用することなど(特許文献8参照)により、遷移金属化合物を数百ppmオーダー以下まで減らことができることも見出されている。   In addition, the halogen atom in the transition metal complex catalyst has a higher period in the periodic table of the halogen species than the halogen atom at the end of the initiator (see Patent Document 7), or two kinds of polyamine compounds are used in combination (patent) It has also been found from the literature 8) that the transition metal compound can be reduced to the order of several hundred ppm or less.

WO96/30421号公報WO96 / 30421 publication WO97/18247号公報WO97 / 18247 特開2004−155846号公報Japanese Patent Laid-Open No. 2004-155846 特開2005−307220号公報JP 2005-307220 A 特開平11−193307号公報JP-A-11-193307 WO2008/019100号公報WO2008 / 019100 Publication 特開2006−299236号公報JP 2006-299236 A 特開2007−23136号公報JP 2007-23136 A

有機ハロゲン化物、金属銅又は銅化合物の錯体を重合触媒とするリビングラジカル重合法を利用し、(メタ)アクリル系重合体を製造するに当たり、金属銅または銅化合物中の銅の重量が(メタ)アクリル系単量体に対して数百ppmオーダー以下で、SET−LRPに不適だとされている低極性の溶媒を用いた場合、重合は進行するものの、開始剤及び触媒を(メタ)アクリル系単量体中に添加したにも関わらず重合が進行しないという誘導期が長時間生じ、さらに分子量・分子量分布等の構造制御が出来なくなる。長時間の誘導期は重合体の生産性を低下させてしまう、また構造制御のレベル低下は生成した重合体の、リビングポリマー特有の物性を低下させてしまう等の問題がある。   In producing a (meth) acrylic polymer using a living radical polymerization method using an organic halide, a metal copper or a copper compound complex as a polymerization catalyst, the weight of copper in the metal copper or copper compound is (meth) When a low-polarity solvent that is less than several hundred ppm order with respect to the acrylic monomer and is unsuitable for SET-LRP is used, the polymerization proceeds, but the initiator and catalyst are (meth) acrylic. An induction period in which polymerization does not proceed despite the addition to the monomer occurs for a long time, and the structure control such as molecular weight and molecular weight distribution becomes impossible. There is a problem that a long induction period reduces the productivity of the polymer, and a decrease in the level of structure control causes a decrease in physical properties unique to the living polymer.

また、SET−LRPに適しているといわれる高極性溶媒については、Percec,Vらがジメチルスルホキシド(DMSO)溶媒50vol%((メタ)アクリル系単量体に対して)中、数百ppmオーダー以下の0価金属銅を用いたとき、上記のような誘導期、構造制御レベルの低下等なく合成できている。しかし、それらDMSOのような高極性溶媒の量を減らしていったとき、低極性溶媒使用時と同様に誘導期が生じる、及び構造制御のレベルが低下するということが分かった。その一方で、高極性溶媒は一般的に高沸点のものが多く、生成した重合体からこれらを除去することは困難であり、生成した重合体中に残余した溶媒は後の精製等へ悪影響を及ぼすゆえ、使用量を出来るだけ減らすことが望まれる。   As for the highly polar solvent that is said to be suitable for SET-LRP, Percec, V et al. In the dimethyl sulfoxide (DMSO) solvent 50 vol% (with respect to the (meth) acrylic monomer) has an order of several hundred ppm or less. When the zero-valent metallic copper is used, it can be synthesized without the induction period and the decrease in the structure control level as described above. However, it has been found that when the amount of high polar solvents such as DMSO is reduced, the induction period occurs and the level of structural control is reduced as in the case of using low polar solvents. On the other hand, high-polar solvents generally have a high boiling point, and it is difficult to remove them from the produced polymer, and the remaining solvent in the produced polymer has an adverse effect on subsequent purification and the like. Therefore, it is desirable to reduce the amount used as much as possible.

そこで、有機ハロゲン化物、金属銅又は銅化合物の錯体を重合触媒とするリビングラジカル重合法を利用し、(メタ)アクリル系重合体を製造するに当たり、金属銅または銅化合物中の銅の重量が(メタ)アクリル系モノマーに対して数百ppmオーダー以下で、誘導期を無くす、あるいは短縮し、且つ分子量・分子量分布等の構造制御をして高いモノマー転化率まで重合させることを課題とする。   Therefore, in producing a (meth) acrylic polymer using a living radical polymerization method using an organic halide, metal copper or a copper compound complex as a polymerization catalyst, the weight of copper in the metal copper or copper compound is ( It is an object of the present invention to polymerize to a high monomer conversion rate by eliminating or shortening the induction period and controlling the structure such as molecular weight and molecular weight distribution at the order of several hundred ppm or less with respect to the (meth) acrylic monomer.

反応系中に有機ハロゲン化合物、0価の金属銅、1価の銅化合物及びポリアミン化合物が存在する(メタ)アクリル系単量体のリビングラジカル重合法において、0価の金属銅と1価の銅化合物のモル比(0価の金属銅/1価の銅化合物)を1〜9の割合で併用することを特徴とする、(メタ)アクリル系重合体の製造方法において、上記課題を効果的に解決できることを見出し、本発明に至った。   In a living radical polymerization method of a (meth) acrylic monomer in which an organic halogen compound, a zero-valent metal copper, a monovalent copper compound and a polyamine compound are present in the reaction system, a zero-valent metal copper and a monovalent copper In the method for producing a (meth) acrylic polymer, characterized in that the molar ratio of the compound (zero-valent metal copper / monovalent copper compound) is used in a ratio of 1 to 9, and the above problem is effectively achieved. The inventors have found that this can be solved, and have reached the present invention.

即ち、本発明は、反応系中に有機ハロゲン化合物、0価の金属銅、1価の銅化合物及びポリアミン化合物が存在する(メタ)アクリル系単量体のリビングラジカル重合法において、0価の金属銅と1価の銅化合物のモル比(0価の金属銅/1価の銅化合物)を1〜9の割合で併用することを特徴とする、(メタ)アクリル系重合体の製造方法に関する。
また、本発明は、重合系に存在する0価の金属銅および1価の銅化合物の量が銅原子の重量として、重合体を構成する(メタ)アクリル系単量体の総重量に対して、300ppm以下であることを特徴とする、(メタ)アクリル系重合体の製造方法に関する。
That is, the present invention relates to a zero-valent metal in a living radical polymerization method of a (meth) acrylic monomer in which an organic halogen compound, zero-valent metal copper, a monovalent copper compound and a polyamine compound are present in the reaction system. It is related with the manufacturing method of the (meth) acrylic-type polymer characterized by using together the molar ratio (0 valent metal copper / monovalent copper compound) of copper and a monovalent copper compound in the ratio of 1-9.
In addition, the present invention relates to the total weight of (meth) acrylic monomers constituting the polymer in which the amount of zero-valent metallic copper and monovalent copper compound present in the polymerization system is the weight of copper atoms. It is related with the manufacturing method of the (meth) acrylic-type polymer characterized by being 300 ppm or less.

本発明の製造方法は、(メタ)アクリル系単量体のリビングラジカル重合法における誘導期を無くす、あるいは短縮可能であり、且つ分子量・分子量分布等の構造を制御しながら、高いモノマー転化率まで重合させることが可能である。 The production method of the present invention can eliminate or shorten the induction period in the living radical polymerization method of the (meth) acrylic monomer, and can control the structure such as the molecular weight and molecular weight distribution and achieve a high monomer conversion rate. It is possible to polymerize.

実施例1,2、比較例1,3の反応時間に対するモノマー転化率をプロットしたグラフ。The graph which plotted the monomer conversion rate with respect to reaction time of Example 1, 2 and Comparative Examples 1 and 3. FIG. 比較例1,2の反応時間に対するモノマー転化率をプロットしたグラフ。The graph which plotted the monomer conversion rate with respect to reaction time of the comparative examples 1 and 2. FIG. 実施例4、比較例4の反応時間に対するモノマー転化率をプロットしたグラフ。The graph which plotted the monomer conversion rate with respect to reaction time of Example 4 and the comparative example 4. FIG. 実施例5、比較例5の反応時間に対するモノマー転化率をプロットしたグラフ。The graph which plotted the monomer conversion rate with respect to reaction time of Example 5 and Comparative Example 5. FIG. 実施例6、比較例6の反応時間に対するモノマー転化率をプロットしたグラフ。The graph which plotted the monomer conversion rate with respect to reaction time of Example 6 and Comparative Example 6. FIG.

<開始剤>
有機ハロゲン化物は重合開始剤であって、反応性の高い炭素−ハロゲン結合を有する有機ハロゲン化物である。例えば、α位にハロゲンを有するカルボニル化合物や、ベンジル位にハロゲンを有する化合物、あるいはハロゲン化スルホニル化合物等が例示され、具体的には、
−CHX、C−C(H)(X)CH、C−C(X)(CH
(ただし、上の化学式中、Cはフェニル基、Xは塩素、臭素、またはヨウ素)
−C(H)(X)−CO、R−C(CH)(X)−CO、R−C(H)(X)−C(O)R、R−C(CH)(X)−C(O)R
(式中、R、Rは水素原子または炭素数1〜20のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素)
−C−SO
(式中、Rは水素原子または炭素数1〜20のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素)等が挙げられる。
<Initiator>
The organic halide is a polymerization initiator and is an organic halide having a highly reactive carbon-halogen bond. For example, a carbonyl compound having a halogen at the α-position, a compound having a halogen at the benzyl-position, or a halogenated sulfonyl compound is exemplified. Specifically,
C 6 H 5 -CH 2 X, C 6 H 5 -C (H) (X) CH 3, C 6 H 5 -C (X) (CH 3) 2
(However, in the above chemical formula, C 6 H 5 is a phenyl group, X is chlorine, bromine, or iodine)
R 3 -C (H) (X ) -CO 2 R 4, R 3 -C (CH 3) (X) -CO 2 R 4, R 3 -C (H) (X) -C (O) R 4 , R 3 -C (CH 3) (X) -C (O) R 4,
(Wherein R 3 and R 4 are a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group, and X is chlorine, bromine, or iodine)
R 3 —C 6 H 4 —SO 2 X
(Wherein R 3 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group, and X is chlorine, bromine, or iodine).

また、2つ以上の開始点を持つ有機ハロゲン化物、またはハロゲン化スルホニル化合物を開始剤として使用してもよい。   An organic halide having two or more starting points or a sulfonyl halide compound may be used as an initiator.

単量体と開始剤量の比を調整することにより、所望の重合体分子量に設定することができることがリビングラジカル重合の特徴である。   It is a feature of living radical polymerization that the desired polymer molecular weight can be set by adjusting the ratio of the monomer and the initiator amount.

<リビングラジカル重合>
本発明では、反応系中に有機ハロゲン化物、0価の金属銅、1価の銅化合物、およびポリアミン化合物が存在する。この系は原子移動ラジカル重合(Atom Transfer Radical Polymerization:ATRP(J.Am.Chem.Soc.1995,117,5614、Macromolecules.1995,28,1721))、又は近年Percec,Vらによって提唱されたシングル・エレクトロン・トランスファ・リビングラジカル重合(Sigle Electron Transfer Polymerization:SET−LRP)(J.Am.Chem.Soc.2006,128,14156、JPSChem 2007,45,1607)のいずれかのリビングラジカル重合系として解釈されうるが、本発明では特に区別せず、有機ハロゲン化物、0価の金属銅、1価の銅化合物、およびポリアミン化合物を用いたリビングラジカル重合系を本発明の範疇として取り扱う。
<Living radical polymerization>
In the present invention, an organic halide, zero-valent metal copper, a monovalent copper compound, and a polyamine compound are present in the reaction system. This system can be either atom transfer radical polymerization (ATRP (J. Am. Chem. Soc. 1995, 117, 5614, Macromolecules. 1995, 28, 1721)), or recently proposed by Percec, V et al. Interpretation as a living radical polymerization system of any one of Electron Transfer Polymerization (SET-LRP) (J. Am. Chem. Soc. 2006, 128, 14156, JP Chem Chem 2007, 45, 1607) Although not particularly distinguished in the present invention, organic halides, zero-valent metal copper, monovalent copper compounds, and polyamination Living radical polymerization systems using compounds are treated as a category of the present invention.

<重合触媒>
重合触媒としては、0価の金属銅、1価の銅化合物の錯体が使用され、配位子としてポリアミン化合物が用いられる。0価の金属銅は粉末銅、銅箔等の銅単体である。1価の銅化合物は塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、過塩素酸第一銅等である。
<Polymerization catalyst>
As the polymerization catalyst, a complex of zero-valent metal copper and a monovalent copper compound is used, and a polyamine compound is used as a ligand. Zero-valent metallic copper is simple copper such as powdered copper or copper foil. The monovalent copper compound is cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous perchlorate and the like.

配位子として使用されるポリアミン化合物は、例えばテトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、トリス(2−アミノエチル)アミン等のポリアミン化合物であり、N,N,N’,N”,N”−ペンタメチルジエチレントリアミン、ヘキサメチルトリス(2−アミノエチル)アミン等のアルキル置換されたものであっても良い。しかし、金属銅または銅化合物の銅原子量の総重量が(メタ)アクリル系単量体の仕込み総重量に対して300ppm以下の低濃度触媒条件下で分子量・分子量分布を制御するためには一般式(1)で表されるポリアミン化合物が好ましく、例えばヘキサメチルトリス(2−アミノエチル)アミンが好ましい。他のポリアミン化合物では同様な活性はあるものの、分子量・分子量分布の制御において劣るため好ましくない。   The polyamine compound used as the ligand is, for example, a polyamine compound such as tetramethylethylenediamine, pentamethyldiethylenetriamine, tris (2-aminoethyl) amine, and N, N, N ′, N ″, N ″ -pentamethyl. Alkyl-substituted ones such as diethylenetriamine and hexamethyltris (2-aminoethyl) amine may be used. However, in order to control the molecular weight and molecular weight distribution under low concentration catalyst conditions where the total weight of the copper atomic weight of metallic copper or copper compound is 300 ppm or less with respect to the total charged weight of the (meth) acrylic monomer, the general formula The polyamine compound represented by (1) is preferred, for example hexamethyltris (2-aminoethyl) amine. Although other polyamine compounds have similar activities, they are not preferable because of poor control of molecular weight and molecular weight distribution.

また、一般式(1)で表されるポリアミン化合物の純度は90モル%以上が好ましく、95モル%以上がより好ましい。純度が低く一般式(1)以外のポリアミン化合物が混入している場合には、そのアミンと銅で形成される銅錯体がリビング重合性に悪影響を及ぼし、分子量・分子量分布が制御できなくなることがある。   Moreover, 90 mol% or more is preferable and, as for the purity of the polyamine compound represented by General formula (1), 95 mol% or more is more preferable. When the polyamine compound other than the general formula (1) is mixed with a low purity, the copper complex formed with the amine and copper may adversely affect the living polymerizability, and the molecular weight and molecular weight distribution may not be controlled. is there.

Figure 2011148977
Figure 2011148977

(式中、R,R,R及びRは、それぞれ独立して、水素原子または炭素数1〜3のアルキル基を表す。) (In the formula, R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)

本発明では、使用する0価の金属銅と1価の銅化合物の比を調節して併用することが重要であり、0価の金属銅と1価の銅化合物のモル比(0価の金属銅/1価の銅化合物)は1〜9、好ましくは1.5〜4、より好ましくは2〜3である。0価の金属銅が1価の銅化合物に対して多くなり過ぎると重合反応が始まる前に誘導期が生じる、あるいは構造制御レベルが低下して分子量分布が広がってしまう。逆に少なくなり過ぎると重合活性が低下して、高モノマー転化率に達する前に重合が停止してしまう。従って重合に使用する銅量を従来よりも少ない状態で、誘導期ができるだけ短く、さらに高度に制御された重合体を得るには、上記範囲内となるように0価の金属銅に対して1価の銅化合物を併用しなければならない。   In the present invention, it is important to adjust the ratio of the zero-valent metal copper to the monovalent copper compound to be used in combination, and the molar ratio of the zero-valent metal copper to the monovalent copper compound (the zero-valent metal (Copper / monovalent copper compound) is 1 to 9, preferably 1.5 to 4, more preferably 2 to 3. If the zero-valent copper is too much relative to the monovalent copper compound, an induction period occurs before the polymerization reaction starts, or the structure control level is lowered and the molecular weight distribution is widened. On the other hand, when the amount is too small, the polymerization activity is lowered, and the polymerization is stopped before the high monomer conversion rate is reached. Therefore, in order to obtain a polymer with a shorter induction period and a higher degree of control in a state where the amount of copper used in the polymerization is less than that of the prior art, it is 1 for zero-valent metallic copper so as to be within the above range. A valence copper compound must be used in combination.

重合触媒として使用する0価の金属銅及び1価の銅化合物の総銅原子の重量としては、重合体を構成する(メタ)アクリル系単量体の総重量に対して、300ppm以下が好ましいが、精製工程を簡略化若しくは省略して製造コストを削減するためには200ppm以下にすることがより好ましく、100ppm以下にすることがさらに好ましい。   The weight of the total copper atoms of the zero-valent metal copper and monovalent copper compound used as the polymerization catalyst is preferably 300 ppm or less with respect to the total weight of the (meth) acrylic monomer constituting the polymer. In order to reduce the production cost by simplifying or omitting the purification step, it is more preferably 200 ppm or less, and further preferably 100 ppm or less.

<(メタ)アクリル系単量体(モノマー)>
(メタ)アクリル系単量体は、リビングラジカル重合で使用される従来公知な単量体であり、例示するならば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸−n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸−tert−ブチル、(メタ)アクリル酸−n−ペンチル、(メタ)アクリル酸−n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸−n−ヘプチル、(メタ)アクリル酸−n−オクチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸−2−メトキシエチル、(メタ)アクリル酸−3−メトキシプロピル、(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸−2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸2−パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2−パーフルオロメチル−2−パーフルオロエチルメチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチル等が挙げられる。これらは、単独で用いても良いし、複数を共重合させても構わない。必要に応じて(メタ)アクリル系単量体以外のその他の単量体を共重合することもできる。
<(Meth) acrylic monomer (monomer)>
The (meth) acrylic monomer is a conventionally known monomer used in living radical polymerization. For example, methyl (meth) acrylate, ethyl (meth) acrylate, (meth) acrylic acid -N-propyl, (meth) acrylic acid isopropyl, (meth) acrylic acid -n-butyl, (meth) acrylic acid isobutyl, (meth) acrylic acid -tert-butyl, (meth) acrylic acid -n-pentyl, ( (Meth) acrylic acid-n-hexyl, (meth) acrylic acid cyclohexyl, (meth) acrylic acid-n-heptyl, (meth) acrylic acid-n-octyl, (meth) acrylic acid-2-ethylhexyl, (meth) acrylic Acid nonyl, decyl (meth) acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, toluyl (meth) acrylate, ( T) benzyl acrylate, 2-methoxyethyl (meth) acrylate, 3-methoxypropyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, Stearyl (meth) acrylate, glycidyl (meth) acrylate, 2-aminoethyl (meth) acrylate, γ- (methacryloyloxypropyl) trimethoxysilane, ethylene oxide adduct of (meth) acrylic acid, (meth) acrylic Trifluoromethyl methyl acid, 2-trifluoromethyl ethyl (meth) acrylate, 2-perfluoroethyl ethyl (meth) acrylate, 2-perfluoroethyl-2-perfluorobutyl ethyl (meth) acrylate, (meth ) 2-Perfluoroethyl acrylate, (meth) acrylic acid per Fluoromethyl, diperfluoromethyl methyl (meth) acrylate, 2-perfluoromethyl-2-perfluoroethyl methyl (meth) acrylate, 2-perfluorohexylethyl (meth) acrylate, (meth) acrylic acid 2 -Perfluorodecylethyl, 2-perfluorohexadecylethyl (meth) acrylate, etc. are mentioned. These may be used alone or a plurality of these may be copolymerized. Other monomers other than the (meth) acrylic monomer can be copolymerized as necessary.

<溶媒>
溶媒としては、このリビングラジカル重合法を用いる場合特に限定されないが、例示するならば、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチルピロリドン等の高極性非プロトン性溶媒;エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒;メタノール、エタノール、プロパノール、イソプロパノール、n−ブチルアルコール、tert−ブチルアルコール等のアルコール系溶媒;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒;塩化メチレン、クロロホルム等のハロゲン化炭化水素系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ペンタン、ヘキサン、シクロヘキサン、オクタン、デカン、ベンゼン、トルエン等の炭化水素系溶媒;イオン性液体等が挙げられる。上記溶媒は単独又は2種以上を混合して用いることができる。また超臨界流体を用いてもよい。
<Solvent>
The solvent is not particularly limited when this living radical polymerization method is used. Examples thereof include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone, and the like. High polar aprotic solvents; carbonate solvents such as ethylene carbonate and propylene carbonate; alcohol solvents such as methanol, ethanol, propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol; acetonitrile, propionitrile, benzonitrile, etc. Nitrile solvents; acetone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ether solvents such as diethyl ether and tetrahydrofuran; halo such as methylene chloride and chloroform Emissions hydrocarbon solvent; ethyl acetate, ester solvents such as butyl acetate; include ionic liquids or the like pentane, hexane, cyclohexane, octane, decane, benzene, hydrocarbon solvents such as toluene. The said solvent can be used individually or in mixture of 2 or more types. A supercritical fluid may also be used.

また、ジメチルスルホキシド(DMSO)等の高極性非プロトン性溶媒、エチレンカーボネート等のカーボネート系溶媒、およびイオン性液体は高沸点で揮発除去が困難であるため、大量に使用した場合に後の精製に悪影響を及ぼす。よってこれらの高沸点溶媒は体積にして、重合体を構成する(メタ)アクリル系単量体の総体積に対して30vol%以下が好ましく、10vol%以下がより好ましい。   Also, highly polar aprotic solvents such as dimethyl sulfoxide (DMSO), carbonate solvents such as ethylene carbonate, and ionic liquids have high boiling points and are difficult to remove by volatilization. Adversely affect. Therefore, these high boiling point solvents are preferably 30 vol% or less, more preferably 10 vol% or less, based on the total volume of the (meth) acrylic monomer constituting the polymer in volume.

<誘導期>
本発明における誘導期は、重合反応に必須である金属銅あるいは金属化合物、およびアミン化合物からなる触媒、開始剤、および(メタ)アクリル系単量体を所定量添加してから、(メタ)アクリル系単量体が重合体に転化され、重合反応が連鎖的に進行していくまでの時間を示す。この際の(メタ)アクリル系単量体の転化率は、反応溶液中から採取した試料中の未反応(メタ)アクリル系単量体量をガスクロマトグラフィーにより定量し、算出することができる。
<Induction period>
In the induction period in the present invention, a predetermined amount of a metal copper or metal compound essential for the polymerization reaction and an amine compound, an initiator, and a (meth) acrylic monomer are added, and then (meth) acrylic is added. The time until the system monomer is converted into a polymer and the polymerization reaction proceeds in a chain manner is shown. The conversion rate of the (meth) acrylic monomer at this time can be calculated by quantifying the amount of unreacted (meth) acrylic monomer in the sample collected from the reaction solution by gas chromatography.

また誘導期終了の定義は(メタ)アクリル系単量体の転化率が5%以上に達した時点とし、それ以下の(メタ)アクリル系単量体の転化率では誘導期間中とする。   The end of the induction period is defined as the time when the conversion rate of the (meth) acrylic monomer reaches 5% or more, and the conversion rate of the (meth) acrylic monomer below that is during the induction period.

以下に、本発明の具体的な実施例を示すが、本発明は、下記実施例に限定されるものではない。下記実施例および比較例中、「部」、「ppm」及び「%」は、それぞれ「重量部」、「重量百万分率」及び「モル%」を表す。「数平均分子量」および「分子量分布(重量平均分子量と数平均分子量の比)」は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出した。ただし、GPCカラムとしてポリスチレン架橋ゲルを充填したもの(shodex GPC K−804;昭和電工(株)製)を、GPC溶媒としてクロロホルムを用いた。   Specific examples of the present invention are shown below, but the present invention is not limited to the following examples. In the following examples and comparative examples, “parts”, “ppm” and “%” represent “parts by weight”, “parts by weight” and “mol%”, respectively. “Number average molecular weight” and “molecular weight distribution (ratio of weight average molecular weight to number average molecular weight)” were calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC). However, a GPC column filled with polystyrene cross-linked gel (shodex GPC K-804; manufactured by Showa Denko KK) was used as the GPC solvent with chloroform.

また重合体1分子当たりに導入された官能基数は、1H NMRによる濃度分析、及びGPCにより求まる数平均分子量を基に算出した。ただしNMRはBruker社製ASX−400を使用し、溶媒として重クロロホルムを用いて23℃にて測定した。
モノマーの転化率は、反応溶液中から試料を採取し、その中の未反応(メタ)アクリル系単量体量をガスクロマトグラフィーにより定量し、算出した。
The number of functional groups introduced per molecule of polymer was calculated based on concentration analysis by 1 H NMR and a number average molecular weight determined by GPC. NMR was measured at 23 ° C. using Bruker ASX-400 and deuterated chloroform as a solvent.
The monomer conversion rate was calculated by taking a sample from the reaction solution, quantifying the amount of unreacted (meth) acrylic monomer in the solution by gas chromatography.

(実施例1)
アクリル酸n−ブチル100部、銅粉(Cu(0))0.009部(Cu量=90ppm)、CuBr0.0023部(Cu量=10ppm)、アセトニトリル8.8部を仕込み、窒素気流下80℃で20分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、続いてヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.0036部を加えた。始めにMe6TRENを添加してから25分後のモノマー転化率は25%であった。その後、逐一Me6TRENを添加していきながら80℃で加熱撹拌した。Me6TRENを総量にして0.018部添加し、始めにMe6TRENを添加してから310分間反応させ、モノマー転化率が95%に達した時点で触媒を酸素で失活させて重合を停止し、重合体[1]を得た。重合体[1]の数平均分子量は21500、分子量分布は1.35であり、活性な臭素末端は1分子あたり平均で0.94個であった。
Example 1
100 parts of n-butyl acrylate, 0.009 part of copper powder (Cu (0)) (Cu amount = 90 ppm), 0.0023 part of CuBr (Cu amount = 10 ppm), and 8.8 parts of acetonitrile were charged under nitrogen flow 80 Stir at 20 ° C. for 20 minutes. To this was added 0.95 part of ethyl 2-bromobutyrate, followed by 0.0036 part of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). The monomer conversion 25 minutes after the addition of Me6TREN was 25%. Then, it heated and stirred at 80 degreeC, adding Me6TREN one by one. Add 0.018 part of the total amount of Me6TREN and react for 310 minutes after adding Me6TREN first. When the monomer conversion reaches 95%, the catalyst is deactivated with oxygen to stop the polymerization. Combined [1] was obtained. The number average molecular weight of the polymer [1] was 21,500, the molecular weight distribution was 1.35, and the average number of active bromine ends was 0.94 per molecule.

(実施例2)
アクリル酸n−ブチル100部、銅粉(Cu(0))0.007部(Cu量=70ppm)、CuBr0.0067部(Cu量=30ppm)、アセトニトリル8.8部を仕込み、窒素気流下80℃で15分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、続いてヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.0200部を加えた。始めにMe6TRENを添加してから35分後のモノマー転化率は30%であった。その後、逐一Me6TRENを添加していきながら80℃で加熱撹拌した。Me6TRENを総量にして0.024部添加し、始めにMe6TRENを添加してから190分間反応させ、モノマー転化率が86%に達した時点で触媒を酸素で失活させて重合を停止し、重合体[2]を得た。重合体[2]の数平均分子量は17200、分子量分布は1.12であり、活性な臭素末端は1分子あたり平均で0.95個であった。
(Example 2)
Charge 100 parts of n-butyl acrylate, 0.007 parts of copper powder (Cu (0)) (Cu amount = 70 ppm), 0.0067 parts of CuBr (Cu amount = 30 ppm), and 8.8 parts of acetonitrile. Stir at 15 ° C. for 15 minutes. To this was added 0.95 part of ethyl 2-bromobutyrate, followed by 0.0200 part of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). The monomer conversion after 35 minutes from the initial addition of Me6TREN was 30%. Then, it heated and stirred at 80 degreeC, adding Me6TREN one by one. Add 0.024 parts of total amount of Me6TREN, and first react for 190 minutes after adding Me6TREN. When the monomer conversion reaches 86%, the catalyst is deactivated with oxygen to stop the polymerization. Combined [2] was obtained. The number average molecular weight of the polymer [2] was 17,200, the molecular weight distribution was 1.12, and the average number of active bromine ends was 0.95 per molecule.

(実施例3)
アクリル酸n−ブチル100部、銅粉(Cu(0))0.005部(Cu量=50ppm)、CuBr0.0113部(Cu量=50ppm)、アセトニトリル8.8部を仕込み、窒素気流下80℃で15分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、続いてヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.0145部を加えた。始めにMe6TRENを添加してから25分後のモノマー転化率は21%であった。その後、逐一Me6TRENを添加していきながら80℃で加熱撹拌した。Me6TRENを総量にして0.036部添加し、始めにMe6TRENを添加してから280分間反応させ、モノマー転化率が87%に達した時点で触媒を酸素で失活させて重合を停止し、重合体[3]を得た。重合体[3]の数平均分子量は19000、分子量分布は1.11であり、活性な臭素末端は1分子あたり平均で0.94個であった。
(Example 3)
Charge 100 parts of n-butyl acrylate, 0.005 parts of copper powder (Cu (0)) (Cu content = 50 ppm), 0.0113 parts of CuBr (Cu content = 50 ppm), and 8.8 parts of acetonitrile, under nitrogen flow 80 Stir at 15 ° C. for 15 minutes. To this was added 0.95 part of ethyl 2-bromobutyrate, followed by 0.0145 part of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). The monomer conversion 25 minutes after the addition of Me6TREN was 21%. Then, it heated and stirred at 80 degreeC, adding Me6TREN one by one. Add 0.036 parts of Me6TREN in total amount, first add Me6TREN and react for 280 minutes. When the monomer conversion reaches 87%, the catalyst is deactivated with oxygen to stop the polymerization. Combined [3] was obtained. The number average molecular weight of the polymer [3] was 19000, the molecular weight distribution was 1.11, and the average number of active bromine ends was 0.94 per molecule.

(実施例4)
アクリル酸n−ブチル100部、銅粉(Cu(0))0.007部(Cu量=70ppm)、CuBr0.0067部(Cu量=30ppm)、2−プロパノール(IPA)8.7部を仕込み、窒素気流下80℃で15分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、続いてヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.022部を加えた。始めにMe6TRENを添加してから40分後のモノマー転化率は0%であった。その後、Me6TRENを0.011部さらに追加して、始めにMe6TRENを添加してから70分後のモノマー転化率は5%であった。その後も80℃で加熱撹拌し続け、始めにMe6TRENを添加してから235分間反応させ、モノマー転化率が63%に達した時点で触媒を酸素で失活させて重合を停止し、重合体[4]を得た。重合体[4]の数平均分子量は13500、分子量分布は1.18であり、活性な臭素末端は1分子あたり平均で0.92個であった。
Example 4
Charge 100 parts of n-butyl acrylate, 0.007 parts of copper powder (Cu (0)) (Cu amount = 70 ppm), 0.0067 parts of CuBr (Cu amount = 30 ppm), and 8.7 parts of 2-propanol (IPA). The mixture was stirred at 80 ° C. for 15 minutes under a nitrogen stream. To this was added 0.95 part of ethyl 2-bromobutyrate, followed by 0.022 part of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). The monomer conversion after 40 minutes from the initial addition of Me6TREN was 0%. Thereafter, 0.011 part of Me6TREN was further added, and the monomer conversion rate after 70 minutes from the first addition of Me6TREN was 5%. After that, the mixture was continuously heated and stirred at 80 ° C., and first, Me6TREN was added and reacted for 235 minutes. When the monomer conversion reached 63%, the catalyst was deactivated with oxygen to stop the polymerization, and the polymer [ 4] was obtained. The number average molecular weight of the polymer [4] was 13500, the molecular weight distribution was 1.18, and the average number of active bromine ends was 0.92 per molecule.

(実施例5)
アクリル酸n−ブチル100部、銅粉(Cu(0))0.007部(Cu量=70ppm)、CuBr0.0067部(Cu量=30ppm)、酢酸ブチル(BuOAc)8.7部を仕込み、窒素気流下80℃で15分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、続いてヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.033部を加えた。始めにMe6TRENを添加してから70分後のモノマー転化率は0%であった。その後も80℃で加熱撹拌し続け、始めにMe6TRENを添加してから100分後のモノマー転化率は12%であった。始めにMe6TRENを添加してから235分間反応させ、モノマー転化率が63%に達した時点で触媒を酸素で失活させて重合を停止し、重合体[5]を得た。重合体[5]の数平均分子量は14200、分子量分布は1.19であり、活性な臭素末端は1分子あたり平均で0.96個であった。
(Example 5)
Charge 100 parts of n-butyl acrylate, 0.007 parts of copper powder (Cu (0)) (Cu content = 70 ppm), 0.0067 parts of CuBr (Cu content = 30 ppm), 8.7 parts of butyl acetate (BuOAc), The mixture was stirred at 80 ° C. for 15 minutes under a nitrogen stream. To this was added 0.95 part of ethyl 2-bromobutyrate, followed by 0.033 part of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). The monomer conversion after 70 minutes from the initial addition of Me6TREN was 0%. Thereafter, the mixture was continuously heated and stirred at 80 ° C., and the monomer conversion rate after 100 minutes from the first addition of Me6TREN was 12%. First, Me6TREN was added and reacted for 235 minutes. When the monomer conversion reached 63%, the catalyst was deactivated with oxygen to stop the polymerization, and a polymer [5] was obtained. The number average molecular weight of the polymer [5] was 14,200, the molecular weight distribution was 1.19, and the average number of active bromine ends was 0.96 per molecule.

(実施例6)
アクリル酸n−ブチル100部、銅粉(Cu(0))0.007部(Cu量=70ppm)、CuBr0.0067部(Cu量=30ppm)、ジメチルスルホキシド(DMSO)12.3部(アクリル酸n−ブチルの体積に対して10vol%)を仕込み、窒素気流下80℃で15分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、続いてヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.011部を加えた。始めにMe6TRENを添加してから20分後のモノマー転化率は8%であった。その後、逐一Me6TRENを添加していきながら80℃で加熱撹拌した。Me6TRENを総量にして0.033部添加し、始めにMe6TRENを添加してから235分間反応させ、モノマー転化率が75%に達した時点で触媒を酸素で失活させて重合を停止し、重合体[6]を得た。重合体[6]の数平均分子量は15900、分子量分布は1.21であり、活性な臭素末端は1分子あたり平均で0.94個であった。
(Example 6)
100 parts of n-butyl acrylate, 0.007 part of copper powder (Cu (0)) (Cu amount = 70 ppm), 0.0067 part of CuBr (Cu amount = 30 ppm), 12.3 parts of dimethyl sulfoxide (DMSO) (acrylic acid) 10 vol%) with respect to the volume of n-butyl, and stirred at 80 ° C. for 15 minutes under a nitrogen stream. To this was added 0.95 part of ethyl 2-bromobutyrate, followed by 0.011 part of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). The monomer conversion 20 minutes after the first addition of Me6TREN was 8%. Then, it heated and stirred at 80 degreeC, adding Me6TREN one by one. Add 0.033 parts of Me6TREN in total amount, first add Me6TREN and react for 235 minutes. When the monomer conversion reaches 75%, the catalyst is deactivated with oxygen to stop the polymerization. Combined [6] was obtained. The number average molecular weight of the polymer [6] was 15900, the molecular weight distribution was 1.21, and the average number of active bromine ends was 0.94 per molecule.

(比較例1)
アクリル酸n−ブチル100部、銅粉(Cu(0))0.0100部(Cu量=100ppm)、アセトニトリル8.8部を仕込み、窒素気流下80℃で45分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、さらに80℃で45分間撹拌した。これにヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.0435部を加えた。始めにMe6TRENを添加してから30分後のモノマー転化率は5%、60分後のモノマー転化率は28%であり、始めの30〜60分の間はほとんど重合反応が進行していなかった。80℃で始めにMe6TRENを添加してから180分間加熱撹拌させ、モノマー転化率は80%に達した時点で触媒を酸素で失活させて重合を停止し、重合体[7]を得た。重合体[7]の数平均分子量は17900、分子量分布は1.28であり、活性な臭素末端は1分子あたり平均で0.92個であった。
(Comparative Example 1)
100 parts of n-butyl acrylate, 0.0100 parts of copper powder (Cu (0)) (Cu amount = 100 ppm) and 8.8 parts of acetonitrile were charged and stirred at 80 ° C. for 45 minutes in a nitrogen stream. Thereto was added 0.95 part of ethyl 2-bromobutyrate, and the mixture was further stirred at 80 ° C. for 45 minutes. To this was added 0.0435 parts of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). The monomer conversion rate 30 minutes after the addition of Me6TREN at the beginning was 5%, the monomer conversion rate after 60 minutes was 28%, and the polymerization reaction hardly proceeded during the first 30 to 60 minutes. . At first, Me6TREN was added at 80 ° C., followed by heating and stirring for 180 minutes. When the monomer conversion reached 80%, the catalyst was deactivated with oxygen to terminate the polymerization, and a polymer [7] was obtained. The number average molecular weight of the polymer [7] was 17900, the molecular weight distribution was 1.28, and the average number of active bromine ends was 0.92 per molecule.

(比較例2)
アクリル酸n−ブチル100部、銅粉(Cu(0))0.0100部(Cu量=100ppm)、アセトニトリル8.8部を仕込み、窒素気流下80℃で95分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、さらに80℃で90分間撹拌した。これにヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.0110部を加えた。始めにMe6TRENを添加してから30分後のモノマー転化率は17%であった。80℃で始めにMe6TRENを添加してから210分間加熱撹拌させ、モノマー転化率は93%に達した時点で触媒を酸素で失活させて重合を停止し、重合体[8]を得た。重合体[8]の数平均分子量は22000、分子量分布は1.48であった。
(Comparative Example 2)
100 parts of n-butyl acrylate, 0.0100 parts of copper powder (Cu (0)) (Cu amount = 100 ppm), and 8.8 parts of acetonitrile were charged and stirred at 80 ° C. for 95 minutes in a nitrogen stream. Thereto was added 0.95 part of ethyl 2-bromobutyrate, and the mixture was further stirred at 80 ° C. for 90 minutes. To this was added 0.0110 parts of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). The monomer conversion rate after 30 minutes from the first addition of Me6TREN was 17%. First, Me6TREN was added at 80 ° C., followed by heating and stirring for 210 minutes. When the monomer conversion reached 93%, the catalyst was deactivated with oxygen to terminate the polymerization, and a polymer [8] was obtained. The number average molecular weight of the polymer [8] was 22,000, and the molecular weight distribution was 1.48.

(比較例3)
アクリル酸n−ブチル100部、CuBr0.0225部(Cu量=100ppm)、アセトニトリル8.8部を仕込み、窒素気流下80℃で20分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、続いてヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.0145部を加えた。始めにMe6TREN添加から25分後のモノマー転化率は23%であった。その後、逐一Me6TRENを添加していきながら、80℃で加熱撹拌した。Me6TRENを総量にして0.036部添加し、始めにMe6TRENを添加してから210分間反応させ、モノマー転化率は40%に達した時点で触媒を酸素で失活させて重合を停止し、重合体[9]を得た。ここまでのMe6TRENの添加量は0.036部であった。重合体[9]の数平均分子量は8560、分子量分布は1.18であり、活性な臭素末端は1分子あたり平均で1.05個であった。
(Comparative Example 3)
100 parts of n-butyl acrylate, 0.0225 part of CuBr (Cu amount = 100 ppm) and 8.8 parts of acetonitrile were charged and stirred at 80 ° C. for 20 minutes under a nitrogen stream. To this was added 0.95 part of ethyl 2-bromobutyrate, followed by 0.0145 part of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). First, the monomer conversion rate after 25 minutes from the addition of Me6TREN was 23%. Then, it stirred at 80 degreeC, adding Me6TREN one by one. Add 0.036 parts of total amount of Me6TREN, react for 210 minutes after adding Me6TREN first, and when the monomer conversion reaches 40%, the catalyst is deactivated with oxygen to stop the polymerization, Combined [9] was obtained. The amount of Me6TREN added so far was 0.036 parts. The number average molecular weight of the polymer [9] was 8560, the molecular weight distribution was 1.18, and the average number of active bromine ends was 1.05 per molecule.

図1にはSET−LRPに適さないとされているアセトニトリル10vol%を溶媒に用い、Cu(0)/CuBr比を振ったときの実施例1,2および比較例1,3の重合反応の進行具合を示している。1価の銅化合物を併用していない比較例1では初期に30〜60分間の誘導期がある一方、銅のモル比(Cu(0)/Cu(I))にして9,2.3の割合になるようにCu(I)を併用している実施例1,2では遅くとも初期35分以内で重合反応開始されており誘導期を消失させることができている。また1価の銅化合物のみを用いた比較例3では実施例1、2と同様に誘導期なく重合が開始するものの、途中で大きく失速し、最終的にモノマー転化率40%程度までしか達することが出来ず、活性に乏しいといえる。   FIG. 1 shows the progress of polymerization reactions of Examples 1 and 2 and Comparative Examples 1 and 3 when 10 vol% of acetonitrile, which is not suitable for SET-LRP, is used as a solvent and the ratio of Cu (0) / CuBr is varied. It shows the condition. In Comparative Example 1 in which no monovalent copper compound is used in combination, there is an induction period of 30 to 60 minutes in the initial stage, while the copper molar ratio (Cu (0) / Cu (I)) is 9, 2.3. In Examples 1 and 2 in which Cu (I) is used in combination so as to be a ratio, the polymerization reaction is started within the initial 35 minutes at the latest, and the induction period can be eliminated. Further, in Comparative Example 3 using only a monovalent copper compound, although the polymerization starts without an induction period as in Examples 1 and 2, the polymerization is largely stalled in the middle and finally reaches only a monomer conversion rate of about 40%. It can not be said that the activity is poor.

また、表1、図2にはCu(0)単独の系において、重合反応前にアクリル系単量体、Cu(0)、溶媒を添加した状態で行なう重合前加熱撹拌時間を変えた比較例1、2を示す。比較例2のように重合前加熱撹拌時間を長くとった場合、誘導期を短縮させることができた。しかし、表2に示すように生成する重合体の分子量分布(PDI)は広がり、構造制御が出来なくなっている。一方、銅のモル比(Cu(0)/Cu(I))にして2.3の割合になるようにCu(I)を併用している実施例2では誘導期が消失している(図1参照)のに加えて、分子量分布は狭く、高度に構造制御も出来ている(表2参照)。   Table 1 and FIG. 2 show a comparative example in which the heating and stirring time before polymerization carried out in the state where the acrylic monomer, Cu (0) and solvent were added before the polymerization reaction in the system of Cu (0) alone was changed. 1 and 2 are shown. When the pre-polymerization heating and stirring time was increased as in Comparative Example 2, the induction period could be shortened. However, as shown in Table 2, the molecular weight distribution (PDI) of the polymer produced is widened, and the structure cannot be controlled. On the other hand, the induction period disappeared in Example 2 in which Cu (I) was used in combination so that the molar ratio of copper (Cu (0) / Cu (I)) was 2.3. In addition to (1), the molecular weight distribution is narrow and the structure is highly controlled (see Table 2).

Figure 2011148977
Figure 2011148977

Figure 2011148977
Figure 2011148977

(比較例4)
アクリル酸n−ブチル100部、銅粉(Cu(0))0.010部(Cu量=100ppm)、2−プロパノール(IPA)8.7部を仕込み、窒素気流下80℃で15分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、続いてヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.022部を加えた。始めにMe6TRENを添加してから40分後のモノマー転化率は0%であり、その後Me6TRENを0.011部さらに追加して、始めにMe6TRENを添加してから160分後のモノマー転化率も0%であった。そして、始めにMe6TRENを添加してから190分間後にモノマー転化率は14%に達した。その後も80℃で加熱撹拌し続け、250分間反応させ、モノマー転化率が41%に達した時点で触媒を酸素で失活させて重合を停止し、重合体[10]を得た。重合体[10]の数平均分子量は19100、分子量分布は3.29であり、活性な臭素末端は1分子あたり平均で0.96個であった。
(Comparative Example 4)
100 parts of n-butyl acrylate, 0.010 parts of copper powder (Cu (0)) (Cu amount = 100 ppm), and 8.7 parts of 2-propanol (IPA) were charged and stirred at 80 ° C. for 15 minutes under a nitrogen stream. . To this was added 0.95 part of ethyl 2-bromobutyrate, followed by 0.022 part of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). The monomer conversion after 40 minutes from the first addition of Me6TREN was 0%, and then 0.011 part of Me6TREN was further added, and the monomer conversion after 160 minutes after the addition of Me6TREN was also 0. %Met. The monomer conversion reached 14% 190 minutes after the first addition of Me6TREN. Thereafter, the mixture was continuously heated and stirred at 80 ° C. and reacted for 250 minutes. When the monomer conversion reached 41%, the catalyst was deactivated with oxygen to stop the polymerization, and a polymer [10] was obtained. The number average molecular weight of the polymer [10] was 19100, the molecular weight distribution was 3.29, and the average number of active bromine ends was 0.96 per molecule.

(比較例5)
アクリル酸n−ブチル100部、銅粉(Cu(0))0.010部(Cu量=100ppm)、酢酸ブチル(BuOAc)8.7部を仕込み、窒素気流下80℃で15分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、続いてヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.033部を加えた。始めにMe6TRENを添加してから70分後のモノマー転化率は0%であり、その後Me6TRENを0.011部さらに追加して、始めにMe6TRENを添加してから160分後のモノマー転化率も3%であった。そして、始めにMe6TRENを添加してから190分間後にモノマー転化率は25%に達した。その後も80℃で加熱撹拌し続け、始めにMe6TRENを添加してから250分間反応させ、モノマー転化率が58%に達した時点で触媒を酸素で失活させて重合を停止し、重合体[11]を得た。重合体[11]の数平均分子量は13200、分子量分布は1.63であり、活性な臭素末端は1分子あたり平均で0.99個であった。
(Comparative Example 5)
100 parts of n-butyl acrylate, 0.010 part of copper powder (Cu (0)) (Cu amount = 100 ppm), and 8.7 parts of butyl acetate (BuOAc) were charged and stirred at 80 ° C. for 15 minutes in a nitrogen stream. To this was added 0.95 part of ethyl 2-bromobutyrate, followed by 0.033 part of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). The monomer conversion after 70 minutes from the first addition of Me6TREN was 0%, then 0.011 part of Me6TREN was further added, and the monomer conversion after 160 minutes from the addition of Me6TREN was also 3 %Met. The monomer conversion reached 25% 190 minutes after the first addition of Me6TREN. Thereafter, the mixture was continuously heated and stirred at 80 ° C., and after adding Me6TREN for the first time, the mixture was reacted for 250 minutes. When the monomer conversion reached 58%, the catalyst was deactivated with oxygen, and the polymerization was stopped. 11] was obtained. The number average molecular weight of the polymer [11] was 13200, the molecular weight distribution was 1.63, and the average number of active bromine ends was 0.99 per molecule.

(比較例6)
アクリル酸n−ブチル100部、銅粉(Cu(0))0.010部(Cu量=100ppm)、ジメチルスルホキシド(DMSO)12.3部(アクリル酸n−ブチルの体積に対して10vol%)を仕込み、窒素気流下80℃で15分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、続いてヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.011部を加えた。始めにMe6TRENを添加してから20分後のモノマー転化率は0%であり、その後Me6TRENを0.022部さらに追加して、始めにMe6TRENを添加してから70分後のモノマー転化率も0%であった。そして、始めにMe6TRENを添加してから100分間後にモノマー転化率は30%に達した。その後も80℃で加熱撹拌して、始めにMe6TRENを添加してから250分間反応させ、モノマー転化率が75%に達した時点で触媒を酸素で失活させて重合を停止し、重合体[12]を得た。重合体[12]の数平均分子量は17300、分子量分布は1.32であり、活性な臭素末端は1分子あたり平均で0.97個であった。
(Comparative Example 6)
100 parts of n-butyl acrylate, 0.010 parts of copper powder (Cu (0)) (Cu amount = 100 ppm), 12.3 parts of dimethyl sulfoxide (DMSO) (10 vol% with respect to the volume of n-butyl acrylate) Was stirred at 80 ° C. for 15 minutes under a nitrogen stream. To this was added 0.95 part of ethyl 2-bromobutyrate, followed by 0.011 part of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). The monomer conversion 20 minutes after the first addition of Me6TREN was 0%, and then 0.022 part of Me6TREN was further added, and the monomer conversion 70 minutes after the addition of Me6TREN was also 0. %Met. The monomer conversion reached 30% 100 minutes after the first Me6TREN was added. Thereafter, the mixture was heated and stirred at 80 ° C., and the reaction was performed for 250 minutes after adding Me6TREN first. When the monomer conversion reached 75%, the catalyst was deactivated with oxygen to stop the polymerization, and the polymer [ 12] was obtained. The number average molecular weight of the polymer [12] was 17300, the molecular weight distribution was 1.32, and the average number of active bromine ends was 0.97 per molecule.

図3にはプロトン性溶媒である2−プロパノールについて、図4にはニトリル系溶媒であるアセトニトリルついて、そして図5には高極性溶媒であるジメチルスルホキシドについて0価の金属銅と1価の銅化合物を併用した系(実施例4〜6)と0価の金属銅単独で用いた系(比較例4〜6)の重合反応の進行具合を示している。示すように極性等によらず、あらゆる溶媒について1価の銅化合物を併用した系では0価の金属銅単独で用いた系に比べて誘導期が短縮できている。さらに、表3には実施例4〜6、比較例4〜6で得られた重合体の分析結果を示している。1価の銅化合物を併用することで分子量分布(PDI)は狭くなり、より構造が制御されるようになったことが分かる。   Fig. 3 shows 2-propanol as a protic solvent, Fig. 4 shows acetonitrile as a nitrile solvent, and Fig. 5 shows zero-valent metallic copper and monovalent copper compounds as dimethyl sulfoxide as a highly polar solvent. It shows the progress of the polymerization reaction of the system (Examples 4 to 6) used in combination with the system using only zero-valent metallic copper (Comparative Examples 4 to 6). As shown, the induction period can be shortened in the system in which the monovalent copper compound is used in combination with any solvent as compared to the system in which the zero-valent metal copper is used alone. Furthermore, Table 3 shows the analysis results of the polymers obtained in Examples 4 to 6 and Comparative Examples 4 to 6. It can be seen that the molecular weight distribution (PDI) is narrowed by using a monovalent copper compound together, and the structure is more controlled.

Figure 2011148977
Figure 2011148977

(比較例7)
アクリル酸n−ブチル100部、銅箔(Cu(0))0.37部(Cu量=3700ppm)、アセトニトリル8.8部を仕込み、窒素気流下80℃で15分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、続いてヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.09部を加えた。始めにMe6TRENを添加してから50分後のモノマー転化率は0%、75分後のモノマー転化率は26%であり、始めの50〜75分の間はほとんど重合反応が進行していなかった。その後、逐一Me6TRENを添加していきながら80℃で加熱撹拌した。Me6TRENを総量にして0.11部添加し、始めにMe6TRENを添加してから275分間80℃で加熱撹拌させ、モノマー転化率は93%に達した時点で触媒を酸素で失活させて重合を停止し、重合体[13]を得た。重合体[13]の数平均分子量は21000、分子量分布は1.19あり、活性な臭素末端は1分子あたり平均で0.92個であった。
(Comparative Example 7)
100 parts of n-butyl acrylate, 0.37 part of copper foil (Cu (0)) (Cu amount = 3700 ppm), and 8.8 parts of acetonitrile were charged and stirred at 80 ° C. for 15 minutes in a nitrogen stream. To this was added 0.95 part of ethyl 2-bromobutyrate, followed by 0.09 part of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). The monomer conversion after 50 minutes after the addition of Me6TREN was 0%, the monomer conversion after 75 minutes was 26%, and the polymerization reaction hardly proceeded during the first 50 to 75 minutes. . Then, it heated and stirred at 80 degreeC, adding Me6TREN one by one. Add 0.11 part of the total amount of Me6TREN, first add Me6TREN and heat and stir for 275 minutes at 80 ° C. When the monomer conversion reaches 93%, the catalyst is deactivated with oxygen to polymerize. The reaction was stopped to obtain a polymer [13]. The number average molecular weight of the polymer [13] was 21,000, the molecular weight distribution was 1.19, and the average number of active bromine ends was 0.92 per molecule.

銅触媒に箔状の0価の銅を用いた比較例7も粉状の0価の銅を用いた比較例1と同様に初期に誘導期が生じた。   In Comparative Example 7 in which foil-like zero-valent copper was used as the copper catalyst, an induction period occurred at an early stage as in Comparative Example 1 in which powder-like zero-valent copper was used.

