JP2011138200A - Adaptive controller - Google Patents

Adaptive controller Download PDF

Info

Publication number
JP2011138200A
JP2011138200A JP2009296148A JP2009296148A JP2011138200A JP 2011138200 A JP2011138200 A JP 2011138200A JP 2009296148 A JP2009296148 A JP 2009296148A JP 2009296148 A JP2009296148 A JP 2009296148A JP 2011138200 A JP2011138200 A JP 2011138200A
Authority
JP
Japan
Prior art keywords
output
control
deviation
variable gain
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009296148A
Other languages
Japanese (ja)
Other versions
JP5342435B2 (en
Inventor
Kazuki Eguchi
和樹 江口
Satoshi Iwasaki
聡 岩崎
Kenji Unno
健二 海野
Shinya Ichimaru
真也 市丸
Kenichi Yamashita
健一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2009296148A priority Critical patent/JP5342435B2/en
Publication of JP2011138200A publication Critical patent/JP2011138200A/en
Application granted granted Critical
Publication of JP5342435B2 publication Critical patent/JP5342435B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adaptive controller capable of coping promptly with changes in load and changes in characteristics of a control object and achieving more excellent responsive characteristic. <P>SOLUTION: The adaptive controller includes: a loop gain adjuster 7, an adaptive controlling device 5, and a PI controller 3. In a variable gain calculator 11 of the adaptive controlling device 5, which is provided with a multiplier 16 that squares control deviation e<SB>a</SB>(t), and a primary delay element 17 that sets output from the multiplier 16 as input, when the variation inclination of the control deviation e<SB>a</SB>(t) is negative, a time constant of a primary delay element 17 is set as a larger value than a time constant of the primary delay element 17 when the variation inclination of the control deviation e<SB>a</SB>(t) is constant or positive. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は単純適応制御方式に基づく適応制御装置に係り、特に、負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現し得る適応制御装置に関するものである。   The present invention relates to an adaptive control apparatus based on a simple adaptive control system, and more particularly to an adaptive control apparatus that can immediately respond to a load change or a characteristic change of a control target and can realize a better response characteristic.

近年、プラントやサーボ系の制御対象に対し、制御系を安定化しつつ制御対象のパラメータ(の一部)を推定する適応制御を適用した制御手法が提案されている(例えば、特開平8−254136号公報参照)。特に、プロセスを制御対象とし、単純適応制御方式をベースとしてより簡易化した制御方式を提案したものとして、非特許文献1および非特許文献2がある。   In recent years, a control method has been proposed in which adaptive control for estimating (part of) parameters of a control target while stabilizing the control system is applied to a control target of a plant or servo system (for example, Japanese Patent Laid-Open No. 8-254136). No. publication). In particular, Non-Patent Document 1 and Non-Patent Document 2 are proposed as processes that are controlled, and a simplified control system based on the simple adaptive control system.

この従来の単純適応制御方式(例えば非特許文献1)は、最小限に必要とされる制御偏差のみで可変ゲインを決定するようにして、より構成を簡易化したもので、該制御偏差に関連した値の自乗積分値に基づく可変ゲインにより、制御偏差のピーク値が大きいときには大きな値のゲインの状態が持続され、積極的な制御が行われる。その結果、制御偏差のピーク値が小さくなると同時に、ゲインを元の小さな値に戻し定常状態の安定化を図っている。   This conventional simple adaptive control method (for example, Non-Patent Document 1) is a simplified configuration in which the variable gain is determined only by the minimum required control deviation, and is related to the control deviation. Due to the variable gain based on the square integral value of the obtained value, when the peak value of the control deviation is large, the large gain state is maintained and active control is performed. As a result, the peak value of the control deviation is reduced, and at the same time, the gain is returned to the original small value to stabilize the steady state.

非特許文献1および非特許文献2に開示された技術においては、外乱があった直後の過渡状態や、目標値が変わった直後の過渡状態では、制御偏差の自乗積分値に基づく可変ゲインによりゲインを大きくして制御偏差を抑え込み、定常状態になればゲインを元の小さな値に戻して安定な状態を確保する。つまり、可変ゲイン演算部において、制御偏差を自乗し、その値を1次遅れ要素を介して得られたものを可変ゲインとしているが、1次遅れ要素における時定数を制御対象のプロセスの総時定数(むだ時間の値を含む)の推定値に基づく値としている。これにより、追従性に優れた過渡応答特性が得られ、制御偏差がゼロに収束すると直ちに可変ゲインも最小設定値に収束する。   In the techniques disclosed in Non-Patent Document 1 and Non-Patent Document 2, in a transient state immediately after a disturbance or a transient state immediately after a target value is changed, a gain is obtained by a variable gain based on a square integral value of a control deviation. Is increased to suppress the control deviation, and when the steady state is reached, the gain is returned to the original small value to ensure a stable state. That is, in the variable gain calculation unit, the control deviation is squared, and the value obtained through the first-order lag element is used as the variable gain, but the time constant in the first-order lag element is the total time of the process to be controlled. The value is based on an estimated value of a constant (including a dead time value). As a result, a transient response characteristic with excellent followability is obtained, and as soon as the control deviation converges to zero, the variable gain also converges to the minimum set value.

特開平8−254136号公報JP-A-8-254136

藤原敏勝他,高機能制御方式“SNAC”とその火力プラント蒸気温度制御への適用,三菱重工技報,Vol 31,No,6 (1994.11),pp.388-391Toshikatsu Fujiwara et al., High Functional Control System “SNAC” and its Application to Thermal Power Plant Steam Temperature Control, Mitsubishi Heavy Industries Technical Report, Vol 31, No. 6 (1994.11), pp. 388-391 藤原敏勝,単純適応制御(SAC)とそのボイラプラント蒸気温度制御への適用,第34回計測自動制御学会学術講演会 SICE '95 in Sapporo予稿集,307 C-3 (1995),pp.867-868Toshikatsu Fujiwara, Simple Adaptive Control (SAC) and its Application to Boiler Plant Steam Temperature Control, 34th Annual Conference of the Society of Instrument and Control Engineers SICE '95 in Sapporo Proceedings, 307 C-3 (1995), pp. 867-868

ところで、プロセス制御では、制御量が設定値に収束して制御偏差がゼロに収束した後にも、負荷変化や制御対象であるプロセスの特性変化が起こることがしばしばある。このような負荷変化やプロセスの特性変化に対し、最小設定値に収束した可変ゲインからでは応答にそれだけ時間を要してしまうという事情があった。   By the way, in process control, even after the control amount converges to a set value and the control deviation converges to zero, a load change or a characteristic change of a process to be controlled often occurs. In response to such a load change or process characteristic change, there is a situation that it takes time to respond from a variable gain converged to a minimum set value.

本発明は、このような事情に鑑みてなされたものであって、負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現し得る適応制御装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and is to provide an adaptive control device that can immediately respond to a load change or a characteristic change of a control target and can realize a better response characteristic. Objective.

上記課題を解決するため、本発明は以下の手段を採用する。
本発明に係る適応制御装置は、制御対象の出力と目標値との偏差を入力として当該閉ループ制御系の定常ゲインが1となるように調整するループゲイン調節手段と、当該閉ループ制御系の出力を入力として位相遅れ要素を介して前記ループゲイン調節手段の出力側に戻すフィードバック手段と、前記位相遅れ要素の出力と前記ループゲイン調節手段の出力との制御偏差を入力として可変ゲインを演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算手段と、を備える閉ループ制御系と、前記ループゲイン調節手段の出力を入力としてPI制御を行うPI制御手段と、前記閉ループ制御系の出力と前記PI制御手段の出力とを加算して前記制御対象に操作量として与える加算手段と、を有する適応制御装置であって、前記可変ゲイン演算手段は、前記制御偏差を自乗する演算手段と、前記演算手段の出力を入力とする1次遅れ要素と、を備え、前記1次遅れ要素の時定数を前記制御偏差の変動傾きに応じて可変設定することを特徴とする。
In order to solve the above problems, the present invention employs the following means.
An adaptive control apparatus according to the present invention includes a loop gain adjusting means for adjusting a steady gain of the closed loop control system to 1 by using a deviation between an output of a control target and a target value as input, and an output of the closed loop control system. Feedback means for returning to the output side of the loop gain adjusting means through the phase delay element as an input, and calculating a variable gain using the control deviation between the output of the phase delay element and the output of the loop gain adjusting means as an input, A closed loop control system comprising: a variable gain calculating means for compensating a gain of the closed loop control system; a PI control means for performing PI control with an output of the loop gain adjusting means as an input; an output of the closed loop control system and the PI control Adding means for adding the output of the means and giving the control object as an operation amount, the adaptive control device comprising the variable gain The calculating means includes a calculating means for squaring the control deviation, and a first-order lag element having the output of the calculating means as an input, and the time constant of the first-order lag element according to the fluctuation slope of the control deviation. It is characterized by variable setting.

本発明によれば、可変ゲイン演算手段において、1次遅れ要素の時定数を制御偏差の変動傾きに応じて可変設定するので、1次遅れ要素の時定数をより大きな値として可変ゲインの最小設定値への収束を遅らせ、制御偏差のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。   According to the present invention, since the time constant of the first-order lag element is variably set according to the fluctuation slope of the control deviation in the variable gain calculating means, the time constant of the first-order lag element is set to a larger value and the minimum setting of the variable gain is made. It is possible to delay the convergence to a value and to respond immediately to a load change or a characteristic change of a control target that can occur after the control deviation converges to zero, and to realize a better response characteristic.

また、本発明は、制御対象の出力と目標値との偏差を所定係数倍する係数手段と、前記係数手段の出力を入力とする位相遅れ要素と、当該閉ループ制御系の出力を入力し位相遅れ要素を介して戻すフィードバック手段と、前記位相遅れ要素の出力と前記位相遅れ要素の出力との制御偏差を入力として可変ゲインを演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算手段と、を備える閉ループ制御系と、前記偏差を入力としてPID制御を行うPID制御手段と、前記閉ループ制御系の出力と前記PID制御手段の出力とを加算して前記制御対象に操作量として与える加算手段と、を有する適応制御装置であって、前記可変ゲイン演算手段は、前記制御偏差を自乗する演算手段と、前記演算手段の出力を入力とする1次遅れ要素と、を備え、前記1次遅れ要素の時定数を前記制御偏差の変動傾きに応じて可変設定することを特徴とする。   The present invention also provides coefficient means for multiplying the deviation between the output of the control target and the target value by a predetermined coefficient, a phase delay element that receives the output of the coefficient means, and the output of the closed loop control system as input. Feedback means for returning via an element, variable gain calculation means for calculating a variable gain by inputting a control deviation between the output of the phase delay element and the output of the phase delay element, and compensating the gain of the closed loop control system, A closed loop control system comprising: a PID control means for performing PID control with the deviation as an input; an addition means for adding the output of the closed loop control system and the output of the PID control means as an operation amount to the control object; The variable gain calculation means includes calculation means for squaring the control deviation, and a first-order lag element having the output of the calculation means as input. The provided, characterized by variably set according to the time constant of the primary delay element to change the inclination of the control deviation.

本発明によれば、可変ゲイン演算手段において、1次遅れ要素の時定数を制御偏差の変動傾きに応じて可変設定するので、1次遅れ要素の時定数をより大きな値として可変ゲインの最小設定値への収束を遅らせ、制御偏差のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。   According to the present invention, since the time constant of the first-order lag element is variably set according to the fluctuation slope of the control deviation in the variable gain calculating means, the time constant of the first-order lag element is set to a larger value and the minimum setting of the variable gain is made. It is possible to delay the convergence to a value and to respond immediately to a load change or a characteristic change of a control target that can occur after the control deviation converges to zero, and to realize a better response characteristic.

また、本発明は、上記記載の適応制御装置において、前記可変ゲイン演算手段は、前記制御偏差の変動傾きが負のときの1次遅れ要素の時定数を前記制御偏差の変動傾きが一定または正のときの1次遅れ要素の時定数よりも大きい値に設定することを特徴とする。   In the adaptive control apparatus according to the present invention, the variable gain calculation means may use a time constant of a first-order lag element when the fluctuation slope of the control deviation is negative, to make the fluctuation slope of the control deviation constant or positive. It is characterized in that it is set to a value larger than the time constant of the first-order lag element at.

本発明によれば、可変ゲイン演算手段において、制御偏差の変動傾きが負のときの1次遅れ要素の時定数を前記制御偏差の変動傾きが一定または正のときの1次遅れ要素の時定数よりも大きい値に設定するので、可変ゲインの最小設定値への収束時間をより長くして、制御偏差のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。   According to the present invention, in the variable gain calculation means, the time constant of the first-order lag element when the fluctuation slope of the control deviation is negative is the time constant of the first-order lag element when the fluctuation slope of the control deviation is constant or positive. Since it is set to a larger value, the convergence time to the minimum setting value of the variable gain is lengthened, and it is possible to respond quickly to load changes and control target characteristic changes that may occur after zero convergence of the control deviation. Response characteristics can be realized.

本発明によれば、閉ループ制御系のゲインを補償する可変ゲイン演算手段において、1次遅れ要素の時定数を制御偏差の変動傾きに応じて可変設定することとし、1次遅れ要素の時定数をより大きな値として可変ゲインの最小設定値への収束を遅らせることができるので、制御偏差のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができるという効果を奏する。   According to the present invention, in the variable gain calculation means for compensating the gain of the closed loop control system, the time constant of the first-order lag element is variably set according to the fluctuation slope of the control deviation. Since the convergence to the minimum setting value of the variable gain can be delayed as a larger value, it is possible to respond immediately to load changes and control target characteristic changes that may occur after the control deviation has converged to zero, realizing a superior response characteristic There is an effect that can be done.

本発明の第1実施形態に係る適応制御装置のブロック図であり、(a)は適応制御装置全体の概略的ブロック図、(b)は適応制御器の概略的ブロック図である。It is a block diagram of the adaptive control apparatus which concerns on 1st Embodiment of this invention, (a) is a schematic block diagram of the whole adaptive control apparatus, (b) is a schematic block diagram of an adaptive controller. 本発明の第1実施形態の適応制御器の各種機能ブロックの詳細な構成図であり、(a)は可変ゲイン演算部における1次遅れ要素の時定数を生成する回路の構成図、(b)は可変ゲイン演算部の詳細な構成図、(c)は位相遅れ要素の詳細な構成図である。It is a detailed block diagram of the various functional blocks of the adaptive controller of 1st Embodiment of this invention, (a) is a block diagram of the circuit which produces | generates the time constant of the primary delay element in a variable gain calculating part, (b). Is a detailed configuration diagram of a variable gain calculation unit, and (c) is a detailed configuration diagram of a phase delay element. 本発明の第1実施形態のプラント出力のステップ応答を例示する説明図である。It is explanatory drawing which illustrates the step response of the plant output of 1st Embodiment of this invention. 本発明の第1実施形態のプラント入力のステップ応答を例示する説明図である。It is explanatory drawing which illustrates the step response of the plant input of 1st Embodiment of this invention. 本発明の第1実施形態の可変ゲイン演算部の可変ゲインのステップ応答を例示する説明図である。It is explanatory drawing which illustrates the step response of the variable gain of the variable gain calculating part of 1st Embodiment of this invention. 本発明の第1実施形態の外乱応答を例示する説明図であり、(a)はプラント出力y(t)を、(b)は外乱入力を、それぞれ例示する。It is explanatory drawing which illustrates the disturbance response of 1st Embodiment of this invention, (a) illustrates plant output y (t), (b) illustrates a disturbance input, respectively. 本発明の第1実施形態の外乱応答を例示する説明図であり、(a)は可変ゲイン演算部の可変ゲインK(t)を、(b)はプラント入力u(t)を、それぞれ例示する。It is explanatory drawing which illustrates the disturbance response of 1st Embodiment of this invention, (a) illustrates the variable gain K (t) of a variable gain calculating part, (b) illustrates the plant input u (t), respectively. . 本発明の第2実施形態に係る適応制御装置のブロック図であり、(a)は適応制御装置全体の概略的ブロック図、(b)は適応制御器の概略的ブロック図である。It is a block diagram of the adaptive control apparatus which concerns on 2nd Embodiment of this invention, (a) is a schematic block diagram of the whole adaptive control apparatus, (b) is a schematic block diagram of an adaptive controller. 本発明の第2実施形態の適応制御器の各種機能ブロックの詳細な構成図であり、(a)は可変ゲイン演算部における1次遅れ要素の時定数を生成する回路の構成図、(b)は可変ゲイン演算部の詳細な構成図、(c)は位相遅れ要素の詳細な構成図である。It is a detailed block diagram of the various functional blocks of the adaptive controller of 2nd Embodiment of this invention, (a) is a block diagram of the circuit which produces | generates the time constant of the primary delay element in a variable gain calculating part, (b). Is a detailed configuration diagram of a variable gain calculation unit, and (c) is a detailed configuration diagram of a phase delay element.

〔第1実施形態〕
以下、本発明の第1実施形態に係る適応制御装置について説明する。
図1は本発明の第1実施形態に係る適応制御装置のブロック図である。図1(a)には適応制御装置全体の概略的なブロック図を示し、図1(b)には適応制御器5の概略的なブロック図を示す。
[First Embodiment]
Hereinafter, an adaptive control apparatus according to a first embodiment of the present invention will be described.
FIG. 1 is a block diagram of an adaptive control apparatus according to the first embodiment of the present invention. FIG. 1A shows a schematic block diagram of the entire adaptive control apparatus, and FIG. 1B shows a schematic block diagram of the adaptive controller 5.

図1(a)において、本実施形態の適応制御装置は、大まかに、制御対象であるプラント1に対して、PI制御器3および閉ループ制御系を備えた構成である。PI制御器3は、プラント1に対する比例制御(P制御)および積分制御(I制御)に基づく制御量を生成する。また、プラント1の出力y(t)はフィードバックされており、減算器8によって目標値r(t)とプラント1の出力y(t)との偏差e(t)が求められている。   In FIG. 1A, the adaptive control apparatus of the present embodiment is roughly configured to include a PI controller 3 and a closed loop control system for a plant 1 that is a control target. The PI controller 3 generates a control amount based on proportional control (P control) and integral control (I control) for the plant 1. Further, the output y (t) of the plant 1 is fed back, and the deviation e (t) between the target value r (t) and the output y (t) of the plant 1 is obtained by the subtracter 8.

また図1(a)において、閉ループ制御系には、ループゲイン調節器7および適応制御器5を備える。ループゲイン調節器7は、プラント1の出力y(t)と目標値r(t)との偏差e(t)を入力として当該閉ループ制御系の定常ゲインが1となるように調整する。
このループゲイン調節器7は係数器で実現されるが、その係数αは、プラント1に対する操作量u(t)が1の値だけ増えたときに当該係数器の出力e(t)が定常状態でほぼ−1の値になるように設定される。
In FIG. 1A, the closed loop control system includes a loop gain adjuster 7 and an adaptive controller 5. The loop gain adjuster 7 receives the deviation e (t) between the output y (t) of the plant 1 and the target value r (t) as input and adjusts the steady gain of the closed loop control system to be 1.
The loop gain adjuster 7 is realized by a coefficient unit. The coefficient α is such that the output e * (t) of the coefficient unit is steady when the manipulated variable u (t) for the plant 1 is increased by a value of 1. It is set so as to have a value of approximately −1 in the state.

さらに図1(b)に示すように、閉ループ制御系の適応制御器5には、位相遅れ要素13を介して当該閉ループ制御系の出力u(t)をループゲイン調節器7の出力側に戻すフィードバック部と、位相遅れ要素13の出力y(t)とループゲイン調節器7の出力e(t)との制御偏差e(t)を入力として可変ゲインK(t)を演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算部11と、を備えている。 Further, as shown in FIG. 1B, the closed loop control system adaptive controller 5 sends the output u a (t) of the closed loop control system to the output side of the loop gain adjuster 7 via the phase delay element 13. The variable gain K (t) is calculated by using the feedback portion to be returned, and the control deviation e a (t) between the output y f (t) of the phase delay element 13 and the output e * (t) of the loop gain adjuster 7 as input. And a variable gain calculator 11 for compensating for the gain of the closed loop control system.

なお、参照符号20は位相遅れ要素13の出力y(t)とループゲイン調節器7の出力e(t)との制御偏差e(t)を求める減算器であり、参照符号10は制御偏差e(t)と可変ゲイン演算部11の出力である可変ゲインK(t)とを掛け合わせる乗算器である。したがって、位相遅れ要素13の伝達特性をF(s)とすれば、ループゲイン調節器7の出力e(t)と閉ループ制御系の出力u(t)との間の伝達特性Gc(s)は、Gc(s)=K(s)/(1+K(s)・F(s))で表される。ここに、sはラプラス演算子である。 Reference numeral 20 is a subtractor for obtaining a control deviation e a (t) between the output y f (t) of the phase delay element 13 and the output e * (t) of the loop gain adjuster 7. This is a multiplier that multiplies the control deviation e a (t) by the variable gain K (t) that is the output of the variable gain calculator 11. Accordingly, if the transfer characteristic of the phase delay element 13 is F 1 (s), the transfer characteristic Gc () between the output e * (t) of the loop gain adjuster 7 and the output u a (t) of the closed loop control system. s) is represented by Gc (s) = K (s) / (1 + K (s) · F 1 (s)). Here, s is a Laplace operator.

また、位相遅れ要素13の伝達特性F(s)として種々の特性が考えられるが、ここでは2次微分の効果を得るため、次式で与えられるものとする。 Various characteristics can be considered as the transfer characteristic F 1 (s) of the phase delay element 13, but here, in order to obtain the effect of the second derivative, it is assumed that it is given by the following expression.

(s)=1/2Kmax(1/(1+τs)+1/(1+τs))) …(1) F 1 (s) = 1 / 2K max (1 / (1 + τs) + 1 / (1 + τs) 2 )) (1)

ここで、Kmaxはループゲイン調節器7の出力e(t)と閉ループ制御系の出力u(t)との間の定常ゲインの最大値である。 Here, K max is the maximum value of the steady gain between the output e * (t) of the loop gain adjuster 7 and the output u a (t) of the closed loop control system.

(1)式を伝達特性Gc(s)の式に代入して、K(s)→∞にすれば、次式の関係が得られる。   By substituting the equation (1) into the equation of the transfer characteristic Gc (s) and changing K (s) → ∞, the relationship of the following equation is obtained.

Gc(s)=Kmax(1+τs)/(1+0.5τs) …(2) Gc (s) = K max (1 + τs) 2 /(1+0.5τs) (2)

ここで、Kmaxおよびτの値は指定値であり、適応制御器5は可変ゲインK(s)の値が無限大になっても、定常ゲインはKmaxを超えることはない。また同様に、K(s)→Kmin(Kmin≪Kmax)にすれば、Gc(s)≒Kminの関係が得られ、適応制御器5は可変ゲインK(s)の値が小さくなるに従いゲインKminの比例動作となる。なお、Kminの値は指定値である。 Here, the values of K max and τ are specified values, and the adaptive controller 5 does not exceed K max even if the value of the variable gain K (s) becomes infinite. Similarly, if K (s) → K min (K min << K max ), the relationship of Gc (s) ≈K min is obtained, and the adaptive controller 5 has a small value of the variable gain K (s). As a result, the proportional operation with the gain K min is performed. The value of K min is a specified value.

次に、図1(b)において、可変ゲイン演算部11は、係数器15、乗算器16、1次遅れ要素17、係数器18および加算器19を備えている。すなわち、可変ゲインK(t)は、制御偏差e(t)に係数器15で係数γ倍し、それを乗算器16で自乗し、これを時定数μの1次遅れ要素17を介して得られた値に、係数器18の係数β/Kmaxを加えて算出される。可変ゲイン演算部11における可変ゲインK(t)の算出を式で表せば、次の通りである。 Next, in FIG. 1B, the variable gain calculation unit 11 includes a coefficient unit 15, a multiplier 16, a first-order lag element 17, a coefficient unit 18, and an adder 19. That is, the variable gain K (t) is obtained by multiplying the control deviation e a (t) by the coefficient γ by the coefficient unit 15, squares it by the multiplier 16, and passes this through the first-order lag element 17 of the time constant μ. It is calculated by adding the coefficient β / K max of the coefficient unit 18 to the obtained value. The calculation of the variable gain K (t) in the variable gain calculator 11 is expressed as follows.

K(t)=(μ/(μs+1))・(γe(t))+β/Kmax (3) K (t) = (μ / (μs + 1)) · (γe a (t)) 2 + β / K max (3)

ここで、d/dt|e(t)|<0のときμ=μ11
d/dt|e(t)|≧0のときμ=μ12(μ12<μ11
Here, when d / dt | e a (t) | <0, μ = μ 11
When d / dt | e a (t) | ≧ 0 μ = μ 121211 )

(3)式に示す通り、本実施形態の適応制御装置では、可変ゲイン演算部11における1次遅れ要素17の時定数μを、制御偏差e(t)の変動傾きに応じて可変設定する点に特徴がある。すなわち、制御偏差e(t)の変動傾きd/dt|e(t)|が負のときに1次遅れ要素17の時定数をμ=μ11とし、これを制御偏差e(t)の変動傾きd/dt|e(t)|が一定または正のときの1次遅れ要素17の時定数μ12よりも大きい値に設定するものである。 As shown in the equation (3), in the adaptive control device of this embodiment, the time constant μ of the first-order lag element 17 in the variable gain calculation unit 11 is variably set according to the fluctuation slope of the control deviation e a (t). There is a feature in the point. That is, when the fluctuation slope d / dt | e a (t) | of the control deviation e a (t) is negative, the time constant of the first-order lag element 17 is μ = μ 11, and this is the control deviation e a (t ) Fluctuation slope d / dt | e a (t) | is constant or positive and is set to a value larger than the time constant μ 12 of the first-order lag element 17.

図2(a)に、可変ゲイン演算部11における1次遅れ要素17の時定数μ(1/μ)を生成する回路の構成図を示す。時定数μ11の定数器31、時定数μ12の定数器32、切替スイッチ33、微分器35、切替信号生成器36、除算器37および「1」の定数器38を備えた構成である。つまり、微分器35で制御偏差e(t)の変動傾きd/dt|e(t)|を求め、切替信号生成器36により負または正、ゼロを判定して切替信号を生成し、該切替信号に基づき時定数μ11の定数器31または時定数μ12の定数器32の何れかの出力を選択するものである。なお、後述のように、1次遅れ要素17に1/μを用いた構成としているので、除算器37により1/μを求めている。 FIG. 2A is a configuration diagram of a circuit that generates the time constant μ (1 / μ) of the first-order lag element 17 in the variable gain calculation unit 11. Time constant 31 constant mu 11, the time constant mu 12 constants 32, selector switch 33, a differentiator 35, the switching signal generator 36, a configuration in which a constant 38 of the divider 37 and "1". That is, the differentiator 35 obtains the fluctuation slope d / dt | e a (t) | of the control deviation e a (t), and the switching signal generator 36 determines negative, positive, or zero to generate a switching signal, Based on the switching signal, the output of either the constant unit 31 having the time constant μ 11 or the constant unit 32 having the time constant μ 12 is selected. As will be described later, since 1 / μ is used for the first-order lag element 17, 1 / μ is obtained by the divider 37.

また、図2(b)に、可変ゲイン演算部11の詳細な構成図を示す。図2(b)では、1次遅れ要素17を積分器21、ゲイン(係数)1/μを持つ係数器22および減算器23により構成している。また図2(b)では、可変ゲイン演算部11と加算器19の間に加算器24を設けて、他の制御系統の信号(可変ゲイン)Ke(t)を加える構成としている。ここで、他の制御系統は、制御対象が2変数系以上からなる場合の他の制御系統であり、このような構成とすることで多変数制御系への適用が可能となる。   FIG. 2B shows a detailed configuration diagram of the variable gain calculation unit 11. In FIG. 2B, the first-order lag element 17 includes an integrator 21, a coefficient unit 22 having a gain (coefficient) 1 / μ, and a subtracter 23. In FIG. 2B, an adder 24 is provided between the variable gain calculator 11 and the adder 19, and a signal (variable gain) Ke (t) of another control system is added. Here, the other control system is another control system in the case where the control target is composed of two or more variable systems, and such a configuration makes it possible to apply to a multivariable control system.

なお、ゲインγを持つ係数器15は、ゲイン(係数)γを次のようにして求めるのが望ましい。すなわち、ループゲイン調節器7の出力e(t)の最大偏差推定値e(t)maxの逆数を、時定数σを持つ1次遅れ要素(1/(1+σs))を介して得た値である。ここで、時定数σはμ12の値にほぼ等しい。 The coefficient unit 15 having the gain γ desirably obtains the gain (coefficient) γ as follows. That is, the reciprocal of the maximum deviation estimated value e * (t) max of the output e * (t) of the loop gain adjuster 7 was obtained via the first-order lag element (1 / (1 + σs)) having the time constant σ. Value. Here, the time constant σ is approximately equal to the value of mu 12.

さらに、図2(c)に、上述した位相遅れ要素13の詳細な構成図を示す。位相遅れ要素13は、係数器41、第1の1次遅れ要素42、第2の1次遅れ要素43および加算器44を備えた構成である。乗算器10の出力u(t)を係数器41で1/2Kmax倍し、その出力を第1の1次遅れ要素42に入力し、さらにその出力を第2の1次遅れ要素43に入力する。そして、第1の1次遅れ要素42と第2の1次遅れ要素43の出力を加算器44によって加算し、その加算結果が位相遅れ要素13の出力y(t)となる。なお、第1の1次遅れ要素43および第2の1次遅れ要素44における時定数τは、外部から指定でき(例えばτ=0.2μ12に設定され)る。 FIG. 2C shows a detailed configuration diagram of the phase delay element 13 described above. The phase delay element 13 includes a coefficient unit 41, a first primary delay element 42, a second primary delay element 43, and an adder 44. The output u a (t) of the multiplier 10 is multiplied by 1 / 2K max by the coefficient unit 41, the output is input to the first primary delay element 42, and the output is further input to the second primary delay element 43. input. Then, the outputs of the first primary delay element 42 and the second primary delay element 43 are added by the adder 44, and the addition result becomes the output y f (t) of the phase delay element 13. Note that the time constant tau in the first primary delay element 43 and the second primary delay element 44, Ru can be specified from the outside (e.g. is set to τ = 0.2μ 12).

次に、本実施形態の適応制御装置によるステップ応答および外乱応答のシミュレーション実験結果を図3〜図6に例示して、本発明の効果を検証する。ここで、図3は本実施形態のプラント出力y(t)のステップ応答を例示する説明図であり、図4はプラント入力u(t)のステップ応答を例示する説明図であり、図5は可変ゲイン演算部11の可変ゲインK(t)のステップ応答を例示する説明図である。また図6および図7は本実施形態の外乱応答を例示する説明図であり、図6(a)はプラント出力y(t)を、図6(b)は外乱入力を、図7(a)は可変ゲイン演算部11の可変ゲインK(t)を、図7(b)はプラント入力u(t)を、それぞれ示す。   Next, simulation results of step response and disturbance response by the adaptive control apparatus of this embodiment are illustrated in FIGS. 3 to 6 to verify the effect of the present invention. Here, FIG. 3 is an explanatory diagram illustrating the step response of the plant output y (t) of this embodiment, FIG. 4 is an explanatory diagram illustrating the step response of the plant input u (t), and FIG. It is explanatory drawing which illustrates the step response of the variable gain K (t) of the variable gain calculating part 11. 6 and 7 are explanatory diagrams illustrating the disturbance response of this embodiment. FIG. 6 (a) shows the plant output y (t), FIG. 6 (b) shows the disturbance input, and FIG. 7 (a). Indicates the variable gain K (t) of the variable gain calculator 11, and FIG. 7 (b) indicates the plant input u (t).

まず、ステップ応答については、図3に示すように、目標値r(t)をあるタイミングで「1」にするステップ入力に対して行った。従来例では、可変ゲイン演算部11における1次遅れ要素17の時定数μは、制御偏差e(t)の変動傾きに関わらずμ=μ12で一定である。これに対して、本発明では、プラント出力y(t)が目標値r(t)に最初に到達するまでの間は、制御偏差e(t)の変動傾きは負となって、時定数μはより大きいμ=μ11に設定され、その後オーバーシュートのピーク点に達するまでの間は、制御偏差e(t)の変動傾きは正となって、時定数μはより小さいμ=μ12に設定され、…と、目標値r(t)への到達点およびオーバーシュートまたはアンダーシュートのピーク点を境にして、1次遅れ要素の時定数が切り替わることとなる。 First, as shown in FIG. 3, the step response is performed for a step input in which the target value r (t) is set to “1” at a certain timing. In the conventional example, the time constant mu variable gain calculation unit 11 in the first-order lag element 17, is constant at mu = mu 12 regardless of variations inclination of the control deviation e a (t). On the other hand, in the present invention, the fluctuation slope of the control deviation e a (t) is negative until the plant output y (t) first reaches the target value r (t), and the time constant μ is set to a larger μ = μ 11 , and thereafter, until the peak point of the overshoot is reached, the fluctuation slope of the control deviation e a (t) is positive, and the time constant μ is smaller μ = μ Is set to 12 , and the time constant of the first-order lag element is switched at the point where the target value r (t) is reached and the peak point of overshoot or undershoot.

可変ゲイン演算部11の可変ゲインK(t)は、図5に示すように、従来よりも大きく設定されると共に、偏差e(t)の収束に伴って(従来と比較して)ゆっくりと最小設定値に収束していっている。その結果として、プラント出力y(t)およびプラント入力u(t)のステップ応答について、目標値r(t)変化により速く応答でき、しかもオーバーシュートも抑制され且つ整定時間もより短くなっている。これにより、従来よりも優れたステップ応答特性を実現し得ることが確認できた。   As shown in FIG. 5, the variable gain K (t) of the variable gain calculation unit 11 is set to be larger than the conventional value, and gradually decreases as the deviation e (t) converges (compared to the conventional value). Converging to the set value. As a result, the step response of the plant output y (t) and the plant input u (t) can be quickly responded by the change in the target value r (t), the overshoot is suppressed, and the settling time is shortened. As a result, it was confirmed that step response characteristics superior to those of the prior art can be realized.

また、外乱応答については、図6(b)に示すように、あるタイミングでマイナス方向に振れ、その後収束しながらもプラス方向に振れていく振動性を持つ外乱入力に対して行った。従来例では、可変ゲイン演算部11における1次遅れ要素17の時定数μは、制御偏差e(t)の変動傾きに関わらずμ=μ12で一定である。これに対して、本発明では、プラント出力y(t)(図6(a)参照)がマイナス方向に振れてアンダーシュートのピーク点に達するまでの間は、制御偏差e(t)の変動傾きは正となって、時定数μはより小さいμ=μ12に設定され、その後、目標値r(t)に到達するまでの間は、制御偏差e(t)の変動傾きは負となって、時定数μはより大きいμ=μ11に設定され、その後、オーバーシュートのピーク点に達するまでの間は、制御偏差e(t)の変動傾きは正となって、時定数μはより小さいμ=μ12に設定され、…と、目標値r(t)への到達点およびオーバーシュートまたはアンダーシュートのピーク点を境にして、1次遅れ要素の時定数が切り替わることとなる。 Further, as shown in FIG. 6B, the disturbance response was applied to a disturbance input having a vibration property that swings in a minus direction at a certain timing and then swings in a plus direction while converging. In the conventional example, the time constant mu variable gain calculation unit 11 in the first-order lag element 17, is constant at mu = mu 12 regardless of variations inclination of the control deviation e a (t). On the other hand, in the present invention, the fluctuation of the control deviation e a (t) occurs until the plant output y (t) (see FIG. 6A) swings in the negative direction and reaches the peak point of the undershoot. slope becomes positive, the time constant mu is set to a smaller mu = mu 12, thereafter, until it reaches the target value r (t), the variation slope of the control deviation e a (t) is negative Thus, the time constant μ is set to a larger value μ = μ 11 , and thereafter, until the peak point of the overshoot is reached, the fluctuation slope of the control deviation e a (t) becomes positive, and the time constant μ It is set to a smaller mu = mu 12, ... and, in the boundary of the peak point of the destination point and overshoot or undershoot of the target value r (t), so that the time constant of the primary delay element is switched .

可変ゲイン演算部11の可変ゲインK(t)は、図7(a)に示すように、従来よりも大きく設定されると共に、偏差e(t)の収束に伴って(従来と比較して)ゆっくりと最小設定値に収束していっている。その結果として、プラント出力y(t)およびプラント入力u(t)のステップ応答について、外乱変化により速く応答でき、しかもアンダーシュートおよびオーバーシュートも抑制され且つ整定時間もより短くなっている。これにより、従来よりも優れた外乱応答特性を実現し得ることが確認できた。   As shown in FIG. 7A, the variable gain K (t) of the variable gain calculation unit 11 is set to be larger than that of the prior art, and with the convergence of the deviation e (t) (compared to the prior art). Slowly converges to the minimum setting value. As a result, the step response of the plant output y (t) and the plant input u (t) can be quickly responded to a change in disturbance, and undershoot and overshoot are suppressed, and the settling time is shortened. Thereby, it has been confirmed that disturbance response characteristics superior to those of the prior art can be realized.

以上説明したように、本実施形態の適応制御装置は、プラント1の出力y(t)と目標値r(t)との偏差e(t)を入力として当該閉ループ制御系の定常ゲインが1となるように調整するループゲイン調節器7と、当該閉ループ制御系の出力を入力として位相遅れ要素13を介してループゲイン調節器7の出力側に戻すフィードバック部と、位相遅れ要素13の出力y(t)とループゲイン調節器7の出力e(t)との制御偏差e(t)を入力として可変ゲインK(t)を演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算部11と、を備える閉ループ制御系と、ループゲイン調節器7の出力を入力としてPI制御を行うPI制御器3と、閉ループ制御系の出力u(t)とPI制御器3の出力とを加算してプラント1に操作量u(t)として与える加算器9と、を有する適応制御装置であって、可変ゲイン演算部11は、制御偏差e(t)を自乗する乗算器16と、乗算器16の出力を入力とする1次遅れ要素17と、を備え、1次遅れ要素17の時定数を制御偏差e(t)の変動傾きに応じて可変設定する。 As described above, the adaptive control apparatus according to the present embodiment receives the deviation e (t) between the output y (t) of the plant 1 and the target value r (t) as an input, and the steady-state gain of the closed loop control system is 1. A loop gain adjuster 7 that adjusts so as to be, a feedback unit that takes the output of the closed loop control system as an input and returns it to the output side of the loop gain adjuster 7 via the phase delay element 13, and an output y f of the phase delay element 13 A variable gain calculation for calculating a variable gain K (t) using a control deviation e a (t) between (t) and the output e * (t) of the loop gain adjuster 7 as input and compensating for the gain of the closed loop control system. A closed loop control system including the unit 11, a PI controller 3 that performs PI control using the output of the loop gain adjuster 7 as an input, an output u a (t) of the closed loop control system, and an output of the PI controller 3. Add to plastic An adder 9 to provide a manipulated variable u (t) to sheet 1, a adaptive controller having a variable gain calculator 11, a multiplier 16 which squares the control deviation e a a (t), a multiplier 16 A first-order lag element 17 that receives the output of the first-order lag element 17, and the time constant of the first-order lag element 17 is variably set according to the fluctuation slope of the control deviation e a (t).

このように本実施形態の適応制御装置では、可変ゲイン演算部11において、1次遅れ要素17の時定数を制御偏差e(t)の変動傾きに応じて可変設定するので、1次遅れ要素17の時定数をより大きな値として可変ゲインK(t)の最小設定値への収束を遅らせ、制御偏差e(t)のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。 As described above, in the adaptive control apparatus of the present embodiment, the variable gain calculation unit 11 variably sets the time constant of the first-order lag element 17 according to the fluctuation slope of the control deviation e a (t). The time constant of 17 is set to a larger value, the convergence of the variable gain K (t) to the minimum set value is delayed, and the load change that may occur after the control deviation e a (t) converges to zero and the characteristic change of the control target are also detected. It is possible to respond immediately and realize a better response characteristic.

また本実施形態の適応制御装置では、可変ゲイン演算部11において、制御偏差e(t)の変動傾きが負のときの1次遅れ要素17の時定数を制御偏差e(t)の変動傾きが一定または正のときの1次遅れ要素17の時定数よりも大きい値に設定するので、可変ゲインK(t)の最小設定値への収束時間をより長くして、制御偏差e(t)のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。 In the adaptive control apparatus of the present embodiment, the variable gain calculation unit 11 uses the time constant of the first-order lag element 17 when the fluctuation slope of the control deviation e a (t) is negative as the fluctuation of the control deviation e a (t). Since it is set to a value larger than the time constant of the first-order lag element 17 when the slope is constant or positive, the convergence time of the variable gain K (t) to the minimum set value is lengthened, and the control deviation e a ( It is possible to immediately respond to a load change that may occur after the zero convergence of t) and a characteristic change of the controlled object, and to realize a more excellent response characteristic.

〔第2実施形態〕
次に、図8は本発明の第2実施形態に係る適応制御装置のブロック図である。図8(a)には適応制御装置全体の概略的なブロック図を示し、図8(b)には適応制御器105の概略的なブロック図を示す。
[Second Embodiment]
Next, FIG. 8 is a block diagram of an adaptive control apparatus according to the second embodiment of the present invention. FIG. 8A shows a schematic block diagram of the entire adaptive control apparatus, and FIG. 8B shows a schematic block diagram of the adaptive controller 105.

図8(a)において、本実施形態の適応制御装置は、大まかに、制御対象であるプラント101に対して、PID制御器103および閉ループ制御系を備えた構成である。PID制御器103は、プラント101に対する比例制御(P制御)、積分制御(I制御)および微分制御(D制御)に基づく制御量を生成する。また、プラント101の出力y(t)はフィードバックされており、減算器108によって目標値r(t)とプラント101の出力y(t)との偏差e(t)が求められている。   In FIG. 8A, the adaptive control apparatus of the present embodiment is roughly configured to include a PID controller 103 and a closed loop control system for a plant 101 that is a control target. The PID controller 103 generates a control amount based on proportional control (P control), integral control (I control), and differential control (D control) for the plant 101. Further, the output y (t) of the plant 101 is fed back, and the deviation e (t) between the target value r (t) and the output y (t) of the plant 101 is obtained by the subtractor 108.

また、閉ループ制御系には適応制御器105を備える。図8(b)に示すように、閉ループ制御系の適応制御器105には、目標値r(t)とプラント101の出力y(t)との偏差e(t)をk倍する係数器107と、係数器107の出力を入力とする位相進み要素112,114および119と、位相遅れ要素113を介して当該閉ループ制御系の出力u(t)を戻すフィードバック部と、位相遅れ要素113の出力y(t)と位相進み要素112,114および119の出力e(t)との制御偏差e(t)を入力として可変ゲインK(t)を演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算部111と、を備えている。 The closed loop control system includes an adaptive controller 105. As shown in FIG. 8B, the adaptive controller 105 of the closed loop control system includes a coefficient unit 107 that multiplies the deviation e (t) between the target value r (t) and the output y (t) of the plant 101 by k. A phase advance element 112, 114 and 119 that receives the output of the coefficient unit 107, a feedback unit that returns the output u a (t) of the closed loop control system via the phase delay element 113, and The variable gain K (t) is calculated using the control deviation e a (t) between the output y f (t) and the output e * (t) of the phase advance elements 112, 114 and 119, and the gain of the closed loop control system is calculated. And a variable gain calculator 111 for compensating for the above.

なお、位相進み要素は、ゲインλの係数器112、時定数τを持つ微分器114、並びに加算器119を備えた構成であり、伝達特性(λ+τs)を持つ。また、参照符号120は位相遅れ要素113の出力y(t)と位相進み要素の出力e(t)との制御偏差e(t)を求める減算器であり、参照符号110は制御偏差e(t)と可変ゲイン演算部111の出力である可変ゲインK(t)とを掛け合わせる乗算器である。したがって、位相遅れ要素13の伝達特性をF(s)とすれば、偏差e(t)と閉ループ制御系の出力u(t)との間の伝達特性Gc(s)は、Gc(s)=k・(λ+τs)・K(s)/(1+K(s)・F(s))で表される。 The phase advance element includes a coefficient multiplier 112 having a gain λ, a differentiator 114 having a time constant τ, and an adder 119, and has a transfer characteristic (λ + τs). Reference numeral 120 is a subtractor for obtaining a control deviation e a (t) between the output y f (t) of the phase delay element 113 and the output e * (t) of the phase advance element. Reference numeral 110 is a control deviation. This is a multiplier that multiplies e a (t) by the variable gain K (t) that is the output of the variable gain calculator 111. Therefore, if the transfer characteristic of the phase delay element 13 is F 1 (s), the transfer characteristic Gc (s) between the deviation e (t) and the output u a (t) of the closed loop control system is Gc (s ) = K · (λ + τs) · K (s) / (1 + K (s) · F 1 (s)).

また、位相遅れ要素113の伝達特性F(s)として種々の特性が考えられるが、ここでは2次微分の効果を得るため、次式で与えられるものとする。 Various characteristics are conceivable as the transfer characteristic F 2 (s) of the phase delay element 113. Here, in order to obtain the effect of the second order differentiation, it is assumed that it is given by the following expression.

12(s)=1/2(1/(1+τs)+1/(1+τs))) (4) F 12 (s) = 1/2 (1 / (1 + τs) + 1 / (1 + τs) 2 )) (4)

(4)式を伝達特性Gc(s)の式に代入して、K(s)→∞にすれば、次式の関係が得られる。   By substituting the equation (4) into the equation for the transfer characteristic Gc (s) and changing K (s) → ∞, the relationship of the following equation is obtained.

Gc(s)=k・(λ+τs)・(1+τs)/(1+0.5τs) (5) Gc (s) = k · (λ + τs) · (1 + τs) 2 /(1+0.5τs) (5)

ここで、k、λおよびτの値は指定値であり、適応制御器105は可変ゲインK(s)の値が無限大になっても、定常ゲインはkλを超えることはない。また同様に、K(s)→小にすれば、Gc(s)≒k・(λ+τs)・K(s)の関係が得られ、適応制御器105は可変ゲインK(s)の値が小さくなるに従い1次微分動作となる。   Here, the values of k, λ and τ are specified values, and the adaptive controller 105 does not exceed kλ even when the value of the variable gain K (s) becomes infinite. Similarly, if K (s) → smaller, the relationship Gc (s) ≈k · (λ + τs) · K (s) is obtained, and the adaptive controller 105 has a smaller variable gain K (s). As a result, the first-order differential operation is performed.

次に、図8(b)において、可変ゲイン演算部111は、係数器115、乗算器116および1次遅れ要素117を備えている。すなわち、可変ゲインK(t)は、制御偏差e(t)に係数器115で係数γ倍し、それを乗算器116で自乗し、これを時定数μの1次遅れ要素117を介して得られた値として算出される。可変ゲイン演算部111における可変ゲインK(t)の算出を式で表せば、次の通りである。 Next, in FIG. 8B, the variable gain calculation unit 111 includes a coefficient unit 115, a multiplier 116, and a first-order lag element 117. That is, the variable gain K (t) is obtained by multiplying the control deviation e a (t) by the coefficient γ by the coefficient unit 115, squares it by the multiplier 116, and passes this through the first-order lag element 117 of the time constant μ. It is calculated as the obtained value. The calculation of the variable gain K (t) in the variable gain calculator 111 is expressed as follows.

K(t)=(μ/(μs+1))・(γe(t)) (6) K (t) = (μ / (μs + 1)) · (γe a (t)) 2 (6)

ここで、d/dt|e(t)|<0のときμ=μ21
d/dt|e(t)|≧0のときμ=μ22(μ22<μ21
Here, when d / dt | e a (t) | <0, μ = μ 21
When d / dt | e a (t) | ≧ 0 μ = μ 222221 )

(6)式に示す通り、本実施形態の適応制御装置では、可変ゲイン演算部111における1次遅れ要素117の時定数μを、制御偏差e(t)の変動傾きに応じて可変設定する点に特徴がある。すなわち、制御偏差e(t)の変動傾きd/dt|e(t)|が負のときに1次遅れ要素117の時定数をμ=μ21とし、これを制御偏差e(t)の変動傾きd/dt|e(t)|が一定または正のときの1次遅れ要素117の時定数μ22よりも大きい値に設定するものである。 As shown in the equation (6), in the adaptive control device of the present embodiment, the time constant μ of the first-order lag element 117 in the variable gain calculation unit 111 is variably set according to the fluctuation slope of the control deviation e a (t). There is a feature in the point. That is, when the fluctuation slope d / dt | e a (t) | of the control deviation e a (t) is negative, the time constant of the first-order lag element 117 is set to μ = μ 21 , which is defined as the control deviation e a (t ) Fluctuation slope d / dt | e a (t) | is constant or positive and is set to a value larger than the time constant μ 22 of the first-order lag element 117.

図9(a)に、可変ゲイン演算部111における1次遅れ要素117の時定数μ(1/μ)を生成する回路の構成図を示す。時定数μ21の定数器131、時定数μ22の定数器132、切替スイッチ133、微分器135、切替信号生成器136、除算器137および「1」の定数器138を備えた構成である。つまり、微分器135で制御偏差e(t)の変動傾きd/dt|e(t)|を求め、切替信号生成器136により負または正、ゼロを判定して切替信号を生成し、該切替信号に基づき時定数μ21の定数器131または時定数μ22の定数器132の何れかの出力を選択するものである。なお、後述のように、1次遅れ要素117に1/μを用いた構成としているので、除算器137により1/μを求めている。 FIG. 9A shows a configuration diagram of a circuit that generates the time constant μ (1 / μ) of the first-order lag element 117 in the variable gain calculation unit 111. Constant 132 constant 131, the time constant mu 22 time constant mu 21, the changeover switch 133, a differentiator 135, the switching signal generator 136, a configuration in which a divider 137 and the constant 138 "1". That is, the differentiator 135 obtains the fluctuation slope d / dt | e a (t) | of the control deviation e a (t), and the switching signal generator 136 determines negative, positive, or zero to generate a switching signal, Based on the switching signal, the output of either the constant unit 131 having the time constant μ 21 or the constant unit 132 having the time constant μ 22 is selected. As will be described later, since 1 / μ is used for the first-order delay element 117, 1 / μ is obtained by the divider 137.

また、図9(b)に、可変ゲイン演算部111の詳細な構成図を示す。図9(b)では、1次遅れ要素117を積分器121、ゲイン(係数)1/μを持つ係数器122および減算器123により構成している。また図9(b)では、可変ゲイン演算部111の後段に加算器124を設けて、他の制御系統の信号(可変ゲイン)Ke(t)を加える構成としている。ここで、他の制御系統は、制御対象が2変数系以上からなる場合の他の制御系統であり、このような構成とすることで多変数制御系への適用が可能となる。   FIG. 9B shows a detailed configuration diagram of the variable gain calculation unit 111. In FIG. 9B, the first-order lag element 117 includes an integrator 121, a coefficient unit 122 having a gain (coefficient) 1 / μ, and a subtractor 123. In FIG. 9B, an adder 124 is provided at the subsequent stage of the variable gain calculation unit 111 to add a signal (variable gain) Ke (t) of another control system. Here, the other control system is another control system in the case where the control target is composed of two or more variable systems, and such a configuration makes it possible to apply to a multivariable control system.

なお、ゲインγを持つ係数器115は、ゲイン(係数)γを次のようにして求めるのが望ましい。すなわち、位相進み要素112,114および119の出力e(t)の最大偏差推定値e(t)maxの逆数を、時定数σを持つ1次遅れ要素(1/(1+σs))を介して得た値である。ここで、時定数σはμ22の値にほぼ等しい。 The coefficient unit 115 having the gain γ desirably obtains the gain (coefficient) γ as follows. That is, the reciprocal of the maximum deviation estimated value e * (t) max of the output e * (t) of the phase advance elements 112, 114 and 119 is passed through the first-order lag element (1 / (1 + σs)) having the time constant σ. This is the value obtained. Here, the time constant σ is approximately equal to the value of mu 22.

さらに、図9(c)に、上述した位相遅れ要素113の詳細な構成図を示す。位相遅れ要素13は、係数器141、第1の1次遅れ要素142、第2の1次遅れ要素143および加算器144を備えた構成である。乗算器110の出力u(t)を係数器141で1/2倍し、その出力を第1の1次遅れ要素142に入力し、さらにその出力を第2の1次遅れ要素143に入力する。そして、第1の1次遅れ要素142と第2の1次遅れ要素143の出力を加算器144によって加算し、その加算結果が位相遅れ要素113の出力y(t)となる。なお、第1の1次遅れ要素143および第2の1次遅れ要素144における時定数τは、外部から指定でき(例えばτ=0.0833μ22に設定され)る。 FIG. 9C shows a detailed configuration diagram of the phase delay element 113 described above. The phase delay element 13 includes a coefficient unit 141, a first primary delay element 142, a second primary delay element 143, and an adder 144. The output u a (t) of the multiplier 110 is multiplied by 1/2 by the coefficient unit 141, the output is input to the first first-order lag element 142, and the output is input to the second first-order lag element 143. To do. Then, the outputs of the first primary delay element 142 and the second primary delay element 143 are added by the adder 144, and the addition result becomes the output y f (t) of the phase delay element 113. Note that the time constant tau in the first primary delay element 143 and the second primary delay element 144, Ru can be specified from the outside (e.g. is set to τ = 0.0833μ 22).

以上説明したように、本実施形態の適応制御装置は、目標値r(t)とプラント101の出力y(t)との偏差e(t)をk倍する係数器107と、係数器107の出力を入力とする位相進み要素112,114および119と、当該閉ループ制御系の出力を入力し位相遅れ要素113を介して戻すフィードバック部と、位相遅れ要素113の出力y(t)と位相進み要素112,114および119の出力e(t)との制御偏差e(t)を入力として可変ゲインK(t)を演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算部111と、を備える閉ループ制御系と、偏差e(t)を入力としてPID制御を行うPID制御器103と、閉ループ制御系の出力とPID制御器103の出力とを加算してプラント101にu(t)として与える加算器109と、を有する適応制御装置であって、可変ゲイン演算部111は、制御偏差e(t)を自乗する乗算器116と、乗算器116の出力を入力とする1次遅れ要素117と、を備え、1次遅れ要素117の時定数を制御偏差e(t)の変動傾きに応じて可変設定する。 As described above, the adaptive control apparatus of the present embodiment includes the coefficient multiplier 107 that multiplies the deviation e (t) between the target value r (t) and the output y (t) of the plant 101 by k, Phase advance elements 112, 114, and 119 that receive outputs as inputs, a feedback unit that receives the output of the closed loop control system and returns it via the phase delay element 113, and outputs y f (t) of the phase delay elements 113 and the phase advance A variable gain calculation unit 111 for calculating a variable gain K (t) by taking a control deviation e a (t) from the output e * (t) of the elements 112, 114 and 119 as an input and compensating for the gain of the closed loop control system; , A PID controller 103 that performs PID control with the deviation e (t) as an input, and adds the output of the closed loop control system and the output of the PID controller 103 to the plant 101. A adaptive controller having an adder 109 to provide as u (t), a variable gain calculation unit 111, a multiplier 116 for squaring the control deviation e a a (t), and inputs the output of the multiplier 116 And a time constant of the first-order lag element 117 is variably set according to the fluctuation slope of the control deviation e a (t).

このように本実施形態の適応制御装置では、可変ゲイン演算部111において、1次遅れ要素117の時定数を制御偏差e(t)の変動傾きに応じて可変設定するので、1次遅れ要素117の時定数をより大きな値として可変ゲインK(t)の最小設定値への収束を遅らせ、制御偏差e(t)のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。 As described above, in the adaptive control apparatus of this embodiment, the time constant of the first-order lag element 117 is variably set according to the fluctuation slope of the control deviation e a (t) in the variable gain calculation unit 111. The time constant of 117 is set to a larger value to delay the convergence of the variable gain K (t) to the minimum set value, and also to a load change or a control target characteristic change that may occur after the control deviation e a (t) converges to zero. It is possible to respond immediately and realize a better response characteristic.

また本実施形態の適応制御装置では、可変ゲイン演算部111において、制御偏差e(t)の変動傾きが負のときの1次遅れ要素117の時定数を制御偏差e(t)の変動傾きが一定または正のときの1次遅れ要素117の時定数よりも大きい値に設定するので、可変ゲインK(t)の最小設定値への収束時間をより長くして、制御偏差e(t)のゼロ収束後に起こり得る負荷変化や制御対象の特性変化に対しても即応でき、より優れた応答特性を実現することができる。 In the adaptive control apparatus of the present embodiment, the variable gain calculation unit 111 uses the time constant of the first-order lag element 117 when the fluctuation slope of the control deviation e a (t) is negative as the fluctuation of the control deviation e a (t). Since it is set to a value larger than the time constant of the first-order lag element 117 when the slope is constant or positive, the convergence time of the variable gain K (t) to the minimum set value is lengthened, and the control deviation e a ( It is possible to immediately respond to a load change that may occur after the zero convergence of t) and a characteristic change of the controlled object, and to realize a more excellent response characteristic.

1,101 プラント(制御対象)
3 PI制御器
5,105 適応制御器
7 ループゲイン調節器
8,20,23,108,120,123 減算器
9,19,24,109,119,124 加算器
10,16,110,116 乗算器
11,111 可変ゲイン演算部
13,113 位相遅れ要素
15,18,22,41,107,112,115,122,141 係数器
17,117 1次遅れ要素
21,121 積分器
31,32,38,131,132,138 定数器
33,133 切替スイッチ
35,114,135 微分器
36,136 切替信号生成器
37,137 除算器
42,142 第1の1次遅れ要素
43,143 第2の1次遅れ要素
103 PID制御器
1,101 plant (control target)
3 PI controller 5, 105 Adaptive controller 7 Loop gain adjuster 8, 20, 23, 108, 120, 123 Subtractor 9, 19, 24, 109, 119, 124 Adder 10, 16, 110, 116 Multiplier 11, 111 Variable gain calculation units 13, 113 Phase delay elements 15, 18, 22, 41, 107, 112, 115, 122, 141 Coefficient units 17, 117 Primary delay elements 21, 121 Integrators 31, 32, 38, 131, 132, 138 Constant unit 33, 133 Changeover switch 35, 114, 135 Differentiator 36, 136 Switching signal generator 37, 137 Divider 42, 142 First primary delay element 43, 143 Second primary delay Element 103 PID controller

Claims (3)

制御対象の出力と目標値との偏差を入力として当該閉ループ制御系の定常ゲインが1となるように調整するループゲイン調節手段と、当該閉ループ制御系の出力を入力として位相遅れ要素を介して前記ループゲイン調節手段の出力側に戻すフィードバック手段と、前記位相遅れ要素の出力と前記ループゲイン調節手段の出力との制御偏差を入力として可変ゲインを演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算手段と、を備える閉ループ制御系と、
前記ループゲイン調節手段の出力を入力としてPI制御を行うPI制御手段と、
前記閉ループ制御系の出力と前記PI制御手段の出力とを加算して前記制御対象に操作量として与える加算手段と、を有する適応制御装置であって、
前記可変ゲイン演算手段は、前記制御偏差を自乗する演算手段と、前記演算手段の出力を入力とする1次遅れ要素と、を備え、前記1次遅れ要素の時定数を前記制御偏差の変動傾きに応じて可変設定する適応制御装置。
Loop gain adjusting means for adjusting the steady-state gain of the closed-loop control system to be 1 with the deviation between the output of the control target and the target value as input, and the output of the closed-loop control system as an input via the phase delay element A feedback means for returning to the output side of the loop gain adjusting means, and a variable for calculating a variable gain with a control deviation between the output of the phase delay element and the output of the loop gain adjusting means as an input, and a variable for compensating the gain of the closed loop control system A closed loop control system comprising a gain calculation means;
PI control means for performing PI control using the output of the loop gain adjusting means as an input;
An adding control unit that adds the output of the closed-loop control system and the output of the PI control unit and gives the output to the control target as an operation amount;
The variable gain calculating means includes a calculating means for squaring the control deviation, and a first-order lag element having the output of the calculating means as an input, and the time constant of the first-order lag element is set as a fluctuation slope of the control deviation. Adaptive control device that variably sets according to
制御対象の出力と目標値との偏差を所定係数倍する係数手段と、前記係数手段の出力を入力とする位相遅れ要素と、当該閉ループ制御系の出力を入力し位相遅れ要素を介して戻すフィードバック手段と、前記位相遅れ要素の出力と前記位相遅れ要素の出力との制御偏差を入力として可変ゲインを演算し、当該閉ループ制御系のゲインを補償する可変ゲイン演算手段と、を備える閉ループ制御系と、
前記偏差を入力としてPID制御を行うPID制御手段と、
前記閉ループ制御系の出力と前記PID制御手段の出力とを加算して前記制御対象に操作量として与える加算手段と、を有する適応制御装置であって、
前記可変ゲイン演算手段は、前記制御偏差を自乗する演算手段と、前記演算手段の出力を入力とする1次遅れ要素と、を備え、前記1次遅れ要素の時定数を前記制御偏差の変動傾きに応じて可変設定する適応制御装置。
Coefficient means for multiplying the deviation between the output of the control target and the target value by a predetermined coefficient, a phase delay element that receives the output of the coefficient means, and feedback that inputs the output of the closed loop control system and returns it via the phase delay element A closed loop control system comprising: a means, and a variable gain calculating means for calculating a variable gain using a control deviation between the output of the phase delay element and the output of the phase delay element as an input, and compensating the gain of the closed loop control system; ,
PID control means for performing PID control with the deviation as an input;
An adding control unit that adds the output of the closed-loop control system and the output of the PID control unit and gives the output to the control target as an operation amount;
The variable gain calculating means includes a calculating means for squaring the control deviation, and a first-order lag element having the output of the calculating means as an input, and the time constant of the first-order lag element is set as a fluctuation slope of the control deviation. Adaptive control device that variably sets according to
前記可変ゲイン演算手段は、前記制御偏差の変動傾きが負のときの1次遅れ要素の時定数を前記制御偏差の変動傾きが一定または正のときの1次遅れ要素の時定数よりも大きい値に設定する請求項1または請求項2に記載の適応制御装置。   The variable gain calculating means has a value larger than the time constant of the first-order lag element when the fluctuation slope of the control deviation is constant or positive as the time constant of the first-order lag element when the fluctuation slope of the control deviation is negative. The adaptive control device according to claim 1 or 2, wherein
JP2009296148A 2009-12-25 2009-12-25 Adaptive controller Expired - Fee Related JP5342435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009296148A JP5342435B2 (en) 2009-12-25 2009-12-25 Adaptive controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009296148A JP5342435B2 (en) 2009-12-25 2009-12-25 Adaptive controller

Publications (2)

Publication Number Publication Date
JP2011138200A true JP2011138200A (en) 2011-07-14
JP5342435B2 JP5342435B2 (en) 2013-11-13

Family

ID=44349608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009296148A Expired - Fee Related JP5342435B2 (en) 2009-12-25 2009-12-25 Adaptive controller

Country Status (1)

Country Link
JP (1) JP5342435B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239494A1 (en) * 2018-06-12 2019-12-19 東芝三菱電機産業システム株式会社 Steel plant control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635506A (en) * 1992-07-16 1994-02-10 Toyo Electric Mfg Co Ltd Variable structure control method
JPH07325602A (en) * 1994-05-31 1995-12-12 Mitsubishi Heavy Ind Ltd Adaptive control unit
JPH08314503A (en) * 1995-05-18 1996-11-29 Mitsubishi Heavy Ind Ltd Adaptive controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635506A (en) * 1992-07-16 1994-02-10 Toyo Electric Mfg Co Ltd Variable structure control method
JPH07325602A (en) * 1994-05-31 1995-12-12 Mitsubishi Heavy Ind Ltd Adaptive control unit
JPH08314503A (en) * 1995-05-18 1996-11-29 Mitsubishi Heavy Ind Ltd Adaptive controller

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239494A1 (en) * 2018-06-12 2019-12-19 東芝三菱電機産業システム株式会社 Steel plant control device
KR20200140901A (en) 2018-06-12 2020-12-16 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Steel plant control unit
CN112154382A (en) * 2018-06-12 2020-12-29 东芝三菱电机产业系统株式会社 Steel equipment control device
JP6996624B2 (en) 2018-06-12 2022-01-17 東芝三菱電機産業システム株式会社 Steel plant controller
KR102359397B1 (en) 2018-06-12 2022-02-08 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Steel Plant Control Unit
CN112154382B (en) * 2018-06-12 2023-03-24 东芝三菱电机产业系统株式会社 Steel equipment control device
US11880187B2 (en) 2018-06-12 2024-01-23 Toshiba Mitsubishi-Electric Industrial Systems Corporation Steel plant control device

Also Published As

Publication number Publication date
JP5342435B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
Fallaha et al. Sliding-mode robot control with exponential reaching law
Plestan et al. A new algorithm for high‐order sliding mode control
Tan et al. Analysis of active disturbance rejection control for processes with time delay
Jetto et al. A mixed numerical–analytical stable pseudo‐inversion method aimed at attaining an almost exact tracking
Zhao et al. Tracking and disturbance rejection in non-minimum phase systems
Liu et al. An active disturbance rejection control for hysteresis compensation based on neural networks adaptive control
Yuan et al. Robust and switched feedforward control of uncertain LFT systems
JP5342435B2 (en) Adaptive controller
Tanaka et al. An approach to linear active disturbance rejection controller design with a linear quadratic regulator for a non-minimum phase system
Jafari et al. Intermittent output tracking for linear single-input single-output non-minimum-phase systems
Rsetam et al. Robust adaptive active disturbance rejection control of an electric furnace using additional continuous sliding mode component
JP4982905B2 (en) Control method and control apparatus
WO2019087554A1 (en) Feedback control method and motor control device
JP2010086395A (en) Two-degree-of-freedom digital controller
Hamed et al. A modified internal model control for unstable–time delayed system
Kim et al. Robust cascade control of DC/DC boost converter against input variation and parameter uncertainties
CN110632872B (en) Double-actuator switching control system and control method
Takagi et al. Adaptive control of systems with input saturation: A scheme using output derivatives of order up to relative degree
Singh et al. Design of an anti-windup fractional order pi controller based on integral state predictor within stability bound
CN116520680B (en) Anti-interference PID controller setting method
Guan et al. Design of a discrete-time ASPR based adaptive output feedback control system with a feedforward input
WO2020189342A1 (en) Control device, control method, and control program
JP2012141791A (en) Design method of adaptive controller
Gao et al. Higher order sliding mode control with fast transient performance
JP3809483B2 (en) Method for controlling semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R151 Written notification of patent or utility model registration

Ref document number: 5342435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees