JP2011146542A - Heat treatment apparatus, heat treatment method and storage medium - Google Patents

Heat treatment apparatus, heat treatment method and storage medium Download PDF

Info

Publication number
JP2011146542A
JP2011146542A JP2010006263A JP2010006263A JP2011146542A JP 2011146542 A JP2011146542 A JP 2011146542A JP 2010006263 A JP2010006263 A JP 2010006263A JP 2010006263 A JP2010006263 A JP 2010006263A JP 2011146542 A JP2011146542 A JP 2011146542A
Authority
JP
Japan
Prior art keywords
flow rate
exhaust
heat treatment
temperature
temperature detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010006263A
Other languages
Japanese (ja)
Other versions
JP5041009B2 (en
Inventor
Yasuhiro Sakamoto
泰大 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2010006263A priority Critical patent/JP5041009B2/en
Priority to KR1020100110383A priority patent/KR101197170B1/en
Publication of JP2011146542A publication Critical patent/JP2011146542A/en
Application granted granted Critical
Publication of JP5041009B2 publication Critical patent/JP5041009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
    • G03F7/2016Contact mask being integral part of the photosensitive element and subject to destructive removal during post-exposure processing
    • G03F7/202Masking pattern being obtained by thermal means, e.g. laser ablation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment apparatus capable of continuously monitoring an exhaust air flow rate. <P>SOLUTION: An exhaust pipe 54 which is connected to a container for heating and treating a coating film formed on a wafer and has a flow rate adjusting portion, for example, a fan interposed is provided with a heater 71 which heats a gas up to a sublimation temperature of a sublimate from the coating film or higher, and first temperature sensors 72 and second temperature sensors 73 disposed upstream and downstream from the heater 71. Here, the temperature sensors 72 and 73 are provided peripherally at opposite positions, exhaust air flow rate measured values obtained from temperature detection values of sets of the respective first temperature sensors 72 and the second temperature sensors 73 are averaged, and the average value is used as an exhaust air flow rate measured value for flow rate control, for example, for the fan. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、容器内の熱板に基板を載置し、当該基板に形成された塗布膜を加熱処理する熱処理装置及び熱処理方法に関するものである。   The present invention relates to a heat treatment apparatus and a heat treatment method for placing a substrate on a hot plate in a container and heat-treating a coating film formed on the substrate.

半導体製造工程の一つであるフォトレジスト工程においては、基板例えば半導体ウエハ(以下、単に「ウエハ」と省略する)の表面にレジストを塗布し、このレジストを所定のパターンで露光した後に現像してレジストパターンを形成処理している。このような処理は、一般にレジストの塗布、現像装置に、露光装置を接続したレジストパターン形成システムを用いて行われており、この塗布、現像装置には、ウエハの加熱を行うための熱処理装置が組み込まれている。この熱処理装置では、表面にレジスト膜(塗布膜)を形成したウエハを容器の内部に収容した後、容器の内部に設けた加熱板上にウエハを載置して加熱処理を行う。この際、容器の内部には例えば窒素ガスを供給するとともに、容器の内部の気体を排気路を通じて排出する。   In the photoresist process, which is one of the semiconductor manufacturing processes, a resist is applied to the surface of a substrate, for example, a semiconductor wafer (hereinafter simply referred to as “wafer”), the resist is exposed in a predetermined pattern, and then developed. A resist pattern is formed. Such processing is generally performed using a resist pattern forming system in which an exposure apparatus is connected to a resist coating and developing apparatus. The coating and developing apparatus includes a heat treatment apparatus for heating the wafer. It has been incorporated. In this heat treatment apparatus, after a wafer having a resist film (coating film) formed on the surface thereof is accommodated in the container, the wafer is placed on a heating plate provided in the container and heat treatment is performed. At this time, for example, nitrogen gas is supplied to the inside of the container, and the gas inside the container is discharged through the exhaust path.

このような熱処理装置においては、排気流量を監視することが重要である。例えば排気路を工場内の排気ダクトに接続する場合には、設計値通りの排気流量で排気されているか否かを判断する必要があるし、また排気路に詰まりが生じているか否かの目安にもなる。更に排気路に流量調整部を設けて排気流量を調整する場合には、排気流量の検出値が必要になってくる。そこで従来では排気路の途中に絞りを設け、絞りの上流側の圧力と、絞りを設けた部位の圧力との差によって、容器からの気体の排気量を検出していた。しかし絞りを設けた部位に、塗布膜からの昇華物が付着した場合、排気路を詰まらせるおそれがあり、そのためにメンテナンスの頻度が高くなる傾向にある。特に、熱処理装置から離れるにしたがって気体の温度が低下するため、熱処理装置と絞りとが離れているものでは、このような懸念が大きい。
なお、特許文献1の段落0034には、塗布膜からの昇華物が排気路に付着することを防止するため、熱処理装置の下流側の通気路の長さを20mm程度の短い長さにすることが記載されている。また、この特許文献1の段落0008には、塗布膜からの昇華物が排気路に固着すると、排気路に目詰まりが生じ、排気流量が低下することも記載されている。しかしながら、特許文献1には、排気流量を測定することについては、具体的な説明がされていない。
また、特許文献2の段落0003には、供給系にマスフローコントローラを設けることが記載されているが、排気流量を測定することについては記載されていない。
In such a heat treatment apparatus, it is important to monitor the exhaust gas flow rate. For example, when connecting an exhaust passage to an exhaust duct in a factory, it is necessary to determine whether or not the exhaust air is exhausted at the designed exhaust flow rate, and whether or not the exhaust passage is clogged. It also becomes. Further, when adjusting the exhaust flow rate by providing a flow rate adjusting unit in the exhaust path, a detected value of the exhaust flow rate is required. Therefore, conventionally, a throttle is provided in the middle of the exhaust passage, and the amount of gas discharged from the container is detected by the difference between the pressure upstream of the throttle and the pressure at the portion where the throttle is provided. However, if the sublimate from the coating film adheres to the area where the diaphragm is provided, there is a risk of clogging the exhaust passage, which tends to increase the frequency of maintenance. In particular, since the temperature of the gas decreases with increasing distance from the heat treatment apparatus, such a concern is great when the heat treatment apparatus and the diaphragm are separated.
In paragraph 0034 of Patent Document 1, in order to prevent the sublimate from the coating film from adhering to the exhaust passage, the length of the air passage on the downstream side of the heat treatment apparatus is set to a short length of about 20 mm. Is described. Further, paragraph 0008 of Patent Document 1 also describes that when the sublimate from the coating film adheres to the exhaust passage, the exhaust passage is clogged and the exhaust flow rate is reduced. However, Patent Document 1 does not specifically describe the measurement of the exhaust gas flow rate.
Further, paragraph 0003 of Patent Document 2 describes providing a mass flow controller in the supply system, but does not describe measuring the exhaust flow rate.

特開2008−166604号公報JP 2008-166604 A 特開2003−303023号公報JP 2003-303023 A

本発明は、このような背景の下になされたものであり、その目的は、
基板に形成された塗布膜を容器内にて熱板により加熱処理する熱処理装置において、排気流量を安定して監視することができる技術を提供することにある。
The present invention has been made under such a background, and its purpose is as follows.
An object of the present invention is to provide a technique capable of stably monitoring an exhaust flow rate in a heat treatment apparatus that heat-treats a coating film formed on a substrate with a hot plate in a container.

本発明の熱処理装置は、容器内の熱板に基板を載置し、当該基板に形成された塗布膜を加熱処理する熱処理装置において、
前記容器内の雰囲気を排気する排気路と、
前記排気路に設けられ、この排気路を通過する気体を、前記塗布膜からの昇華物の昇華温度以上に加熱する加熱部と、
前記排気路における前記加熱部の上流側の温度を検出する第1の温度検出部と、
前記排気路における前記加熱部の下流側の温度を検出する第2の温度検出部と、
前記第1の温度検出部及び前記第2の温度検出部の各検出結果に基づき、前記排気路の排気流量を測定する流量測定部と、を備えることを特徴とする。
The heat treatment apparatus of the present invention is a heat treatment apparatus in which a substrate is placed on a hot plate in a container and a coating film formed on the substrate is heat-treated.
An exhaust path for exhausting the atmosphere in the container;
A heating unit that is provided in the exhaust passage and heats the gas passing through the exhaust passage to a temperature higher than the sublimation temperature of the sublimate from the coating film;
A first temperature detection unit for detecting a temperature upstream of the heating unit in the exhaust path;
A second temperature detection unit for detecting a temperature downstream of the heating unit in the exhaust path;
A flow rate measuring unit configured to measure an exhaust flow rate of the exhaust path based on detection results of the first temperature detecting unit and the second temperature detecting unit.

本発明の具体例として例えば次の構成を挙げることができる。
(1)前記第1の温度検出部、及び前記第2の温度検出部は、いずれも前記排気路の周方向に複数設けられている。
(2)複数の第2の温度検出部は、第1の温度検出部に対応した位置に設けられている。
(3)前記流量測定部は、互いに対応する第1の温度検出部及び第2の温度検出部の組により検出した排気流量を、各組に対して平均化した値を排気路の排気流量の検出値とする。
(4)前記流量測定部は、前記複数の第1の温度検出部により検出した温度の平均値と前記複数の第2の温度検出部により検出した温度の平均値とに基づいて排気流量を測定する。
(5)容器からの排気流量を調節する排気流量調節部と、予め設定した排気流量と前記流量測定部で測定した排気流量とに基づいて前記排気流量調整部を制御するための制御信号を出力する手段と、を備えた構成。
Specific examples of the present invention include the following configurations.
(1) A plurality of the first temperature detection unit and the second temperature detection unit are provided in the circumferential direction of the exhaust passage.
(2) The plurality of second temperature detectors are provided at positions corresponding to the first temperature detectors.
(3) The flow rate measuring unit calculates a value obtained by averaging the exhaust flow rates detected by the pairs of the first temperature detection unit and the second temperature detection unit corresponding to each other as the exhaust flow rate of the exhaust passage. The detection value.
(4) The flow rate measurement unit measures an exhaust flow rate based on an average value of temperatures detected by the plurality of first temperature detection units and an average value of temperatures detected by the plurality of second temperature detection units. To do.
(5) An exhaust flow rate adjusting unit for adjusting the exhaust flow rate from the container, and a control signal for controlling the exhaust flow rate adjusting unit based on the exhaust flow rate set in advance and the exhaust flow rate measured by the flow rate measuring unit are output. And a means comprising:

本発明の熱処理方法は前記基板を容器に搬入する工程と、
この容器内の熱板上に基板を載置して加熱する工程と、
前記容器内の雰囲気を排気路を介して排気する工程と、
前記排気路を通過する気体を、加熱部により、前記塗布膜からの昇華物の昇華温度以上に加熱する工程と、
第1の温度検出部及び第2の検出部により前記排気路における前記加熱部の上流側及び下流側の温度を夫々検出する工程と、
前記第1の温度検出部の検出結果及び前記第2の温度検出部の検出結果に基づき、前記排気路の排気流量を測定する工程と、を含むことを特徴とする。
The heat treatment method of the present invention includes a step of bringing the substrate into a container;
Placing the substrate on the hot plate in the container and heating;
Exhausting the atmosphere in the container through an exhaust path;
A step of heating the gas passing through the exhaust passage to a temperature equal to or higher than a sublimation temperature of the sublimate from the coating film by a heating unit;
Detecting the upstream and downstream temperatures of the heating unit in the exhaust passage by the first temperature detection unit and the second detection unit, respectively,
And a step of measuring an exhaust flow rate of the exhaust passage based on a detection result of the first temperature detection unit and a detection result of the second temperature detection unit.

本発明によれば、第1の温度検出部および第2の温度検出部の検出結果に基づいて排気流量を測定するため、排気路の途中に絞りを入れる必要がなく、排気路に詰まりが発生する虞を低減することができる。しかも、排気路を通過する気体を、塗布膜の昇華温度以上に加熱するため、排気路に詰まりが発生することを確実に防止することができる。よって、排気流量を安定して監視することができる。   According to the present invention, since the exhaust flow rate is measured based on the detection results of the first temperature detection unit and the second temperature detection unit, it is not necessary to restrict the middle of the exhaust path, and the exhaust path is clogged. The risk of doing so can be reduced. Moreover, since the gas passing through the exhaust passage is heated to a temperature higher than the sublimation temperature of the coating film, it is possible to reliably prevent clogging in the exhaust passage. Therefore, the exhaust flow rate can be monitored stably.

本発明の熱処理装置の実施の形態を示す縦断側面図である。It is a vertical side view which shows embodiment of the heat processing apparatus of this invention. 前記熱処理装置の横断平面図である。It is a cross-sectional top view of the said heat processing apparatus. 前記熱処理装置に用いられる排気流量測定部において排気管に取り付けられた部分を示す斜視図である。It is a perspective view which shows the part attached to the exhaust pipe in the exhaust flow measurement part used for the said heat processing apparatus. 図3に示す排気管とヒータとを示す断面図である。FIG. 4 is a cross-sectional view showing an exhaust pipe and a heater shown in FIG. 図3に示す排気管と温度センサとを示す断面図である。FIG. 4 is a cross-sectional view showing an exhaust pipe and a temperature sensor shown in FIG. 排気流量測定部を示す構成図である。It is a block diagram which shows an exhaust flow measurement part.

以下に本発明に係る熱処理装置の実施の形態の一例として、例えば塗布膜であるレジスト膜が表面に形成された基板である半導体ウエハ(以下ウエハと略す)を加熱処理する熱処理装置について図1及び図2を用いて説明する。先ず、熱処理装置の本体部分2について簡単に説明しておく。本体部分2は偏平な角形の筺体20を備えており、筺体20の側壁にはシャッタ21aにより開閉されるウエハの搬送口21が形成されている。   As an example of an embodiment of a heat treatment apparatus according to the present invention, for example, a heat treatment apparatus for heat-treating a semiconductor wafer (hereinafter abbreviated as a wafer) which is a substrate on which a resist film as a coating film is formed is shown in FIG. This will be described with reference to FIG. First, the main body portion 2 of the heat treatment apparatus will be briefly described. The main body portion 2 includes a flat rectangular housing 20, and a wafer transfer port 21 that is opened and closed by a shutter 21 a is formed on the side wall of the housing 20.

筺体20内の下部には基台22が設けられており、搬送口21に向かう側を手前側とすると、この基台22に沿って図示しないガイド機構により手前側位置(図1の位置)と奥側の後述の熱板41の上方位置との間で移動自在な冷却プレート25が設けられている。この冷却プレート25は、搬送口21を介して搬入された外部の搬送アームとの間で、3本の昇降ピン23aの昇降動作を介してウエハの受け渡しを行い、熱板41との間で3本の昇降ピン24aの昇降動作を介してウエハの受け渡しを行う。図中、Wはウエハであり、23及び24は、昇降機構である。筐体20内の奥側には、ガス吐出部31が設けられている。ガス吐出部31は図2に示すように奥側上方に向いた多数の小孔からなる吐出口33がウエハの直径をカバーするように配列して構成されている。ガス吐出部31は、ガス供給管34を介してパージ用ガス例えば窒素ガスなどの不活性ガスが供給され、ガス吐出部31内でウエハの加熱温度(加熱時のウエハの表面温度)と同じ温度に温調されて吐出口33から吐出されるようになっている。   A base 22 is provided in the lower part of the housing 20, and when the side toward the transport port 21 is the front side, a front side position (position of FIG. 1) is guided by a guide mechanism (not shown) along the base 22. A cooling plate 25 is provided that is movable between the rear side and an upper position of a later-described hot plate 41. The cooling plate 25 transfers the wafer to / from an external transfer arm carried in via the transfer port 21 through the lifting / lowering operation of the three lifting / lowering pins 23a and 3 to / from the heat plate 41. The wafer is transferred through the lifting / lowering operation of the lifting pins 24a. In the figure, W is a wafer, and 23 and 24 are elevating mechanisms. A gas discharge unit 31 is provided on the back side in the housing 20. As shown in FIG. 2, the gas discharge section 31 is configured by arranging discharge ports 33 formed of a large number of small holes facing upward on the back side so as to cover the diameter of the wafer. The gas discharge unit 31 is supplied with an inert gas such as a purge gas such as nitrogen gas via a gas supply pipe 34, and has the same temperature as the wafer heating temperature (wafer surface temperature during heating) in the gas discharge unit 31. The temperature is adjusted to be discharged from the discharge port 33.

当該熱板41は内部には図示しないヒータを有し、例えば円形状に構成されている。前記熱板41を挟んで前記ガス吐出部31と対向するように排気部51が設けられている。排気部51は図3に示すように手前側上方に向いた多数の小孔からなる排気口53がウエハの直径をカバーするように配列して構成されている。排気部51は排気路66を構成する例えば断面が真円の排気管54を介して例えば工場の排気路に接続されている。また排気管54には排気流量調整部であるファン55が介設されており、当該ファン55の回転数が制御されることで排気流量が制御される。なお図1中V1、V2はバルブである。
筐体20内には、前記熱板41に対向するように天板62が設けられており、手前側のガス吐出部31から吐出された不活性ガスは、この天板62と熱板41との間を通って奥側の吐出部51に向けて流れ、こうして一方向流が形成される。
The hot plate 41 has a heater (not shown) inside, and is configured in a circular shape, for example. An exhaust part 51 is provided so as to face the gas discharge part 31 with the hot plate 41 interposed therebetween. As shown in FIG. 3, the exhaust portion 51 is configured by arranging exhaust ports 53 formed of a large number of small holes facing upward on the front side so as to cover the diameter of the wafer. The exhaust unit 51 is connected to, for example, a factory exhaust path via an exhaust pipe 54 that constitutes the exhaust path 66 and has, for example, a perfect cross section. The exhaust pipe 54 is provided with a fan 55 as an exhaust flow rate adjusting unit, and the exhaust flow rate is controlled by controlling the rotation speed of the fan 55. In FIG. 1, V1 and V2 are valves.
A top plate 62 is provided in the housing 20 so as to face the hot plate 41, and the inert gas discharged from the gas discharge unit 31 on the front side is separated from the top plate 62 and the hot plate 41. Flows toward the discharge unit 51 on the back side, and thus a one-way flow is formed.

前記排気管54におけるファン55の下流側には、図1、図3及び図4に示すように加熱部であるヒータ71が設けられている。このヒータ71は例えばラバーヒータからなり、排気管54の外周に巻装されており、排気管54の内面を、ウエハ表面の塗布膜からの昇華物が付着しない温度つまり昇華温度以上に加熱するように後述の装置コントローラにより発熱制御されている。   On the downstream side of the fan 55 in the exhaust pipe 54, a heater 71 as a heating unit is provided as shown in FIGS. The heater 71 is made of, for example, a rubber heater, and is wound around the outer periphery of the exhaust pipe 54 so that the inner surface of the exhaust pipe 54 is heated to a temperature at which the sublimate from the coating film on the wafer surface does not adhere, that is, the sublimation temperature or higher. The heat generation is controlled by a device controller described later.

排気管54におけるヒータ71の上流側及び下流側には夫々第1の温度検出部である第1の温度センサ72及び第2の温度検出部である第2の温度センサ73が設けられている。これら温度センサ72、73は、排気管54内を流れる排気流の温度を検出するためのものであり、この例では排気管54の管壁を介して排気流の温度を検出している。これら温度センサ72、73は例えば熱電対が用いられるが、サーミスタなどであってもよい。第1の温度センサ72は排気管54の周方向に沿って複数例えば等間隔に4個配置されている。図4は第1の温度センサ72が配置された部位の排気管54の断面図であり、この図4に示してあるように第1の温度センサ72の各々は、排気管54の外周面に形成された凹部70内に嵌合され、更に接着剤70aにより固定されている。   A first temperature sensor 72 serving as a first temperature detection unit and a second temperature sensor 73 serving as a second temperature detection unit are provided on the upstream side and the downstream side of the heater 71 in the exhaust pipe 54, respectively. These temperature sensors 72 and 73 are for detecting the temperature of the exhaust flow flowing in the exhaust pipe 54. In this example, the temperature of the exhaust flow is detected via the tube wall of the exhaust pipe 54. These temperature sensors 72 and 73 are, for example, thermocouples, but may be thermistors or the like. A plurality of, for example, four first temperature sensors 72 are arranged at equal intervals along the circumferential direction of the exhaust pipe 54. FIG. 4 is a cross-sectional view of the exhaust pipe 54 at a portion where the first temperature sensor 72 is disposed. As shown in FIG. 4, each of the first temperature sensors 72 is disposed on the outer peripheral surface of the exhaust pipe 54. It fits in the formed recessed part 70, and is further fixed with the adhesive agent 70a.

第2の温度センサ73は、ヒータ71に対して第1の温度センサ72と対称に設けられている。即ちこの第2の温度センサ73についても排気管54の周方向に沿って等間隔に4個配置され、各温度センサ73の位置は第1の温度センサ72の各々から見て排気管54が伸びていく方向つまり排気管54の軸線の方向に位置している。言い換えれば第2の温度センサ73の各々は第1の温度センサ72の各々と対応した位置に設けられているといえる。また第2の温度センサ73の設置構造は第1の温度センサ72と同じであり、ヒータ71からの距離についても第1の温度センサ72と同じである。   The second temperature sensor 73 is provided symmetrically with the first temperature sensor 72 with respect to the heater 71. That is, four second temperature sensors 73 are also arranged at equal intervals along the circumferential direction of the exhaust pipe 54, and the positions of each temperature sensor 73 are extended from the exhaust pipe 54 as viewed from each of the first temperature sensors 72. It is located in the direction of going, that is, in the direction of the axis of the exhaust pipe 54. In other words, it can be said that each of the second temperature sensors 73 is provided at a position corresponding to each of the first temperature sensors 72. The installation structure of the second temperature sensor 73 is the same as that of the first temperature sensor 72, and the distance from the heater 71 is also the same as that of the first temperature sensor 72.

この熱処理装置は、図6に示すように装置コントローラ8を備えている。装置コントローラ8は、記憶部81、排気流量制御部82、電力制御部83を備えている。記憶部81には、装置本体2にて実施される加熱処理の処理レシピが格納されている。この処理レシピは、ウエハの種別(塗布膜の種別)に応じて各動作部分の動作、熱板41の温度などのプロセスパラメータの値が時系列に記載されているものである。排気流量制御部82には流量設定値が入力されるが、この設定値は塗布膜の種別に応じた値として処理レシピに書き込まれている場合や、塗布膜の種別とは関係なく一律に決められている場合がある。排気流量制御部82には、排気流量の測定値が入力され、流量設定値との偏差に基づいて例えばPID演算によりファン55の制御信号が出力される。なおこの測定値に関しては後述する。   The heat treatment apparatus includes an apparatus controller 8 as shown in FIG. The device controller 8 includes a storage unit 81, an exhaust flow rate control unit 82, and a power control unit 83. The storage unit 81 stores a processing recipe for heat processing performed in the apparatus main body 2. In this processing recipe, the values of process parameters such as the operation of each operation part and the temperature of the hot plate 41 are described in time series according to the type of wafer (type of coating film). A flow rate setting value is input to the exhaust flow rate control unit 82. This setting value is uniformly determined regardless of the type of coating film when it is written in the processing recipe as a value corresponding to the type of coating film. May have been. A measured value of the exhaust flow rate is input to the exhaust flow rate control unit 82, and a control signal for the fan 55 is output by, for example, PID calculation based on a deviation from the flow rate set value. This measured value will be described later.

電力制御部83は、ヒータ71の温度を検出する温度センサ74の温度検出値と温度設定値とに基づいて、ヒータ71に電力を制御するための電力供給部75を介してヒータ71の温度をコントロールするためのものである。温度センサ74は、例えば熱電対などから構成され、排気管54におけるヒータ71の配置領域の外周面に取り付けてある。温度設定値に対応する排気管54の温度は、ウエハ上の塗布膜からの昇華物が排気管54の内壁に付着しない温度であり、昇華温度以上の温度である。従ってこの温度設定値は、処理レシピに書かれており、処理が行われている塗布膜の種別に応じた値が処理レシピから読み出されて電力制御部83に入力される。   The power control unit 83 controls the temperature of the heater 71 via the power supply unit 75 for controlling the power of the heater 71 based on the temperature detection value and the temperature setting value of the temperature sensor 74 that detects the temperature of the heater 71. It is for control. The temperature sensor 74 is composed of a thermocouple, for example, and is attached to the outer peripheral surface of the exhaust pipe 54 in the region where the heater 71 is disposed. The temperature of the exhaust pipe 54 corresponding to the temperature set value is a temperature at which the sublimate from the coating film on the wafer does not adhere to the inner wall of the exhaust pipe 54 and is a temperature equal to or higher than the sublimation temperature. Therefore, this temperature set value is written in the processing recipe, and a value corresponding to the type of coating film being processed is read from the processing recipe and input to the power control unit 83.