(参考例1)
アクリル酸n−ブチル100部、銅粉(Cu(0))0.015部(Cu量=150ppm)、CuBr0.0115部(Cu量=50ppm)、アセトニトリル8.8部を仕込み、窒素気流下80℃で15分間撹拌した。これに2−ブロモ酪酸エチル0.95部を加え、続いてヘキサメチルトリス(2−アミノエチル)アミン(以後Me6TRENと称す)0.0072部を加えた。始めにMe6TRENを添加してから30分後のモノマー転化率は52%であった。その後、逐一Me6TRENを添加していきながら80℃で加熱撹拌した。Me6TRENを総量にして0.0094部添加し、始めにMe6TRENを添加してから130分間反応させ、モノマー転化率が94%に達した時点で、系中を真空状態に、溶媒及び未反応のモノマーを揮発除去させた。これに1,7−オクタジエン21部、アセトニトリル35部、Me6TREN0.0072部を添加して再び反応を開始させた。逐一Me6TRENを添加していきながら80℃で加熱撹拌した。Me6TRENを総量にして0.072部添加し、始めに1,7−オクタジエンを添加してから8時間反応させたところで、触媒を酸素で失活させ重合を停止させ、重合体[14]を得た。重合体[14]の数平均分子量は20200、分子量分布は1.18であり、また重合体一分子当たりに1,7−オクタジエンが反応した導入されたアルケニル基は0.73個であった。
(Reference Example 1)
Charge 100 parts of n-butyl acrylate, 0.015 parts of copper powder (Cu (0)) (Cu amount = 150 ppm), 0.0115 parts of CuBr (Cu amount = 50 ppm), and 8.8 parts of acetonitrile. Stir at 15 ° C. for 15 minutes. To this was added 0.95 part of ethyl 2-bromobutyrate, followed by 0.0072 part of hexamethyltris (2-aminoethyl) amine (hereinafter referred to as Me6TREN). The monomer conversion after 30 minutes from the first addition of Me6TREN was 52%. Then, it heated and stirred at 80 degreeC, adding Me6TREN one by one. Add 0.004 part of Me6TREN in total amount, first add Me6TREN and react for 130 minutes. When the monomer conversion reaches 94%, the system is evacuated and the solvent and unreacted monomers are added. Was removed by volatilization. To this, 21 parts of 1,7-octadiene, 35 parts of acetonitrile and 0.0072 part of Me6TREN were added to start the reaction again. While adding Me6TREN one by one, the mixture was heated and stirred at 80 ° C. 0.072 part of Me6TREN was added in total, and when 1,7-octadiene was first added and reacted for 8 hours, the catalyst was deactivated with oxygen to terminate the polymerization, and polymer [14] was obtained. It was. The number average molecular weight of the polymer [14] was 20,200, the molecular weight distribution was 1.18, and 0.73 introduced alkenyl groups reacted with 1,7-octadiene per molecule of the polymer.

Cu(0)とCu(I)を併用した系において、(メタ)アクリル系モノマーを重合に引き続き、ラジカル反応性の低い1,7−オクタジエンを反応させることで、重合体末端に反応性官能基であるアルケニル基を導入することができた。   In a system in which Cu (0) and Cu (I) are used in combination, (7) -octadiene having a low radical reactivity is reacted with a (meth) acrylic monomer, followed by polymerization, so that a reactive functional group is attached to the polymer terminal. It was possible to introduce an alkenyl group.

Claims (3)

反応系中に有機ハロゲン化合物、0価の金属銅、1価の銅化合物、及びポリアミン化合物が存在する(メタ)アクリル系単量体のリビングラジカル重合法において、0価の金属銅と1価の銅化合物のモル比(0価の金属銅/1価の銅化合物)を1〜9の割合で併用することを特徴とする、(メタ)アクリル系重合体の製造方法。   In a living radical polymerization method of a (meth) acrylic monomer in which an organic halogen compound, a zero-valent metal copper, a monovalent copper compound, and a polyamine compound are present in the reaction system, a zero-valent metal copper and a monovalent metal A method for producing a (meth) acrylic polymer, wherein a molar ratio of copper compound (zero-valent metal copper / monovalent copper compound) is used in a ratio of 1 to 9. 重合系に存在する0価の金属銅および1価の銅化合物の量が銅原子の重量として、重合体を構成する(メタ)アクリル系単量体の総重量に対して、300ppm以下であることを特徴とする請求項1記載の(メタ)アクリル系重合体の製造方法。   The amount of zero-valent metallic copper and monovalent copper compound present in the polymerization system is 300 ppm or less with respect to the total weight of (meth) acrylic monomers constituting the polymer as the weight of copper atoms. The method for producing a (meth) acrylic polymer according to claim 1. 重合系に存在するポリアミン化合物が一般式(1)で表される化合物であることを特徴とする請求項1、2記載の(メタ)アクリル系重合体の製造方法。
Figure 2011148977

(式中、R,R,R及びRは、それぞれ独立して、水素原子または炭素数1〜3のアルキル基を表す。)
The method for producing a (meth) acrylic polymer according to claim 1, wherein the polyamine compound existing in the polymerization system is a compound represented by the general formula (1).
Figure 2011148977

(In the formula, R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.)
JP2010227581A 2009-12-24 2010-10-07 Method for manufacturing (meth)acrylic polymer Pending JP2011148977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010227581A JP2011148977A (en) 2009-12-24 2010-10-07 Method for manufacturing (meth)acrylic polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009292879 2009-12-24
JP2009292879 2009-12-24
JP2010227581A JP2011148977A (en) 2009-12-24 2010-10-07 Method for manufacturing (meth)acrylic polymer

Publications (1)

Publication Number Publication Date
JP2011148977A true JP2011148977A (en) 2011-08-04

Family

ID=44536263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010227581A Pending JP2011148977A (en) 2009-12-24 2010-10-07 Method for manufacturing (meth)acrylic polymer

Country Status (1)

Country Link
JP (1) JP2011148977A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072809A (en) * 1998-06-01 2000-03-07 Kanegafuchi Chem Ind Co Ltd Polymerization
JP2001514697A (en) * 1997-03-11 2001-09-11 カーネギー メロン ユニヴァーシティー Improved atom or group transfer radical polymerization
JP2003147015A (en) * 2001-11-08 2003-05-21 Kanegafuchi Chem Ind Co Ltd Method for removing copper metal complex from polymer
JP2009114461A (en) * 1997-03-11 2009-05-28 Carnegie Mellon Univ Improvement of atom or atomic group transition radical polymerization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514697A (en) * 1997-03-11 2001-09-11 カーネギー メロン ユニヴァーシティー Improved atom or group transfer radical polymerization
JP2009114461A (en) * 1997-03-11 2009-05-28 Carnegie Mellon Univ Improvement of atom or atomic group transition radical polymerization
JP2000072809A (en) * 1998-06-01 2000-03-07 Kanegafuchi Chem Ind Co Ltd Polymerization
JP2003147015A (en) * 2001-11-08 2003-05-21 Kanegafuchi Chem Ind Co Ltd Method for removing copper metal complex from polymer

Similar Documents

Publication Publication Date Title
JP5642671B2 (en) Apparatus and method for controlled radical polymerization
US20190352435A1 (en) Control Over Controlled Radical Polymerization Processes
JP5841054B2 (en) Method for producing (meth) acrylic polymer
JP6205423B2 (en) Controlled radical polymerization of (meth) acrylic monomers
JP5038255B2 (en) Polymerization method
Chan et al. Reducing ATRP catalyst concentration in batch, semibatch and continuous reactors
US8829136B2 (en) Apparatus and methods for controlled radical polymerization
WO2015122404A1 (en) Living radical polymerization catalyst, and polymer production method using same
JP2018162394A (en) Method for producing hydrolyzable silyl group-containing poly (meth) acrylate
JP6338072B2 (en) Method and apparatus for controlled single electron transfer living radical polymerization
Guo et al. Organocatalyzed controlled radical polymerization with alkyl bromide initiator via in situ halogen exchange under thermal condition
JP2011148977A (en) Method for manufacturing (meth)acrylic polymer
JP4850988B2 (en) Polymerization method
JP6465685B2 (en) (Meth) acrylic polymer and production method
US20170267801A1 (en) Process for making branched reactive block polymers
JP3489893B2 (en) Polymethacrylate having a functional group at one end and method for producing the same
JP5583924B2 (en) Method for producing (meth) acrylic polymer
KR102177072B1 (en) Process for producing short-chain macromolecules based on acrylate monomers
JP7377489B2 (en) Method for producing β-substituted unsaturated carboxylic acid ester polymer
JP5495736B2 (en) Improved polymerization process
US20210309783A1 (en) Synthesis of polymer under conditions of enhanced catalyzed radical termination
JP2023118366A (en) Catalyst and method for producing polymer
Fang et al. Reversible complexation mediated polymerization (RCMP) starting with a complex of iodine with organic salt andthermal initiators
WO2014175221A1 (en) Method for producing vinyl polymer
WO2020189665A1 (en) Method for producing vinyl polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701