JP2011141158A - Infrared detector - Google Patents

Infrared detector Download PDF

Info

Publication number
JP2011141158A
JP2011141158A JP2010001184A JP2010001184A JP2011141158A JP 2011141158 A JP2011141158 A JP 2011141158A JP 2010001184 A JP2010001184 A JP 2010001184A JP 2010001184 A JP2010001184 A JP 2010001184A JP 2011141158 A JP2011141158 A JP 2011141158A
Authority
JP
Japan
Prior art keywords
window
infrared
metal
size
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010001184A
Other languages
Japanese (ja)
Inventor
Yoshifumi Nagashima
義文 永島
Motoki Tanaka
基樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2010001184A priority Critical patent/JP2011141158A/en
Publication of JP2011141158A publication Critical patent/JP2011141158A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To acquire a highly reliable and high-performance infrared detector capable of acquiring a highly reliable joint surface at a joint section between an infrared window and a can made of metal by controlling the flow of a jointing material and preventing the occurrence of malfunctions which occur due to the inflow of the jointing material and the occurrence of reductions in sensitivity characteristics of a thermal infrared sensor. <P>SOLUTION: It is possible to control the flow of the jointing material, stabilize a jointed state, and acquire a highly reliable joint surface by providing a window (hole) of the can made of metal with a recession-type groove structure and forming an infrared window section in which a metallized film is deposited smaller in size than the most external dimension and larger than the minimum dimension of a recession-type groove structure section of the can made of metal. It is possible to prevent the inflow of the jointing material to the inside of a package when the can made of metal is jointed to the infrared window by depositing a metallized film formed in an outer edge section of the infrared window to an outside area having the same size as or more than the window (hole) of the can made of metal. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、特に真空気密封止を要する熱型赤外線検出器のパッケージ構造に於ける金属製缶、赤外線ウインドウに係る構造を改良した赤外線検出器に関するものである。   The present invention relates to an infrared detector having an improved structure related to a metal can and an infrared window in a package structure of a thermal infrared detector that particularly requires vacuum hermetic sealing.

熱型赤外線検出器は、測定対象物から発せられる赤外線の微弱な熱変化エネルギーを赤外線受光部でとらえ、電流値、電圧値、抵抗値のような電気特性の温度変化を電気信号に変換し、出力する検出器である。   The thermal infrared detector captures the weak thermal change energy of infrared rays emitted from the measurement object, and converts the temperature change of electrical characteristics such as current value, voltage value, resistance value into electrical signals, It is a detector that outputs.

熱型赤外線検出器は、赤外線受光素子へ入射した赤外線エネルギーの熱的な拡散による損失を低下させる為、熱絶縁性を高くすることが重要である。高い分解能を得るため、即ち高い熱絶縁性を得る為、赤外線受光素子構造、赤外線受光素子を断熱構造としたり、素子を収納するパッケージ中雰囲気を真空とすることで熱伝導率を抑制している。一般的に検出器パッケージ内部を低圧とし、真空度を10−2Pa程度以下にすることが知られている。 Since the thermal infrared detector reduces the loss due to thermal diffusion of the infrared energy incident on the infrared light receiving element, it is important to increase the thermal insulation. In order to obtain high resolution, that is, to obtain high thermal insulation, the thermal conductivity is suppressed by making the infrared light receiving element structure, the infrared light receiving element a heat insulating structure, or by making the atmosphere in the package housing the element a vacuum. . It is generally known that the inside of the detector package is set to a low pressure and the degree of vacuum is about 10 −2 Pa or less.

また、パッケージを真空封止後、パッケージ内部の部材から反応性ガス(N、0など)、水素、水分、炭化水素といったようなアウトガスが発生し、これによりパッケージ内の真空度が低下することが知られている。よって、パッケージ内部の真空状態を長期間維持するために、ゲッターと呼ばれるガス吸着剤が一般的に使用される。このアウトガスを吸収するためにゲッターを熱型赤外線受光素子と共にパッケージ内に実装する。ゲッター実装時に真空中もしくは不活性ガス雰囲気中で350〜900℃に加熱し活性化をおこなうことでガスを効率的に吸着することが知られている。 Furthermore, after vacuum sealing the package, the reactive gas from the inside of the package member (N 2, 0 2, etc.), hydrogen, moisture, outgas such as hydrocarbons is generated and thereby the degree of vacuum in the package is reduced It is known. Therefore, in order to maintain the vacuum state inside the package for a long time, a gas adsorbent called a getter is generally used. In order to absorb this outgas, a getter is mounted in a package together with a thermal infrared light receiving element. It is known that gas is efficiently adsorbed by heating to 350 to 900 ° C. in a vacuum or in an inert gas atmosphere at the time of getter mounting and performing activation.