また第1の温度センサ72及び第2の温度センサ73の温度検出値は図6に示すように流量測定部84に入力される。以下にこの流量測定部84の機能について説明する。第1の温度センサ72及び第2の温度センサ73は、排気管54におけるヒータ71の加熱領域を挟んで上流側及び下流側に等距離だけ離れて設けられているため、仮に、排気管54に気体が流れていなければ、第1の温度センサ72の温度検出値と、第2の温度センサ73の温度検出値との間で温度差が生じない。一方、排気管54に気体が流れていれば、第1の温度センサ72よりも第2の温度センサ73の方が、ヒータ71からより多くの熱が与えられるため、第1の温度センサ72の温度検出値と、第2の温度センサ73の温度検出値との間で温度差が生じ、この温度差から排気管54に気体が流れていることが分かる。   Further, the temperature detection values of the first temperature sensor 72 and the second temperature sensor 73 are input to the flow rate measuring unit 84 as shown in FIG. The function of the flow rate measuring unit 84 will be described below. The first temperature sensor 72 and the second temperature sensor 73 are provided at equal distances on the upstream side and the downstream side across the heating area of the heater 71 in the exhaust pipe 54. If no gas is flowing, there is no temperature difference between the temperature detection value of the first temperature sensor 72 and the temperature detection value of the second temperature sensor 73. On the other hand, if the gas flows through the exhaust pipe 54, the second temperature sensor 73 receives more heat from the heater 71 than the first temperature sensor 72. It can be seen that there is a temperature difference between the temperature detection value and the temperature detection value of the second temperature sensor 73, and gas flows through the exhaust pipe 54 from this temperature difference.

そして、これらの温度センサ72、73に検出された温度差と、排気管54を流れる気体の排気流量とは、一定の関係があることから、この関係をアルゴリズムとしてプログラムに書き込んでおき、前記温度差とアルゴリズムとに基づいて、排気管54を流れる気体の排気流量を検出することができる。またアルゴリズムを用いる代わりに温度差と排気流量との対応関係をテーブルに記載しておき、温度差に対応する排気流量をこのテーブルから読み出してもよい。ここで温度センサ72、73はいずれも4個用いられていて、両者の組は4組であることから、各組毎の温度差を平均化した値を、排気流量の測定に用いる温度差としている。
流量測定部84はCPUやメモリから構成され、このメモリには上記のプログラムやテーブルを含むソフトウエアがコンパクトディスクやメモリーカード等の記憶媒体からロードされる。
Since the temperature difference detected by these temperature sensors 72 and 73 and the exhaust flow rate of the gas flowing through the exhaust pipe 54 have a certain relationship, this relationship is written in the program as an algorithm, and the temperature Based on the difference and the algorithm, the exhaust flow rate of the gas flowing through the exhaust pipe 54 can be detected. Instead of using an algorithm, the correspondence between the temperature difference and the exhaust flow rate may be described in a table, and the exhaust flow rate corresponding to the temperature difference may be read from this table. Here, four temperature sensors 72 and 73 are used, and the number of both sets is four. Therefore, a value obtained by averaging the temperature difference of each set is used as the temperature difference used for measuring the exhaust flow rate. Yes.
The flow rate measuring unit 84 includes a CPU and a memory, and software including the above programs and tables is loaded into the memory from a storage medium such as a compact disk or a memory card.

次に上述実施の形態の作用について説明する。図1に戻って、例えば塗布膜であるレジスト膜が形成されたウエハが本体部分2の外部の搬送機構により、搬送口21を介して筐体20内に搬入されると、支持ピン23aを介して当該ウエハは冷却プレート25に受け渡される。冷却プレート25が熱板41上へ移動するまでに熱板41の表面はヒータ42により例えば130℃に均一に加熱されている。そして昇降機構24により支持ピン24aが上昇して、冷却プレート25により熱板41上に搬送されたウエハの裏面を支持する。冷却プレート25が後退すると昇降機構24により支持ピン24aは下降し、熱板41上にウエハが受け渡される。   Next, the operation of the above embodiment will be described. Returning to FIG. 1, for example, when a wafer on which a resist film as a coating film is formed is carried into the housing 20 via the transfer port 21 by the transfer mechanism outside the main body portion 2, via the support pins 23 a. Then, the wafer is transferred to the cooling plate 25. The surface of the hot plate 41 is uniformly heated to, for example, 130 ° C. by the heater 42 until the cooling plate 25 moves onto the hot plate 41. The support pins 24 a are raised by the elevating mechanism 24, and the back surface of the wafer transferred onto the hot plate 41 is supported by the cooling plate 25. When the cooling plate 25 is retracted, the support pins 24 a are lowered by the elevating mechanism 24, and the wafer is transferred onto the hot plate 41.

ウエハは熱板41上にて例えば100度前後の設定温度により加熱処理される。この際、バルブV1が開かれ、ガス供給源36からガス供給管34にパージ用ガスが供給される。このパージ用ガスは吐出部31で加熱処理の設定温度に加熱されて、吐出口33から天板62へ向けて吐出され、天板62と熱板41との間を手前側から奥側に流れる。ウエハの周囲を通過したパージガスは排気管54に流入し、筐体20の外部へ除去されることとなる。このときファン55が駆動されており、排気管51から所定の流量、この例ではパージ用ガスの供給流量よりも若干多い流量で排気が行われる。   The wafer is heated on the hot plate 41 at a set temperature of about 100 degrees, for example. At this time, the valve V <b> 1 is opened, and the purge gas is supplied from the gas supply source 36 to the gas supply pipe 34. The purge gas is heated to the set temperature of the heat treatment by the discharge unit 31 and discharged from the discharge port 33 toward the top plate 62 and flows between the top plate 62 and the heat plate 41 from the near side to the back side. . The purge gas that has passed around the wafer flows into the exhaust pipe 54 and is removed to the outside of the housing 20. At this time, the fan 55 is driven, and exhaust is performed from the exhaust pipe 51 at a predetermined flow rate, in this example, a slightly higher flow rate than the purge gas supply flow rate.

ウエハが加熱処理されると、ウエハ上の塗布膜からの昇華物がパージガスとともに排気管54を通じて排気される。また、排気管54の加熱領域の温度が処理レシピに応じた温度となるように、即ちレジスト膜からの昇華物の昇華温度以上になるように電力制御部83によりヒータ71を制御する。この結果、塗布膜からの昇華物がその内壁に付着せずに排気管54を通過する。そして既述のように排気流量が大きいと、ヒータ71の下流側の気体の温度が高くなることから、温度センサ72、73の温度差が大きくなって、流量測定部84における流量測定値が大きくなり、排気流量制御部82の制御動作によりファン(排気流量調節部)55の回転数を低くする。一方、排気流量が小さいと温度センサ72、73の温度差が小さくなって、流量測定部84における流量測定値が大きくなりファン55の回転数を高くする。   When the wafer is heated, the sublimate from the coating film on the wafer is exhausted through the exhaust pipe 54 together with the purge gas. Further, the heater 71 is controlled by the power control unit 83 so that the temperature of the heating region of the exhaust pipe 54 becomes a temperature corresponding to the processing recipe, that is, the temperature of the sublimated material from the resist film is higher than the sublimation temperature. As a result, the sublimated material from the coating film passes through the exhaust pipe 54 without adhering to the inner wall. As described above, when the exhaust flow rate is large, the temperature of the gas on the downstream side of the heater 71 becomes high. Therefore, the temperature difference between the temperature sensors 72 and 73 becomes large, and the flow rate measurement value in the flow rate measurement unit 84 becomes large. Thus, the rotational speed of the fan (exhaust flow rate adjusting unit) 55 is lowered by the control operation of the exhaust flow rate control unit 82. On the other hand, when the exhaust flow rate is small, the temperature difference between the temperature sensors 72 and 73 becomes small, the flow rate measurement value in the flow rate measurement unit 84 becomes large, and the rotational speed of the fan 55 is increased.

ここで流量流量測定部76においては、既述のように第1の温度センサ72及び第2の温度センサ73の組(排気管54の軸方向に並ぶ温度センサ72、73の組)ごとに温度差を求め、えら得た4つの組の温度差を平均化し、平均温度差をアルゴリズムに適用して排気流量を算出している。この算出方法は、各組の温度差ごとに排気流量を求め、それら排気流量を平均化してもよい。   Here, in the flow rate measurement unit 76, as described above, the temperature is set for each set of the first temperature sensor 72 and the second temperature sensor 73 (the set of temperature sensors 72 and 73 arranged in the axial direction of the exhaust pipe 54). The difference is obtained, the temperature differences of the four sets obtained are averaged, and the exhaust gas flow rate is calculated by applying the average temperature difference to the algorithm. In this calculation method, an exhaust flow rate may be obtained for each set of temperature differences, and the exhaust flow rates may be averaged.

本実施形態の熱処理装置7によれば、第1の温度センサ72及び第2の温度センサ73の検出結果に基づいて排気流量を出力するため、排気管54の途中に絞りを入れる必要がなく、排気管54に詰まりが発生する虞を低減することができる。しかも、排気管54を通過する気体を、レジストからの昇華温度以上に加熱するため、排気管54に詰まりが発生することを確実に防止することができる。よって、排気流量を継続的に監視することができる。
また、各温度センサ72、73が、排気管54の周方向に複数設けられ、互いに対応する各温度センサ72、73の組により求めた温度差を用いて流量をしているため、排気管54を通過する気体が層流を形成していない場合でも、周方向の複数箇所の流量を平均化した値が求まるため、排気流量を高い正確性をもって測定することができる。
According to the heat treatment apparatus 7 of the present embodiment, since the exhaust flow rate is output based on the detection results of the first temperature sensor 72 and the second temperature sensor 73, it is not necessary to place a throttle in the middle of the exhaust pipe 54. The possibility of clogging in the exhaust pipe 54 can be reduced. Moreover, since the gas passing through the exhaust pipe 54 is heated to a temperature higher than the sublimation temperature from the resist, it is possible to reliably prevent the exhaust pipe 54 from being clogged. Therefore, the exhaust flow rate can be continuously monitored.
In addition, a plurality of temperature sensors 72 and 73 are provided in the circumferential direction of the exhaust pipe 54, and the flow rate is determined using the temperature difference obtained by the pair of temperature sensors 72 and 73 corresponding to each other. Even when the gas passing through the gas does not form a laminar flow, since the value obtained by averaging the flow rates at a plurality of locations in the circumferential direction is obtained, the exhaust flow rate can be measured with high accuracy.

上述の実施の形態では流量調整部である排気用のファン55は、ヒータ71の上流側に設けられているが、下流側に設けられていてもよい。また本発明は、流量測定部で得られた排気流量(推定排気流量)の値を流量調整部におけるフィードバック信号として用いることに限られない。例えばファン55による流量設定値は一定としておく装置、あるいはファン55を用いずにダンパを設けて排気流量を一定とした装置において、排気路の目詰まりの目安として排気流量測定値を利用する場合であってもよい。そして排気管54の周方向に配置される温度センサ72、73の個数は4つに限られず、2個あるいは3個であってもよいし、5個以上であってもよく、あるいは1個であってもよい。   In the above-described embodiment, the exhaust fan 55 that is a flow rate adjusting unit is provided on the upstream side of the heater 71, but may be provided on the downstream side. Further, the present invention is not limited to using the value of the exhaust flow rate (estimated exhaust flow rate) obtained by the flow rate measurement unit as a feedback signal in the flow rate adjustment unit. For example, in a device in which the flow rate set value by the fan 55 is constant or a device in which a damper is provided without using the fan 55 and the exhaust flow rate is constant, the measured exhaust flow rate is used as a guide for clogging of the exhaust passage. There may be. The number of temperature sensors 72 and 73 arranged in the circumferential direction of the exhaust pipe 54 is not limited to four, but may be two or three, may be five or more, or one. There may be.

また本発明に係る熱処理装置は、レジスト膜を形成したウエハに熱処理を行う装置に限られず、現像後、又は露光後のウエハに熱処理を行う熱処理装置にも適用することができる。更にまたウエハなどの基板上に形成される塗布膜としては、シリコン酸化膜などの絶縁膜であってもよい。   The heat treatment apparatus according to the present invention is not limited to an apparatus that performs heat treatment on a wafer on which a resist film is formed, and can also be applied to a heat treatment apparatus that performs heat treatment on a wafer after development or exposure. Furthermore, the coating film formed on a substrate such as a wafer may be an insulating film such as a silicon oxide film.

2 本体部分
20 筐体
41 熱板
54 排気管
55 ファン(排気流量調節部)
71 ヒータ
72 第1の温度センサ(第1の温度検出部)
73 第2の温度センサ(第2の温度検出部)
8 装置コントローラ
84 流量測定部
2 Main body portion 20 Housing 41 Heat plate 54 Exhaust pipe 55 Fan (exhaust flow rate adjusting unit)
71 Heater 72 1st temperature sensor (1st temperature detection part)
73 2nd temperature sensor (2nd temperature detection part)
8 Device controller 84 Flow rate measurement unit

Claims (14)

容器内の熱板に基板を載置し、当該基板に形成された塗布膜を加熱処理する熱処理装置において、
前記容器内の雰囲気を排気する排気路と、
前記排気路に設けられ、この排気路を通過する気体を、前記塗布膜からの昇華物の昇華温度以上に加熱する加熱部と、
前記排気路における前記加熱部の上流側の温度を検出する第1の温度検出部と、
前記排気路における前記加熱部の下流側の温度を検出する第2の温度検出部と、
前記第1の温度検出部及び前記第2の温度検出部の各検出結果に基づき、前記排気路の排気流量を測定する流量測定部と、を備えることを特徴とする熱処理装置。
In a heat treatment apparatus for placing a substrate on a hot plate in a container and heat-treating a coating film formed on the substrate,
An exhaust path for exhausting the atmosphere in the container;
A heating unit that is provided in the exhaust passage and heats the gas passing through the exhaust passage to a temperature higher than the sublimation temperature of the sublimate from the coating film;
A first temperature detection unit for detecting a temperature upstream of the heating unit in the exhaust path;
A second temperature detection unit for detecting a temperature downstream of the heating unit in the exhaust path;
A heat treatment apparatus comprising: a flow rate measurement unit that measures an exhaust flow rate of the exhaust passage based on detection results of the first temperature detection unit and the second temperature detection unit.
前記第1の温度検出部、及び前記第2の温度検出部は、いずれも前記排気路の周方向に複数設けられていることを特徴とする請求項1記載の熱処理装置。   2. The heat treatment apparatus according to claim 1, wherein a plurality of the first temperature detection unit and the second temperature detection unit are provided in the circumferential direction of the exhaust passage. 複数の第2の温度検出部は、夫々第1の温度検出部に対応した位置に設けられていることを特徴とする請求項2記載の熱処理装置。   The heat treatment apparatus according to claim 2, wherein the plurality of second temperature detection units are provided at positions corresponding to the first temperature detection units, respectively. 前記流量測定部は、互いに対応する第1の温度検出部及び第2の温度検出部の組に基づいて測定した排気流量を各組に対して平均化した値を、排気路の排気流量の測定値とすることを特徴とする請求項3記載の熱処理装置。   The flow rate measurement unit measures the exhaust flow rate of the exhaust passage by averaging the exhaust flow rate measured based on the first temperature detection unit and the second temperature detection unit corresponding to each other. 4. The heat treatment apparatus according to claim 3, wherein the heat treatment apparatus is a value. 前記流量測定部は、前記複数の第1の温度検出部により検出した温度の平均値と前記複数の第2の温度検出部により検出した温度の平均値とに基づいて排気流量を測定することを特徴とする請求項2または3記載の熱処理装置。   The flow rate measuring unit measures an exhaust flow rate based on an average value of temperatures detected by the plurality of first temperature detection units and an average value of temperatures detected by the plurality of second temperature detection units. The heat treatment apparatus according to claim 2 or 3, characterized in that 前記塗布膜の種別と前記加熱部の加熱温度とを対応付けたデータを記憶する記憶部と、塗布膜の種別に応じた加熱温度を記憶部から読み出して当該加熱部を制御する手段と、を備えていることを特徴とする請求項1ないし3のいずれか一項に記載の熱処理装置。   A storage unit that stores data in which the type of the coating film is associated with the heating temperature of the heating unit, and a unit that reads the heating temperature according to the type of the coating film from the storage unit and controls the heating unit. The heat treatment apparatus according to claim 1, further comprising a heat treatment apparatus. 前記容器からの排気流量を調節する排気流量調節部と、
予め設定した排気流量と前記流量測定部で測定した排気流量とに基づいて前記排気流量調整部を制御するための制御信号を出力する手段と、を備えたことを特徴とする請求項1ないし6のいずれか一つに記載の熱処理装置。
An exhaust flow rate adjusting unit for adjusting the exhaust flow rate from the container;
7. A means for outputting a control signal for controlling the exhaust flow rate adjusting unit based on an exhaust flow rate set in advance and an exhaust flow rate measured by the flow rate measuring unit. The heat processing apparatus as described in any one of these.
本発明の熱処理方法は、基板に形成された塗布膜を加熱処理する加熱処理方法において、
前記基板を容器に搬入する工程と、
この容器内の熱板上に基板を載置して加熱する工程と、
前記容器内の雰囲気を排気路を介して排気する工程と、
前記排気路を通過する気体を、加熱部により、前記塗布膜からの昇華物の昇華温度以上に加熱する工程と、
第1の温度検出部及び第2の検出部により前記排気路における前記加熱部の上流側及び下流側の温度を夫々検出する工程と、
前記第1の温度検出部の検出結果及び前記第2の温度検出部の検出結果に基づき、前記排気路の排気流量を測定する工程と、を含むことを特徴とする熱処理方法。
The heat treatment method of the present invention is a heat treatment method for heat-treating a coating film formed on a substrate.
Carrying the substrate into a container;
Placing the substrate on the hot plate in the container and heating;
Exhausting the atmosphere in the container through an exhaust path;
A step of heating the gas passing through the exhaust passage to a temperature equal to or higher than a sublimation temperature of the sublimate from the coating film by a heating unit;
Detecting the upstream and downstream temperatures of the heating unit in the exhaust passage by the first temperature detection unit and the second detection unit, respectively,
And a step of measuring an exhaust flow rate of the exhaust passage based on a detection result of the first temperature detection unit and a detection result of the second temperature detection unit.
前記第1の温度検出部、及び前記第2の温度検出部は、いずれも前記排気路の周方向に複数設けられていることを特徴とする請求項8記載の熱処理方法。   The heat treatment method according to claim 8, wherein a plurality of the first temperature detection unit and the second temperature detection unit are provided in the circumferential direction of the exhaust passage. 複数の第2の温度検出部は、夫々第1の温度検出部に対応した位置に設けられていることを特徴とする請求項9記載の熱処理方法。   The heat treatment method according to claim 9, wherein the plurality of second temperature detection units are provided at positions corresponding to the first temperature detection units, respectively. 前記排気流量を検出する工程は、互いに対応する第1の温度検出部及び第2の温度検出部の組に基づいて測定した排気流量を各組に対して平均化した値を、排気路の排気流量の測定値とする工程であることを特徴とする請求項10記載の熱処理方法。   The step of detecting the exhaust gas flow rate is obtained by averaging a value obtained by averaging the exhaust gas flow rate measured based on a pair of the first temperature detection unit and the second temperature detection unit corresponding to each other on the exhaust path. The heat treatment method according to claim 10, wherein the heat treatment method is a step of obtaining a flow rate measurement value. 前記排気流量を検出する工程は、前記複数の第1の温度検出部により検出した温度の平均値と前記複数の第2の温度検出部により検出した温度の平均値とに基づいて排気流量の測定値とする工程であることを特徴とする請求項9または10に記載の熱処理方法。   The step of detecting the exhaust flow rate includes measuring an exhaust flow rate based on an average value of temperatures detected by the plurality of first temperature detection units and an average value of temperatures detected by the plurality of second temperature detection units. The heat treatment method according to claim 9, wherein the heat treatment method is a step of setting a value. 排気流量調節部で前記容器からの排気流量を調節する工程と、
予め設定した排気流量と測定した排気流量とに基づいて前記排気流量調整部を制御する工程と、を含むことを特徴とする請求項8ないし12のいずれか一項に記載の熱処理方法。
Adjusting the exhaust flow rate from the container in the exhaust flow rate adjustment unit;
13. The heat treatment method according to claim 8, further comprising: controlling the exhaust flow rate adjusting unit based on a preset exhaust flow rate and a measured exhaust flow rate.
容器内の熱板に基板を載置し、当該基板に形成された塗布膜を加熱処理する熱処理装置に用いられるコンピュータプログラムを記憶する記憶媒体であって、
前記コンピュータプログラムは、請求項8ないし13のいずれか一項に記載の熱処理方法を実施するようにステップ群が組まれていることを特徴とする記憶媒体。
A storage medium for storing a computer program used in a heat treatment apparatus that places a substrate on a hot plate in a container and heat-treats a coating film formed on the substrate,
14. A storage medium characterized in that the computer program includes a group of steps so as to perform the heat treatment method according to any one of claims 8 to 13.
JP2010006263A 2010-01-14 2010-01-14 Heat treatment apparatus, heat treatment method and storage medium Active JP5041009B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010006263A JP5041009B2 (en) 2010-01-14 2010-01-14 Heat treatment apparatus, heat treatment method and storage medium
KR1020100110383A KR101197170B1 (en) 2010-01-14 2010-11-08 Heat treatment apparatus, heat treatment method and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006263A JP5041009B2 (en) 2010-01-14 2010-01-14 Heat treatment apparatus, heat treatment method and storage medium

Publications (2)

Publication Number Publication Date
JP2011146542A true JP2011146542A (en) 2011-07-28
JP5041009B2 JP5041009B2 (en) 2012-10-03

Family

ID=44461135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006263A Active JP5041009B2 (en) 2010-01-14 2010-01-14 Heat treatment apparatus, heat treatment method and storage medium

Country Status (2)

Country Link
JP (1) JP5041009B2 (en)
KR (1) KR101197170B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098570A (en) * 2011-10-31 2013-05-20 Semes Co Ltd Substrate processing apparatus and substrate processing method
JP2016540246A (en) * 2013-11-27 2016-12-22 東京エレクトロン株式会社 Substrate tuning system and method using optical projection
CN109309033A (en) * 2017-07-27 2019-02-05 东京毅力科创株式会社 Annealing device, heat treatment method and storage medium
CN111063623A (en) * 2018-10-16 2020-04-24 东京毅力科创株式会社 Substrate processing apparatus, substrate processing method, and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334823A (en) * 2001-05-08 2002-11-22 Matsushita Electric Ind Co Ltd Baking method, baking device and manufacturing method for liquid crystal display element
JP2003077897A (en) * 2001-08-31 2003-03-14 Tokyo Electron Ltd Processor and operating method therefor
WO2004070802A1 (en) * 2003-02-04 2004-08-19 Tokyo Electron Limited Treating system and operating method for treating system
JP2005064277A (en) * 2003-08-13 2005-03-10 Dainippon Screen Mfg Co Ltd Substrate heater and substrate heating method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3486576B2 (en) 1999-05-18 2004-01-13 シャープ株式会社 OFDM receiver and frequency offset compensation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334823A (en) * 2001-05-08 2002-11-22 Matsushita Electric Ind Co Ltd Baking method, baking device and manufacturing method for liquid crystal display element
JP2003077897A (en) * 2001-08-31 2003-03-14 Tokyo Electron Ltd Processor and operating method therefor
WO2004070802A1 (en) * 2003-02-04 2004-08-19 Tokyo Electron Limited Treating system and operating method for treating system
JP2005064277A (en) * 2003-08-13 2005-03-10 Dainippon Screen Mfg Co Ltd Substrate heater and substrate heating method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098570A (en) * 2011-10-31 2013-05-20 Semes Co Ltd Substrate processing apparatus and substrate processing method
JP2016540246A (en) * 2013-11-27 2016-12-22 東京エレクトロン株式会社 Substrate tuning system and method using optical projection
CN109309033A (en) * 2017-07-27 2019-02-05 东京毅力科创株式会社 Annealing device, heat treatment method and storage medium
CN109309033B (en) * 2017-07-27 2024-03-26 东京毅力科创株式会社 Heat treatment device, heat treatment method, and storage medium
CN111063623A (en) * 2018-10-16 2020-04-24 东京毅力科创株式会社 Substrate processing apparatus, substrate processing method, and storage medium

Also Published As

Publication number Publication date
KR20110083473A (en) 2011-07-20
KR101197170B1 (en) 2012-11-02
JP5041009B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5153614B2 (en) Substrate processing apparatus, semiconductor substrate processing method, control program, recording medium recorded with control program, and substrate processing method
JP4948587B2 (en) Photoresist coating and developing device, substrate transport method, interface device
TWI643246B (en) Heat treatment device, abnormality detection method in heat treatment, and readable computer memory medium
JP4699283B2 (en) Heat treatment plate temperature control method, program, and heat treatment plate temperature control device
KR102407706B1 (en) Substrate heating device, substrate heating method and storage medium
JP4033809B2 (en) Heat treatment apparatus and heat treatment method
JP7074514B2 (en) Board processing equipment and board processing method
JP5665239B2 (en) Semiconductor manufacturing apparatus and substrate processing method
US20110223693A1 (en) Heat treatment apparatus and method of processing substrate
TWI743267B (en) Thermal treatment apparatus, thermal treatment method, and computer storage medium
JP5041009B2 (en) Heat treatment apparatus, heat treatment method and storage medium
JP3718688B2 (en) Heating device
WO2016160138A1 (en) Upper dome temperature closed loop control
TW200414295A (en) Semiconductor wafer processing apparatus
JP2008141071A (en) Apparatus for heat-treating substrate
JP4618912B2 (en) Heat treatment apparatus for object to be processed and exhaust method thereof
JP4014348B2 (en) Heat treatment device
JP7186096B2 (en) Hot plate cooling method and heat treatment apparatus
JP6313253B2 (en) Heat treatment apparatus, heat treatment method, and computer storage medium
JP3895893B2 (en) Substrate heating apparatus and substrate heating method
JPH04158512A (en) Baking treater
JP3571634B2 (en) Substrate processing equipment
JP2001085339A (en) Temperature control method
JP2011171657A (en) Substrate treatment device and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

R150 Certificate of patent or registration of utility model

Ref document number: 5041009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250