JP2010038549A - Infrared detector - Google Patents

Infrared detector Download PDF

Info

Publication number
JP2010038549A
JP2010038549A JP2008198075A JP2008198075A JP2010038549A JP 2010038549 A JP2010038549 A JP 2010038549A JP 2008198075 A JP2008198075 A JP 2008198075A JP 2008198075 A JP2008198075 A JP 2008198075A JP 2010038549 A JP2010038549 A JP 2010038549A
Authority
JP
Japan
Prior art keywords
vacuum
infrared
package
getter
infrared detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008198075A
Other languages
Japanese (ja)
Inventor
Yoshifumi Nagashima
義文 永島
Shingo Kimura
親吾 木村
Motoki Tanaka
基樹 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2008198075A priority Critical patent/JP2010038549A/en
Publication of JP2010038549A publication Critical patent/JP2010038549A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems of a thermal infrared detector wherein, since a vacuum package having high reliability or mounting of a getter for keeping long-term vacuum or the like is required in order to acquire high detection performance, a structure or a production process becomes complicated, and members and production cost become expensive, and thereby the detector becomes expensive. <P>SOLUTION: Concerning an infrared detector wherein a thermal infrared sensor element 2 and the getter 4 are mounted in a vacuum airtight package comprising a cap 5 having an infrared transmitting window 6 and a base 1, in a production process of the thermal infrared detector having a structure capable of meeting a request of vacuum sealability by bonding in advance the cap 5 having an infrared incidence opening part to the base 1, and by bonding the infrared transmitting window 6 thereto in a latter process, the process for manufacture is simplified by reduction of processes in vacuum and by diversion of a conventional facility. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、特に真空気密を要する熱型赤外線検出器の構造・製造方法に関する。   The present invention relates to a structure / manufacturing method of a thermal infrared detector that particularly requires vacuum airtightness.

熱型赤外線センサ素子は、測定対象物から発せられる赤外線の微弱な熱変化エネルギーを赤外線受光部でとらえ、電流値、電圧値、抵抗値のような電気特性の温度変化を電気信号に変換し、出力する物であり、高い分解能を得るために、赤外線受光部へ入射した赤外線エネルギーの拡散による損失を低下させる為、熱絶縁性を高くすることが重要である。高い熱絶縁性を得る為、素子構造を断熱構造としたり、素子を収納するパッケージ中雰囲気を真空とすることで熱伝導率を抑制している。一般的に熱伝導率の抑制は、パッケージ内部の圧力を低圧とし、真空度を10-1Pa程度以下にすることが知られている。パッケージ内雰囲気の真空度を維持するため、赤外線ウインドウ-キャップ間、キャップ-ベース間等の接合部には接合には高い信頼性が要求される。 The thermal infrared sensor element captures the weak thermal change energy of infrared rays emitted from the measurement object, converts the temperature change of electrical characteristics such as current value, voltage value, and resistance value into an electrical signal, In order to obtain high resolution, it is important to increase the thermal insulation in order to reduce the loss due to the diffusion of the infrared energy incident on the infrared light receiving part. In order to obtain high thermal insulation, the thermal conductivity is suppressed by making the element structure a heat insulating structure or making the atmosphere in the package housing the element a vacuum. In general, it is known that the thermal conductivity is suppressed by setting the pressure inside the package to a low pressure and the degree of vacuum to about 10 −1 Pa or less. In order to maintain the degree of vacuum of the atmosphere in the package, high reliability is required for the bonding between the infrared window and the cap and between the cap and the base.

また、パッケージを真空封止後、パッケージ内部の部材から反応性ガス(N2、O2など)、水素、水分、炭化水素といったようなアウトガスが発生し、これによりパッケージ内の真空度が低下することが知られている。パッケージ内部の真空状態を長期間維持するために、ゲッターと呼ばれるガス吸着剤が一般的に使用される。このアウトガスを吸収するためにゲッターを熱型赤外線センサ素子と共にパッケージ内に実装する。ゲッターは大気中でガスの吸着を防ぎ、実装時に真空中もしくは不活性ガス雰囲気中で350〜800℃に加熱し活性化をおこなうことでガスを効率的に吸着することが知られている。   In addition, after the package is vacuum sealed, outgas such as reactive gas (N 2, O 2, etc.), hydrogen, moisture, hydrocarbons is generated from the members inside the package, thereby reducing the degree of vacuum in the package. Are known. In order to maintain the vacuum state inside the package for a long time, a gas adsorbent called a getter is generally used. In order to absorb this outgas, a getter is mounted in a package together with a thermal infrared sensor element. It is known that a getter efficiently adsorbs gas by preventing adsorption of gas in the atmosphere and heating to 350 to 800 ° C. in a vacuum or in an inert gas atmosphere during mounting.

上記のように、熱型赤外線検出器は、高い検出性能を得るために、高信頼性の真空パッケージ、また、長期真空度保持のためにゲッターの実装などの要求があるため、構造、生産工程が複雑で、部材、生産のコストが高く検出器が高価な物となっていた。
特開平9−229765号 特開2003−254820号
As described above, the thermal infrared detector has a structure such as a high-reliability vacuum package to obtain high detection performance and a getter mounting for long-term vacuum maintenance. However, it is complicated, and the cost of parts and production is high, and the detector is expensive.
JP-A-9-229765 JP 2003-254820 A

機密性の高い真空パッケージを作製する上では、真空中にて溶接又は、ロウ付け等を行うことにより可能となるが、専用装置の設備投資が必要となり、また、専用特殊工程となるため生産コストが高くなることが問題となっていた。   It is possible to make a highly confidential vacuum package by welding or brazing in a vacuum, but it requires capital investment for a dedicated device, and because it is a dedicated special process, the production cost It became a problem that becomes high.

本発明は上記のような課題を抑制するためになされたもので、真空封止性の要求に応え得る構造を持った熱型赤外線検知器の生産工程において真空中での工程を減少させ従来設備の流用を行うことで、簡素化された工程にて作製することを特徴としている。   The present invention has been made to suppress the above-described problems, and reduces the number of processes in vacuum in the production process of a thermal infrared detector having a structure capable of meeting the demand for vacuum sealing performance. It is characterized in that it is produced by a simplified process by diverting.

本発明の構成を有する赤外線検出器によれば、熱型赤外線センサに要求される真空パッケージの高い信頼性を保持することが可能で、且つ、真空中での工程が減少することより、専用装置の設備投資、専用工程の減少を行うことが可能となり生産性の向上、コストダウンにつながる。   According to the infrared detector having the configuration of the present invention, it is possible to maintain the high reliability of the vacuum package required for the thermal infrared sensor, and the number of processes in vacuum is reduced. It is possible to reduce the capital investment and the number of dedicated processes, leading to productivity improvement and cost reduction.

図1は本発明に係わる赤外線検出器の内部構造断面図である。   FIG. 1 is a sectional view of the internal structure of an infrared detector according to the present invention.

1はガラスにて気密封止された電気的接続端子を備える金属製のベース。   1 is a metal base having an electrical connection terminal hermetically sealed with glass.

2は熱型赤外線センサ素子で、例えば図2のようなブリッジ構造を持つ素子が2次元アレイ状に素子基板上に配置されていたサーミスタボロメーター素子である。この2次元アレイ状の配列された各素子がブリッジ構造をとることにより、素子と基板間に一定距離を設けることにより、熱絶縁を得ている。例として、サーミスタボロメーターを上げているが、熱絶縁が重要なサーモパイル素子でもよい。   Reference numeral 2 denotes a thermal infrared sensor element, for example, a thermistor bolometer element in which elements having a bridge structure as shown in FIG. 2 are arranged on an element substrate in a two-dimensional array. Each element arranged in a two-dimensional array has a bridge structure, so that a certain distance is provided between the element and the substrate, thereby obtaining thermal insulation. As an example, a thermistor bolometer is used, but a thermopile element in which thermal insulation is important may be used.

3はダイボンディング材で、実装後の真空度の低下を防ぐため、アウトガスの少ないダイボンディング材を使用している。   Reference numeral 3 denotes a die bonding material, which uses a die bonding material with less outgas in order to prevent a decrease in vacuum after mounting.

4はゲッターで、通電により活性が可能な、任意の形状のシート状形状を持つ。通電による活性化が可能なため、真空封止後実装部品から発生したアウトガスにより真空パッケージ内の真空度劣化が起きた場合、通電活性により、ゲッターを再活性化し、パッケージ内真空度を回復させることが可能となる。   Reference numeral 4 denotes a getter having an arbitrary sheet-like shape that can be activated by energization. Since activation by energization is possible, when the vacuum level in the vacuum package is deteriorated due to outgas generated from the mounted parts after vacuum sealing, the getter is reactivated by energization activation and the vacuum level in the package is restored. Is possible.

5はメタルキャップで、キャップ上面に赤外線入射窓を持ち、入射窓の外周に赤外線透過ウインドウ6を接合するための接合材7をあらかじめ溶着し、保持している。接合剤7は例えばAuSnのように約300℃といった低温で溶融できる接合材が望ましい。これにより、接合時の赤外線ウインドウの赤外線透過膜コーティングへの熱的なダメージの低減が可能となる。また、接合材はハンダ等を用いても良い。   A metal cap 5 has an infrared incident window on the upper surface of the cap, and a bonding material 7 for bonding the infrared transmitting window 6 to the outer periphery of the incident window is welded and held in advance. The bonding agent 7 is preferably a bonding material that can be melted at a low temperature of about 300 ° C. such as AuSn. Thereby, thermal damage to the infrared transmission film coating of the infrared window at the time of joining can be reduced. Further, solder or the like may be used as the bonding material.

赤外線透過ウインドウ6は、例えばシリコンのような赤外線透過性のある物が用いられる。赤外線透過ウインドウの表面と裏面には反射防止膜もしくは、所望の波長の赤外線を通す例えば8−14umのような波長帯を透過する赤外線透過膜がコーティングされている。赤外線透過ウインドウ5はカルコゲナイドガラス、ゲルマニウム、硫化亜鉛、セレン化亜鉛等の材料を使用することも可能である。
また、赤外線透過ウインドウ6には裏面の外縁にメタルキャップ5に溶着、保持されている接合材7と接合が可能となるようメタライズ膜が形成されている。メタライズ膜はスパッタ等により上記コーティング膜と重ならないように成膜され、エッチングによりパターニング加工される。メタライズ膜はシリコンとの密着層のCr、接合時の金属の拡散防止層Ni、表面酸化防止層のAuの順で形成される。
The infrared transmitting window 6 is made of an infrared transmitting material such as silicon. The front and back surfaces of the infrared transmission window are coated with an antireflection film or an infrared transmission film that transmits a wavelength band such as 8-14 μm that transmits infrared rays of a desired wavelength. The infrared transmission window 5 may be made of a material such as chalcogenide glass, germanium, zinc sulfide, or zinc selenide.
In addition, a metallized film is formed on the infrared transmission window 6 so that it can be bonded to the bonding material 7 that is welded and held to the metal cap 5 on the outer edge of the back surface. The metallized film is formed by sputtering or the like so as not to overlap the coating film, and is patterned by etching. The metallized film is formed in the order of Cr as an adhesion layer with silicon, metal diffusion prevention layer Ni during bonding, and Au as a surface oxidation prevention layer.

次に図3により、図1に示した本発明の赤外線検出器の製造方法を説明する。まず図3(a)に示すようにベース1にダイボンディング材3を用いて熱型赤外線センサ素子2を実装する。次に図3(b)に示すようにゲッター4をベース1の電気的接続端子へ接合する。接合はスポット溶接等により行われる。次に図3(c)に示すようメタルキャップ5をベース1に接合。接合は抵抗溶接等によって行われる。   Next, a method for manufacturing the infrared detector of the present invention shown in FIG. 1 will be described with reference to FIG. First, as shown in FIG. 3A, the thermal infrared sensor element 2 is mounted on the base 1 using the die bonding material 3. Next, as shown in FIG. 3B, the getter 4 is joined to the electrical connection terminal of the base 1. Joining is performed by spot welding or the like. Next, the metal cap 5 is joined to the base 1 as shown in FIG. Joining is performed by resistance welding or the like.

次に隣り合う2つの真空室を有する装置にて、まず、第一段階として一方の真空室内で図3(c)の形状まで作製した構造体を所定の温度で加熱することにより、部品に付着しているガスを除去するプリヒートを行う。また、同真空室内で赤外線検出器内部の真空を保つ為、内部実装のゲッター4の加熱活性を行う。付着ガス除去のプリヒート、ゲッター4活性化後、前記真空室と別の真空室に準備されたプリヒート済みの赤外線ウインドウ6を構造体メタルキャップ5上の接合材7と赤外線ウインドウ6のメタライズパターンを重ね合わせ、図3(d)のようにメタルキャップ5へ設置し、第2段階として接合剤溶融温度に加熱し、接合を行うことで真空パッケージを作製することが出来る。ここで真空室中の真空度はターゲットのパッケージ真空度より低い真空度に制御される。また、ゲッター4の活性化については赤外線ウインドウ6接合後、装置外部にて通電する事で活性可能である。   Next, in a device having two adjacent vacuum chambers, first, as a first step, the structure manufactured up to the shape of FIG. Perform preheating to remove the gas. In addition, in order to maintain the vacuum inside the infrared detector in the same vacuum chamber, the heating of the internally mounted getter 4 is performed. After preheating for removing adhering gas and activating the getter 4, the preheated infrared window 6 prepared in a vacuum chamber different from the vacuum chamber is overlaid with the bonding material 7 on the structure metal cap 5 and the metallized pattern of the infrared window 6. In addition, as shown in FIG. 3D, the vacuum package can be manufactured by installing the metal cap 5 and heating to the bonding agent melting temperature and performing bonding in the second stage. Here, the degree of vacuum in the vacuum chamber is controlled to a degree of vacuum lower than the target package vacuum degree. The getter 4 can be activated by energizing the outside of the apparatus after the infrared window 6 is joined.

図3(a)〜(c)のプロセスは常圧下で行うことが可能であり、また、図3(c)以降の工程は生産性をあげるため、一度に複数個処理出来るバッチ式の工程とすることが望ましい。   The processes shown in FIGS. 3A to 3C can be performed under normal pressure, and the processes subsequent to FIG. 3C are batch-type processes that can process a plurality of processes at once in order to increase productivity. It is desirable to do.

これにより熱型赤外線センサに要求される真空パッケージの高い信頼性を保持作製する上で、真空中での工程の削減が可能で既存の設備の流用が可能となり、専用装置の設備投資の低減、専用工程の減少を行うことが可能となり生産性の向上、コストダウンにつながる。   As a result, while maintaining the high reliability of the vacuum package required for thermal infrared sensors, it is possible to reduce the number of processes in vacuum and divert existing equipment, reducing capital investment for dedicated equipment, It is possible to reduce the number of dedicated processes, leading to improved productivity and cost reduction.

本発明に係わる赤外線検出器の内部構造断面図Cross-sectional view of the internal structure of an infrared detector according to the present invention マイクロブリッジ構造構造図Microbridge structure diagram 図1に示した本発明の赤外線検出器の製造方法Manufacturing method of the infrared detector of the present invention shown in FIG.

符号の説明Explanation of symbols

1 ベース
2 熱型赤外線センサ素子
3 ダイボンディング材
4 ゲッター
5 キャップ
6 赤外線透過ウインドウ
7 接合材
1 Base 2 Thermal Infrared Sensor Element 3 Die Bonding Material 4 Getter 5 Cap 6 Infrared Transmission Window 7 Bonding Material

Claims (1)

赤外線検出器に於いて、真空気密を必要とするパッケージにて赤外線入射開口部を有したキャップとベースをあらかじめ接合しておき、後工程にて赤外線透過ウインドウを溶接、ロウ付けを行い接合することを特徴とした赤外線検出器。   In an infrared detector, a cap and base having an infrared incident opening are bonded in advance in a package that requires vacuum airtightness, and an infrared transmission window is welded and brazed in a later process. Infrared detector characterized by.
JP2008198075A 2008-07-31 2008-07-31 Infrared detector Pending JP2010038549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008198075A JP2010038549A (en) 2008-07-31 2008-07-31 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008198075A JP2010038549A (en) 2008-07-31 2008-07-31 Infrared detector

Publications (1)

Publication Number Publication Date
JP2010038549A true JP2010038549A (en) 2010-02-18

Family

ID=42011279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008198075A Pending JP2010038549A (en) 2008-07-31 2008-07-31 Infrared detector

Country Status (1)

Country Link
JP (1) JP2010038549A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088660A (en) * 2013-10-31 2015-05-07 京セラ株式会社 Package and electronic device
CN109979883A (en) * 2019-04-30 2019-07-05 烟台艾睿光电科技有限公司 A kind of integrated device mould group

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177777A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Photodetector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177777A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Photodetector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088660A (en) * 2013-10-31 2015-05-07 京セラ株式会社 Package and electronic device
CN109979883A (en) * 2019-04-30 2019-07-05 烟台艾睿光电科技有限公司 A kind of integrated device mould group

Similar Documents

Publication Publication Date Title
US10414647B2 (en) Method for manufacturing a device comprising a hermetically sealed vacuum housing and getter
WO2010095367A1 (en) Vacuum sealed package, printed circuit board having vacuum sealed package, electronic device, and method for manufacturing vacuum sealed package
US20160097681A1 (en) Microbolometer supported by glass substrate
JP6236929B2 (en) Hermetic sealing package and manufacturing method thereof
CN103224218B (en) A kind of method for packing of MEMS
US9157805B2 (en) Infrared ray sensor package, infrared ray sensor module, and electronic device
CN102951594B (en) Tube shell for vacuum package of micro-optical-electronic-mechanic system and manufacture method thereof
JP2014225665A (en) Hermetically sealed optoelectronic conversion or electro-optical conversion component and manufacturing method thereof
US7279682B2 (en) Device for maintaining an object under vacuum and methods for making same, use in non-cooled infrared sensors
JP2008298708A (en) Infrared detector and manufacturing method thereof
JP2010038549A (en) Infrared detector
JP6044227B2 (en) Hermetic sealing package and manufacturing method thereof
CN102117842A (en) Infrared focal plane detector packaging window and manufacturing method thereof
JP2007509320A (en) Integrated package design and method of radiation sensing apparatus
JP2010197335A (en) Infrared sensor and method for manufacturing infrared sensor
JP2007509320A5 (en)
KR101529543B1 (en) VACUUM PACKAGING METHOD FOR Micro Electro-Mechanical System Devices
JP4862325B2 (en) Vacuum package and manufacturing method thereof
JP2011141158A (en) Infrared detector
JP2008216174A (en) Infrared detector and method of manufacturing the same
JP2014207348A (en) Optical detection sensor and manufacturing method of the same
JP2013122447A (en) Infrared radiation application device
KR101632975B1 (en) Method for manufacturing an infrared sensor package and infrafed sensor package by the same
JP2006010405A (en) Vacuum package for infrared sensor
JP2010197184A (en) Infrared detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119