JP2011139244A - High frequency module - Google Patents

High frequency module Download PDF

Info

Publication number
JP2011139244A
JP2011139244A JP2009297343A JP2009297343A JP2011139244A JP 2011139244 A JP2011139244 A JP 2011139244A JP 2009297343 A JP2009297343 A JP 2009297343A JP 2009297343 A JP2009297343 A JP 2009297343A JP 2011139244 A JP2011139244 A JP 2011139244A
Authority
JP
Japan
Prior art keywords
frequency
temperature
substrate
resistor
frequency element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009297343A
Other languages
Japanese (ja)
Other versions
JP5342995B2 (en
Inventor
Kazuki Hayata
和樹 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009297343A priority Critical patent/JP5342995B2/en
Publication of JP2011139244A publication Critical patent/JP2011139244A/en
Application granted granted Critical
Publication of JP5342995B2 publication Critical patent/JP5342995B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Transceivers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem with a high frequency module for transmission and reception comprising a dielectric multilayer substrate and a semiconductor device for transmission and reception, wherein a frequency is changed due to temperature to deviate from a desired frequency band. <P>SOLUTION: A resistor whose resistance value is changed due to temperature and the intermediate voltage of a series circuit made of the resistor are connected to a voltage terminal for frequency control formed in the semiconductor device, and a frequency fluctuation due to the temperature is suppressed by controlling a frequency with the intermediate voltage that changes in following a change in the temperature. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、主としてマイクロ波帯およびミリ波帯で用いる高周波素子を実装するための高周波モジュールに関する。   The present invention relates to a high-frequency module for mounting a high-frequency element mainly used in a microwave band and a millimeter wave band.

近年、携帯電話や無線LANに代表される無線通信技術の研究開発が盛んに行われている。現在市販されている無線通信機器は、マイクロ波が搬送波として利用されているが、マイクロ波ではデータ伝送速度が遅く、例えば、ハイビジョン映像の画質劣化を抑えた、大容量非圧縮映像データの転送には向いていない。   In recent years, research and development of wireless communication technologies typified by mobile phones and wireless LANs have been actively conducted. The wireless communication devices currently on the market use microwaves as carrier waves, but the data transmission speed of microwaves is slow. For example, high-capacity uncompressed video data can be transferred with reduced image quality degradation. Is not suitable.

そこで、マイクロ波よりも高い周波数の電磁波、例えば20GHz以上の準ミリ波およびミリ波を利用する無線通信が大容量のデータを伝送するための手段として注目され、研究開発が進められている。特に60GHz帯では、世界共通で、広い帯域が通信向けに割り当てられており、このような60GHz帯の電磁波を利用する無線通信技術の開発が望まれる。   Therefore, wireless communication using electromagnetic waves having a frequency higher than that of microwaves, for example, quasi-millimeter waves and millimeter waves of 20 GHz or more, has attracted attention as a means for transmitting large-capacity data, and research and development have been promoted. In particular, in the 60 GHz band, a wide band is allocated for communication in common throughout the world, and it is desired to develop a wireless communication technology using such an electromagnetic wave in the 60 GHz band.

これらの通信システムで使用される高周波基板には、より広帯域化、小型、多機能、耐不要ノイズ、かつ安価であることの要求が高く、これらの要求に応えるべく、基板の多層化で対応してきた。特に小型化が可能な高誘電率材料であるセラミックスを誘電体層とする多層配線基板は、配線金属との同時焼成技術を用いることで基板の多層化を実現してきた。このような高周波基板には、複数の高周波デバイスが実装され、それらが高周波デバイスと変換部を介して伝送線路と接続されることにより高周波回路として動作する。   High-frequency boards used in these communication systems are required to have a wider bandwidth, smaller size, more functions, unwanted noise resistance, and lower cost. To meet these demands, multilayer boards have been used. It was. In particular, a multilayer wiring board using a ceramic, which is a high dielectric constant material that can be miniaturized, as a dielectric layer has realized the multilayering of the board by using a simultaneous firing technique with a wiring metal. A plurality of high-frequency devices are mounted on such a high-frequency substrate, and operate as a high-frequency circuit by being connected to the transmission line via the high-frequency device and the conversion unit.

ここで、高周波基板に要求される性能の一つに使用環境下での安定した送信性能が挙げられる。高周波デバイスには温度特性があるため、TCXO(温度補償コンデンサ)等を用いて高周波デバイスの周波数を安定化させていた。   Here, one of the performances required for the high-frequency substrate is a stable transmission performance under the usage environment. Since the high frequency device has temperature characteristics, the frequency of the high frequency device has been stabilized using a TCXO (temperature compensation capacitor) or the like.

特開2001−351928号公報JP 2001-351928 A

しかしながら、従来の技術では、充分な低コスト化が図れておらず、安価で実現可能な周波数安定化技術が求められていた。   However, the conventional technology has not been able to reduce the cost sufficiently, and a frequency stabilization technology that can be realized at low cost has been demanded.

そこで、本発明は、高周波素子の温度による周波数変動を抑制した高周波モジュールを提供することを目的とする。   Accordingly, an object of the present invention is to provide a high-frequency module in which frequency fluctuation due to temperature of the high-frequency element is suppressed.

本発明の高周波モジュールは、基板と、前記基板上に配置される高周波素子と、前記基板の前記高周波素子が実装される領域の直下に形成され、前記高周波素子をグランド電位に接続する接地用ビアホール導体群と、前記基板の内部に配置され、誘電体層と、前記誘電体層を挟む一対の主導体層と、前記第1の誘電体層を貫通し前記一対の主導体層の間を電気的に接続する複数のビアホール導体が伝送する高周波信号の波長の1/2未満の間隔で配置された側壁導体群と、を備える積層型導波管と、前記積層型導波管を前記基板上に前記高周波信号を導出するための変換部と、前記前記高周波素子と前記積層型導波管とを前記変換部を介して接続する接続体と、前記高周波素子と前記接続体と前記変換部とを内部に収容する収容空間を形成する保護部材と、感温型抵抗器から得る温度に応じた抵抗値により前記高周波素子の温度による周波数変動を補正する温度補償回路と、を有し、前記感温型抵抗器は、前記基板上に配置され、前記基板の内部において前記接地用ビアホール導体群に接続されるものである。   The high-frequency module according to the present invention includes a substrate, a high-frequency element disposed on the substrate, and a grounding via hole that is formed immediately below a region where the high-frequency element is mounted on the substrate and connects the high-frequency element to a ground potential. A conductor group, a dielectric layer, a pair of main conductor layers sandwiching the dielectric layer, and a pair of main conductor layers penetrating the first dielectric layer and disposed between the pair of main conductor layers are disposed inside the substrate. A plurality of via-hole conductors connected to each other, and a side wall conductor group disposed at an interval of less than half the wavelength of the high-frequency signal transmitted by the plurality of via-hole conductors, and the laminated waveguide on the substrate A conversion unit for deriving the high-frequency signal, a connection body that connects the high-frequency element and the laminated waveguide through the conversion unit, the high-frequency element, the connection body, and the conversion unit, A storage space for storing the inside A temperature compensation circuit for correcting a frequency variation due to the temperature of the high-frequency element by a resistance value corresponding to a temperature obtained from the temperature-sensitive resistor, and the temperature-sensitive resistor is disposed on the substrate. It is arranged and connected to the ground via-hole conductor group inside the substrate.

本発明の高周波モジュールによれば、簡易な構成の温度補償回路により高周波素子の周波数変動を補償することができる。また、高周波素子の直下に形成された接地用ビアホール導体群により、高周波素子で発生する熱を放熱するとともに、感温型抵抗器を接地電位に接続することができるので、高周波素子自体の放熱性を高め周波数を安定化させる構成と、温度補償回路の一部の構成を共有させることができ、簡易な構成で高周波素子の周波数変動を補償することができる。   According to the high frequency module of the present invention, it is possible to compensate for frequency fluctuations of the high frequency device by a temperature compensation circuit having a simple configuration. In addition, the ground via hole conductor group formed immediately below the high-frequency element can dissipate heat generated in the high-frequency element and connect the temperature-sensitive resistor to the ground potential. And a part of the configuration of the temperature compensation circuit can be shared, and the frequency variation of the high-frequency element can be compensated with a simple configuration.

本発明の高周波モジュールの実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the high frequency module of this invention. 温度補償回路を示す回路図である。It is a circuit diagram which shows a temperature compensation circuit. 本発明の高周波モジュールの温度特性を示す線図である。It is a diagram which shows the temperature characteristic of the high frequency module of this invention. (a),(b)はそれぞれ変換部および積層型導波管の構成を示す平面図および断面図である。(A), (b) is the top view and sectional drawing which show the structure of a conversion part and a laminated waveguide, respectively. (a)〜(e)は、それぞれ変換部および積層型導波管の構成を示す誘電体層毎の平面図である。(A)-(e) is a top view for every dielectric material layer which shows the structure of a conversion part and a laminated waveguide, respectively.

以下、本発明の高周波モジュールについて、図面を参照しつつ詳細に説明する。なお、図面において同様の箇所には同一の符号を付し、重複する説明を省略する。   Hereinafter, the high-frequency module of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same location in drawing, and the overlapping description is abbreviate | omitted.

図1は、本発明の高周波モジュールの実施の形態の一例を示す断面図である。   FIG. 1 is a cross-sectional view showing an example of an embodiment of a high-frequency module according to the present invention.

1は基板、2は高周波素子、3は接地用ビアホール導体群、4は積層型導波管、13は変換部、6は接続体、7は保護部材、8は感温型抵抗器、9は接地用ビアホール導体群3と感温型抵抗器8とを基板1の内部で接続する伝送線路である。   1 is a substrate, 2 is a high-frequency element, 3 is a grounding via-hole conductor group, 4 is a laminated waveguide, 13 is a converter, 6 is a connection body, 7 is a protective member, 8 is a temperature-sensitive resistor, and 9 is This is a transmission line for connecting the grounding via-hole conductor group 3 and the temperature-sensitive resistor 8 inside the substrate 1.

基板1は、複数の誘電体層が積層され、これらの誘電体層間に導体層が設けられ内層配線が形成されて構成される。そして、この基板1の第1主面1a上には、高周波素子2が配置されている。高周波素子2は、例えばSiGeなどの化合物半導体で構成されるMMIC等を用いることができる。このような高周波素子2は送受信機能一体型、送信機能型、受信機能型等を適宜選択すればよい。   The substrate 1 is configured by laminating a plurality of dielectric layers, providing a conductor layer between these dielectric layers, and forming an inner layer wiring. A high frequency element 2 is disposed on the first main surface 1 a of the substrate 1. For the high-frequency element 2, for example, an MMIC made of a compound semiconductor such as SiGe can be used. Such a high-frequency element 2 may be appropriately selected from a transmission / reception function integrated type, a transmission function type, a reception function type, and the like.

そして、この第1主面1aの高周波素子2が実装された領域の直下には、基板1の第2主面1bまで貫通する接地用ビアホール導体群3が形成されている。この接地用ビアホール導体群3は、グランド電位に接続され高周波素子2を接地するとともに、高周波素子2からの熱を効果的に放熱するものである。   A ground via-hole conductor group 3 penetrating to the second main surface 1b of the substrate 1 is formed immediately below the region of the first main surface 1a where the high-frequency element 2 is mounted. This grounding via-hole conductor group 3 is connected to the ground potential and grounds the high-frequency element 2 and effectively radiates heat from the high-frequency element 2.

そして、高周波素子2の1つのポートは、接続体6,変換部13を介して積層型導波管4に接続される。この例では、接続体6は、ボンディングワイヤ11とこれに接続されるマイクロストリップ線路12とで構成される。   One port of the high-frequency element 2 is connected to the laminated waveguide 4 via the connection body 6 and the conversion unit 13. In this example, the connection body 6 includes a bonding wire 11 and a microstrip line 12 connected to the bonding wire 11.

変換部13は、ボンディングワイヤ11,マイクロストリップ線路12を伝送するTEMモードと、積層型導波管4を伝送するTEモードまたはTMモードとの伝送モードの変換を行なう部分であり、その構成については後述する。積層型導波管4と高周波素子2とを接続するにあたって、ボンディングワイヤ11と変換部5とは直接接続してもよいし、本実施例のようにマイクロストリップ線路12を介して接続してもよい。また、マイクロストリップ線路12にはインピーダンス整合用のスタブを設けてもよい。   The conversion unit 13 is a part that converts the transmission mode between the TEM mode that transmits the bonding wire 11 and the microstrip line 12 and the TE mode or TM mode that transmits the laminated waveguide 4. It will be described later. In connecting the laminated waveguide 4 and the high-frequency element 2, the bonding wire 11 and the converter 5 may be directly connected, or may be connected via the microstrip line 12 as in this embodiment. Good. The microstrip line 12 may be provided with a stub for impedance matching.

積層型導波管4は、基板1の第1主面1aから第2主面1b側に離間した、基板1内部に配置されている。その構成については後述するが、誘電体層とこの誘電体層を厚み方向に挟む1対の主導体層と、誘電体層を貫通し一対の主導体層の間を電気的に接続する複数のビアホール導体が伝送する高周波信号の遮断波長の1/2未満の間隔で配置された側壁導体群とで構成される。この積層型導波管4の第2主面1b側の管壁には入出力部10が形成されている。この入出力部10はスロットアンテナ、パッチアンテナ等で構成される。   The laminated waveguide 4 is disposed inside the substrate 1 and is spaced from the first main surface 1a of the substrate 1 to the second main surface 1b side. Although the configuration will be described later, a dielectric layer, a pair of main conductor layers sandwiching the dielectric layer in the thickness direction, and a plurality of electrical connections between the pair of main conductor layers that penetrate the dielectric layer. It is comprised with the side wall conductor group arrange | positioned with the space | interval less than 1/2 of the cutoff wavelength of the high frequency signal which a via-hole conductor transmits. An input / output unit 10 is formed on the tube wall of the laminated waveguide 4 on the second main surface 1b side. The input / output unit 10 includes a slot antenna, a patch antenna, and the like.

このように構成することで、高周波素子2と入出力部10との間に高周波信号を伝送することができる。   With this configuration, a high frequency signal can be transmitted between the high frequency element 2 and the input / output unit 10.

そして、第1主面1aには保護部材7が配置されている。保護部材7は、内部に高周波素子2を収容するキャビティを有しており、第1主面1aに接合されることにより、高周波素子2を気密封止することができる。保護部材7はアルミニウムなどの金属からなる金属筐体によって形成することが好ましい。金属筐体とすることで、電磁波の遮蔽性が高く、放熱性がよくなる。また、金属筐体に限らず、樹脂製やセラミック製等の絶縁材料からなる筐体を用いてもよい。このような保護部材7は、高周波素子2と、接続体6と、基板1の第1主面1aに露出する変換部5の一部のみを収容空間内に収めるように配置されている。これにより、収容空間のサイズを小さくすることができるので、収容空間内部での共振周波数を高周波素子2の動作周波数範囲外の高い領域に設定することができる。   A protective member 7 is disposed on the first main surface 1a. The protective member 7 has a cavity for accommodating the high-frequency element 2 therein, and can be hermetically sealed by being joined to the first main surface 1a. The protective member 7 is preferably formed of a metal casing made of a metal such as aluminum. By using a metal casing, the shielding property of electromagnetic waves is high and the heat dissipation is improved. Moreover, not only a metal housing but a housing made of an insulating material such as resin or ceramic may be used. Such a protective member 7 is arranged so that only the high-frequency element 2, the connection body 6, and a part of the conversion portion 5 exposed on the first main surface 1 a of the substrate 1 are accommodated in the accommodation space. Thereby, since the size of the accommodation space can be reduced, the resonance frequency inside the accommodation space can be set to a high region outside the operating frequency range of the high frequency element 2.

高周波素子2には温度補償回路が接続されている。温度補償回路は、例えば、図2の回路図に示すように、外部バイアス端子Vccから、接地電位までに抵抗器R,感温型抵抗器Rthを直列に接続し、抵抗器Rと感温型抵抗器Rthとの間に中間電圧を出力するための出力部Vtが接続されている。   A temperature compensation circuit is connected to the high frequency element 2. For example, as shown in the circuit diagram of FIG. 2, the temperature compensation circuit includes a resistor R and a temperature sensitive resistor Rth connected in series from the external bias terminal Vcc to the ground potential, and the resistor R and the temperature sensitive type are connected. An output unit Vt for outputting an intermediate voltage is connected between the resistor Rth and the resistor Rth.

外部バイアス端子Vccは、例えば、基板1の第1主面1aのうち、保護部材7が配置された領域外に形成される導電層(不図示)で構成される。抵抗器Rは、例えば、基板1の第1主面1aのうち、保護部材7が配置された領域外に配置されるチップ抵抗器(不図示)により構成される。   The external bias terminal Vcc is formed of, for example, a conductive layer (not shown) formed outside the region where the protective member 7 is disposed on the first main surface 1a of the substrate 1. The resistor R is constituted by, for example, a chip resistor (not shown) arranged outside the region where the protective member 7 is arranged on the first main surface 1a of the substrate 1.

感温型抵抗器Rthは、基板1の第1主面1aのうち、保護部材7が配置された領域外に配置される感温型抵抗器8により構成される。そして、これらは基板1の第1主面1a上に形成された導電層により接続され、チップ抵抗器と感温型抵抗器8とを接続する導電層に、これと高周波素子2とを接続する出力部が接続されている。感温型抵抗器8は温度によって抵抗値が変化するものであり、例えばリニア正温度抵抗器を用いればよい。そして、この感温型抵抗器8は、基板1の内部に形成される伝送線路9により、接地用ビアホール導体群3に接続され、高周波素子2とともに接地電位に接続される。   The temperature sensitive resistor Rth is constituted by a temperature sensitive resistor 8 disposed outside the region where the protective member 7 is disposed on the first main surface 1a of the substrate 1. And these are connected by the conductive layer formed on the 1st main surface 1a of the board | substrate 1, and this and the high frequency element 2 are connected to the conductive layer which connects a chip resistor and the temperature sensitive resistor 8. FIG. The output unit is connected. The temperature-sensitive resistor 8 has a resistance value that varies depending on the temperature. For example, a linear positive temperature resistor may be used. The temperature-sensitive resistor 8 is connected to the ground via-hole conductor group 3 by the transmission line 9 formed inside the substrate 1 and is connected to the ground potential together with the high-frequency element 2.

このような温度によって抵抗値が変化する感温型抵抗器8と抵抗器Rからなる直列回路の中間電圧を高周波素子2の周波数制御用電圧端子に接続させる温度補償回路により、温度変化に追随して変化する中間電圧によって高周波素子2の動作周波数を制御する。これにより、温度による周波数変動を抑えた温度特性のよい高周波モジュールを提供することができる。また、このような簡易な構成の温度補償回路であり、かつ、その一部の構成を接地用ビアホール導体群3と共有させていることから、低コスト化することができる。   The temperature compensation circuit that connects the intermediate voltage of the series circuit composed of the temperature-sensitive resistor 8 and the resistor R, the resistance value of which varies depending on the temperature, to the frequency control voltage terminal of the high-frequency element 2 tracks the temperature change. The operating frequency of the high-frequency element 2 is controlled by the intermediate voltage that changes. Thereby, it is possible to provide a high-frequency module having good temperature characteristics in which frequency fluctuation due to temperature is suppressed. Further, since the temperature compensation circuit has such a simple configuration and a part of the configuration is shared with the ground via-hole conductor group 3, the cost can be reduced.

さらに、感温型抵抗器8の接地を基板1の内部に形成される伝送線路9および同じく基板1内部に形成される接地用ビアホール導体群3により実現する構成となっている。このような構成により、感温型抵抗器8を接地するための経路が全て基板1の内部に収容されていることとなり、接地するための経路が基板1の表面(1a)に露出している場合に比べて、外部環境に接することがないので外部環境の温度による影響を抑制し、安定して感温型抵抗器8を動作させることができる。すなわち、感温型抵抗器8は、高周波素子2と同様の環境下での温度補正を実現させるために、高周波素子2と同様に基板1の第1主面1aに露出させて配置させる一方で、接地するための経路を構成する線路部分を基板1内部に形成することで、温度補正をすることのできない伝送線路の外部環境温度による影響を抑制し、より精密に温度補償を行なうことができるものとなる。   Further, the temperature-sensitive resistor 8 is grounded by the transmission line 9 formed inside the substrate 1 and the grounding via-hole conductor group 3 also formed inside the substrate 1. With such a configuration, all the paths for grounding the temperature-sensitive resistor 8 are accommodated inside the substrate 1, and the path for grounding is exposed on the surface (1a) of the substrate 1. Compared to the case, since it does not come into contact with the external environment, the influence of the temperature of the external environment can be suppressed, and the temperature-sensitive resistor 8 can be operated stably. That is, the temperature sensitive resistor 8 is exposed and arranged on the first main surface 1a of the substrate 1 in the same manner as the high frequency element 2 in order to realize temperature correction under the same environment as the high frequency element 2. By forming the line portion constituting the path for grounding inside the substrate 1, the influence of the external environment temperature of the transmission line that cannot be temperature-corrected can be suppressed, and temperature compensation can be performed more precisely. It will be a thing.

上述のようにして、高周波モジュールが構成される。この高周波モジュールの環境温度に対する動作周波数変動量を測定した結果を図3に示す。図3において、横軸は環境温度(単位:℃)、縦軸は周波数変動量(単位:GHz)であり、本発明の高周波モジュールによる値を菱形の符号で、温度補償回路を有さない構成の高周波モジュールによる値を正方形の符号でプロットしている。図3からも明らかなように、本発明の高周波モジュールにより、大幅に温度による周波数変動量を抑制することができることを確認した。   The high frequency module is configured as described above. FIG. 3 shows the result of measuring the operating frequency variation with respect to the environmental temperature of the high-frequency module. In FIG. 3, the horizontal axis represents the environmental temperature (unit: ° C.), the vertical axis represents the frequency fluctuation amount (unit: GHz), and the value obtained by the high-frequency module of the present invention is indicated by a rhombus and does not have a temperature compensation circuit The values from the high-frequency module are plotted with square signs. As is clear from FIG. 3, it was confirmed that the amount of frequency fluctuation due to temperature can be significantly suppressed by the high frequency module of the present invention.

次に、本発明の高周波モジュールを構成する積層型導波管4および変換部13の構成について詳述する。   Next, the structure of the laminated waveguide 4 and the conversion part 13 which comprise the high frequency module of this invention is explained in full detail.

図4(a),(b)は、それぞれ変換部および積層型導波管の構成を示す平面図および断面図である。   4A and 4B are a plan view and a cross-sectional view showing the configuration of the conversion unit and the laminated waveguide, respectively.

高周波用の基板1は複数の誘電体層が積層されて構成されるが、例えば、第1主面1a側から順に、誘電体層31,32,33,34が積層され、誘電体層のうち、第1主面1aを含む誘電体層31上にマイクロストリップ線路12が形成される。   The high frequency substrate 1 is configured by laminating a plurality of dielectric layers. For example, dielectric layers 31, 32, 33, and 34 are laminated in order from the first main surface 1a side, The microstrip line 12 is formed on the dielectric layer 31 including the first main surface 1a.

マイクロストリップ線路12は、誘電体層31を挟んで対向するストリップ導体12bとグランド導体12cとで構成されている。   The microstrip line 12 includes a strip conductor 12b and a ground conductor 12c that are opposed to each other with the dielectric layer 31 in between.

変換部13は、マイクロストリップ線路12と積層型導波管4との間のインピーダンスを漸次あるいは段階的に変化するものであることが、伝送損失を少なくする観点から好ましい。このような変換部としては、図3に示すような、積層型導波管の断面積を段階的に変えた構成がある。   The converter 13 preferably changes the impedance between the microstrip line 12 and the laminated waveguide 4 gradually or stepwise from the viewpoint of reducing transmission loss. As such a conversion part, there exists a structure which changed the cross-sectional area of the laminated waveguide as shown in FIG.

変換部13は、第1の積層型導波管線路部210,第2の積層型導波管線路部220,積層型導波管線路部230を有する。第1の積層型導波管線路部210,第2の積層型導波管線路部220,積層型導波管線路部230のそれぞれの一対の導体層のうち、基板1の第1主面1aに設けられる上側導体層211,221,231は平面状に構成され、これら上側導体層211,221,231は一体的に形成されている。第1の積層型導波管線路部210,第2の積層型導波管線路部220,積層型導波管線路部230のそれぞれの一対の導体層のうち、基板1の第1主面1aに設けられる上側導体層211,221,231に対向する下側導体層212,222,232は、互いに一部が平面視で重畳するように異なる平面上に配置されている。そして、これらの下側導体層同士は、上記重畳領域においてビアホール導体群41で互いに接続されている。   The conversion unit 13 includes a first laminated waveguide line unit 210, a second laminated waveguide line unit 220, and a laminated waveguide line unit 230. Of the pair of conductor layers of the first laminated waveguide line portion 210, the second laminated waveguide line portion 220, and the laminated waveguide line portion 230, the first main surface 1a of the substrate 1 is provided. The upper conductor layers 211, 221, and 231 provided on the upper surface are formed in a planar shape, and the upper conductor layers 211, 221, and 231 are integrally formed. Of the pair of conductor layers of the first laminated waveguide line portion 210, the second laminated waveguide line portion 220, and the laminated waveguide line portion 230, the first main surface 1a of the substrate 1 is provided. The lower conductor layers 212, 222, and 232 facing the upper conductor layers 211, 221, and 231 provided in are arranged on different planes so that parts thereof overlap each other in plan view. These lower conductor layers are connected to each other by a via-hole conductor group 41 in the overlapping region.

変換部13の信号伝送方向に対する幅方向寸法Wは積層型導波管4の幅方向寸法と同じであり、伝送信号の周波数などによって適宜設定すればよい。例えば、伝送信号の周波数が76.5GHzの場合にはW=1.15mmであり、遮断周波数は約43GHzで設定される。   The width direction dimension W with respect to the signal transmission direction of the converter 13 is the same as the width direction dimension of the laminated waveguide 4 and may be set as appropriate depending on the frequency of the transmission signal. For example, when the frequency of the transmission signal is 76.5 GHz, W = 1.15 mm, and the cut-off frequency is set at about 43 GHz.

また、下側導体層212,222,232の信号伝送方向端部は、伝送信号の波長λの1/4ずつ信号伝送方向にずれて設けられる。変換部13の信号伝送方向に平行な長さ寸法Lは、平面視したときに下側導体層212,222,232を覆うように3λ/4に設定される。例えば、伝送信号の周波数が70〜85GHzのときにはL=0.9mmである。   Further, the end portions of the lower conductor layers 212, 222, and 232 in the signal transmission direction are provided by being shifted in the signal transmission direction by ¼ of the wavelength λ of the transmission signal. The length L parallel to the signal transmission direction of the converter 13 is set to 3λ / 4 so as to cover the lower conductor layers 212, 222, and 232 when viewed in plan. For example, L = 0.9 mm when the frequency of the transmission signal is 70 to 85 GHz.

変換部13を構成する積層型導波管線路は、上述の通り一対の導体層とともにビアホール導体群41,42を含んで構成される。   The laminated waveguide line constituting the conversion unit 13 includes the via-hole conductor groups 41 and 42 together with the pair of conductor layers as described above.

ビアホール導体群41,42は、伝送信号の遮断周波数の1/2未満の間隔で信号伝送方向に沿って配列し、積層型導波管線路の電気的な側壁を形成し、この側壁と一対の導体層とによって導波管が構成せれる。   The via-hole conductor groups 41 and 42 are arranged along the signal transmission direction at intervals of less than ½ of the cutoff frequency of the transmission signal to form an electrical side wall of the laminated waveguide, A waveguide is constituted by the conductor layer.

図5(a)〜(e)を参照して、誘電体層毎に具体的に説明する。   With reference to Fig.5 (a)-(e), it demonstrates concretely for every dielectric material layer.

