JP2011137781A - Precise electromagnetic wave diffraction measuring apparatus - Google Patents
Precise electromagnetic wave diffraction measuring apparatus Download PDFInfo
- Publication number
- JP2011137781A JP2011137781A JP2010000167A JP2010000167A JP2011137781A JP 2011137781 A JP2011137781 A JP 2011137781A JP 2010000167 A JP2010000167 A JP 2010000167A JP 2010000167 A JP2010000167 A JP 2010000167A JP 2011137781 A JP2011137781 A JP 2011137781A
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic wave
- measured
- diffraction
- irradiation
- measuring apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本発明は、X線等のエネルギー波である電磁波を被測定物(例えば、多結晶体材料)に照射し、被測定物から回折される電磁波の回折角を測定することで、被測定物を構成する元素成分や、被測定物に発生しているひずみを測定する測定技術に関する。 The present invention irradiates an object to be measured (for example, a polycrystalline material) with an electromagnetic wave that is an energy wave such as an X-ray, and measures the diffraction angle of the electromagnetic wave diffracted from the object to be measured. The present invention relates to a measurement technology for measuring constituent element components and strain generated in an object to be measured.
被測定物の構成元素を調べる方法にX線回折法がある。規則的に整列した原子配列(例えば、結晶構造)や規則的な周期構造の原子または分子配列(例えば、高分子鎖の周期構造)を持つ被測定物にX線を照射すると、各原子から散乱したX線同士が干渉し、原子配列が密に配列する面(以下、格子面という)の間隔に応じた特定の方向に回折X線を生じる。このX線回折現象はブラッグ則で表され、格子面間隔d、X線波長λ、ブラッグ角θ、整数(例えば、1、2、3・・・)となる回折の次数n(nλが波長の整数倍を示す)の間で、2dsinθ=nλの関係が成り立つ。格子面間隔は物質の種類と物質の状態により固有の大きさを持ち、複数の格子面が存在する。被測定物に照射するX線の方向から、回折X線が発生する方向までの角度2θ(ブラッグ角の2倍)を回折角として測定すると、格子面間隔の大きさに応じ、複数の回折角の位置にX線強度分布のピークが現れる。 There is an X-ray diffraction method as a method for examining the constituent elements of the object to be measured. When an object to be measured having a regularly aligned atomic arrangement (for example, a crystal structure) or a regular periodic structure of atoms or a molecular arrangement (for example, a periodic structure of a polymer chain) is irradiated with X-rays, the atoms are scattered. The X-rays interfere with each other, and diffracted X-rays are generated in a specific direction according to the interval between the surfaces in which the atomic arrangement is densely arranged (hereinafter referred to as a lattice plane). This X-ray diffraction phenomenon is expressed by the Bragg law, and the diffraction order n (nλ is the wavelength) where the lattice spacing d, the X-ray wavelength λ, the Bragg angle θ, and an integer (eg, 1, 2, 3,...) 2 d sin θ = nλ holds. The lattice spacing has a specific size depending on the type of material and the state of the material, and there are a plurality of lattice planes. When the angle 2θ (twice the Bragg angle) from the X-ray direction irradiating the object to be measured to the direction in which the diffracted X-rays are generated is measured as a diffraction angle, a plurality of diffraction angles are obtained according to the size of the lattice spacing. The peak of the X-ray intensity distribution appears at the position of.
上述した、回折角の測定において、被測定物が負荷を受け、伸展または縮小し、被測定物内部の格子面間隔dが変化すると回折角2θが変化する。この回折角の変化量から被測定物に発生している変形量(ひずみ)を測定することができる。 In the above-described measurement of the diffraction angle, when the object to be measured receives a load and expands or contracts, and the lattice spacing d inside the object to be measured changes, the diffraction angle 2θ changes. The amount of deformation (strain) generated in the object to be measured can be measured from the amount of change in the diffraction angle.
被測定物の構成元素を正確に調べる際や被測定物に発生しているひずみを精度よく測定するためには、被測定物にX線を照射したときの、回折X線の回折角を精度良く検出する必要がある。 In order to accurately measure the constituent elements of the object to be measured and to measure the distortion generated in the object to be measured with high accuracy, the diffraction angle of the diffracted X-ray when the object is irradiated with X-rays is accurately determined. It is necessary to detect well.
回折角を測定する際には、X線検出器(例えば、シンチレーションカウンタ)を被測定物のX線照射位置を中心とする回転方向に走査し、X線強度の分布がピークを示す方向を探し、その方向の角度を回折角とする。 When measuring the diffraction angle, an X-ray detector (for example, a scintillation counter) is scanned in the rotational direction around the X-ray irradiation position of the object to be measured to find a direction in which the X-ray intensity distribution shows a peak. The angle in that direction is the diffraction angle.
図1に示すように、被測定物1の移動や変形により表面のX線照射位置が変化し、表面位置の誤差1aがある場合、及び表面に凹凸や曲率がある被測定物の測定箇所の変更に際しては、X線照射位置のずれ(例えば、回折面垂直方向に位置ずれ)が生じる。検出器の走査により得られる回折X線強度と角度のプロファイル1b上のピーク位置から決定される回折角の測定に誤差が生じ、格子面間隔があやまって測定される。この誤差により、ひずみの大きさに誤差が生じる。 As shown in FIG. 1, when the X-ray irradiation position on the surface changes due to movement or deformation of the DUT 1 and there is an error 1a in the surface position, and the measurement location of the DUT having unevenness or curvature on the surface At the time of change, a shift in the X-ray irradiation position (for example, a shift in the vertical direction of the diffraction surface) occurs. An error occurs in the measurement of the diffraction angle determined from the diffraction X-ray intensity obtained by scanning of the detector and the peak position on the angle profile 1b, and the measurement is performed with a gap in the lattice plane. This error causes an error in the magnitude of strain.
図2は被測定物に横向きに圧縮負荷を加えた際の、無負荷時の被測定物1cと負荷時の被測定物1dの表面の変形状態と回折X線の発生方向を示している。圧縮により、負荷方向と直交する方向には膨張が生じる。被測定物の膨張により、内部の格子面間隔が大きくなるため、ブラッグ則により回折角は小さくなる。この格子面間隔の変化に伴う回折角変化をΔθεとする。一方、被測定物表面の移動(図2中の上方向の移動)に伴い、被測定物に照射するX線が元の照射面より手前に照射され、回折X線の経路が平行移動する。この平行移動をΔLとすると、半径R離れた位置の検出器で検出する平行移動により生じる見かけ上の回折角変化ΔθLは、近似的にΔθL≒ΔL/Rとして測定される。この見かけ上の回折角変化の測定値Δθε+ΔθLから、ひずみ測定に関するΔθεを幾何学条件から近似的に推定ことは可能であるが、照射位置の移動に伴う測定中心のずれを補正することはできないことから、正確な回折角変化Δθεは得られない。 FIG. 2 shows the deformation state of the surface of the device under test 1c under no load and the surface of the device under test 1d under load and the direction of generation of diffraction X-rays when a compressive load is applied laterally to the device under test. The compression causes expansion in a direction orthogonal to the load direction. Due to the expansion of the object to be measured, the internal lattice spacing increases, so the diffraction angle decreases according to the Bragg law. A change in diffraction angle accompanying the change in the lattice spacing is represented by Δθε. On the other hand, along with the movement of the surface of the object to be measured (upward movement in FIG. 2), the X-rays irradiating the object to be measured are irradiated before the original irradiation surface, and the path of the diffracted X-rays moves in parallel. Assuming that this translation is ΔL, the apparent diffraction angle change ΔθL caused by the translation detected by a detector located at a radius R is approximately measured as ΔθL≈ΔL / R. From this apparent diffraction angle change Δθε + ΔθL, it is possible to approximately estimate Δθε related to strain measurement from geometric conditions, but it is not possible to correct the deviation of the measurement center accompanying the movement of the irradiation position. Thus, an accurate diffraction angle change Δθε cannot be obtained.
このX線照射位置のずれの影響を低減するため、照射位置がずれた部分からの回折X線をX線検出器で検出しないように除去し、照射範囲内の特定の位置のみからの回折X線を透過させるためのスリット(例えば、ソーラスリット)がある。このようなスリットを介した回折角測定は平行ビーム法と呼ばれている(例えば、特許文献1)。 In order to reduce the influence of the deviation of the X-ray irradiation position, the X-ray detector removes the diffracted X-rays from the portion where the irradiation position is shifted so that the X-ray detector does not detect the diffraction X-ray from only a specific position within the irradiation range. There is a slit for transmitting the line (for example, a solar slit). The diffraction angle measurement through such a slit is called a parallel beam method (for example, Patent Document 1).
しかしながら、ひずみが微小な場合など、回折角変化が小さいときには、スリットの幅よりも小さな回折角変化となるため、充分な精度で測定ができない。また、検出される回折X線がスリットを通過できる経路に限定されるため、ピーク位置を決定するために充分な回折X線強度が得られないことがある。 However, when the change in the diffraction angle is small, such as when the strain is very small, the change in the diffraction angle is smaller than the width of the slit, so that the measurement cannot be performed with sufficient accuracy. Further, since the detected diffracted X-ray is limited to a path that can pass through the slit, a sufficient diffracted X-ray intensity for determining the peak position may not be obtained.
被測定物のX線照射部を検出器の走査中心位置に合わせるため、長さの決まった接触子を回折X線装置から突出させ、先端を被測定物に接触させることで照射位置を確認する方法(以下、接触法という)がある。しかしながら、接触法では接触による被測定物の変形や破損の危険性が伴う。また、接触子がX線回折経路中に存在するため、回折X線測定時には撤去するか、窓の設置などにより回折X線経路を確保する必要がある。 In order to align the X-ray irradiation part of the object to be measured with the scanning center position of the detector, a contact with a fixed length is projected from the diffracted X-ray device, and the tip is brought into contact with the object to be measured to confirm the irradiation position. There is a method (hereinafter referred to as a contact method). However, in the contact method, there is a risk of deformation or breakage of an object to be measured due to contact. Moreover, since the contact exists in the X-ray diffraction path, it is necessary to remove the X-ray diffraction path or to secure the diffraction X-ray path by installing a window.
また、被測定物表面の位置合わせに顕微鏡画像の視野焦点(例えば、ピントの調整)を利用することもできる。顕微鏡の焦点による方法は非接触法であるため、被測定物の変形や破損の危険性は少ないが、照射面が顕微鏡観察可能な鏡面になっていること、表面に特徴となる微小な凹凸パターン(例えば、結晶粒境界やクラック)が存在する必要がある。さらに、照射中に画像を確認しながら、手動で位置を修正するか、高度な画像処理手法によるアルゴリズムを組み込んだ位置制御法の開発が必要になる。 Further, the field-of-view focal point (for example, focus adjustment) of the microscope image can be used for alignment of the surface of the object to be measured. The method based on the focus of the microscope is a non-contact method, so there is little risk of deformation or breakage of the object to be measured, but the irradiated surface is a mirror surface that can be observed with a microscope, and the minute uneven pattern that characterizes the surface (For example, crystal grain boundaries and cracks) need to exist. Furthermore, it is necessary to develop a position control method that manually corrects the position while checking the image during irradiation or incorporates an algorithm based on an advanced image processing method.
本発明が成される以前のひずみ測定法の従来例として、歯のひずみ測定が挙げられる。従来、歯のかみ合わせの診断には、図3のように、被験者101が紙や樹脂、シリコンなど変形可能な材料(例えば、咬合紙102)を噛んだ際の歯型103から、医師の経験により上下のかみ合わせを評価し、治療の診断をしていた。現在では、図4のように、被験者101が歯をかみ合わせた時の顎の咀嚼筋の筋力を、皮膚に貼り付けた筋電位測定電極104で検出し、筋電図測定装置105にて記録、分析する筋電図計測が導入されている。上記、測定によって得られた筋電図から筋力を推定し、左右の筋力の不均一性から、歯の片あたり等の状態を判断する手法である。しかしながら、どちらも間接的な測定であり、かみ合わせ時に歯にどの程度の負荷がかかっているかを判断することができず、適切な治療データの提供が困難である。 As a conventional example of the strain measuring method before the present invention is made, tooth strain measurement is mentioned. Conventionally, as shown in FIG. 3, the diagnosis of tooth meshing is based on the experience of the doctor from the tooth mold 103 when the subject 101 bites a deformable material such as paper, resin, or silicon (for example, the bite paper 102). The upper and lower meshes were evaluated to diagnose the treatment. At present, as shown in FIG. 4, the muscle strength of the jaw masticatory muscle when the subject 101 engages the teeth is detected by the myoelectric potential measuring electrode 104 attached to the skin, and recorded by the electromyogram measuring device 105. EMG measurement to analyze is introduced. This is a method of estimating the muscle strength from the electromyogram obtained by the measurement and determining the state of the teeth per one piece or the like from the non-uniformity of the left and right muscle strength. However, both are indirect measurements, and it is difficult to determine how much load is applied to the teeth at the time of meshing, and it is difficult to provide appropriate treatment data.
X線回折法を患者の歯に適用することで、歯表面のひずみ分布が明らかになり、歯に作用する負荷状態を診断することが可能となる。ただし、従来のX線回折装置では、X線照射位置の変動をなくすため、測定中に患者が動かないように身体を完全に拘束する必要がある。
本発明は、上述した事情に鑑みてなされたものであって、その目的は、被測定物の移動や変形による表面の変動に合わせ、電磁波の照射位置を補正し、正しい回折角を測定できる技術を提供することを目的とする。加えて、補正のための位置検出の際に、測定対象に変形や破壊を生じさせず、正確なひずみ測定が可能な技術を提供することを目的とする。被測定物が物理的に変化する場合に起きる表面のひずみの変化を調べることにより、強度機能の低下などの物理的変形特性を知ることが可能となる。 The present invention has been made in view of the circumstances described above, and its purpose is a technique that can correct the irradiation position of an electromagnetic wave and measure the correct diffraction angle in accordance with the fluctuation of the surface due to the movement or deformation of the object to be measured. The purpose is to provide. In addition, an object of the present invention is to provide a technique that enables accurate strain measurement without causing deformation or destruction of a measurement target when detecting a position for correction. By examining changes in surface strain that occur when the object to be measured changes physically, it becomes possible to know physical deformation characteristics such as a decrease in strength function.
請求項1の発明は、被測定物の一表面に電磁波を照射し、被測定物から発生する回折電磁波を測定する装置であって、前記被測定物の一表面に所定の強度の電磁波を照射する照射手段と、前記被測定物の表面が移動した時に、電磁波照射位置の位置変化を計測する計測手段と、前記位置変化を補正し、電磁波照射位置が同一になるように被測定物と電磁波発生・検出装置の両方またはいずれかの位置を移動する移動手段と、前記移動手段によって補正された電磁波照射位置から発生する回折電磁波を検出する手段を備えたことを特徴とする電磁波回折測定装置である。 The invention of claim 1 is an apparatus for irradiating one surface of an object to be measured with electromagnetic waves and measuring a diffracted electromagnetic wave generated from the object to be measured, and irradiating one surface of the object to be measured with an electromagnetic wave having a predetermined intensity. Irradiating means, measuring means for measuring the position change of the electromagnetic wave irradiation position when the surface of the object to be measured moves, and correcting the position change so that the electromagnetic wave irradiation position becomes the same as the object to be measured and the electromagnetic wave An electromagnetic wave diffraction measuring apparatus comprising: a moving unit that moves both or any position of the generation / detection device; and a unit that detects a diffracted electromagnetic wave generated from an electromagnetic wave irradiation position corrected by the moving unit. is there.
請求項2の発明は、被測定物の一表面に電磁波を照射し、被測定物から発生する回折電磁波を測定する装置であって、前記被測定物の一表面に所定の光束の電磁波を照射する照射装置と、前記被測定物の表面が移動した時に、電磁波照射位置の位置変化を計測する計測装置と、前記位置変化を補正し、電磁波照射位置が同一になるように被測定物と電磁波発生・検出装置の両方またはいずれかの位置を移動する移動装置と、前記移動手段によって補正された電磁波照射位置から発生する回折電磁波を検出する装置を備えたことを特徴とする電磁波回折測定装置である。 The invention of claim 2 is an apparatus for irradiating one surface of the object to be measured with electromagnetic waves and measuring a diffracted electromagnetic wave generated from the object to be measured, and irradiating one surface of the object to be measured with electromagnetic waves of a predetermined light flux. And the measuring device for measuring the position change of the electromagnetic wave irradiation position when the surface of the object to be measured moves, and correcting the position change so that the electromagnetic wave irradiation position becomes the same An electromagnetic wave diffraction measuring apparatus comprising: a moving device that moves both or any position of the generating / detecting device; and a device that detects a diffracted electromagnetic wave generated from an electromagnetic wave irradiation position corrected by the moving means. is there.
請求項3の発明は、前記電磁波照射位置の位置変化を計測するために、非接触式の距離センサを使用することを特徴とした、請求項1〜2のいずれか1項の電磁波回折測定装置である。 The invention according to claim 3 uses a non-contact type distance sensor to measure a change in position of the electromagnetic wave irradiation position, and the electromagnetic diffraction measurement apparatus according to any one of claims 1-2. It is.
請求項4の発明は、前記位置変化を補正するための移動手段に、電動モータを利用したアクチュエータを使用することを特徴とした、請求項1〜2のいずれか1項の電磁波回折測定装置である。 The invention according to claim 4 is the electromagnetic wave diffraction measurement apparatus according to claim 1, wherein an actuator using an electric motor is used as the moving means for correcting the position change. is there.
請求項5の発明は、請求項1〜2のいずれか1項の電磁波回折測定装置により回折電磁波の回折角を測定し、金属、プラスチック、木材、セラミックス、複合材料などの工業材料のひずみ分布を測定する電磁波回折測定装置である。 The invention of claim 5 measures the diffraction angle of the diffracted electromagnetic wave by the electromagnetic wave diffraction measuring apparatus according to any one of claims 1 to 2, and determines the strain distribution of industrial materials such as metal, plastic, wood, ceramics, and composite materials. It is an electromagnetic wave diffraction measuring device to measure.
請求項6の発明は、請求項1〜2のいずれか1項の電磁波回折測定装置により回折電磁波の回折角を測定し、歯表面のエナメル質のひずみ分布を測定する電磁波回折測定装置である。 The invention of claim 6 is an electromagnetic wave diffraction measuring apparatus for measuring a diffraction angle of a diffracted electromagnetic wave by the electromagnetic wave diffraction measuring apparatus of any one of claims 1 to 2 and measuring a strain distribution of enamel on a tooth surface.
請求項7の発明は、請求項1〜2のいずれか1項の電磁波回折測定装置により回折電磁波の回折角を測定し、骨及び歯の象牙質のひずみ分布を測定する電磁波回折測定装置である。 Invention of Claim 7 is an electromagnetic wave diffraction measuring apparatus which measures the diffraction angle of a diffracted electromagnetic wave with the electromagnetic wave diffraction measuring apparatus of any one of Claims 1-2, and measures distortion distribution of the dentin of a bone and a tooth. .
請求項8の発明は、請求項5〜7のいずれか1項のひずみ分布測定において、外部から被測定物に負荷を与えることで被測定物内部にひずみ分布を与え、そのひずみ特性を知ることを特徴とした電磁波回折測定装置である。 The invention of claim 8 provides the strain distribution inside the object to be measured by applying a load to the object to be measured from the outside in the strain distribution measurement of any one of claims 5 to 7, and knows the strain characteristics thereof. It is an electromagnetic wave diffraction measuring apparatus characterized by this.
請求項9の発明は、請求項5〜7のいずれか1項のひずみ分布測定において、照射電磁波としてX線を利用することを特徴とした電磁波回折測定装置である。 The invention according to claim 9 is the electromagnetic wave diffraction measuring apparatus characterized in that, in the strain distribution measurement according to any one of claims 5 to 7, X-rays are used as the irradiation electromagnetic wave.
請求項10の発明は、請求項5〜7のいずれか1項のひずみ分布測定において、照射電磁波としてガンマ線を利用することを特徴とした電磁波回折測定装置である。 A tenth aspect of the present invention is an electromagnetic wave diffraction measuring apparatus using gamma rays as an irradiation electromagnetic wave in the strain distribution measurement according to any one of the fifth to seventh aspects.
請求項11の発明は、請求項5〜7のいずれか1項のひずみ分布測定において、照射電磁波としてレーザ光を利用することを特徴とした電磁波回折測定装置である。 An eleventh aspect of the invention is an electromagnetic wave diffraction measuring apparatus characterized in that in the strain distribution measurement of any one of the fifth to seventh aspects, a laser beam is used as an irradiation electromagnetic wave.
請求項1の発明の構成によれば、被測定物の移動、変形、表面の凹凸により、照射位置がずれることで回折電磁波がシフトし、回折角の誤測定により、見かけ上のひずみが測定され、測定誤差を生じるが、回折電磁波の測定中に被測定物表面の照射位置の変化を補正することで、正確な測定が可能となる。 According to the configuration of the invention of claim 1, the diffracted electromagnetic wave shifts due to the displacement of the irradiation position due to the movement, deformation, and surface unevenness of the object to be measured, and the apparent distortion is measured by erroneous measurement of the diffraction angle. Although measurement errors occur, accurate measurement is possible by correcting the change in the irradiation position on the surface of the object to be measured during measurement of the diffracted electromagnetic wave.
また、請求項2の発明の構成によれば、被測定物または電磁波発生装置及び回折波検出装置を、電磁波照射位置を修正するように移動し、回折波発生位置のずれを補正し、正確な回折電磁波の測定が可能となる。 Further, according to the configuration of the invention of claim 2, the object to be measured or the electromagnetic wave generator and the diffracted wave detector are moved so as to correct the electromagnetic wave irradiation position, the deviation of the diffracted wave generating position is corrected, and the accurate The diffraction electromagnetic wave can be measured.
また、請求項3の発明の装置によれば、被測定物の表面変化を非破壊的に検出し、電磁波の照射を妨げない回折電磁波の検出が可能となる。 In addition, according to the apparatus of the third aspect of the present invention, it is possible to detect a diffracted electromagnetic wave that does not disturb the irradiation of the electromagnetic wave by detecting non-destructively the surface change of the object to be measured.
また、請求項4の発明の装置によれば、被測定物の照射位置補正のための、被測定物または電磁波発生装置及び回折波検出装置の移動を外部制御で行うことが可能となる。 According to the apparatus of the fourth aspect of the present invention, the object to be measured or the electromagnetic wave generator and the diffracted wave detector can be moved by external control for correcting the irradiation position of the object to be measured.
また、請求項5の発明の方法によれば、被測定物である工業材料のひずみを正確に測定することが可能となる。 Moreover, according to the method of the invention of Claim 5, it becomes possible to measure correctly the distortion | strain of the industrial material which is a to-be-measured object.
また、請求項6の発明の方法によれば、被測定物である歯表面のエナメル質のひずみを正確に測定することが可能となる。 Further, according to the method of the invention of claim 6, it becomes possible to accurately measure the enamel strain on the tooth surface that is the object to be measured.
また、請求項7の発明の方法によれば、被測定物である骨及び歯の象牙質のひずみを正確に測定することが可能となる。 In addition, according to the method of the invention of claim 7, it is possible to accurately measure the distortion of the dentin of the bone and teeth that are the objects to be measured.
また、請求項8の発明の装置によれば、被測定物にひずみを与え、被測定物のひずみ特性を測定することが可能となる。 Further, according to the apparatus of the eighth aspect of the invention, it is possible to give strain to the object to be measured and measure the strain characteristics of the object to be measured.
また、請求項9の発明の方法によれば、電磁波としてX線を利用することで、結晶格子の面間隔を利用したひずみ測定が可能となる。 In addition, according to the method of the invention of claim 9, by using X-rays as electromagnetic waves, it is possible to measure strain using the interplanar spacing of the crystal lattice.
また、請求項10の発明の方法によれば、電磁波としてガンマ線を利用することで、結晶格子の面間隔を利用したひずみ測定が可能となる。 Further, according to the method of the invention of claim 10, by using gamma rays as electromagnetic waves, it is possible to perform strain measurement using the interplanar spacing of the crystal lattice.
また、請求項11の発明の方法によれば、電磁波としてレーザ光を利用することで、結晶格子よりも大きな2面間の間隔を利用したひずみ測定が可能となる。
In addition, according to the method of the invention of
本発明における好適な実施の形態について、添付図を参照しながら詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。 Preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below do not limit the contents of the present invention described in the claims. In addition, all of the configurations described below are not necessarily essential requirements of the present invention.
本発明のひずみ測定装置の構成例を図5、図6に示す。本発明のひずみ測定装置は、前述の問題点を解決するため、被測定物1の表面を非接触式距離センサ3によって測定し、測定位置の位置ずれを図5のように、被測定物1を被測定物用駆動台5により移動することで補正する機構である。また、図6は測定位置の位置ずれを、X線発生装置2及び回折X線検出装置4をX線装置用駆動台6により移動することで補正する機構であり、回折X線角度の測定誤差を位置ずれの補正により解決したものである。 A configuration example of the strain measuring apparatus of the present invention is shown in FIGS. In order to solve the above-described problems, the strain measuring apparatus of the present invention measures the surface of the device under test 1 with the non-contact type distance sensor 3, and the displacement of the measurement position as shown in FIG. This is a mechanism for correcting the movement by moving the measurement object drive base 5. FIG. 6 shows a mechanism for correcting the displacement of the measurement position by moving the X-ray generator 2 and the diffracted X-ray detector 4 by the X-ray apparatus drive base 6, and the measurement error of the diffracted X-ray angle. Is solved by correcting the misalignment.
図5に本発明における装置の構成を示す。本発明のひずみ測定装置は、被測定物1の一表面に所定の強度の電磁波を照射するX線発生装置2と、被測定物1の電磁波照射位置の位置変化を計測する位置測定手段3と、被測定物1と電磁波の相対位置を同一になるように被測定物1または電磁波発生装置2及び、X線検出装置4の位置を移動する手段5と、前記検出手段で発生する回折電磁波を検出するX線検出装置を備えたことを特徴とする回折法によるひずみの測定装置である。被測定物が負荷を受けると、被測定物の測定表面が変形されることになる。そこで、本発明の装置では、位置測定手段3により被測定物1の電磁波照射位置の位置変化を計測し、被測定物1の位置を移動させる手段5により、被測定物1と電磁波の相対位置を同一になるようにする。より具体的には、被測定物の変形が膨張による表面移動の場合(図1)、測定物1の位置を移動させる手段5により、測定物1を下方に移動することで、照射位置の高さを同一にする。また、図6のように、電磁波発生2、X線検出装置4の位置を移動する手段6により、被測定物1と電磁波の相対位置を同一になるようにしてもよい。 FIG. 5 shows the configuration of the apparatus according to the present invention. The strain measuring apparatus of the present invention includes an X-ray generator 2 that irradiates one surface of an object 1 with an electromagnetic wave having a predetermined intensity, a position measuring unit 3 that measures a change in the position of the object 1 irradiated with an electromagnetic wave, The device 1 or the electromagnetic wave generator 2 and the means 5 for moving the position of the X-ray detector 4 so that the relative position of the electromagnetic wave to the device under test 1 is the same, and the diffracted electromagnetic wave generated by the detector An apparatus for measuring strain by a diffraction method, comprising an X-ray detection device for detection. When the object to be measured is loaded, the measurement surface of the object to be measured is deformed. Therefore, in the apparatus of the present invention, the position measurement means 3 measures the position change of the electromagnetic wave irradiation position of the object 1 to be measured, and the means 5 for moving the position of the object 1 to be measured causes the relative position of the object 1 to be measured and the electromagnetic wave. To be the same. More specifically, when the deformation of the measurement object is a surface movement due to expansion (FIG. 1), the measurement object 1 is moved downward by means 5 for moving the position of the measurement object 1, thereby increasing the irradiation position. Make the same. Further, as shown in FIG. 6, the relative position of the object to be measured 1 and the electromagnetic wave may be the same by means 6 for moving the electromagnetic wave generation 2 and the position of the X-ray detection device 4.
図5及び図6のような構成において、位置測定手段である非接触式距離センサ3としては、レーザ光式変位計が挙げられる。非接触式であるから、被測定物に損傷を与える危険性が少ない。また、X線照射経路を遮蔽する影響もない。位置移動手段5及び6の駆動台としては、サーボモータまたはステッピングモータによる位置決めアクチュエータが挙げられる。なお、被測定物1としては、工業用材料や歯表面のエナメル質や骨や歯の象牙質といった生体材料が挙げられる。 In the configuration as shown in FIGS. 5 and 6, the non-contact type distance sensor 3 which is a position measuring unit includes a laser beam displacement meter. Since it is a non-contact type, there is little risk of damaging the measured object. Further, there is no influence of shielding the X-ray irradiation path. Examples of the driving platform for the position moving means 5 and 6 include a positioning actuator using a servo motor or a stepping motor. Examples of the object to be measured 1 include industrial materials, biomaterials such as tooth surface enamel and bone and tooth dentin.
図7及び図8に歯を測定する際の機器構成を示す。被験者11は姿勢調整機構17を有する椅子の上に座り、頭を駆動型のヘッドシートアクチュエータ16に固定する。X線発生装置13と回折X線検出装置15は角度走査用の走査ガイド12上を、X線照射位置を中心とする円弧状に移動する。回折電磁波検出時の照射位置の変動は非接触式距離センサ14により測定され、位置情報として制御装置19に送られる。制御装置ではこの情報をもとに、位置補正量を計算し、ヘッドシートアクチュエータ16及び走査ガイド用アクチュエータ18に制御量を出力する。変動量が大きい場合や、変化が著しく測定が困難な場合には、制御装置からX線発生装置及び回折X線検出装置に制御信号(例えば、一時停止)を送信する。このような構成により、被測定物が動くような場合(例えば、ヒト)でも、ひずみを高精度に測定できる。
FIG. 7 and FIG. 8 show the equipment configuration when measuring teeth. The subject 11 sits on a chair having the
(実施例1)次に、上述したひずみ測定法を活用した実施例として、摘出した歯のエナメル質のひずみ測定を説明する。歯の表層のエナメル質は95.%以上がハイドロキシアパタイト(以下、HApという)であり、歯の組織の強度特性はHAp結晶構造や結晶配向に依存する。また、エナメル質−象牙質といった構造特性が組織の荷重伝達に大きく関わる。このような歯の構造は局所的な応力集中発生の原因となり、歯の組織の損傷や破壊の原因となる。歯の組織に作用する応力分布がわかれば、治療評価や欠損予測といった診断技術に有益な情報となる。 (Embodiment 1) Next, as an embodiment utilizing the strain measuring method described above, strain measurement of the extracted tooth enamel will be described. The enamel of the tooth surface layer is 95% or more hydroxyapatite (hereinafter referred to as HAp), and the strength characteristics of the tooth tissue depend on the HAp crystal structure and crystal orientation. In addition, structural properties such as enamel-dentin are greatly involved in tissue load transmission. Such a tooth structure causes local stress concentration and causes damage and destruction of the tooth tissue. If the stress distribution acting on the tooth tissue is known, it will be useful information for diagnostic techniques such as treatment evaluation and defect prediction.
図9により示したものが、実施例のX線測定システムの概要である。被測定物であるヒトから摘出した歯試験片1eを圧縮した際の変形によるX線照射位置のずれを、変位計3eで計測し、被測定物用昇降駆動台5eで補正する。なお、図9における圧縮負荷方向は歯軸方向になる。また、負荷時の変形を確認するため歯表面にひずみゲージを貼り付けて、歯試験片1eを圧縮負荷治具に搭載する。 What was shown by FIG. 9 is the outline | summary of the X-ray measuring system of an Example. The displacement of the X-ray irradiation position due to deformation when compressing the dental specimen 1e extracted from a human being, which is the object to be measured, is measured by the displacement meter 3e, and is corrected by the lifting drive base 5e for the object to be measured. Note that the compression load direction in FIG. 9 is the tooth axis direction. In addition, a strain gauge is affixed to the tooth surface in order to confirm deformation at the time of loading, and the tooth specimen 1e is mounted on a compression load jig.
図10に上述した歯のエナメル質の回折X線強度測定結果の一例が示されている。負荷条件として、ひずみゲージ読みにて圧縮0.200%を与えた際のハイドロキシアパタイト結晶格子ひずみを測定した。X線照射位置はひずみゲージ貼付け位置と異なる場所である。図10に圧縮負荷を増加させた際の(004)回折パターン変化の一例を示している。本例においては圧縮負荷により格子ひずみは引張方向(前述の格子面間隔が大きくなる方向)に増大し、0.067%を示した。本発明の機器構成により、歯牙試験片を負荷した際のエナメル質内HApの(004)格子ひずみを測定し、歯軸方向の圧縮負荷によって表面垂直方向に引張ひずみの発生が確認できた。 FIG. 10 shows an example of a measurement result of the diffraction X-ray intensity of the tooth enamel described above. As a loading condition, a hydroxyapatite crystal lattice strain was measured when compression 0.200% was given by strain gauge reading. The X-ray irradiation position is different from the strain gauge application position. FIG. 10 shows an example of (004) diffraction pattern change when the compression load is increased. In this example, the lattice strain was increased in the tensile direction (in the direction in which the above-described lattice spacing increased) due to the compressive load, indicating 0.067%. With the apparatus configuration of the present invention, the (004) lattice strain of enamel HAp when a tooth specimen was loaded was measured, and the occurrence of tensile strain in the surface vertical direction was confirmed by the compressive load in the tooth axis direction.
以上の測定方法により、歯のエナメル質のひずみが測定できる。本システムを図7及び図8にて示したシステムで実行することで、ヒトの歯のひずみ分布の診断ができる。 By the above measuring method, strain of tooth enamel can be measured. By executing this system with the system shown in FIGS. 7 and 8, it is possible to diagnose the strain distribution of human teeth.
なお、本発明は、前記実施例に限定されるものではなく、種々の変形実施が可能である。例えば本実施例では、負荷による被測定物の表面移動を補正していたが、被測定物が自ら運動する場合の格子面間隔測定や、変位測定部を微小領域に絞ることで、表面に微小な凹凸を持つ被測定物の照射位置決定に用いてもよい。また、電磁波発生装置及び回折電磁波検出装置を固定する台が変動するような場合の測定においても、被測定物照射表面の相対的位置を補正することで、正確なひずみを測定することが可能となる。加えて、電磁波としてX線だけでなく、中性子線のように回折現象を持つ他の放射線に関しても同様の回折波測定装置を構築できる。 In addition, this invention is not limited to the said Example, A various deformation | transformation implementation is possible. For example, in this embodiment, the movement of the surface of the object to be measured due to the load was corrected. You may use for the irradiation position determination of the to-be-measured object with an unevenness | corrugation. In addition, even in the case where the stage for fixing the electromagnetic wave generating device and the diffracted electromagnetic wave detecting device fluctuates, it is possible to measure accurate distortion by correcting the relative position of the surface to be measured. Become. In addition, it is possible to construct a similar diffracted wave measuring apparatus not only for X-rays but also for other radiation having a diffraction phenomenon such as neutron rays as electromagnetic waves.
1 被測定物
1a 被測定物の表面位置の誤差(表面位置の誤差)
1b 被測定物からの回折X線強度と角度のプロファイル(回折X線強度と角度のプロファイル)
1c 無負荷時の被測定物
1d 負荷時の被測定物
1e 歯の試料
2,13 X線発生装置
3,14 非接触式距離センサ
3e 変位計
4,15 回折X線検出装置
5 被測定物用駆動台
5e 被測定物用昇降駆動台
6 X線装置用駆動台
11 被験者
12 X線回折装置用走査ガイド(走査ガイド)
16 ヘッドシートアクチュエータ
17 姿勢調整機構
18 走査ガイド用アクチュエータ
19 制御装置
101 かみ合い診断の被験者(被験者)
102 咬合紙
103 咬合紙をかむことで生じる歯型(歯型)
104 筋電位測定電極
105 筋電図測定装置
1 Object to be measured 1a Error in surface position of object to be measured (error in surface position)
1b Diffraction X-ray intensity and angle profile from the object to be measured (Diffraction X-ray intensity and angle profile)
1c Object under load 1d Object under load
16
102 Occlusal paper 103 Teeth mold (teeth mold) generated by biting occlusal paper
104 EMG measurement electrode 105 EMG measurement device
Claims (11)
前記被測定物の一表面に所定の光束の電磁波を照射する照射手段と、
前記被測定物の表面が移動した時に、電磁波照射位置の位置変化を計測する計測手段と、
前記位置変化を補正し、電磁波照射位置が同一になるように被測定物と電磁波発生・検出装置の両方またはいずれかの位置を移動する移動手段と、
前記移動手段によって補正された電磁波照射位置から発生する回折電磁波を検出する手段を備えたことを特徴とする電磁波回折測定装置。 An apparatus for irradiating one surface of an object to be measured with electromagnetic waves and measuring diffracted electromagnetic waves generated from the object to be measured,
Irradiating means for irradiating one surface of the object to be measured with electromagnetic waves of a predetermined luminous flux;
When the surface of the object to be measured moves, a measuring means for measuring a position change of the electromagnetic wave irradiation position;
Moving means for correcting the position change and moving both the measured object and the electromagnetic wave generation / detection device or the position thereof so that the electromagnetic wave irradiation position is the same;
An electromagnetic wave diffraction measuring apparatus comprising means for detecting a diffracted electromagnetic wave generated from an electromagnetic wave irradiation position corrected by the moving means.
前記被測定物の一表面に所定の強度の電磁波を照射する照射装置と、
前記被測定物の表面が移動した時に、電磁波照射位置の位置変化を計測する計測装置と、
前記位置変化を補正し、電磁波照射位置が同一になるように被測定物と電磁波発生・検出装置の両方またはいずれかの位置を移動する移動装置と、
前記移動手段によって補正された電磁波照射位置から発生する回折電磁波を検出する装置を備えたことを特徴とする電磁波回折測定装置。 An apparatus for irradiating one surface of an object to be measured with electromagnetic waves and measuring diffracted electromagnetic waves generated from the object to be measured,
An irradiation device for irradiating one surface of the object to be measured with electromagnetic waves of a predetermined intensity;
When the surface of the object to be measured moves, a measuring device that measures a change in position of the electromagnetic wave irradiation position;
A moving device that corrects the position change and moves both the object to be measured and the electromagnetic wave generation / detection device or any position so that the electromagnetic wave irradiation position is the same,
An electromagnetic wave diffraction measuring apparatus comprising an apparatus for detecting a diffracted electromagnetic wave generated from an electromagnetic wave irradiation position corrected by the moving means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010000167A JP2011137781A (en) | 2010-01-04 | 2010-01-04 | Precise electromagnetic wave diffraction measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010000167A JP2011137781A (en) | 2010-01-04 | 2010-01-04 | Precise electromagnetic wave diffraction measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011137781A true JP2011137781A (en) | 2011-07-14 |
Family
ID=44349330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010000167A Pending JP2011137781A (en) | 2010-01-04 | 2010-01-04 | Precise electromagnetic wave diffraction measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011137781A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016093476A (en) * | 2014-11-10 | 2016-05-26 | 国立研究開発法人産業技術総合研究所 | Manducation feeling feedback device |
CN110726386A (en) * | 2019-09-19 | 2020-01-24 | 西安交通大学 | Measuring method of full stress strain tensor of material based on Laue photographic method |
CN113631952A (en) * | 2019-04-01 | 2021-11-09 | 西门子歌美飒可再生能源公司 | Wind turbine with sea level wave characteristic determination |
EP4001836A3 (en) * | 2020-11-11 | 2022-07-13 | Volume Graphics GmbH | Computer-implemented method for determining a value of a geometric parameter |
-
2010
- 2010-01-04 JP JP2010000167A patent/JP2011137781A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016093476A (en) * | 2014-11-10 | 2016-05-26 | 国立研究開発法人産業技術総合研究所 | Manducation feeling feedback device |
CN113631952A (en) * | 2019-04-01 | 2021-11-09 | 西门子歌美飒可再生能源公司 | Wind turbine with sea level wave characteristic determination |
US20220178350A1 (en) * | 2019-04-01 | 2022-06-09 | Siemens Gamesa Renewable Energy A/S | Wind turbine with sea level wave characteristic determination |
US12031520B2 (en) * | 2019-04-01 | 2024-07-09 | Siemens Gamesa Renewable Energy A/S | Wind turbine with sea level wave characteristic determination |
CN113631952B (en) * | 2019-04-01 | 2024-07-09 | 西门子歌美飒可再生能源公司 | Wind turbine with sea level wave characteristic determination |
CN110726386A (en) * | 2019-09-19 | 2020-01-24 | 西安交通大学 | Measuring method of full stress strain tensor of material based on Laue photographic method |
CN110726386B (en) * | 2019-09-19 | 2020-11-06 | 西安交通大学 | Measuring method of full stress strain tensor of material based on Laue photographic method |
EP4001836A3 (en) * | 2020-11-11 | 2022-07-13 | Volume Graphics GmbH | Computer-implemented method for determining a value of a geometric parameter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5742985B2 (en) | Radiation imaging equipment | |
WO2018016369A1 (en) | X-ray phase difference imaging apparatus | |
JP6187298B2 (en) | X-ray imaging system and image processing method | |
US20160175013A1 (en) | Apparatus and method for forming support device for effecting orthopedic stabilization | |
US7778389B2 (en) | X-ray imaging system and method | |
WO2011070521A1 (en) | Calibration of differential phase-contrast imaging systems | |
JP2008200359A (en) | Radiographic system | |
JP2012020023A (en) | Radiographic imaging apparatus, method, and program | |
CN102802529A (en) | Correction method for differential phase contrast imaging | |
JP2008200360A (en) | Radiographic system | |
JP2011137781A (en) | Precise electromagnetic wave diffraction measuring apparatus | |
JP2010164373A (en) | X-ray photographing apparatus and method | |
EP2789296A1 (en) | Radiography apparatus | |
JP6000696B2 (en) | X-ray stress measuring apparatus and X-ray stress measuring method | |
US8857266B2 (en) | Tensometer for simultaneously evaluating polymerization stresses, shrinkage and modulus development | |
KR101473531B1 (en) | Adaptive Sensor Unit, X-ray Imaging Appratus and X-ray Imaging Method | |
JP5145854B2 (en) | Sample analyzer, sample analysis method, and sample analysis program | |
WO2012057022A1 (en) | Radiography system and radiography method | |
JP5379952B2 (en) | X-ray imaging apparatus and X-ray imaging method | |
JP2010204060A (en) | X-ray inspection device, and inspection method of the same | |
US11013482B2 (en) | Phase contrast X-ray imaging system | |
EP3496815B1 (en) | Linac quality control device | |
JP2013132507A (en) | Arithmetic processing unit and bone density measuring device | |
JP2013205267A (en) | X-ray tomographic method and x-ray tomographic apparatus | |
Macherauch et al. | A modified diffractometer for x-ray stress measurements |