また、前述のように、パッケージ内部を真空(10−2Pa程度以下)にするため、パッケージを構成する金属製缶、ガラスにて気密封止された電気的接続端子を備える金属製のベース、赤外線透過ウインドウの各接合部は高い信頼性を求められる事が知られている。 Further, as described above, in order to make the inside of the package vacuum (about 10 −2 Pa or less), a metal can comprising the package, a metal base including an electrical connection terminal hermetically sealed with glass, It is known that each joint portion of the infrared transmission window is required to have high reliability.

従来の赤外線検出器として、熱型赤外線受光素子2と、ガス吸着用のシート状ゲッター4とをガラスにて気密封止された電気的接続端子を備える金属製のベース1に実装、熱型赤外線センサ素子2とシート状ゲッター4を実装した金属製のベース1に窓(孔)13を有した金属製缶5を溶接、その後、外縁部にメタライズ膜11,中央部に赤外線透過膜12を成膜した赤外線透過ウインドウ6を真空中で接合材に7より接合する事によりパッケージ内部を真空とした図1の様な構成の物が既に知られている。(特許文献1)   As a conventional infrared detector, a thermal infrared light receiving element 2 and a sheet-like getter 4 for gas adsorption are mounted on a metal base 1 having an electrical connection terminal hermetically sealed with glass. A metal can 5 having a window (hole) 13 is welded to a metal base 1 on which the sensor element 2 and the sheet-like getter 4 are mounted, and then a metallized film 11 is formed on the outer edge and an infrared transmission film 12 is formed on the center. A structure having a structure as shown in FIG. 1 in which the inside of the package is evacuated by joining the filmed infrared transmission window 6 to the joining material 7 in a vacuum is already known. (Patent Document 1)

特願2008−198075Japanese Patent Application No. 2008-198075

従来の赤外線検出器は図2に示すような接合面側外縁部にメタライズ膜11、中央部に赤外線透過膜12を形成した赤外線ウインドウ6(反対の面は前面赤外線透過膜12)と窓(孔)13を有するメッキ処理された金属製缶5が低融点半田等の接合材7にて接合される。赤外線ウインドウ6は金属製缶上面部との間に接合材7をはさみ、加圧・加熱する事によって接合される。赤外線ウインドウ6を接合するこの金属製缶5の上面部は窓(孔)13を有するのみで一様に平面な面となっている。赤外線ウインドウ6は金属製缶上面部に接合されるため、接合部の状態、接合材7の流れ形状は治具重ね合わせ状態、圧力・温度条件、ワークのバラツキにより差が生じ、接合状態の制御が困難になっているという課題があった。   As shown in FIG. 2, the conventional infrared detector has an infrared window 6 (the opposite surface is a front infrared transmission film 12) and a window (hole) on which the metallized film 11 is formed on the outer edge of the joint surface and the infrared transmission film 12 is formed in the center. ) The plated metal can 5 having 13 is joined by a joining material 7 such as a low melting point solder. The infrared window 6 is bonded to the upper surface of the metal can by sandwiching a bonding material 7 and applying pressure and heating. The upper surface of the metal can 5 to which the infrared window 6 is joined has only a window (hole) 13 and is a flat surface. Since the infrared window 6 is bonded to the upper surface of the metal can, the state of the bonded portion and the flow shape of the bonding material 7 vary depending on the jig overlapping state, pressure / temperature conditions, and workpiece variations, and control of the bonded state There has been a problem that has become difficult.

また、図3の金属缶−赤外線ウインドウ接合断面図に示すように赤外線ウインドウ6のメタライズ膜11のメタライズエリアは金属製缶の窓(孔)13のサイズに対し、小さく(内側に)形成されていた。このため、接合の際、パッケージ内側に接合材の流れ込みが生じ、パッケージ内部に半田溜まりを形成する場合があった。この半田溜まりにより、内部ワイヤーのショートによる動作不良(図4)、熱型赤外線素子視野を遮り(図5)、熱型赤外線センサの感度特性低下が発生するといった課題があった。   Further, as shown in the metal can-infrared window joint sectional view of FIG. 3, the metallized area of the metallized film 11 of the infrared window 6 is formed smaller (inward) than the size of the window (hole) 13 of the metal can. It was. For this reason, during bonding, the bonding material may flow into the package, and a solder pool may be formed inside the package. Due to this solder accumulation, there are problems such as malfunction due to short-circuiting of the internal wire (FIG. 4), blocking the visual field of the thermal infrared element (FIG. 5), and reducing the sensitivity characteristics of the thermal infrared sensor.

本発明は前述のような課題を解決するためになされた物で、金属製缶5と赤外線ウインドウ6の接合時、接合材7の流れを制御し、接合状態を安定化させるため、金属製缶の窓(孔)に凹型の溝構造を具備し、メタライズ膜が成膜された赤外線ウインドウ部のサイズは金属製缶の凹型溝構造部の溝部分の最外寸法よりも小さく、缶の凹型溝部の最小寸法よりも大きくすることを特徴としている。   The present invention has been made in order to solve the above-described problems, and at the time of joining the metal can 5 and the infrared window 6, the flow of the joining material 7 is controlled and the joining state is stabilized. The window (hole) has a concave groove structure, and the size of the infrared window portion on which the metallized film is formed is smaller than the outermost dimension of the groove portion of the concave groove structure portion of the metal can, and the concave groove portion of the can It is characterized by being larger than the minimum dimension.

また、金属製缶5と赤外線ウインドウ6の接合の際のパッケージ内部への接合材の流れ込みを防ぐため、赤外線ウインドウ6の外縁部に形成されるメタライズ膜11を、金属製缶5の窓(孔)13サイズに対し、同一サイズ以上の外側のエリアに成膜した事を特徴としている。   Further, in order to prevent the bonding material from flowing into the package when the metal can 5 and the infrared window 6 are joined, the metallized film 11 formed on the outer edge of the infrared window 6 is attached to the window (hole) of the metal can 5. ) It is characterized in that the film is formed in an area outside the same size with respect to 13 sizes.

本発明に係る赤外線検出器は、金属製缶上面部に接合材の流れを制御するための金属製缶の窓(孔)13に凹型の溝構造を具備し、メタライズ膜が成膜された赤外線ウインドウ部のサイズは金属製缶の凹型溝構造部の溝部分の最外寸法よりも小さく、缶の凹型溝部の最小寸法よりも大きくすることにより、金属製缶と赤外線ウインドウ接合時、接合材の流れをコントロールすることが可能となり、接合状態を安定化することが可能となる。従来の金属製缶と赤外線ウインドウの接合面と比較し、より信頼性の高い接合面を得ることが可能となる。   The infrared detector according to the present invention includes a metal can window (hole) 13 for controlling the flow of a bonding material on a metal can upper surface portion, and a concave groove structure in the metal can window (hole) 13. The size of the window part is smaller than the outermost dimension of the groove part of the concave groove structure part of the metal can, and larger than the minimum dimension of the concave groove part of the can, so that when joining the metal can and the infrared window, It becomes possible to control the flow and to stabilize the joining state. Compared to the conventional metal can and infrared window bonding surface, a more reliable bonding surface can be obtained.

また、本発明の赤外線ウインドウの接合用に形成されるメタライズ膜が金属製缶5の窓(孔)13サイズに対し、同一サイズ以上の外側のエリアに成膜されているため、パッケージ内部への接合材の流れ込み、半田溜まりが発生しない。これにより、ショートによる動作不良、熱型赤外線素子の視野を部分的に遮ることによる熱型赤外線センサの感度特性低下が生じるという課題の解決も可能となる。   In addition, since the metallized film formed for joining the infrared window of the present invention is formed in an area outside the same size as the window (hole) 13 size of the metal can 5, There is no flow of bonding material or solder accumulation. As a result, it is possible to solve the problem that the operation failure due to the short circuit and the sensitivity characteristics of the thermal infrared sensor are deteriorated due to partially blocking the visual field of the thermal infrared element.

前述のように金属缶上面部に接合材を制御する事が可能となる様な凹溝構造を有し、メタライズ膜が成膜された赤外線ウインドウ部のサイズは金属製缶の凹型溝構造部の溝部分の最外寸法よりも小さく、缶の凹型溝部の最小寸法よりも大きくし、また、メタライズ膜を金属製缶5の窓(孔)13サイズに対し、同一サイズ以上の外側のエリアに形成する事により高信頼性・高性能の赤外線検出器を得ることが可能となる。   As described above, the upper surface of the metal can has a concave groove structure that makes it possible to control the bonding material, and the size of the infrared window portion on which the metallized film is formed is the size of the concave groove structure portion of the metal can. It is smaller than the outermost dimension of the groove part and larger than the minimum dimension of the concave groove part of the can, and the metallized film is formed in an area outside the same size as the window (hole) 13 size of the metal can 5 This makes it possible to obtain a highly reliable and high performance infrared detector.

従来の赤外線検出器の内部構造断面図Cross-sectional view of the internal structure of a conventional infrared detector 赤外線ウインドウ形状図と従来の金属製缶形状図Infrared window shape and conventional metal can shape 従来の金属缶−赤外線ウインドウ接合断面図Cross section of conventional metal can-infrared window joint 内部ワイヤーのショートによる動作不良時の内部構造断面図Cross section of internal structure when malfunction occurs due to short of internal wire 熱型赤外線素子視野遮蔽不良時の内部構造断面図Cross section of the internal structure of the thermal infrared device 本発明に係わる赤外線検出器の内部構造断面図Cross-sectional view of the internal structure of an infrared detector according to the present invention 赤外線ウインドウ形状図と本発明に於ける金属製缶形状図Infrared window shape and metal can shape in the present invention 本発明に係わる赤外線ウインドウサイズを示す図The figure which shows the infrared window size concerning this invention 本研究に係わる赤外線ウインドウに成膜されたメタライズエリアを示す図Diagram showing metallized area deposited on infrared window for this study 赤外線透過ウインドウのサイズの違いによる接合部断面の差を示す拡大図Enlarged view showing difference in cross section of joint due to difference in size of infrared transmission window 赤外線透過ウインドウに成膜されるメタライズ膜11の成膜エリアの違いによる接合部断面の差を示す拡大図The enlarged view which shows the difference of the junction cross section by the difference in the film-forming area of the metallization film | membrane 11 formed into an infrared rays transmission window

以下、本発明の実施の形態について図6を参照して詳細な説明をする。
図6は本発明による赤外線検出器を示す内部構造断面図。
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG.
FIG. 6 is a sectional view of the internal structure of the infrared detector according to the present invention.

図6、1はガラスにて気密封止された電気的接続端子を備える金属製のベース、2は熱型赤外線受光素子、3はダイボンディング材、4はシート状ゲッター、5は金属製缶、6は赤外線透過ウインドウ、7は接合材、8はゲッター実装用電気的接続端子、9は電気的接続端子、10は接合材制御用の凹型溝構造、11はメタライズ膜。12の赤外線透過膜は図示せず。
ガラスにて気密封止された電気的接続端子を備える金属製のベース1にダイボンディング材3を介して熱型赤外線検出素子2が実装されている。その熱型検出素子2は電気的接続端子9に金やアルミニウム等によりワイヤボンディングにより電気的に接続されている。また、金属ベース1はシート状ゲッター5を実装する電気的接続端子ゲッター実装用電気的接続端子8を具備する。
6, 1 is a metal base having an electrical connection terminal hermetically sealed with glass, 2 is a thermal infrared light receiving element, 3 is a die bonding material, 4 is a sheet-like getter, 5 is a metal can, 6 is an infrared transmission window, 7 is a bonding material, 8 is an electrical connection terminal for mounting a getter, 9 is an electrical connection terminal, 10 is a concave groove structure for controlling the bonding material, and 11 is a metallized film. The 12 infrared transmission films are not shown.
A thermal infrared detection element 2 is mounted on a metal base 1 having an electrical connection terminal hermetically sealed with glass via a die bonding material 3. The thermal detection element 2 is electrically connected to the electrical connection terminal 9 by wire bonding using gold or aluminum. Further, the metal base 1 includes an electrical connection terminal 8 for mounting the sheet-like getter 5 and an electrical connection terminal 8 for mounting the getter.

ここで前記熱型赤外線検出素子2は、例えばブリッジ構造を持つ素子が2次元アレイ状に素子基板上に配置されていたサーミスタボロメーター素子である。この2次元アレイ状の配列された各素子がブリッジ構造をとることにより、素子と基板間に一定距離を設けることにより、熱絶縁を得ている。例として、サーミスタボロメーターを上げているが、熱絶縁が重要なサーモパイル素子でもよい。また、ダイボンディング材3は、実装後の真空度の低下を防ぐため、アウトガスの少ないダイボンディング材を使用している。   Here, the thermal infrared detecting element 2 is, for example, a thermistor bolometer element in which elements having a bridge structure are arranged on an element substrate in a two-dimensional array. Each element arranged in a two-dimensional array has a bridge structure, so that a certain distance is provided between the element and the substrate, thereby obtaining thermal insulation. As an example, a thermistor bolometer is used, but a thermopile element in which thermal insulation is important may be used. The die bonding material 3 uses a die bonding material with less outgas in order to prevent a decrease in the degree of vacuum after mounting.

シート状ゲッターは、前述金属ベース1のゲッター実装用電気的接続端子8上端に両端を溶接されることで実装されている。このシート状ゲッター5はニクロムシート上にチタン、ジルコニウム等を焼結して形成されたもので、ゲッター実装用電気的接続端子を介してニクロムシートに通電する事で350〜900℃に加熱されて表面が活性化されることにより、真空パッケージ内の材料から放出されるガスを吸着し、真空パッケージ内の真空の劣化を防止する非蒸発型のゲッターである。   The sheet-like getter is mounted by welding both ends to the upper end of the getter mounting electrical connection terminal 8 of the metal base 1. This sheet-like getter 5 is formed by sintering titanium, zirconium or the like on a nichrome sheet, and is heated to 350 to 900 ° C. by energizing the nichrome sheet via the getter mounting electrical connection terminal. When the surface is activated, it is a non-evaporable getter that adsorbs a gas released from the material in the vacuum package and prevents deterioration of the vacuum in the vacuum package.

また、金属ベース1に金属製缶5を溶接、赤外線ウインドウ6真空中で気密に接合することにより真空パッケージが形成されている。赤外線ウインドウ6は低融点半田等の接合剤7を介して金属製缶5に気密接合される。   Further, a vacuum package is formed by welding a metal can 5 to the metal base 1 and hermetically joining the infrared window 6 in a vacuum. The infrared window 6 is hermetically bonded to the metal can 5 via a bonding agent 7 such as a low melting point solder.

図7に赤外線ウインドウ形状図と本発明に於ける金属製缶形状図を示す。金属製缶5は赤外線ウインドウ6が接合される金属製缶5上面部に窓(孔)13を有する。また、窓(孔)13の外周に凹型の溝構造10を具備する。
このような構造とすることにより、真空中での機密接合時、接合材7の流れを制御することが可能となり、接合状態が安定し、信頼性の高い接合面を得ることが可能となる。
FIG. 7 shows an infrared window shape diagram and a metal can shape shape according to the present invention. The metal can 5 has a window (hole) 13 on the upper surface of the metal can 5 to which the infrared window 6 is joined. Further, a concave groove structure 10 is provided on the outer periphery of the window (hole) 13.
By adopting such a structure, it is possible to control the flow of the bonding material 7 at the time of secret bonding in a vacuum, the bonding state is stabilized, and a highly reliable bonding surface can be obtained.

赤外線透過ウインドウ6は例えばシリコンのような赤外線透過性のある物が用いられる。赤外線透過ウインドウの表面と裏面には反射防止膜もしくは、所望の波長の赤外線を通す例えば8−14umのような波長帯を透過する赤外線透過膜12がコーティングされている。赤外線透過ウインドウ6はカルコゲナイドガラス、ゲルマニウム、硫化亜鉛、セレン化亜鉛等の材料を使用することも可能である。   The infrared transmitting window 6 is made of an infrared transmitting material such as silicon. The front and back surfaces of the infrared transmission window are coated with an antireflection film or an infrared transmission film 12 that transmits a wavelength band such as 8-14 μm that transmits infrared rays of a desired wavelength. The infrared transmission window 6 may be made of a material such as chalcogenide glass, germanium, zinc sulfide, or zinc selenide.

赤外線透過ウインドウ6のサイズは図8に示す様に金属製缶5の凹型溝構造部10の溝部分の最外寸法よりも小さく、缶の凹型溝部の最小寸法よりも大きくする。このようなサイズとすることで金属製缶5−赤外線ウインドウ6接合面の接合材7の量を増加・安定化させ信頼性の高い接合面を得ることが可能となる。   As shown in FIG. 8, the size of the infrared transmitting window 6 is smaller than the outermost dimension of the groove portion of the concave groove structure portion 10 of the metal can 5 and larger than the minimum dimension of the concave groove portion of the can. By setting it as such a size, it becomes possible to increase and stabilize the quantity of the joining material 7 of the metal can 5-infrared window 6 joint surface, and to obtain a highly reliable joint surface.

また、赤外線透過ウインドウ6の金属缶5との接合面側外縁には接合材7と接合が可能となるようメタライズ膜11が形成されている。本研究に於けるメタライズ膜は図9に示すように、赤外線ウインドウに成膜されたメタライズエリアを金属製缶の窓(孔)エリアに対し、同一サイズ以上の外側のエリアに成膜される。これにより、パッケージ内側への接合材の流れ込み、半田溜まりが発生しない。これにより、ショートによる動作不良、熱型赤外線素子の視野を部分的に遮ることによる熱型赤外線センサの感度特性低下が生じるという課題の解決も可能となる。   Further, a metallized film 11 is formed on the outer edge of the infrared transmission window 6 on the side of the joint surface with the metal can 5 so that the joint material 7 can be joined. As shown in FIG. 9, the metallized film in this research is formed in an outer area of the same size or larger with respect to the metal (window) area of the metal can. As a result, the bonding material does not flow into the package and solder pool does not occur. As a result, it is possible to solve the problem that the operation failure due to the short circuit and the sensitivity characteristics of the thermal infrared sensor are deteriorated due to partially blocking the visual field of the thermal infrared element.

ここで、本発明の1)赤外線ウインドウ6のサイズ、2)赤外線透過ウインドウ6に成膜されるメタライズ膜11の成膜エリアについての効果の実験例を説明する。
1)赤外線ウインドウ6のサイズ
図10に赤外線透過ウインドウのサイズの違いによる接合部断面の差を示す拡大図を示す。本研究のウインドウサイズの場合、良好な接合材の状態となり、パッケージ内側に接合材の流れ込みは発生せず、パッケージ内部に半田溜まりを形成しない。しかし、赤外線ウインドウ6のサイズが缶の凹型溝部の最小寸法よりも小さい場合、パッケージ内側に接合材の流れ込みが発生し、パッケージ内部に半田溜まりを形成した。
2)赤外線透過ウインドウ6に成膜されるメタライズ膜11の成膜エリア
図11に赤外線透過ウインドウに成膜されるメタライズ膜11の成膜エリアの違いによる接合部断面の差を示す拡大図を示す。メタライズエリアを金属製缶の窓(孔)サイズに対し、同一サイズ以上若しくは、窓(孔)以上の外側のエリアに成膜された場合、パッケージ内側への接合材の流れ込み、半田溜まりが発生しない。しかし、メタライズエリアを金属製缶の窓(孔)エリアサイズより小さい内側のエリアに成膜された場合、パッケージ内側への接合材の流れ込みが発生し、半田溜まりを形成した。
Here, an experimental example of the effect of 1) the size of the infrared window 6 of the present invention and 2) the film formation area of the metallized film 11 formed on the infrared transmission window 6 will be described.
1) Size of the infrared window 6 FIG. 10 is an enlarged view showing a difference in the cross section of the joint due to the difference in the size of the infrared transmission window. In the case of the window size of this research, the bonding material is in a good state, and the bonding material does not flow inside the package, and no solder pool is formed inside the package. However, when the size of the infrared window 6 is smaller than the minimum dimension of the concave groove of the can, the bonding material flows into the inside of the package, and a solder pool is formed inside the package.
2) Film formation area of metallized film 11 formed on infrared transmission window 6 FIG. 11 is an enlarged view showing a difference in cross section of the joint due to a difference in film formation area of metallization film 11 formed on the infrared transmission window. . If the metallized area is formed in the same size or larger area than the window (hole) size of the metal can, the bonding material does not flow into the package and solder pool does not occur. . However, when the metallized area was formed in the inner area smaller than the window (hole) area size of the metal can, the bonding material flowed into the inside of the package, and a solder pool was formed.

以上に説明した実施の形態により、接合材の流れを制御することが可能となり、接合状態が安定し、信頼性の高い接合面を得ることが可能となり、また、ショートによる動作不良、熱型赤外線素子の視野を部分的に遮ることによる熱型赤外線センサの感度特性低下の発生を防ぐことが可能となり、高信頼性・高性能の赤外線検出器を得ることが出来る。   According to the embodiment described above, the flow of the bonding material can be controlled, the bonding state can be stabilized, and a highly reliable bonding surface can be obtained. It is possible to prevent the deterioration of the sensitivity characteristics of the thermal infrared sensor due to partially blocking the field of view of the element, and a highly reliable and high performance infrared detector can be obtained.

1 ガラスにて気密封止された電気的接続端子を備える金属製のベース
2 熱型熱型赤外線センサ素子
3 ダイボンディング材
4 シート状ゲッター
5 金属製缶
6 赤外線透過ウインドウ
7 接合材
8 ゲッター実装用電気的接続端子
9 電気的接続端子
10 接合材制御用の溝構造
11 メタライズ膜
12 赤外線透過膜
13 窓(孔)
DESCRIPTION OF SYMBOLS 1 Metal base provided with the electrical connection terminal sealed airtight with glass 2 Thermal type thermal infrared sensor element 3 Die bonding material 4 Sheet-like getter 5 Metal can 6 Infrared transmission window 7 Joining material 8 For getter mounting Electrical connection terminal 9 Electrical connection terminal 10 Groove structure 11 for bonding material control Metallized film 12 Infrared transmitting film 13 Window (hole)

Claims (2)

金属製缶の窓(孔)に凹型の溝構造を具備し、メタライズ膜が成膜された赤外線ウインドウ部のサイズは金属製缶の凹型溝構造部の溝部分の最外寸法よりも小さく、缶の凹型溝部の最小寸法よりも大きくすることを特徴とした真空気密封止型パッケージからなる熱型赤外線検出器。   The window (hole) of the metal can has a concave groove structure, and the size of the infrared window portion on which the metallized film is formed is smaller than the outermost dimension of the groove portion of the concave groove structure portion of the metal can. A thermal infrared detector comprising a vacuum hermetically sealed package characterized in that it is larger than the minimum dimension of the concave groove. 上記請求項1記載の真空気密封止型パッケージからなる熱型赤外線検出器に於いて、赤外線ウインドウに成膜されたメタライズエリアを金属製缶の窓(孔)サイズに対し、同一サイズ以上の外側のエリアに成膜する事を特徴とするとした真空気密封止型パッケージからなる熱型赤外線検出器。   2. A thermal infrared detector comprising a vacuum hermetically sealed package according to claim 1, wherein the metallized area formed on the infrared window is outside the same size or larger than the window (hole) size of the metal can. A thermal infrared detector comprising a vacuum hermetically sealed package characterized in that a film is formed in the area.
JP2010001184A 2010-01-06 2010-01-06 Infrared detector Pending JP2011141158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010001184A JP2011141158A (en) 2010-01-06 2010-01-06 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010001184A JP2011141158A (en) 2010-01-06 2010-01-06 Infrared detector

Publications (1)

Publication Number Publication Date
JP2011141158A true JP2011141158A (en) 2011-07-21

Family

ID=44457116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010001184A Pending JP2011141158A (en) 2010-01-06 2010-01-06 Infrared detector

Country Status (1)

Country Link
JP (1) JP2011141158A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022289A1 (en) * 2015-08-04 2017-02-09 株式会社フジクラ Optical device
WO2023149251A1 (en) * 2022-02-03 2023-08-10 日本電気硝子株式会社 Composite and air-tight package having said composite
WO2023149250A1 (en) * 2022-02-03 2023-08-10 日本電気硝子株式会社 Composite body and airtight package comprising composite body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170337A (en) * 1996-12-11 1998-06-26 Mitsubishi Electric Corp Germanium infrared-ray transmissive window, its manufacture, and airtightly sealed package for infrared sensor
JP2002076373A (en) * 2000-08-25 2002-03-15 Fujitsu Ltd Electronic device and optical device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170337A (en) * 1996-12-11 1998-06-26 Mitsubishi Electric Corp Germanium infrared-ray transmissive window, its manufacture, and airtightly sealed package for infrared sensor
JP2002076373A (en) * 2000-08-25 2002-03-15 Fujitsu Ltd Electronic device and optical device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022289A1 (en) * 2015-08-04 2017-02-09 株式会社フジクラ Optical device
JP2017032875A (en) * 2015-08-04 2017-02-09 株式会社フジクラ Optical device
CN107615158A (en) * 2015-08-04 2018-01-19 株式会社藤仓 Optical devices
EP3285115A4 (en) * 2015-08-04 2018-06-13 Fujikura Ltd. Optical device
US10139700B2 (en) 2015-08-04 2018-11-27 Fujikura Ltd. Optical device
WO2023149251A1 (en) * 2022-02-03 2023-08-10 日本電気硝子株式会社 Composite and air-tight package having said composite
WO2023149250A1 (en) * 2022-02-03 2023-08-10 日本電気硝子株式会社 Composite body and airtight package comprising composite body

Similar Documents

Publication Publication Date Title
CN106470938B (en) Method for manufacturing the device including hermetically sealed vacuum casting and getter
JP7008019B2 (en) Thermal infrared sensor array in wafer level package
US20120106085A1 (en) Vacuum sealed package, printed circuit board having vacuum sealed package, electronic device, and method for manufacturing vacuum sealed package
JP6267576B2 (en) Hermetic sealing photoelectronic conversion or electrooptical conversion component and method for manufacturing the same
JP5939385B2 (en) Infrared sensor package, infrared sensor module, and electronic device
WO2012117568A1 (en) Infrared temperature sensor, electronic apparatus, and method for manufacturing infrared temperature sensor
JP6236929B2 (en) Hermetic sealing package and manufacturing method thereof
JP7394060B2 (en) infrared device
JP2011141158A (en) Infrared detector
US7084010B1 (en) Integrated package design and method for a radiation sensing device
JP2010197335A (en) Infrared sensor and method for manufacturing infrared sensor
JP2006250707A (en) Infrared detector, and activating method of gas adsorption means of infrared detector
JP2007509320A5 (en)
CN102117842A (en) Infrared focal plane detector packaging window and manufacturing method thereof
KR101529543B1 (en) VACUUM PACKAGING METHOD FOR Micro Electro-Mechanical System Devices
JP5706217B2 (en) Infrared sensor
JP2010038549A (en) Infrared detector
JP2012103206A (en) Infrared sensor module and method of manufacturing the same
JP5276458B2 (en) Infrared sensor
JPH06194229A (en) Infrared ray sensor
JP2010197184A (en) Infrared detector
JP2008107215A (en) Image sensor and its manufacturing method
JP4950262B2 (en) Method for activating gas adsorption means of infrared detector
JP2006010405A (en) Vacuum package for infrared sensor
JP2014207348A (en) Optical detection sensor and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701