図5(a)〜(d)は誘電体層31,32,33,34を層毎に展開し、第1主面1a側からみた平面図である。図5(e)は、誘電体層34を第2主面1b側からみた平面図である。   FIGS. 5A to 5D are plan views of the dielectric layers 31, 32, 33, and 34 developed for each layer and viewed from the first main surface 1a side. FIG. 5E is a plan view of the dielectric layer 34 as viewed from the second main surface 1b side.

図5(a)に示すように、誘電体層31の表面にはストリップ導体12bと、これに接続される変換部13の上側導体層211,221,231が形成される。上側導体層51は、一端が上側導体層231の端部に接続して形成される。また、誘電体層31の内部には、2列の側壁用ビアホール導体群41,42が形成される。   As shown in FIG. 5A, the strip conductor 12 b and the upper conductor layers 211, 221, and 231 of the conversion unit 13 connected to the strip conductor 12 b are formed on the surface of the dielectric layer 31. The upper conductor layer 51 is formed with one end connected to the end of the upper conductor layer 231. In addition, two rows of via-hole conductor groups 41 and 42 for side walls are formed inside the dielectric layer 31.

さらに、上側導体層51と積層型導波管4の端部とは、上から見て重なっていて、この上側導体層51と積層型導波管4を形成する一対の主導体層の上側に位置する上側導体層61の端部を電気的に接続する境界壁形成用のビアホール導体群43が信号伝送方向とは直交する方向に伝送信号の遮断波長の半分未満の間隔で誘電体層31の内部に配置される。   Further, the upper conductor layer 51 and the end portion of the multilayer waveguide 4 overlap each other when viewed from above, and above the pair of main conductor layers forming the upper conductor layer 51 and the multilayer waveguide 4. The boundary wall forming via-hole conductor group 43 that electrically connects the end portions of the upper conductor layer 61 is positioned in the direction perpendicular to the signal transmission direction at intervals of less than half of the cutoff wavelength of the transmission signal. Arranged inside.

図5(b)に示すように、誘電体層32の表面には、マイクロストリップ線路12を構成する、グランド導体12c、副導体層53が一体的に形成さえる。また、誘電体層32の内部には、2列の側壁用ビアホール導体群41,42およびグランド導体12cと下側導体層212とを接続する境界壁形成用ビアホール導体群43が形成される。   As shown in FIG. 5B, the ground conductor 12 c and the sub conductor layer 53 constituting the microstrip line 12 are integrally formed on the surface of the dielectric layer 32. In addition, in the dielectric layer 32, two rows of via-hole conductor groups 41 and 42 for sidewalls and a boundary wall forming via-hole conductor group 43 that connects the ground conductor 12c and the lower conductor layer 212 are formed.

図5(c)に示すように、誘電体層33の表面には、下側導体層212,副導体層54,積層型導波管4を構成する一対の主導体層の一方である上側導体層61が電気的に接続されて一体的に形成されている。また、誘電体層33の内部には、2列の側壁用ビアホール導体群41,42および下側導体層212,222を電気的に接続する境界壁形成用のビアホール導体群43が形成される。   As shown in FIG. 5 (c), on the surface of the dielectric layer 33, the lower conductor layer 212, the sub conductor layer 54, and the upper conductor that is one of the pair of main conductor layers constituting the laminated waveguide 4. The layer 61 is electrically connected and formed integrally. In addition, a boundary wall forming via hole conductor group 43 that electrically connects two rows of via hole conductor groups 41 and 42 and the lower conductor layers 212 and 222 is formed inside the dielectric layer 33.

図5(d)に示すように、誘電体層34の表面には、下側導体層222,副導体層54、積層型導波管4を構成する副導体層53が一体的に形成される。また、誘電体層34の内部には、2列の側壁用ビアホール導体群41,42および下側導体層222,232を電気的に接続する境界壁形成用のビアホール導体群43が形成される。   As shown in FIG. 5D, the lower conductor layer 222, the sub conductor layer 54, and the sub conductor layer 53 constituting the laminated waveguide 4 are integrally formed on the surface of the dielectric layer 34. . In addition, a via-hole conductor group 43 for forming a boundary wall that electrically connects two rows of via-hole conductor groups 41 and 42 and the lower conductor layers 222 and 232 is formed inside the dielectric layer 34.

図5(e)に示すように、誘電体層34の下側の面には、下側導体層232と積層型導波管4の主導体層のうち下側に位置する下側導体層62が一体的に形成される。   As shown in FIG. 5 (e), on the lower surface of the dielectric layer 34, the lower conductor layer 62 located on the lower side of the lower conductor layer 232 and the main conductor layer of the laminated waveguide 4. Are integrally formed.

ここで、側壁用ビアホール導体群41,42を、積層型導波管4の上側導体層61と下側導体層62との間にも配列することで、積層型導波管4の側壁を形成する側壁導体群としても機能するものとなる。   Here, the sidewall via-hole conductor groups 41 and 42 are also arranged between the upper conductor layer 61 and the lower conductor layer 62 of the multilayer waveguide 4 to form the sidewall of the multilayer waveguide 4. It also functions as a side wall conductor group.

そして、積層型導波管4および積層型導波管線路を複数層の誘電体層により構成する場合には、誘電体層間に主導体層と平行に副導体層を設けることが好ましい。副導体層は、同じ誘電体層内に存在する各ビアホール導体群を列ごとにそれぞれ電気的に接続するように、ビアホール導体群の配列方向に沿って延びる帯状の導体層である。   When the laminated waveguide 4 and the laminated waveguide are composed of a plurality of dielectric layers, it is preferable to provide a sub conductor layer between the dielectric layers in parallel with the main conductor layer. The sub conductor layer is a strip-like conductor layer extending along the arrangement direction of the via hole conductor groups so as to electrically connect the via hole conductor groups existing in the same dielectric layer for each column.

このような副導体層により、伝送信号の漏れを抑制するとともに、複数の誘電体層の間で積層ズレが生じた場合でも貫通導体の層間の接続不良を抑制することができる。   Such a sub-conductor layer can suppress transmission signal leakage and suppress poor connection between the layers of the through conductors even when stacking misalignment occurs between the plurality of dielectric layers.

以上のような、積層型導波管4,変換部13により、伝送損失が少ない高周波モジュールを提供することができる。   The laminated waveguide 4 and the conversion unit 13 as described above can provide a high-frequency module with little transmission loss.

本発明の高周波モジュールは以上の実施の形態に限定されることなく、要旨を変更しない範囲で種々の改良・変形が可能である。   The high-frequency module of the present invention is not limited to the above embodiment, and various improvements and modifications can be made without departing from the scope of the invention.

例えば、本発明の高周波モジュールは、保護部材7が変換部13上に接触するように配置することが好ましい。これにより、収容空間のサイズをさらに小さくすることができるとともに、変換部13と保護部材7との間で熱交換を容易にして、さらに高周波素子2の冷却効果が向上する。高周波素子2の熱が、これに電気的に接続された変換部13を介して金属筐体からなる保護部材7に伝わり、空気中に放熱させることができるからである。   For example, the high-frequency module of the present invention is preferably arranged so that the protective member 7 contacts the conversion unit 13. Accordingly, the size of the accommodation space can be further reduced, heat exchange between the conversion unit 13 and the protection member 7 is facilitated, and the cooling effect of the high-frequency element 2 is further improved. This is because the heat of the high-frequency element 2 is transmitted to the protective member 7 made of a metal casing through the conversion unit 13 electrically connected thereto, and can be radiated into the air.

1 基板
1a 第1主面
1b 第2主面
2 高周波素子
3 接地用ビアホール導体群
4 積層型導波管
6 接続体
7 保護部材
8 感温型抵抗器
9 伝送線路
10 入出力部
11 ボンディングワイヤ
12 マイクロストリップ線路
12b ストリップ導体
12c グランド導体
13 変換部
DESCRIPTION OF SYMBOLS 1 Board | substrate 1a 1st main surface 1b 2nd main surface 2 High frequency element 3 Grounding via-hole conductor group 4 Laminated waveguide 6 Connection body 7 Protective member 8 Temperature sensitive resistor 9 Transmission line 10 Input / output part 11 Bonding wire 12 Microstrip line 12b Strip conductor 12c Ground conductor 13 Conversion section

Claims (2)

基板と、
前記基板上に配置される高周波素子と、
前記基板の前記高周波素子が実装される領域の直下に形成され、前記高周波素子をグランド電位に接続する接地用ビアホール導体群と、前記基板の内部に配置され、誘電体層と、前記誘電体層を挟む一対の主導体層と、前記誘電体層を貫通し前記一対の主導体層の間を電気的に接続する複数のビアホール導体が伝送する高周波信号の遮断波長の1/2未満の間隔で配置された側壁導体群と、を備える積層型導波管と、
前記積層型導波管から前記基板上に前記高周波信号を導出するための変換部と、
前記前記高周波素子と前記積層型導波管とを前記変換部を介して接続する接続体と、
前記高周波素子と前記接続体と前記変換部とを内部に収容する収容空間を形成する保護部材と、
感温型抵抗器を有し、この感温型抵抗器から得る温度に応じた抵抗値により前記高周波素子の温度に対する周波数変動を補正する温度補償回路と、を有し、
前記感温型抵抗器は、前記基板上に配置され、前記基板の内部において前記接地用ビアホール導体群に接続される高周波モジュール。
A substrate,
A high-frequency element disposed on the substrate;
A ground via-hole conductor group that is formed immediately below a region in which the high-frequency element is mounted on the substrate and connects the high-frequency element to a ground potential, disposed inside the substrate, a dielectric layer, and the dielectric layer And a pair of main conductor layers sandwiching the dielectric layer and a plurality of via-hole conductors that penetrate the dielectric layer and electrically connect the pair of main conductor layers with an interval of less than half of the cutoff wavelength of the high-frequency signal transmitted A laminated waveguide comprising: disposed side wall conductor groups;
A converter for deriving the high frequency signal from the laminated waveguide onto the substrate;
A connection body for connecting the high-frequency element and the laminated waveguide through the conversion unit;
A protective member that forms a housing space that houses the high-frequency element, the connection body, and the conversion unit;
A temperature compensation circuit having a temperature-sensitive resistor, and correcting a frequency variation with respect to the temperature of the high-frequency element by a resistance value corresponding to the temperature obtained from the temperature-sensitive resistor,
The temperature-sensitive resistor is a high-frequency module disposed on the substrate and connected to the ground via-hole conductor group inside the substrate.
前記温度補償回路は、
抵抗器と、
前記抵抗器に直列に接続された前記感温型抵抗器と、
前記抵抗器と前記感温型抵抗器との間に接続された中間電圧を出力する出力部と、を含む請求項1記載の高周波モジュール。
The temperature compensation circuit is:
A resistor,
The temperature sensitive resistor connected in series to the resistor; and
The high-frequency module according to claim 1, further comprising: an output unit that outputs an intermediate voltage connected between the resistor and the temperature-sensitive resistor.
JP2009297343A 2009-12-28 2009-12-28 High frequency module Expired - Fee Related JP5342995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009297343A JP5342995B2 (en) 2009-12-28 2009-12-28 High frequency module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009297343A JP5342995B2 (en) 2009-12-28 2009-12-28 High frequency module

Publications (2)

Publication Number Publication Date
JP2011139244A true JP2011139244A (en) 2011-07-14
JP5342995B2 JP5342995B2 (en) 2013-11-13

Family

ID=44350234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009297343A Expired - Fee Related JP5342995B2 (en) 2009-12-28 2009-12-28 High frequency module

Country Status (1)

Country Link
JP (1) JP5342995B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190116887A (en) * 2018-04-05 2019-10-15 삼성전기주식회사 Electronic component module and manufacturing mehthod therof
WO2020053283A1 (en) * 2018-09-12 2020-03-19 Zf Friedrichshafen Ag Radar sensor architecture
KR20200110289A (en) * 2018-04-05 2020-09-23 삼성전기주식회사 Electronic component module
WO2021210080A1 (en) * 2020-04-14 2021-10-21 三菱電機株式会社 Heat dissipation structure, high frequency circuit, and antenna device
WO2022091192A1 (en) * 2020-10-27 2022-05-05 三菱電機株式会社 High frequency circuit
WO2023228456A1 (en) * 2022-05-26 2023-11-30 パナソニックIpマネジメント株式会社 Mode conversion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278167A (en) * 1999-03-29 2000-10-06 Murata Mfg Co Ltd Transmission output controller and radio unit using same
JP2001351928A (en) * 2000-06-06 2001-12-21 Nec Corp Microwave/millimeter wave integrated circuit
JP2005260471A (en) * 2004-03-10 2005-09-22 Toshiba Corp Predistortion circuit
WO2009084697A1 (en) * 2007-12-28 2009-07-09 Kyocera Corporation High-frequency transmission line connection structure, wiring substrate, high-frequency module, and radar device
WO2009123233A1 (en) * 2008-03-31 2009-10-08 京セラ株式会社 High-frequency module and manufacturing method thereof and transmitter, receiver, transceiver and radar device equipped with said high-frequency module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278167A (en) * 1999-03-29 2000-10-06 Murata Mfg Co Ltd Transmission output controller and radio unit using same
JP2001351928A (en) * 2000-06-06 2001-12-21 Nec Corp Microwave/millimeter wave integrated circuit
JP2005260471A (en) * 2004-03-10 2005-09-22 Toshiba Corp Predistortion circuit
WO2009084697A1 (en) * 2007-12-28 2009-07-09 Kyocera Corporation High-frequency transmission line connection structure, wiring substrate, high-frequency module, and radar device
WO2009123233A1 (en) * 2008-03-31 2009-10-08 京セラ株式会社 High-frequency module and manufacturing method thereof and transmitter, receiver, transceiver and radar device equipped with said high-frequency module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11347273B2 (en) 2018-04-05 2022-05-31 Samsung Electro-Mechanics Co., Ltd. Electronic device module, method of manufacturing the same and electronic apparatus
KR20200110289A (en) * 2018-04-05 2020-09-23 삼성전기주식회사 Electronic component module
KR20190116887A (en) * 2018-04-05 2019-10-15 삼성전기주식회사 Electronic component module and manufacturing mehthod therof
KR102520212B1 (en) 2018-04-05 2023-04-10 삼성전기주식회사 Electronic component module and manufacturing mehthod therof
KR102470354B1 (en) * 2018-04-05 2022-11-25 삼성전기주식회사 Electronic component module
WO2020053283A1 (en) * 2018-09-12 2020-03-19 Zf Friedrichshafen Ag Radar sensor architecture
WO2021210080A1 (en) * 2020-04-14 2021-10-21 三菱電機株式会社 Heat dissipation structure, high frequency circuit, and antenna device
JP7072743B2 (en) 2020-04-14 2022-05-20 三菱電機株式会社 Heat dissipation structure, high frequency circuit and antenna device
JPWO2021210080A1 (en) * 2020-04-14 2021-10-21
WO2022091192A1 (en) * 2020-10-27 2022-05-05 三菱電機株式会社 High frequency circuit
GB2615426A (en) * 2020-10-27 2023-08-09 Mitsubishi Electric Corp High frequency circuit
GB2615426B (en) * 2020-10-27 2024-04-10 Mitsubishi Electric Corp High frequency circuit
WO2023228456A1 (en) * 2022-05-26 2023-11-30 パナソニックIpマネジメント株式会社 Mode conversion device

Also Published As

Publication number Publication date
JP5342995B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
RU2507631C2 (en) Semiconductor device, method to manufacture semiconductor device, device to transmit signals of millimetre range via dielectric, method to manufacture device and system to transmit signals of millimetre range via dielectric
CN108352616B (en) Millimeter wave antenna and millimeter wave sensor using the same
JP4684730B2 (en) High frequency semiconductor device, transmission device, and reception device
JP5342995B2 (en) High frequency module
JP4980306B2 (en) Wireless communication device
US20130076570A1 (en) Rf module
JP5216848B2 (en) High frequency module, method for manufacturing the same, transmitter, receiver, transmitter / receiver, and radar apparatus including the high frequency module
JP5269902B2 (en) High frequency substrate and high frequency module
JP3087664B2 (en) Dielectric resonator device and high frequency module
US9287224B2 (en) High-frequency module
JP5287833B2 (en) High frequency module and array antenna apparatus using the same
JP5213039B2 (en) Single-sided radiation antenna
JP4519086B2 (en) Patch antennas and high frequency devices
JP6181777B2 (en) Device storage package and mounting structure
JP4535640B2 (en) Aperture antenna and substrate with aperture antenna
JP5179570B2 (en) High frequency module, method for manufacturing the same, transmitter, receiver, transmitter / receiver, and radar apparatus including the high frequency module
JP2009159203A (en) Antenna with dielectric lens
JP2011010242A (en) High-frequency substrate and high-frequency module
JPH11239017A (en) Laminated opening plane antenna and multilayer circuit board equipped with it
US20210328335A1 (en) Antenna, array antenna, and wireless communication device
JP2006067376A (en) Antenna module
JP5289214B2 (en) High frequency module
JP2006067375A (en) Antenna module
JP5414364B2 (en) High frequency substrate and high frequency module
JP2012049783A (en) L shaped folding monopole antenna device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees