JP2011136584A - Gas barrier film, device, and manufacturing method for the gas barrier film - Google Patents
Gas barrier film, device, and manufacturing method for the gas barrier film Download PDFInfo
- Publication number
- JP2011136584A JP2011136584A JP2011086972A JP2011086972A JP2011136584A JP 2011136584 A JP2011136584 A JP 2011136584A JP 2011086972 A JP2011086972 A JP 2011086972A JP 2011086972 A JP2011086972 A JP 2011086972A JP 2011136584 A JP2011136584 A JP 2011136584A
- Authority
- JP
- Japan
- Prior art keywords
- gas barrier
- plastic film
- film
- organic layer
- barrier film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Laminated Bodies (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
本発明は、ガスバリア性フィルム、このガスバリア性フィルムを用いた装置、及びこのガスバリア性フィルムの製造方法に関する。 The present invention relates to a gas barrier film, an apparatus using the gas barrier film, and a method for producing the gas barrier film.
太陽電池モジュール用裏面保護シートには所定のガスバリア性と長期間にわたる過酷な自然環境に耐え得る、耐熱性、耐光性、耐加水分解性、耐湿性等の耐久性が要求される。 The solar cell module back surface protection sheet is required to have a predetermined gas barrier property and durability such as heat resistance, light resistance, hydrolysis resistance, moisture resistance and the like that can withstand a harsh natural environment for a long period of time.
特許文献1は、耐侯性・耐加水分解性を有するフィルム基材の少なくとも片面に無機化合物からなる蒸着層を有するガスバリア性フィルムと、このガスバリア性フィルムに配置された耐熱性を有するフィルム基材とを有する太陽電池モジュール用裏面保護シート、につき記載されている。
より具体的には、同文献においては、ポリエチレンテレフタレート(PET)フィルム基材の片面に、無機酸化物の蒸着膜を設けたバリアフィルムのポリエチレンテレフタレート(PET)が高温・高湿下で加水分解劣化等を生じ、水蒸気(水分)バリアが低下して、太陽電池の長期耐久性維持が困難であるという問題点を有する点に特に着目している。そして、この問題点を解決するために、ガスバリア性フィルムに耐熱性を有するフィルム基材を積層している。 More specifically, in this document, polyethylene terephthalate (PET), a barrier film in which a vapor-deposited inorganic oxide film is provided on one side of a polyethylene terephthalate (PET) film substrate, is hydrolyzed and deteriorated at high temperatures and high humidity. In particular, the water vapor (moisture) barrier is reduced, and the long-term durability of the solar cell is difficult to maintain. And in order to solve this problem, the film base material which has heat resistance is laminated | stacked on the gas barrier film.
実際に、同文献の実施例1では、ガスバリア性フィルムのフィルム基材(PEN#12)側に耐熱性を有するフィルム基材(PET#50)を、また、蒸着層(VM)側に耐熱性を有するフィルム基材(PET#188)を、固形分30重量%の2液硬化型ポリウレタン系接着剤を用いて、それぞれドライラミネート積層法により積層している。 Actually, in Example 1 of the document, a film base material (PET # 50) having heat resistance is provided on the film base material (PEN # 12) side of the gas barrier film, and heat resistance is provided on the vapor deposition layer (VM) side. A film base material (PET # 188) having a solid content is laminated by a dry lamination lamination method using a two-component curable polyurethane adhesive having a solid content of 30% by weight.
しかしながら、本発明者が特許文献1に記載された太陽電池モジュール用裏面保護シートについて検討を行ったところ、同裏面保護シートは、耐熱性を有するフィルム基材が接着剤を介してガスバリア性フィルムに貼り付けられるという構成を採用するために、ガスバリア性が不十分となる課題があることが判明した。
However, when this inventor examined about the back surface protection sheet for solar cell modules described in
すなわち、耐熱性を有するフィルム基材は、耐熱性のみならず、機械的強度、耐候性、耐加水分解性に優れるので、こうしたフィルム基材を用いることによって太陽電池モジュール用裏面保護シートのガスバリア性の改善が期待される。しかしながら、特許文献1では、耐熱性を有するフィルム基材を、ガスバリア性フィルムの両面に2液硬化型ポリウレタン系接着剤で接着しており、当該接着剤から水分が侵入しやすくなってしまっている。その結果、耐熱性を有するフィルム基材に期待されるガスバリア性が十分に発揮されないという課題がある。
That is, the film base material having heat resistance is excellent not only in heat resistance but also in mechanical strength, weather resistance, and hydrolysis resistance. By using such a film base material, the gas barrier property of the back surface protection sheet for solar cell modules is used. Improvement is expected. However, in
実際に、ガスバリア性については、本発明者が検討したところ、太陽電池モジュール用裏面保護シートとして実使用するためには、10−2g/m2・dayレベル(0.01g/m2・day以下)のガスバリア性が必要とされることがわかった。しかしながら、特許文献1の第0104段落の表3に示すように、同文献に記載されている太陽電池モジュール用裏面保護シートは、0.15g/m2・day程度の水蒸気バリア性しか達成されておらず、実使用には向かないものとなっている。
Actually, the inventors of the present invention have examined the gas barrier property, and in order to actually use it as a back surface protection sheet for a solar cell module, it is 10 −2 g / m 2 · day level (0.01 g / m 2 · day). The following gas barrier properties were found to be required. However, as shown in Table 3 in paragraph 0104 of
本発明は、上記課題を解決するためになされたものであって、その第1の目的は、ガスバリア性に優れるガスバリア性フィルムを提供することにある。 The present invention has been made to solve the above problems, and a first object thereof is to provide a gas barrier film having excellent gas barrier properties.
本発明は、上記課題を解決するためになされたものであって、その第2の目的は、ガスバリア性に優れるガスバリア性フィルムを用いた装置を提供することにある。 The present invention has been made to solve the above problems, and a second object of the present invention is to provide an apparatus using a gas barrier film having excellent gas barrier properties.
本発明は、上記課題を解決するためになされたものであって、その第3の目的は、ガスバリア性に優れるガスバリア性フィルムを製造することが可能なガスバリア性フィルムの製造方法を提供することにある。 The present invention has been made to solve the above problems, and a third object of the present invention is to provide a method for producing a gas barrier film capable of producing a gas barrier film having excellent gas barrier properties. is there.
本発明者は、耐加水分解性に優れガスバリア性の向上が期待できる耐熱性を有するフィルム基材を、特許文献1のようにドライラミネート法によって接着剤を介してガスバリア性フィルムに貼り付けるのではなく、ガスバリア性フィルムの基材自体として用いることができないか検討を行った。より具体的には、上記耐熱性を有するフィルム基材上に、無機材料を含有する無機層を直接形成してガスバリア性フィルムを形成することができないか否かにつき検討を行った。
The present inventor does not attach a heat resistant film base material that has excellent hydrolysis resistance and can be expected to improve gas barrier properties to a gas barrier film via an adhesive by a dry laminating method as in
そして、こうした検討の過程で、耐加水分解性を向上させるためにフィルム基材のオリゴマー量を低減したところ(以下、「プラスチックフィルム」という場合に、オリゴマー量を低減したフィルム基材を意味する場合がある。)、このプラスチックフィルムの表面粗さが粗くなって、フィルム表面の最大高低差がμmオーダーとなることがわかった。一方で、酸化ケイ素等からなる無機層は厚さが数十nmから数百nmなので、上記プラスチックフィルムの表面粗さが粗くなることによって、無機層がプラスチックフィルム表面を完全に覆うことができなくなる。その結果、無機層で覆われなかった部分は、十分なガスバリア性が得られず、耐加水分解性を向上させたプラスチックフィルムを用いることによってガスバリア性の向上が期待されるところ、かえってガスバリア性が悪化するという新たな課題に直面した。 And in the process of such examination, when the amount of oligomer of the film base material is reduced in order to improve hydrolysis resistance (hereinafter referred to as “plastic film”, when the film base material with reduced oligomer amount is meant. It has been found that the surface roughness of this plastic film is increased and the maximum height difference on the film surface is on the order of μm. On the other hand, since the inorganic layer made of silicon oxide or the like has a thickness of several tens to several hundreds of nanometers, the surface roughness of the plastic film becomes rough, so that the inorganic layer cannot completely cover the plastic film surface. . As a result, the portion that was not covered with the inorganic layer could not obtain sufficient gas barrier properties, and the use of a plastic film with improved hydrolysis resistance is expected to improve gas barrier properties. We faced a new challenge of getting worse.
そこで、上記の課題を克服するために本発明者がさらに鋭意検討をした結果、耐加水分解性を改善したプラスチックフィルムと、無機層との間に、プラスチックフィルムの表面粗さを覆って平坦化する有機層を設けることにより上記問題が解決できることを見出し、本発明を完成させた。 Therefore, as a result of further diligent studies by the present inventors to overcome the above problems, the plastic film surface roughness is covered and flattened between the inorganic film and the plastic film having improved hydrolysis resistance. It was found that the above problem can be solved by providing an organic layer to complete the present invention.
上記課題を解決するための第1の観点に係る本発明のガスバリア性フィルムは、含有されるオリゴマー量が1質量%以下であるプラスチックフィルム、該プラスチックフィルム上に設けられた紫外線硬化型樹脂からなる有機層、及び該有機層の上に設けられた無機層、を有し、前記有機層の厚さが、前記プラスチックフィルム表面における最大高低差よりも大きくなっている、ことを特徴とする。 The gas barrier film of the present invention according to the first aspect for solving the above-mentioned problem comprises a plastic film having an oligomer content of 1% by mass or less and an ultraviolet curable resin provided on the plastic film. It has an organic layer and an inorganic layer provided on the organic layer, and the thickness of the organic layer is larger than the maximum height difference on the surface of the plastic film.
この発明によれば、含有されるオリゴマー量が1質量%以下であるプラスチックフィルム、このプラスチックフィルム上に設けられた紫外線硬化型樹脂からなる有機層、及びこの有機層の上に設けられた無機層、を有し、有機層の厚さが、プラスチックフィルム表面における最大高低差よりも大きくなっていので、プラスチックフィルム中のオリゴマー量の低減により良好な膜質の無機層が形成されやすくなるとともに、オリゴマー量の低減によりプラスチックフィルム表面の最大高低差が大きくなっても、有機層がこの最大高低差を覆って平坦化が行われ、この平坦化された有機層上に無機層が設けられることになる。その結果、ガスバリア性に特に優れるガスバリア性フィルムを提供することができる。 According to this invention, the amount of oligomer contained is 1% by mass or less, the organic layer made of an ultraviolet curable resin provided on the plastic film, and the inorganic layer provided on the organic layer The thickness of the organic layer is larger than the maximum height difference on the surface of the plastic film, so that it becomes easier to form an inorganic layer with good film quality by reducing the amount of oligomer in the plastic film, and the amount of oligomer Even if the maximum height difference on the surface of the plastic film becomes large due to the reduction in the thickness, the organic layer is flattened so as to cover the maximum height difference, and the inorganic layer is provided on the flattened organic layer. As a result, a gas barrier film that is particularly excellent in gas barrier properties can be provided.
上記課題を解決するための第2の観点に係る本発明のガスバリア性フィルムは、含有されるオリゴマー量が1質量%以下であるプラスチックフィルム、該プラスチックフィルム上に設けられた紫外線硬化型樹脂からなる有機層、及び該有機層の上に設けられた無機層、を有し、前記有機層の厚さが、1.7μm以上、10μm以下である、ことを特徴とする。 The gas barrier film of the present invention according to the second aspect for solving the above-mentioned problem comprises a plastic film having an oligomer content of 1% by mass or less and an ultraviolet curable resin provided on the plastic film. It has an organic layer and an inorganic layer provided on the organic layer, and the thickness of the organic layer is 1.7 μm or more and 10 μm or less.
この発明によれば、上記第1の観点に係るガスバリア性フィルムの構成及び作用効果に加えて、紫外線硬化型樹脂からなる有機層の厚さが、1.7μm以上、10μm以下であるので、プラスチックフィルム表面の最大高低差がより確実に有機層に覆われることになり、ガスバリア性フィルムのガスバリア性をより確実に向上させやすくなる。 According to this invention, in addition to the configuration and function and effect of the gas barrier film according to the first aspect, the thickness of the organic layer made of the ultraviolet curable resin is 1.7 μm or more and 10 μm or less. The maximum height difference on the film surface is more reliably covered with the organic layer, and the gas barrier property of the gas barrier film can be more reliably improved.
本発明のガスバリア性フィルムの好ましい態様においては、前記プラスチックフィルムの材質がポリエチレンテレフタレートである。 In a preferred embodiment of the gas barrier film of the present invention, the plastic film is made of polyethylene terephthalate.
この発明によれば、プラスチックフィルムの材質がポリエチレンテレフタレートであるので、ポリエチレンテレフタレートは、結晶化しやすい性質を有し、この性質はオリゴマー量を低減することでより顕在化する。その結果、オリゴマー量を低減させたポリエチレンテレフタレートで形成されたプラスチックフィルムは表面の粗さが大きくなる傾向となり、有機層で表面の平滑化を図る意義が大きくなる。 According to the present invention, since the plastic film is made of polyethylene terephthalate, the polyethylene terephthalate has a property of being easily crystallized, and this property becomes more obvious by reducing the amount of oligomer. As a result, the plastic film formed of polyethylene terephthalate with a reduced amount of oligomer tends to have a rough surface, and the significance of smoothing the surface with an organic layer increases.
上記課題を解決するための本発明の装置は、上記本発明のガスバリア性フィルムを用いる装置であって、当該装置が表示装置又は発電装置であることを特徴とする。 An apparatus of the present invention for solving the above problems is an apparatus using the gas barrier film of the present invention, wherein the apparatus is a display device or a power generation device.
この発明によれば、上記本発明のガスバリア性フィルムを用いる装置であって、この装置が表示装置又は発電装置であるので、10−2g/m2・dayレベル(0.01g/m2・day以下)という高いガスバリア性が必要とされる表示装置又は発電装置に本発明のガスバリア性フィルムが用いられることになり、ガスバリア性に優れるガスバリア性フィルムを用いた装置を提供することができる。 According to this invention, it is an apparatus using the gas barrier film of the present invention, and since this apparatus is a display device or a power generation device, it is 10 −2 g / m 2 · day level (0.01 g / m 2 · The gas barrier film of the present invention is used for a display device or a power generation device that requires a high gas barrier property (day or less), and an apparatus using the gas barrier film having excellent gas barrier property can be provided.
上記課題を解決するための本発明のガスバリア性フィルムの製造方法は、オリゴマー量が1質量%以下のプラスチックフィルムを準備するプラスチックフィルム準備工程、前記プラスチックフィルム上に、該プラスチックフィルム表面における最大高低差よりも厚い有機層を紫外線硬化型樹脂で形成する有機層形成工程、前記有機層上に、無機層を形成する無機層形成工程、を有することを特徴とする。 The method for producing a gas barrier film of the present invention for solving the above-mentioned problems is a plastic film preparation step of preparing a plastic film having an oligomer amount of 1% by mass or less, a maximum height difference on the surface of the plastic film on the plastic film. An organic layer forming step of forming a thicker organic layer with an ultraviolet curable resin, and an inorganic layer forming step of forming an inorganic layer on the organic layer.
この発明によれば、オリゴマー量が1質量%以下のプラスチックフィルムを準備するプラスチックフィルム準備工程、プラスチックフィルム上に、このプラスチックフィルム表面における最大高低差よりも厚い有機層を紫外線硬化型樹脂で形成する有機層形成工程、有機層上に、無機層を形成する無機層形成工程、を有するようにするので、プラスチックフィルム中のオリゴマー量の低減により良好な膜質の無機層が形成されやすくなるとともに、オリゴマー量の低減によりプラスチックフィルム表面の最大高低差が大きくなっても、紫外線硬化型樹で形成した有機層がこの最大高低差を覆って平坦化が行われ、この平坦化された有機層上に無機層が設けられることになる。その結果、ガスバリア性に優れるガスバリア性フィルムを製造することが可能なガスバリア性フィルムの製造方法を提供することができる。 According to the present invention, a plastic film preparing step for preparing a plastic film having an oligomer amount of 1% by mass or less, and an organic layer thicker than the maximum height difference on the surface of the plastic film is formed on the plastic film with an ultraviolet curable resin . Since it has an organic layer forming step and an inorganic layer forming step for forming an inorganic layer on the organic layer, a reduction in the amount of oligomers in the plastic film facilitates the formation of an inorganic layer with good film quality and the formation of oligomers. Even if the maximum height difference on the surface of the plastic film increases due to the reduction in the amount, the organic layer formed by the UV-curing type tree covers the maximum height difference and is flattened, and an inorganic layer is formed on the flattened organic layer. A layer will be provided. As a result, a method for producing a gas barrier film capable of producing a gas barrier film having excellent gas barrier properties can be provided.
本発明のガスバリア性フィルムによれば、ガスバリア性に優れるガスバリア性フィルムを提供することができる。 According to the gas barrier film of the present invention, a gas barrier film having excellent gas barrier properties can be provided.
本発明の装置によれば、ガスバリア性に優れるガスバリア性フィルムを用いた装置を提供することができる。 According to the apparatus of the present invention, an apparatus using a gas barrier film having excellent gas barrier properties can be provided.
本発明のガスバリア性フィルムの製造方法によれば、ガスバリア性に優れるガスバリア性フィルムを製造することが可能なガスバリア性フィルムの製造方法を提供することができる。 According to the method for producing a gas barrier film of the present invention, a method for producing a gas barrier film capable of producing a gas barrier film having excellent gas barrier properties can be provided.
次に、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Next, embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.
(ガスバリア性フィルム)
図1は、本発明のガスバリア性フィルムの一例を示す模式的な断面図である。
(Gas barrier film)
FIG. 1 is a schematic cross-sectional view showing an example of the gas barrier film of the present invention.
ガスバリア性フィルム1は、含有されるオリゴマー量が1質量%以下であるプラスチックフィルム2、プラスチックフィルム2上に設けられた有機層3、及び有機層3の上に設けられた無機層4、を有し、有機層3の厚さが、プラスチックフィルム2表面における最大高低差(図示せず。)よりも大きくなっている。これにより、プラスチックフィルム2中のオリゴマー量の低減により良好な膜質の無機層4が形成されやすくなるとともに、オリゴマー量の低減によりプラスチックフィルム1表面の最大高低差が大きくなっても、有機層3がこの最大高低差を覆って平坦化が行われ、この平坦化された有機層3上に無機層4が設けられることになる。その結果、ガスバリア性に特に優れるガスバリア性フィルム1を提供することができる。以下、ガスバリア性フィルム1を構成する各部材について説明する。
The
プラスチックフィルム2は、含有されるオリゴマー量が1質量%以下となっている。無機層4の形成をより良好に行う見地から、オリゴマー量は、0.8質量%以下とすることが好ましく、0.7質量%以下とすることがより好ましい。オリゴマー量の少ないプラスチックフィルム2は耐加水分解性フィルムと呼ばれることがある。プラスチックフィルム2にオリゴマーが存在すると、無機層4を真空成膜する際にガスとなって発生するため、膜形成を阻害し、無機層4の膜厚が薄くなりやすく、良好な膜質が得にくくなる。そこで、本発明ではオリゴマー量を低減することにより、無機層4の形成の阻害を抑制し、無機層4の厚さおよび膜質を良好にしやすくなる。なお、含有されるオリゴマー量は、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.2質量%以上であることが特に好ましい。オリゴマー量が少な過ぎると、プラスチックフィルム自身の柔軟性が低下し、ロールプロセスへの適用が難しくなったり、後工程で不具合が生じたりするおそれがある。
The amount of oligomer contained in the
プラスチックフィルム2に含有されるオリゴマーとは、例えば、プラスチックフィルム2を形成する際の未反応モノマー、オリゴマー、さらには反応複生成物などの低分子化合物などを総称したものを指し、必ずしも純粋なオリゴマーに限定されるものではない。より具体的には、後述するオリゴマーの含有量の測定方法によってオリゴマー成分として検出される物質(重量減少に寄与する物質)全てが本発明でいうオリゴマーとなる。
The oligomer contained in the
プラスチックフィルム2に含有されるオリゴマーの含有量の測定は、種々の方法を挙げることができるが、好ましくは、サンプルとなるプラスチックフィルムを加熱したキシレンに24時間浸積させて、サンプルの重量変化で、キシレン中に抽出されるオリゴマー成分を測定する方法を挙げることができる。より具体的には、特開平11−288622号公報に記載された方法を用いればよい。すなわち、50mm角に切断したフィルムサンプル16枚を、140℃の熱風オーブン中で2時間乾燥し、重量(抽出前重量)を測定する。次に、ソックスレー抽出器を用いて沸騰キシレン(500ml)で24時間抽出する。抽出したサンプルを取り出し、水の入った超音波洗浄機で6分間洗浄するのを3回繰り返し、ガーゼで表面に付着しているキシレンを軽くふき取る。最後に抽出したサンプルを160℃の熱風オーブン中で8時間乾燥し、重量(抽出後重量)を測定して、オリゴマー量を、「オリゴマー量(%)=100×(抽出前重量−抽出後重量)/抽出前重量」の計算式から求めればよい。
The measurement of the content of the oligomer contained in the
プラスチックフィルム2の材質は、プラスチックであればよく特に制限はない。プラスチックフィルム2の材質としては、汎用性、工業性の見地から、ポリエステル樹脂を好ましく挙げることができる。こうしたポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、及びこれらの共重合体、ポリシクロヘキサンジメチレンテレフタレート(PCT)などを挙げることができる。ポリエステル樹脂のうちでも、ポリエチレンテレフタレート(PET)とポリエチレンナフタレート(PEN)及びこれらの共重合体が好ましく、ポリエチレンテレフタレート及びその共重合体がさらに好ましく、ポリエチレンテレフタレートが特に好ましい。すなわち、プラスチックフィルム2の材質がポリエチレンテレフタレートであることが特に好ましい。ポリエチレンテレフタレートは、結晶化しやすい性質を有し、この性質はオリゴマー量を低減することでより顕在化する。その結果、オリゴマー量を低減させたポリエチレンテレフタレートで形成されたプラスチックフィルム2は表面の粗さが大きくなる傾向となり、有機層3で表面の平滑化を図る意義が大きくなる。
The material of the
オリゴマー量を低減させたポリエチレンテレフタレートの具体例としては、例えば、東レ株式会社製のX10S(商品名)、帝人デュポンフィルム株式会社製のVN,VW,VK(いずれも商品名)、三菱樹脂株式会社製のP100(商品名)、等々を挙げることができる。 Specific examples of polyethylene terephthalate with a reduced amount of oligomer include, for example, X10S (trade name) manufactured by Toray Industries, Inc., VN, VW, VK (all trade names) manufactured by Teijin DuPont Films, Ltd., and Mitsubishi Plastics, Inc. P100 (product name) made by the company, etc. can be mentioned.
プラスチックフィルム2の厚さは、ガスバリア性フィルム1に所定の剛性を付与できる程度とすればよく特に制限はなく、通常10μm以上、好ましくは50μm以上、また、通常5mm以下、好ましくは3mm以下、より好ましくは1mm以下、更に好ましくは500μm以下、特に好ましくは300μm以下とする。プラスチックフィルム2の厚さを300μm以下とすると、プラスチックフィルム準備工程のフィルム成形工程で延伸した場合に厚みのむらを小さくしやすくなる。また、プラスチックフィルム2の厚さを300μm以下とすると、剛性が低くなり、無機層4の形成をロールtoロール方式で行った後ロール形状に巻き取った場合に無機層4のひび割れや傷付きが発生しにくくなる。さらに、太陽電池モジュール用裏面保護シートとしてガスバリア性フィルム1を用いる場合には、低価格品に対する市場要求が特に強いところ、プラスチックフィルム2の厚さを300μm以下とすれば、プラスチックフィルム2の原材料の使用量を低減してコスト削減を図ることもできる。
The thickness of the
プラスチックフィルムの厚さは、入手時の厚さを測定して評価できる。一方、ガスバリア性フィルムを構成した後におけるプラスチックフィルムの厚さは、ガスバリア性フィルムを集束イオンビーム加工装置(FIB:日立製作所製、FB−2000)にて加工し、プラスチックフィルムの断面を露出させた後、その断面を走査型電子顕微鏡(SEM:日立製作所製、S−5000H、加速電圧1.5kV)で観察することにより測定することができる。このとき、プラスチックフィルム断面の任意の6箇所を測定し、平均値を採用する。 The thickness of the plastic film can be evaluated by measuring the thickness at the time of acquisition. On the other hand, the thickness of the plastic film after the gas barrier film was formed was processed by a focused ion beam processing apparatus (FIB: Hitachi, FB-2000) to expose the cross section of the plastic film. Then, it can measure by observing the cross section with a scanning electron microscope (SEM: Hitachi Ltd. make, S-5000H, acceleration voltage 1.5kV). At this time, arbitrary six places on the cross section of the plastic film are measured, and an average value is adopted.
プラスチックフィルム2は、図1には図示していないが、オリゴマー量を低減していることにより表面粗さが粗くなっている。プラスチックフィルム2中のオリゴマー量を低減することによって、プラスチックフィルム2表面の凹凸が大きくなるメカニズムは明白なものとなっていないが、表面凹凸の大きなプラスチックフィルム2は白化する傾向にあるので、以下のように予想される。
Although not shown in FIG. 1, the
プラスチックフィルム2が白化する現象は、プラスチックフィルム2中の分子鎖が部分的に結晶化して、結晶部分の光の屈折率が非晶部分と異なるために起こると考えられる。そして、この結晶部分が成長する等により当該結晶部分が凸形状又は凹形状となって、表面凹凸が誘発されると考えられる。ここで、結晶化のしやすさは、プラスチックフィルム2を構成する高分子の分子の形によって異なる。分子構造が簡単で、規則正しいものは結晶化しやすい。例えば、ポリエチレンテレフタレートのプラスチックフィルム2を使用した場合には、ポリエチレンテレフタレートは結晶性プラスチックに属し、元々結晶化しやすい性質を有する。このため、透明なポリエチレンテレフタレートフィルムは、フィルム成型時に工夫をしており、例えば、融点以上の温度にしておいてから、急冷することにより非結晶状態を得ている。このように、ポリエチレンテレフタレート自体が結晶化しやすい性質を有するところ、オリゴマー量を低減したポリエチレンテレフタレートで形成されたプラスチックフィルム2は、さらに結晶化しやすくなっていると考えられる。なぜなら、オリゴマー等の未反応成分が少なくなることにより、樹脂組成純度とともに規則性が向上してより本来の結晶性プラスチックの特性を発現しやすくなると考えられるためである。すなわち、オリゴマー量を低減するために、一度得られたポリエチレンテレフタレートのペレットを、固相重合などの方法により更に反応させて未反応成分を低減するという処理を施す場合が多いため、樹脂組成純度とともに規則性が向上し、結晶化、すなわち白化し易くなると考えられる。
The phenomenon that the
プラスチックフィルム2は、上述のように、オリゴマー量を低減しているので所定の表面粗さを有する。また、プラスチックフィルム2の表面粗さは、プラスチックフィルム2の厚さとほぼ比例する関係となる。具体的には、プラスチックフィルム2の厚さが厚くなるほど、プラスチックフィルム2の表面における山谷の最大高低差が大きくなる傾向となる。これらの点を考慮すると、プラスチックフィルム2の表面における山谷の最大高低差は、通常0.7μm以上、5μm以下となる。例えば、後述する実施例に記載されるように、厚さが300μm以下のプラスチックフィルム2では、最大高低差が最大で1.6μmとなるので、有機層3の厚さを1.7μm以上とすることが好ましい。
As described above, since the amount of oligomer is reduced, the
表面粗さとしての最大高低差の測定は、例えば、表面形状測定装置(東レエンジニアリング製SP−500)を用い、レンズ倍率50倍、分解能1376×1040pixelの条件で、0.13mm×0.17mmの範囲を測定し、最大値と最小値の差を最大高低差として評価すればよい。一方、ガスバリア性フィルムを構成した後におけるプラスチックフィルムの表面粗さとしての最大高低差の測定は、ガスバリア性フィルムを集束イオンビーム加工装置(FIB:日立製作所製、FB−2000)にて加工し、プラスチックフィルムの断面を露出させた後、その断面を走査型電子顕微鏡(SEM:日立製作所製、S−5000H、加速電圧1.5kV)で観察することにより行えばよい。プラスチックフィルム断面の任意の6箇所を測定し、そのうちの最大高低差の値を採用する。 The measurement of the maximum height difference as the surface roughness is, for example, 0.13 mm × 0.17 mm using a surface shape measuring device (SP-500 manufactured by Toray Engineering Co., Ltd.) with a lens magnification of 50 times and a resolution of 1376 × 1040 pixels. The range may be measured, and the difference between the maximum value and the minimum value may be evaluated as the maximum height difference. On the other hand, the measurement of the maximum height difference as the surface roughness of the plastic film after constituting the gas barrier film is performed by processing the gas barrier film with a focused ion beam processing apparatus (FIB: Hitachi, FB-2000), After the section of the plastic film is exposed, the section may be observed with a scanning electron microscope (SEM: manufactured by Hitachi, S-5000H, acceleration voltage 1.5 kV). Measure any six points on the cross section of the plastic film, and adopt the maximum height difference value.
プラスチックフィルム2の表面は、コロナ処理、火炎処理、プラズマ処理、グロー放電処理、粗面化処理、加熱処理、薬品処理、及び易接着処理等の表面処理を行ってもよい。こうした表面処理の具体的な方法は従来公知のものを適宜用いることができる。
The surface of the
プラスチックフィルム2の製造方法、具体的には、所定のオリゴマー量を含有するプラスチックフィルム2の製造方法については、後述する。
The manufacturing method of the
有機層3は、プラスチックフィルム2の表面粗さを覆うように形成されている。すなわち、有機層3は、その厚さが、プラスチックフィルム2表面における最大高低差よりも大きくなるように形成される。
The
有機層3を構成する材料は、有機物であればよく特に制限はないが、例えば、熱硬化型樹脂又は紫外線硬化型樹脂等を挙げることができる。これらのうち、工業生産性を考慮すると、紫外線硬化型樹脂を用いることが好ましい。すなわち、熱硬化型樹脂では、硬化のために例えば160℃程度の加熱を要するため、耐熱性を有するプラスチックフィルム2を用いる必要があり、プラスチックフィルム2の材質の選択が若干狭まることになる。また、熱硬化型樹脂では、一定の硬化時間(例えば30分程度)が必要となるので、ロールtoロール方式の生産工程上で十分な乾燥時間を確保することが難しくなる場合がある。この場合、より確実に硬化させるためにロールに巻き取った状態で加熱オーブンに投入することがあるが、ロールに巻き取った巻物状態であるためブロッキングの問題や、ロールの外側とロールの中心付近とで硬化ムラが発生しやすくもなる。これに対して、紫外線硬化型樹脂は、必要露光量を照射すれば充分に硬化可能であることから硬化が短時間ですみ、工業生産上、プラスチックフィルム2上に良好な有機層3を形成しやすくなる。
The material constituting the
有機層3を紫外線硬化型樹脂で構成する場合、プラスチックフィルム2上に紫外線硬化型樹脂組成物を塗布して、塗膜に紫外線を照射して紫外線硬化型樹脂を硬化させることにより有機層3が成膜される。有機層3の形成方法についての詳細は後述するが、紫外線硬化型樹脂組成物に用いる材料について以下説明する。
When the
有機層3の形成に用いる紫外線硬化型樹脂組成物は、特に制限はないが、アクリルモノマーを主成分とする樹脂を用いることが好ましい。アクリルモノマーを主成分とする樹脂の具体例としては、アクリレート系の官能基を有するもの、例えば比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アクリレート等のオリゴマー又はプレポリマー、反応性希釈剤等が挙げられる。そして、これらの具体例としては、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N−ビニルピロリドン等の単官能モノマー並びに多官能モノマー、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。本明細書において「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。
Although there is no restriction | limiting in particular in the ultraviolet curable resin composition used for formation of the
有機層3の形成に用いる紫外線硬化型樹脂組成物は、さらに、重合開始剤として、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α−アミロキシムエステル、テトラメチルチウラムモノサルファイド、チオキサントン類や、光増感剤としてn−ブチルアミン、トリエチルアミン、トリーn−ブチルホスフィン等を混合して用いることができる。紫外線硬化型樹脂組成物中の重合開始剤や光増感剤の含有量は、特に制限はなく、良好な硬化が行われる程度の含有量であればよい。また、紫外線硬化型樹脂組成物中には、塗布液の粘度調整の見地から、トルエンやメチルエチルケトン等の溶媒を含有させてもよい。こうした溶媒は、本発明の要旨の範囲内において、任意の割合で混合して用いてもよい。
The ultraviolet curable resin composition used for forming the
有機層3の厚さは、1.7μm以上、10μm以下であることが好ましい。これにより、プラスチックフィルム2表面の最大高低差がより確実に有機層3に覆われることになり、ガスバリア性フィルム1のガスバリア性をより確実に向上させやすくなる。例えば、後述する実施例に記載されるように、厚さが300μm以下のプラスチックフィルム2では、最大高低差が最大で1.6μmとなるので、有機層3の厚さを1.7μm以上とすることが好ましい。また、例えば、有機層3を紫外線硬化型の樹脂で形成する紫外線硬化樹脂層とする場合には、その厚さは、プラスチックフィルム2の最大高低差以上が好ましく、上限は10μm以下とすればよい。有機層3の厚さは、ガスバリア性フィルム1を集束イオンビーム加工装置(FIB:日立製作所製、FB−2000)にて加工し、有機層の断面を露出させた後、その断面を走査型電子顕微鏡(SEM:日立製作所製、S−5000H、加速電圧1.5kV)で観察することにより測定することができる。このとき、有機層断面の任意の6箇所を測定し、平均値を採用する。
The thickness of the
有機層3の厚さが、プラスチックフィルム2の表面粗さの最大高低差よりも小さいと、プラスチックフィルム2表面を充分に平坦化することができず、完全にプラスチックフィルム2を覆えないため、有機層3の全面に無機層4を均一に形成しにくくなり、無機層の形成されなかった部分のガスバリア性が不十分となりやすい。こうした見地から、有機層3の厚さを1.7μm以上とすることが好ましい。一方で、プラスチックフィルム2のカールや有機層3の割れ等の発生を考慮すると、有機層3の厚さを10μm以下とすることが好ましい。
If the thickness of the
無機層4は、水蒸気等のガスを遮断する層として形成される。無機層4を形成する材料は、無機化合物であればよく特に制限はないが、例えば、金属、無機酸化物、無機酸化窒化物、無機窒化物、無機酸化炭化物、又は無機酸化炭化窒化物等を挙げることができる。無機層4は、本発明の要旨の範囲内において、上記材料を任意の割合で混合して用いてもよい。これら材料から形成される薄膜とすれば、水蒸気の透過を遮断しやすくなり、酸素の透過を遮断しやすくなるので、ガスバリア機能を有効に付与できる。 The inorganic layer 4 is formed as a layer that blocks gas such as water vapor. The material for forming the inorganic layer 4 is not particularly limited as long as it is an inorganic compound. For example, a metal, an inorganic oxide, an inorganic oxynitride, an inorganic nitride, an inorganic oxide carbide, an inorganic oxycarbonitride, or the like can be used. Can be mentioned. The inorganic layer 4 may be used by mixing the above materials at an arbitrary ratio within the scope of the present invention. If a thin film is formed from these materials, it is easy to block the permeation of water vapor and the permeation of oxygen, so that a gas barrier function can be effectively provided.
無機層4を構成する無機化合物としては、より具体的には、ガスバリア性の見地から、珪素、アルミニウム、マグネシウム、チタン、スズ、インジウム、又はセリウムから選ばれた1種または2種以上を含有するものであることが好ましい。より具体的には、ガスバリア性の見地から、無機酸化物としては、例えば、珪素酸化物、アルミニウム酸化物、マグネシウム酸化物、チタン酸化物、スズ酸化物、又はインジウム合金酸化物が好ましく、無機酸化窒化物としては、珪素酸化窒化物が好ましく、無機窒化物としては、珪素窒化物、アルミニウム窒化物、又はチタン窒化物が好ましく、さらに基材薄膜の金属としては、アルミニウム、銀、錫、クロム、ニッケル、もしくはチタンが好ましい。無機層4は、本発明の要旨の範囲内において、上記材料を任意の割合で混合して用いてもよい。 More specifically, the inorganic compound constituting the inorganic layer 4 contains one or more selected from silicon, aluminum, magnesium, titanium, tin, indium, or cerium from the viewpoint of gas barrier properties. It is preferable. More specifically, from the viewpoint of gas barrier properties, as the inorganic oxide, for example, silicon oxide, aluminum oxide, magnesium oxide, titanium oxide, tin oxide, or indium alloy oxide is preferable. As the nitride, silicon oxynitride is preferable, as the inorganic nitride, silicon nitride, aluminum nitride, or titanium nitride is preferable, and as the metal of the substrate thin film, aluminum, silver, tin, chromium, Nickel or titanium is preferred. The inorganic layer 4 may be used by mixing the above materials at an arbitrary ratio within the scope of the present invention.
無機層4の厚さは、使用する無機化合物によっても異なるが、ガスバリア性確保の見地から、通常5nm以上、好ましくは10nm以上とする。また、無機層4の厚さは、クラック等の発生を抑制する見地から、通常5000nm以下、好ましくは500nm以下、より好ましくは300nm以下とする。また、無機層4は、必ずしも1層で構成することに限定されず、2層以上積層したものであってもよく、その際に、同じ材料どうしを組み合わせても、異なる材料どうしを組み合わせてもよい。 The thickness of the inorganic layer 4 varies depending on the inorganic compound used, but is usually 5 nm or more, preferably 10 nm or more, from the viewpoint of ensuring gas barrier properties. Further, the thickness of the inorganic layer 4 is usually 5000 nm or less, preferably 500 nm or less, more preferably 300 nm or less, from the viewpoint of suppressing the occurrence of cracks and the like. The inorganic layer 4 is not necessarily limited to a single layer, and may be a laminate of two or more layers. In this case, the same materials may be combined or different materials may be combined. Good.
無機層4の形成方法の詳細については後述する。 Details of the method of forming the inorganic layer 4 will be described later.
ガスバリア性フィルム1は、上述のとおり、プラスチックフィルム2、有機層3、及び無機層4で形成されているが、これら以外の層をプラスチックフィルム2、有機層3、及び無機層4の間に適宜挿入したり、プラスチックフィルム2において有機層3が形成されていない側の面に積層したり、無機層4の上に積層してもよい。こうした任意の層としては、例えば、プライマー層やオーバーコート層等を挙げることができる。こうしたプライマー層やオーバーコート層は、従来公知のものを適宜用いることができる。
As described above, the
ガスバリア性フィルム1は、オリゴマー量が低減されたプラスチックフィルム2と、プラスチックフィルム2表面の最大高低差を覆う程度の厚さを有する有機層3と、ガスバリア性に寄与する無機層4と、を有するので、高いガスバリア性が達成される。具体的には、10−2g/m2・dayレベル(0.01g/m2・day以下)という高いガスバリア性を達成することができる。ガスバリア性は、例えば、水蒸気透過率を測定することによって評価することができ、測定方法としては、例えば、測定温度:37.8℃、湿度:100%RHの条件下で、水蒸気透過率測定装置(MOCON社製、商品名:AQUATRAN)を用いて測定する方法を挙げることができる。
The
(装置)
本発明の装置は、上記説明した本発明のガスバリア性フィルムを用いる装置であって、表示装置又は発電装置である。これにより、10−2g/m2・dayレベル(0.01g/m2・day以下)という高いガスバリア性が必要とされる表示装置又は発電装置に本発明のガスバリア性フィルムが用いられることになり、ガスバリア性に優れるガスバリア性フィルムを用いた装置を提供することができる。
(apparatus)
The device of the present invention is a device using the gas barrier film of the present invention described above, and is a display device or a power generation device. As a result, the gas barrier film of the present invention is used for a display device or a power generation device that requires a high gas barrier property of 10 −2 g / m 2 · day level (0.01 g / m 2 · day or less). Thus, an apparatus using a gas barrier film having excellent gas barrier properties can be provided.
表示装置とは、水蒸気等の侵入により表示性能が劣化する性質を有し、ガスバリア性フィルムを用いることが必要なものをいう。こうした表示装置としては、例えば、液晶表示装置、有機EL表示装置等を挙げることができる。液晶表示装置や有機EL表示装置は、従来公知の構成を適宜用い、ガスバリア性フィルムによる封止も従来公知の方法を適宜用いればよい。 The display device has a property that display performance deteriorates due to intrusion of water vapor or the like, and it is necessary to use a gas barrier film. Examples of such a display device include a liquid crystal display device and an organic EL display device. The liquid crystal display device and the organic EL display device may appropriately use a conventionally known configuration, and may be appropriately sealed by a gas barrier film using a conventionally known method.
発電装置とは、水蒸気等の侵入により発電性能が劣化する性質を有し、ガスバリア性フィルムを用いることが必要なものをいう。こうした発電装置としては、例えば、太陽電池装置(太陽電池モジュール)を挙げることができる。太陽電池装置は、従来公知の構成を適宜用いることができ、ガスバリア性フィルムによる封止も従来公知の方法を適宜用いればよい。より具体的には、ガスバリア性フィルムは、通常、太陽電池装置の裏面保護シートとして用いられる。なぜなら、裏面保護シートには外部からの水蒸気(水分)や酸素の侵入を遮断するためのガスバリア性が要求されるからである。ガスバリア性が不十分な場合には、水蒸気(水分)の透過により太陽電池装置を構成する充填剤が剥離、変色したり、配線の腐蝕を起こす等、太陽電池の出力が低下する場合がある。したがって、ガスバリア性が特に優れる本発明のガスバリア性フィルムを用いる意義が大きい。 The power generation device has a property that power generation performance deteriorates due to intrusion of water vapor or the like, and it is necessary to use a gas barrier film. Examples of such a power generation device include a solar cell device (solar cell module). A conventionally well-known structure can be used suitably for a solar cell apparatus, and the sealing by a gas barrier film should just use a conventionally well-known method suitably. More specifically, the gas barrier film is usually used as a back surface protection sheet of a solar cell device. This is because the back protective sheet is required to have a gas barrier property for blocking the entry of water vapor (moisture) and oxygen from the outside. When the gas barrier property is insufficient, the output of the solar cell may decrease, for example, the filler constituting the solar cell device may be peeled off or discolored due to permeation of water vapor (moisture), or the wiring may be corroded. Therefore, the significance of using the gas barrier film of the present invention having particularly excellent gas barrier properties is great.
発電装置、より具体的には太陽電池装置に本発明のガスバリア性フィルムを用いる利点はもう一つある。すなわち、本発明のガスバリア性フィルムは、プラスチックフィルムのオリゴマー量を低減しているので、表面凹凸の原因となる部分結晶の形成で白化する場合がある。こうした白化により、太陽電池装置に照射される太陽光が乱反射して照射効率が向上して、太陽電池装置の発電効率が向上する傾向となる。こうした見地からも、本発明のガスバリア性フィルムは、太陽電池装置に代表される発電装置に用いることが好ましい。 There is another advantage of using the gas barrier film of the present invention in a power generation device, more specifically in a solar cell device. That is, since the gas barrier film of the present invention reduces the amount of oligomer of the plastic film, it may be whitened by the formation of partial crystals that cause surface irregularities. By such whitening, the sunlight irradiated to the solar cell device is irregularly reflected, the irradiation efficiency is improved, and the power generation efficiency of the solar cell device tends to be improved. From such a standpoint, the gas barrier film of the present invention is preferably used for a power generation device represented by a solar cell device.
(ガスバリア性フィルムの製造方法)
本発明のガスバリア性フィルムの製造方法は、オリゴマー量が1質量%以下のプラスチックフィルムを準備するプラスチックフィルム準備工程、プラスチックフィルム上に、このプラスチックフィルム表面における最大高低差よりも厚い有機層を形成する有機層形成工程、有機層上に、無機層を形成する無機層形成工程、を有する。これにより、プラスチックフィルム中のオリゴマー量の低減により良好な膜質の無機層が形成されやすくなるとともに、オリゴマー量の低減によりプラスチックフィルム表面の最大高低差が大きくなっても、有機層がこの最大高低差を覆って平坦化が行われ、この平坦化された有機層上に無機層が設けられることになる。その結果、ガスバリア性に優れるガスバリア性フィルムを製造することが可能なガスバリア性フィルムの製造方法を提供することができる。以下、各工程について説明する。
(Method for producing gas barrier film)
In the method for producing a gas barrier film of the present invention, a plastic film preparing step of preparing a plastic film having an oligomer amount of 1% by mass or less, and an organic layer thicker than the maximum height difference on the surface of the plastic film is formed on the plastic film. An organic layer forming step, and an inorganic layer forming step of forming an inorganic layer on the organic layer. This makes it easier to form an inorganic layer with good film quality by reducing the amount of oligomer in the plastic film, and even if the maximum height difference on the surface of the plastic film is increased by reducing the amount of oligomer, the organic layer has this maximum height difference. Is flattened, and an inorganic layer is provided on the flattened organic layer. As a result, a method for producing a gas barrier film capable of producing a gas barrier film having excellent gas barrier properties can be provided. Hereinafter, each step will be described.
まず、プラスチックフィルム準備工程について説明する。 First, the plastic film preparation process will be described.
プラスチックフィルム準備工程は、オリゴマー量が1質量%以下のプラスチックフィルムを準備する工程である。プラスチックフィルム準備工程は、より具体的には、上記所定のプラスチックフィルムを製造して準備するか、上記所定のプラスチックフィルムをフィルムメーカー等に製造してもらい、それを購入して準備すること等によって行われる。オリゴマー量を低減したプラスチックフィルムを製造する方法は特に制限されないが、例えばポリエステル樹脂に代表される熱可塑性樹脂をプラスチックフィルムの材質として用いる場合には以下の各工程を行えばよい。具体的には、熱可塑性樹脂等のオリゴマー成分を低減する工程(オリゴマー成分低減工程)の後、この熱可塑性樹脂を溶融させてフィルムに成形する工程(フィルム成形工程)を行えばよい。以下、上記オリゴマー成分低減工程及びフィルム成形工程について説明する。 The plastic film preparation step is a step of preparing a plastic film having an oligomer amount of 1% by mass or less. More specifically, in the plastic film preparation step, the predetermined plastic film is manufactured and prepared, or the predetermined plastic film is manufactured by a film maker and the like is purchased and prepared. Done. A method for producing a plastic film with a reduced amount of oligomer is not particularly limited. For example, when a thermoplastic resin typified by a polyester resin is used as the material of the plastic film, the following steps may be performed. Specifically, after the step of reducing oligomer components such as a thermoplastic resin (oligomer component reduction step), a step of forming the film by melting the thermoplastic resin (film forming step) may be performed. Hereinafter, the said oligomer component reduction process and a film formation process are demonstrated.
オリゴマー成分低減工程に用いる原料は、熱可塑性樹脂から形成される。ここで、この熱可塑性樹脂を合成するための重合触媒としては、通常、三酸化アンチモンSb2O3等のアンチモン化合物を用いる。オリゴマーの再生率の低さ、触媒の失活処理効果の大きさ等から得られる原料が低オリゴマー化しやすいという見地から、重合触媒としては、Ge、Ti、Co、Zn,Alから選ばれた少なくとも一種を含む化合物、例えば、酸化ゲルマニウム、酸化チタン等の触媒を用いることが好ましい。 The raw material used for the oligomer component reduction step is formed from a thermoplastic resin. Here, an antimony compound such as antimony trioxide Sb 2 O 3 is usually used as a polymerization catalyst for synthesizing this thermoplastic resin. From the viewpoint that the raw material obtained from the low regeneration rate of the oligomer, the magnitude of the catalyst deactivation effect, etc. is likely to be low oligomer, the polymerization catalyst is at least selected from Ge, Ti, Co, Zn, Al It is preferable to use a catalyst containing one kind of compound such as germanium oxide or titanium oxide.
オリゴマー成分低減工程に用いる原料の熱可塑性樹脂の繰替し単位は、80以上とするのが好ましく、120以上とするのがより好ましい。また、熱可塑性樹脂の固有粘度は、オルトクロルフェノール(OCP)中での測定値として、0.5(dl/g)以上が好ましく、0.6(dl/g)以上がより好ましく、固相重合してオリゴマー成分を少なくした0.7(dl/g)以上とすることが特に好ましい。 The repeating unit of the raw material thermoplastic resin used in the oligomer component reducing step is preferably 80 or more, and more preferably 120 or more. Further, the intrinsic viscosity of the thermoplastic resin is preferably 0.5 (dl / g) or more, more preferably 0.6 (dl / g) or more as a measured value in orthochlorophenol (OCP), It is particularly preferable to set it to 0.7 (dl / g) or more in which oligomer components are reduced by polymerization.
オリゴマー成分低減工程においては、上記のようにして準備した原料をペレット状の形態又はパウダー状の形態として用いる。より具体的には、原料の形態は、2〜4mm角のペレットの様な形態であってもよいが、比表面積を低減してよりオリゴマー成分の除去を容易に行うために、1μm以上、1mm以下のパウダーのような比表面積の大きな原料を用いることが好ましい。こうしたパウダー状の原料を用いることにより、オリゴマー成分の低減・除去のための処理時間が短くなりやすく、抽出効率も向上させやすい。原料をパウダー状として用いる場合の、同パウダーの平均粒径は、オリゴマーの抽出の点からは細かいほど好ましく、取り扱い性においては粗い方が取り扱いやすいという見地から、10μm以上、500μm以下とすることがより好ましい。原料をパウダー状として用いる場合の平均粒径の測定は、特に制限はないが、アルゴンレーザーやヘリウムレーザーを使用する静的散乱法が最も実用的な測定法として例示できる。また、ペレット状の原料を粉砕してパウダー状の原料とするために用いる粉砕方法も特に制限はないが、通常、冷却粉砕法(冷凍粉砕法)が用いられる。冷凍粉砕法としては、例えば、公知のコロイドミル、ジェット粉砕機、ボールミル、ロールミル、衝撃微粉細機等を適宜単独又は組み合わせて用いばよい。 In the oligomer component reduction step, the raw material prepared as described above is used in a pellet form or a powder form. More specifically, the raw material may be in the form of a 2 to 4 mm square pellet, but in order to reduce the specific surface area and more easily remove the oligomer component, it is 1 μm or more, 1 mm It is preferable to use a raw material having a large specific surface area such as the following powder. By using such a powdery raw material, the processing time for reducing / removing the oligomer component tends to be shortened, and the extraction efficiency can be easily improved. When the raw material is used in the form of powder, the average particle diameter of the powder is preferably as fine as possible from the point of extraction of the oligomer, and in terms of handleability, it is preferable to set it as 10 μm or more and 500 μm or less from the viewpoint that the rougher is easier to handle. More preferred. The measurement of the average particle diameter when the raw material is used as a powder is not particularly limited, but the static scattering method using an argon laser or a helium laser can be exemplified as the most practical measurement method. Further, there is no particular limitation on the pulverization method used for pulverizing the pellet-form raw material to obtain a powder-form raw material, but usually a cooling pulverization method (freezing pulverization method) is used. As the freeze pulverization method, for example, a known colloid mill, jet pulverizer, ball mill, roll mill, impact fine pulverizer, etc. may be used alone or in combination as appropriate.
オリゴマー成分低減工程では、上記原料からオリゴマー成分の除去を試みる。こうしたオリゴマー成分を低減・除去する方法としては、特に制限はないが、生産効率を向上させつつ環境負荷を低減するという見地から、上記準備した原料を超臨界ガス状態で処理することが好ましい。超臨界ガスはオリゴマーの良溶媒であるので、超臨界ガス中での処理によりオリゴマー量を低減することができる。ここで、超臨界状態とは、ある温度以上、ある圧力以上でガスの様な拡散性能と液体の様な抽出性能を併せ持つ状態をいうが、二酸化炭素の場合では、31.3℃以上で72.9気圧以上で超臨界ガス状態となる。用いるガスには特に限定はないが、臨界温度が300℃以下、臨界圧力が500気圧以下のものが好ましく、例えば、一酸化炭素、二酸化炭素、アンモニア、窒素、水、メタノール、エタノール、エタン、プロパン、ブタン、ベンゼン、ジエチルエーテル等を挙げることができる。これらガスのうち、超臨界温度が低いという点で、二酸化炭素、エタンが好ましい。 In the oligomer component reduction step, removal of the oligomer component from the raw material is attempted. The method for reducing and removing the oligomer component is not particularly limited, but it is preferable to treat the prepared raw material in a supercritical gas state from the viewpoint of reducing the environmental load while improving the production efficiency. Since supercritical gas is a good solvent for oligomers, the amount of oligomer can be reduced by treatment in supercritical gas. Here, the supercritical state refers to a state having both gas-like diffusion performance and liquid-like extraction performance at a certain temperature or higher and a certain pressure or higher. In the case of carbon dioxide, the supercritical state is 72 at 31.3 ° C. or higher. It becomes a supercritical gas state at 9 atmospheres or more. The gas to be used is not particularly limited, but those having a critical temperature of 300 ° C. or lower and a critical pressure of 500 atm or lower are preferable. For example, carbon monoxide, carbon dioxide, ammonia, nitrogen, water, methanol, ethanol, ethane, propane , Butane, benzene, diethyl ether and the like. Of these gases, carbon dioxide and ethane are preferred in that the supercritical temperature is low.
オリゴマー成分低減工程においては、上述のとおり、超臨界ガスがオリゴマーの良溶媒として機能するが、超臨界ガス及び原料とともに、熱可塑性樹脂を溶かさないエントレーナーを共存させることにより、オリゴマーの抽出をさらに良好に行いやすくなる。用いるエントレーナーとしては、特に制限はないが、用いる熱可塑性樹脂に応じて適宜選択すればよい。例えば、ポリエチレンテレフタレート樹脂の場合、エントレーナーとしては、クロロホルム等のハロゲン化炭化水素類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;ジオキサン、テトラヒドロフラン等のエーテル類を用いることが好ましい。これらエントレーナーのうち、生産効率の向上、環境負荷の低減、取り扱いの容易性等の見地から、ジオキサンを用いることがより好ましい。エントレーナーの混合比率は、特に制限はないが、オリゴマーの抽出をより良好に行うという見地から、超臨界ガスに対して、10%以上であるのが好ましい。 In the oligomer component reduction step, as described above, the supercritical gas functions as a good solvent for the oligomer, but the oligomer can be further extracted by coexisting the supercritical gas and the raw material together with an entrainer that does not dissolve the thermoplastic resin. It becomes easy to perform well. Although there is no restriction | limiting in particular as an entrainer to be used, What is necessary is just to select suitably according to the thermoplastic resin to be used. For example, in the case of a polyethylene terephthalate resin, it is preferable to use halogenated hydrocarbons such as chloroform; aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; ethers such as dioxane and tetrahydrofuran as the entrainer. Among these entrainers, it is more preferable to use dioxane from the viewpoints of improvement of production efficiency, reduction of environmental load, ease of handling, and the like. The mixing ratio of the entrainer is not particularly limited, but is preferably 10% or more with respect to the supercritical gas from the viewpoint of better oligomer extraction.
オリゴマー成分低減工程において超臨界ガスを用いる場合、処理温度は、超臨界温度以上とする。ここで、用いる原料が熱可塑性樹脂である場合には、原料の取り扱いの容易性の見地から、処理温度を超臨界温度以上としつつも、熱可塑性樹脂の融点Tm以下、ガラス転移温度Tg以上とすることが好ましい。また、超臨界ガスを用いる場合の系の圧力は、臨界圧力以上であればよいが、抽出速度を向上させる見地から、できるだけ高圧で処理をするのが好ましい。例えば、ガスに二酸化炭素を用いる場合、100気圧程度でも良いが、300気圧以上とするのが好ましく、400気圧以上とするのがより好ましい。こうした範囲とすれば、抽出速度を速くしやすくなる。そして、超臨界ガスでの処理時間は抽出量にも依存するが、工業生産を考慮すると、1時間以上、10時間以下とする。 When a supercritical gas is used in the oligomer component reduction step, the processing temperature is set to a supercritical temperature or higher. Here, when the raw material to be used is a thermoplastic resin, from the viewpoint of easy handling of the raw material, the processing temperature is set to a supercritical temperature or higher, and the thermoplastic resin has a melting point Tm or lower and a glass transition temperature Tg or higher. It is preferable to do. In addition, the system pressure in the case of using a supercritical gas may be not less than the critical pressure, but it is preferable to perform the treatment at as high a pressure as possible from the viewpoint of improving the extraction rate. For example, when carbon dioxide is used as the gas, it may be about 100 atm, but is preferably 300 atm or more, and more preferably 400 atm or more. With such a range, the extraction speed can be easily increased. The treatment time with the supercritical gas depends on the amount of extraction, but considering industrial production, it is set to 1 hour or more and 10 hours or less.
オリゴマー成分低減工程において超臨界ガスでの処理を行う場合、この超臨界ガス処理は閉じきった閉鎖系の処理装置を用いてもよく、連続的に原料や超臨界ガス等を投入・排出できる系の処理装置を用いてもよい。工業生産を良好に行いやすくするという見地から、連続的に原料や超臨界ガス等を投入・排出できる系で処理することが好ましい。より具体的には、処理釜に連続的に樹脂原料を投入かつ排出でき、さらに超臨界ガスとエントレーナー混合ガスも新鮮なものを供給しながら、かつ抽出されたガスを処理釜から排出して、オリゴマーを回収・精製した後、さらに超臨界ガスとして使用する循環型の処理装置を用いることが好ましい。 When processing with supercritical gas in the oligomer component reduction process, this supercritical gas processing may use a closed processing system, and a system that can continuously input and discharge raw materials, supercritical gas, etc. The processing apparatus may be used. From the standpoint of facilitating good industrial production, it is preferable to perform the treatment in a system in which raw materials and supercritical gas can be continuously charged and discharged. More specifically, the resin raw material can be continuously charged and discharged into the treatment kettle, and the extracted gas is discharged from the treatment kettle while supplying fresh supercritical gas and entrainer mixed gas. After the oligomer is recovered and purified, it is preferable to use a circulation type processing apparatus that is used as a supercritical gas.
フィルム成形工程においては、上記オリゴマー成分低減工程で得たオリゴマー含量の少ない樹脂を、必要に応じて脱水・乾燥・熱処理した後、通常、該樹脂の融点Tm以上で溶融成形(溶融押出)することによってプラスチックフィルムを形成する。ここで、溶融押出は、例えば、一軸、二軸ベント、タンデム押出機等の任意の押出機を用いることができる。また、口金もリングダイ、Tダイ、コートハンガーダイ、フィッシュテイルダイ、Lダイ等の任意の形状のものを用いることができる。また、溶融押出は、溶融原料中の異物を除去する見地から、通常、溶融樹脂を、適宜なフィルター、例えば、焼結金属、多孔性セラミック、サンド、金網等を濾過させながら押し出す。 In the film forming step, the resin with a low oligomer content obtained in the oligomer component reducing step is dehydrated, dried and heat-treated as necessary, and then usually melt-formed (melt-extruded) at a melting point Tm or higher of the resin. To form a plastic film. Here, melt extrusion can use arbitrary extruders, such as a uniaxial, a biaxial vent, and a tandem extruder, for example. Also, the base can be of any shape such as a ring die, a T die, a coat hanger die, a fishtail die, and an L die. In the melt extrusion, from the viewpoint of removing foreign substances in the molten raw material, the molten resin is usually extruded while filtering an appropriate filter, for example, a sintered metal, a porous ceramic, sand, a wire mesh, and the like.
フィルム成形工程においては、口金スジ解消や安定キャストの見地から、口金から溶融状態の樹脂シートを鉛直方向へ押し出すようにすることが好ましく、口金ランド方向も鉛直方向に向いていることがより好ましい。また、口金とキャストドラムの位置関係は、特には制限はないが、口金がキャスティングドラムの頂上に位置するよりも、シートの進行方向の上、さらに好ましくは鉛直方向がドラムの接線になる様な位置の方が厚み均質性、表面無欠点などにとっては好ましい。このためにも口金形状は烏口タイプの先端の尖ったものが好ましい。なお、口金から溶融シートを押出すときのドラフト比(=口金リップ間隔/押出されたシート厚み)は、厚みむらが小さく、平面性の良いシートが得られやすいという見地から、3以上とすることが好ましく、5以上とすることがより好ましく、また、20以下とすることが好ましい。 In the film forming step, it is preferable to extrude the molten resin sheet from the base in the vertical direction from the viewpoint of eliminating the base stripes and stable casting, and it is more preferable that the base land direction is also in the vertical direction. Further, the positional relationship between the base and the cast drum is not particularly limited. However, the base is located on the top of the casting drum, and the vertical direction is more tangential to the drum than the top of the casting drum. The position is preferable for thickness uniformity, surface no defect, and the like. For this purpose, the shape of the mouthpiece is preferably a tip type with a sharp tip. The draft ratio when extruding the molten sheet from the die (= the gap between the die lip / the thickness of the extruded sheet) should be 3 or more from the viewpoint that the thickness unevenness is small and a sheet with good flatness can be easily obtained. Is preferably 5 or more, more preferably 20 or less.
フィルム成形工程においては、続いて、オリゴマー成分の少ない押出プラスチックフィルムをロール式長手方向延伸機にてロールを用いてTg以上に加熱して1.5〜7倍程度延伸することが好ましい。次いで、幅方向延伸のためにテンター式幅方向延伸機に導かれ、シート両端をクリップによって把持し熱風によってシートをTg以上に加熱し、両端クリップの幅を広げることでシートを横方向(幅方向)へ2〜8倍延伸することも好ましく行われる。さらに長手方向に強度の強いシートにするために、長手方向に再度ロール延伸してもよい。もちろん長手方向と幅方向とを同時に延伸する同時二軸延伸を行っても良い。 In the film forming step, it is preferable to subsequently stretch the extruded plastic film having a small amount of oligomer component to about 1.5 to 7 times by heating to a Tg or higher using a roll in a roll type longitudinal stretching machine. Next, the sheet is guided to a tenter-type width direction stretching machine for stretching in the width direction, grips both ends of the sheet with a clip, heats the sheet to a Tg or more with hot air, and widens the width of the both end clips to extend the sheet in the lateral direction (width direction). It is also preferable that the film is stretched 2 to 8 times. Further, in order to obtain a sheet having a strong strength in the longitudinal direction, it may be roll-stretched again in the longitudinal direction. Of course, simultaneous biaxial stretching in which the longitudinal direction and the width direction are simultaneously stretched may be performed.
次に、有機層形成工程について説明する。 Next, an organic layer formation process is demonstrated.
有機層形成工程は、プラスチックフィルム上に、このプラスチックフィルム表面における最大高低差よりも厚い有機層を形成する工程である。有機層は、紫外線硬化型樹脂を用いて形成することが好ましい。紫外線硬化型樹脂を用いる利点は、熱硬化型樹脂と比較して、有機層形成時のプラスチックフィルムに対する熱負荷を低減することができるので、プラスチックフィルムの材料選択の余地が広がる点にある。また、有機層の形成をロールtoロール方式で行った場合に、熱硬化型樹脂ではロールに巻き取った後にさらなる乾燥が必要になって有機層がブロッキングしやすい現象が発生しやすくなるが、紫外線硬化型樹脂では上記現象の発生を抑制することができる。さらに、熱硬化型樹脂を用いた場合には、上記さらなる乾燥でロール中心近傍の有機層と、ロール外側近傍の有機層とで硬化ムラが発生しやすい傾向となるが、紫外線硬化型樹脂を用いればこうした傾向を抑制しやすくなる。 The organic layer forming step is a step of forming an organic layer thicker than the maximum height difference on the surface of the plastic film on the plastic film. The organic layer is preferably formed using an ultraviolet curable resin. The advantage of using the ultraviolet curable resin is that the thermal load on the plastic film during the formation of the organic layer can be reduced as compared with the thermosetting resin, so that the room for selecting the material of the plastic film is widened. In addition, when the organic layer is formed by a roll-to-roll method, the thermosetting resin needs to be further dried after being wound on a roll, and the phenomenon that the organic layer tends to block easily occurs. The occurrence of the above phenomenon can be suppressed in the curable resin. Further, when a thermosetting resin is used, uneven curing tends to occur between the organic layer near the center of the roll and the organic layer near the outside of the roll by the further drying, but an ultraviolet curable resin is used. This makes it easier to control this trend.
有機層形成工程において、有機層に紫外線硬化型樹脂を用いる場合、プラスチックフィルム上に紫外線硬化型樹脂組成物を塗布して、塗膜に紫外線を照射して紫外線硬化型樹脂を硬化させることにより有機層が形成される。ここで紫外線硬化型樹脂組成物は、上記「ガスバリア性フィルム」の説明欄で説明したとおりのものを用いればよいので、説明の重複をさけるため、ここでの説明は省略する。 In the organic layer forming step, when an ultraviolet curable resin is used for the organic layer, the ultraviolet curable resin composition is applied on a plastic film, and the coating is irradiated with ultraviolet rays to cure the ultraviolet curable resin. A layer is formed. Here, as the ultraviolet curable resin composition, what is described in the explanation section of the “gas barrier film” may be used, and therefore, the explanation here is omitted to avoid duplication of explanation.
有機層形成工程において、紫外線硬化型樹脂組成物を塗布する方法としては、特に制限はないが、例えば、ロールコート法、グラビアロールコート法、キスロールコート法、リバースロールコート法、ミヤバーコート法、グラビアコート法、スピンコート法、及びダイコート法等の一般的に用いられる塗布方法が挙げられる。 In the organic layer forming step, the method for applying the ultraviolet curable resin composition is not particularly limited. For example, the roll coating method, the gravure roll coating method, the kiss roll coating method, the reverse roll coating method, the Miya bar coating method. Commonly used coating methods such as a gravure coating method, a spin coating method, and a die coating method can be used.
有機層形成工程においては、上記紫外線硬化型樹脂組成物をプラスチックフィルム上に塗布した後に、必要に応じて乾燥を行い、さらに紫外線硬化を行う。乾燥の温度は、常温であってもよいが、紫外線硬化型樹脂組成物が溶媒を含有する場合には、この溶媒の沸点以上の温度で行うことが好ましい。また、乾燥時間は、工業生産性を考慮しつつ必要に応じて含有させた溶媒を確実に除去する見地から、適宜調整すればよい。紫外線硬化は、紫外線源から紫外線を照射することによって行えばよい。この場合の紫外線源の具体例としては、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク灯、ブラックライト蛍光灯、メタルハライドランプ灯等の光源が挙げられる。紫外線の波長としては、190〜380nmの波長域を使用することができる。紫外線を照射する時間は、工業生産性を考慮しつつ有機層の確実な硬化を行う見地から、適宜調整すればよい。 In the organic layer forming step, after the ultraviolet curable resin composition is applied on a plastic film, drying is performed as necessary, and ultraviolet curing is further performed. The drying temperature may be room temperature, but when the ultraviolet curable resin composition contains a solvent, it is preferably performed at a temperature equal to or higher than the boiling point of the solvent. Moreover, what is necessary is just to adjust drying time suitably from the viewpoint of removing the solvent contained as needed reliably, considering industrial productivity. Ultraviolet curing may be performed by irradiating ultraviolet rays from an ultraviolet source. Specific examples of the ultraviolet light source in this case include light sources such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc lamp, a black light fluorescent lamp, and a metal halide lamp. As the wavelength of the ultraviolet light, a wavelength range of 190 to 380 nm can be used. What is necessary is just to adjust suitably the time which irradiates an ultraviolet-ray from the viewpoint which carries out reliable hardening of an organic layer, considering industrial productivity.
次いで、無機層形成工程について説明する。 Next, the inorganic layer forming step will be described.
無機層形成工程は、有機層上に、無機層を形成する工程である。無機層に用いる材料は、上記「ガスバリア性フィルム」の説明欄で説明したとおりのものを用いればよいので、説明の重複をさけるため、ここでの説明は省略する。 The inorganic layer forming step is a step of forming an inorganic layer on the organic layer. Since the material used for the inorganic layer may be the same as that described in the explanation section of the above “gas barrier film”, the explanation here is omitted to avoid duplication of explanation.
無機層形成工程においては、上記説明した所定の材料を有機層上に堆積させて無機層が形成される。こうした無機層の形成方法は、特に制限はないが、工業生産性の見地から、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的気相成長法(Physical Vapor Deposition法)やプラズマ化学気相成長法(Chemical Vapor Deposition法)等を好ましく挙げることができる。こうした各種の形成方法における成膜条件は、得ようとする無機層の物性や厚さ等を考慮して、従来公知の成膜条件を適宜調整して行えばよい。 In the inorganic layer forming step, the predetermined material described above is deposited on the organic layer to form the inorganic layer. The method for forming such an inorganic layer is not particularly limited, but from the viewpoint of industrial productivity, for example, physical vapor deposition methods such as vacuum deposition, sputtering, ion plating, etc. (Physical Vapor Deposition method) and plasma The chemical vapor deposition method (Chemical Vapor Deposition method) etc. can be mentioned preferably. The film forming conditions in these various forming methods may be adjusted by appropriately adjusting conventionally known film forming conditions in consideration of the physical properties and thickness of the inorganic layer to be obtained.
無機層形成工程における無機層の形成は、より具体的には、無機酸化物、無機窒化物、無機酸化窒化物、又は金属等を原料として用い、これらを加熱して基材に蒸着させる真空蒸着法を挙げることができる。また、上記原料に酸素ガスを導入することにより酸化させて、基材に蒸着させる酸化反応蒸着法を挙げることができる。さらに、上記原料をターゲット原料として用い、アルゴンガス、酸素ガスを導入して、スパッタリングすることにより、基材に蒸着させるスパッタリング法を挙げることができる。そして、上記原料をプラズマガンで発生させたプラズマビームにより加熱させて、基材に蒸着させるイオンプレーティング法を利用することができる。また、酸化珪素の蒸着膜を成膜させる場合には、有機珪素化合物を原料とするプラズマ化学気相成長法を利用することもできる。 More specifically, the formation of the inorganic layer in the inorganic layer forming step is a vacuum deposition in which an inorganic oxide, an inorganic nitride, an inorganic oxynitride, or a metal is used as a raw material, and these are heated to be deposited on a substrate. The law can be mentioned. Further, an oxidation reaction vapor deposition method in which oxygen gas is introduced into the raw material to be oxidized and vapor-deposited on a base material can be exemplified. Furthermore, the sputtering method which vapor-deposits on a base material can be mentioned by using the said raw material as a target raw material, introducing argon gas and oxygen gas, and sputtering. Then, an ion plating method in which the raw material is heated by a plasma beam generated by a plasma gun and deposited on a substrate can be used. Further, when a silicon oxide vapor deposition film is formed, a plasma chemical vapor deposition method using an organic silicon compound as a raw material can also be used.
本発明のガスバリア性フィルムの製造方法は、プラスチックフィルム準備工程、有機層形成工程、及び無機層形成工程から構成されるが、これら以外の工程を行ってもよい。こうした工程としては、例えば、プライマー層形成工程やオーバーコート層形成工程等をあげることができる。こうした各種の工程は、従来公知の方法を適宜用いて行えばよい。 Although the manufacturing method of the gas barrier film of this invention is comprised from a plastic film preparatory process, an organic layer formation process, and an inorganic layer formation process, you may perform processes other than these. Examples of such a process include a primer layer forming process and an overcoat layer forming process. These various steps may be performed by appropriately using conventionally known methods.
次に、本発明を実施例により更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。 EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to description of a following example, unless the summary is exceeded.
(実施例1)
<プラスチックフィルム準備工程>
先ず、プラスチックフィルムとして、厚さ50μmのポリエステルフィルム(東レ株式会社製、PETフィルム、商品名:ルミラーX10S(ルミラーは登録商標)、オリゴマー量:0.65質量%)を用いた。ここで、オリゴマー量(オリゴマー分量)は、東レ株式会社のホームページ(http://www.toray.jp/films/properties/lumirror/lum_x10s.html)を参考にしたものである。同ホームページではオリゴマーの分析は「キシレン24HR」と記載されており、東レ株式会社の特許公開公報(特開平11−288622号公報)に記載された以下の方法に準拠して行われたと考えられる。まず、50mm角に切断したフィルムサンプル16枚を、140℃の熱風オーブン中で2時間乾燥し、重量(抽出前重量)を測定する。次に、ソックスレー抽出器を用いて沸騰キシレン(500ml)で24時間抽出する。その後、抽出したサンプルを取り出し、水の入った超音波洗浄機で6分間洗浄するのを3回繰り返し、ガーゼで表面に付着しているキシレンを軽くふき取る。最後に抽出したサンプルを160℃の熱風オーブン中で8時間乾燥し、重量(抽出後重量)を測定して、オリゴマー量を、「オリゴマー量(%)=100×(抽出前重量−抽出後重量)/抽出前重量」の計算式から求める。
(Example 1)
<Plastic film preparation process>
First, a 50 μm-thick polyester film (PET film, trade name: Lumirror X10S (Lumirror is a registered trademark), oligomer amount: 0.65 mass%) manufactured by Toray Industries, Inc. was used as a plastic film. Here, the amount of oligomer (the amount of oligomer) is based on the website of Toray Industries, Inc. (http://www.toray.jp/films/properties/luminor/lum_x10s.html). On the same homepage, the analysis of the oligomer is described as “xylene 24HR”, which is considered to have been performed in accordance with the following method described in the patent publication of Toray Industries, Inc. (Japanese Patent Laid-Open No. 11-288622). First, 16 film samples cut into 50 mm squares are dried in a hot air oven at 140 ° C. for 2 hours, and the weight (weight before extraction) is measured. It is then extracted with boiling xylene (500 ml) for 24 hours using a Soxhlet extractor. Thereafter, the extracted sample is taken out and washed with an ultrasonic cleaner containing water for 6 minutes three times, and lightly wipes off xylene adhering to the surface with gauze. The sample extracted at the end was dried in a hot air oven at 160 ° C. for 8 hours, the weight (weight after extraction) was measured, and the amount of oligomer was determined as follows: “Oligomer amount (%) = 100 × (weight before extraction−weight after extraction) ) / Weight before extraction ".
なお、東レ株式会社のホームページ(http://www.toray.jp/films/properties/lumirror/lum_x10s.html)に掲載されている、各プラスチックフィルムのグレードごとのオリゴマー量を以下の表−1に転記する。 In addition, the amount of oligomers for each grade of each plastic film listed on the website of Toray Industries, Inc. (http://www.tour.jp/films/properties/luminor/lum_x10s.html) is shown in Table 1 below. copy.
また、プラスチックフィルムの表面の表面粗さ(最大高低差)は、表面形状測定装置(東レエンジニアリング製SP−500)を用い、レンズ倍率50倍、分解能1376×1040pixelの条件で、0.13mm×0.17mmの範囲を測定し、最大値と最小値の差を最大高低差として評価した。その結果、プラスチックフィルムの最大高低差は、1.3μmとなった。なお、ガスバリア性フィルムを構成した後におけるプラスチックフィルムの表面粗さとしての最大高低差の測定は、ガスバリア性フィルムを集束イオンビーム加工装置(FIB:日立製作所製、FB−2000)にて加工し、プラスチックフィルムの断面を露出させた後、その断面を走査型電子顕微鏡(SEM:日立製作所製、S−5000H、加速電圧1.5kV)で観察することにより行えばよい。プラスチックフィルム断面の任意の6箇所を測定し、そのうちの最大高低差の値を採用する。 Further, the surface roughness (maximum height difference) of the surface of the plastic film was 0.13 mm × 0 under the conditions of a lens shape of 50 times and a resolution of 1376 × 1040 pixels using a surface shape measuring device (SP-500 manufactured by Toray Engineering). A range of .17 mm was measured, and the difference between the maximum value and the minimum value was evaluated as the maximum height difference. As a result, the maximum height difference of the plastic film was 1.3 μm. In addition, the measurement of the maximum height difference as the surface roughness of the plastic film after constituting the gas barrier film is performed by processing the gas barrier film with a focused ion beam processing apparatus (FIB: Hitachi, Ltd., FB-2000), After the section of the plastic film is exposed, the section may be observed with a scanning electron microscope (SEM: manufactured by Hitachi, S-5000H, acceleration voltage 1.5 kV). Measure any six points on the cross section of the plastic film, and adopt the maximum height difference value.
<有機層形成工程>
このプラスチックフィルムの片面に、下記の組成に調整した紫外線硬化型樹脂組成物(紫外線硬化型有機層用インキ)をダイコートにて塗布し、120℃で2分間乾燥させた後、波長260nmから400nmの範囲における積算光量300mJ/cm2の条件で紫外線を照射し、厚さ5μmの有機層を形成した。この有機層の厚さは、ガスバリア性フィルムを集束イオンビーム加工装置(FIB:日立製作所製、FB−2000)にて加工し、有機層の断面を露出させた後、その断面を走査型電子顕微鏡(SEM:日立製作所製、S−5000H、加速電圧1.5kV)で観察することにより測定した。このとき、有機層断面の任意の6箇所を測定し、平均値を採用した。
<Organic layer formation process>
On one side of this plastic film, an ultraviolet curable resin composition (ultraviolet curable organic layer ink) adjusted to the following composition was applied by die coating, dried at 120 ° C. for 2 minutes, and then with a wavelength of 260 nm to 400 nm. The organic layer having a thickness of 5 μm was formed by irradiating with ultraviolet rays under the condition of an integrated light quantity of 300 mJ / cm 2 in the range. The thickness of the organic layer is determined by processing the gas barrier film with a focused ion beam processing apparatus (FIB: manufactured by Hitachi, Ltd., FB-2000) to expose the cross section of the organic layer, and then scanning the cross section with a scanning electron microscope. (SEM: manufactured by Hitachi, S-5000H, acceleration voltage 1.5 kV). At this time, arbitrary six places of the cross section of the organic layer were measured, and an average value was adopted.
・紫外線硬化型有機層用インキの組成;
ポリエステルアクリレートオリゴマー(東亞合成(株)製、アロニックスM−8060):39重量部
トルエン/メチルエチルケトン(1/1)の混合溶媒:60重量部
オリゴ[2−ヒドロキシ−2−メチル−[1−(4−メチルビニル)フェニル]プロパノン](光重合開始剤、lamberti社製、ESACURE ONE):1重量部
-Composition of UV curable organic layer ink;
Polyester acrylate oligomer (Toagosei Co., Ltd., Aronix M-8060): 39 parts by weight Mixed solvent of toluene / methyl ethyl ketone (1/1): 60 parts by weight oligo [2-hydroxy-2-methyl- [1- (4 -Methylvinyl) phenyl] propanone] (photopolymerization initiator, manufactured by Lamberti, ESACURE ONE): 1 part by weight
<無機層形成工程>
無機層は、スパッタ成膜方式で形成した。具体的には、上記有機層を形成したプラスチックフィルムを、バッチ式スパッタリング装置(アネルバ株式会社製、SPF−530H)のチャンバー内に、有機層側に成膜する向きに設置し、珪素をターゲット材として搭載した。ここでターゲットと、有機層が形成されたプラスチックフィルムとの距離は50mmに設定した。成膜時の添加ガスとして、窒素ガス(太陽東洋酸素株式会社製、純度99.9995%以上)、アルゴンガス(太陽東洋酸素株式会社製、純度99.9999%以上)を用いた。チャンバー内を、油回転ポンプおよびクライオポンプで到達真空度2.5×10−4Paまで減圧した。次いで、チャンバー内に窒素ガスを流量15sccmで導入し、アルゴンガスを流量20sccmで導入した。そして、真空ポンプとチャンバーとの間にあるバルブの開閉度を制御することにより、チャンバー内圧力を0.25Paに保ちながら、RFマグネトロンスパッタリング法により、投入電力1.2kWで、有機層上に厚み80nmの酸化窒化珪素層を形成した。なお、sccmとは、standard cubic centimeter per minuteの略である。
<Inorganic layer forming step>
The inorganic layer was formed by a sputtering film formation method. Specifically, the plastic film on which the organic layer is formed is placed in a chamber of a batch type sputtering apparatus (SPF-530H, manufactured by Anerva Corporation) in a direction to form a film on the organic layer side, and silicon is used as a target material. As mounted. Here, the distance between the target and the plastic film on which the organic layer was formed was set to 50 mm. Nitrogen gas (manufactured by Taiyo Toyo Oxygen Co., Ltd., purity 99.9995% or more) and argon gas (manufactured by Taiyo Toyo Oxygen Co., Ltd., purity 99.9999% or more) were used as additive gases during film formation. The inside of the chamber was decompressed to an ultimate vacuum of 2.5 × 10 −4 Pa with an oil rotary pump and a cryopump. Next, nitrogen gas was introduced into the chamber at a flow rate of 15 sccm, and argon gas was introduced at a flow rate of 20 sccm. Then, by controlling the degree of opening and closing of the valve between the vacuum pump and the chamber, the thickness of the organic layer is increased by an RF magnetron sputtering method with an input power of 1.2 kW while keeping the pressure in the chamber at 0.25 Pa. An 80 nm silicon oxynitride layer was formed. Note that sccm is an abbreviation for standard cubic centimeter per minute.
以上の様にして得たガスバリア性フィルムの層構成は、ポリエステルフィルム(PETフィルム)/紫外線硬化型有機層/無機層(酸化窒化珪素層)、である。このガスバリア性フィルムの水蒸気透過率を以下の方法で測定した。すなわち、測定温度:37.8℃、湿度:100%RHの条件下で、水蒸気透過率測定装置(MOCON社製、商品名:AQUATRAN)を用いて測定した。その結果を表−2に示す。 The layer structure of the gas barrier film obtained as described above is polyester film (PET film) / ultraviolet curable organic layer / inorganic layer (silicon oxynitride layer). The water vapor permeability of this gas barrier film was measured by the following method. That is, it measured using the water-vapor-permeation rate measuring apparatus (The product made by MOCON, brand name: AQUATRAN) on the conditions of measurement temperature: 37.8 degreeC and humidity: 100% RH. The results are shown in Table-2.
なお、プラスチックフィルムの厚さは入手時の厚さデータで評価できるが、ガスバリア性フィルムを構成した後におけるプラスチックフィルムの厚さは、ガスバリア性フィルムを集束イオンビーム加工装置(FIB:日立製作所製、FB−2000)にて加工し、プラスチックフィルムの断面を露出させた後、その断面を走査型電子顕微鏡(SEM:日立製作所製、S−5000H、加速電圧1.5kV)で観察することにより測定した。このとき、プラスチックフィルム断面の任意の6箇所を測定し、平均値を採用した。 Although the thickness of the plastic film can be evaluated by the thickness data at the time of acquisition, the thickness of the plastic film after constituting the gas barrier film is determined by using a focused ion beam processing apparatus (FIB: manufactured by Hitachi, Ltd., FB-2000), the cross section of the plastic film was exposed, and then the cross section was measured by observing with a scanning electron microscope (SEM: Hitachi, S-5000H, acceleration voltage 1.5 kV). . At this time, arbitrary six places on the cross section of the plastic film were measured, and an average value was adopted.
(実施例2)
無機層形成工程において無機層の形成をイオンプレーティング成膜方式で行い、以下の組成の無機層としたこと以外は、実施例1と同様にしてガスバリア性フィルムを製造した。以下、相違点たる無機層形成工程について記載する。
(Example 2)
In the inorganic layer forming step, the gas barrier film was produced in the same manner as in Example 1 except that the inorganic layer was formed by an ion plating film forming method to obtain an inorganic layer having the following composition. Hereinafter, the inorganic layer forming step as a difference will be described.
無機層の形成に先立ち、以下のイオンプレーティング用蒸発源材料を準備した。すなわち、窒化ケイ素粉末であるSi3N4粉末(高純度化学製、平均粒径:1μm)100重量部に対し、導電性材料である酸化亜鉛(ZnO)粉末(高純度化学製、粒度分布計・コールターカウンター法で測定された平均粒径:0.5μm、JIS−K7194準拠4探針法で測定された体積抵抗率が10Ω・cm)を30重量部加えて混合した。次いで、この原料粉末にバインダーとして、2%セルロース水溶液を滴下しながら原料粉末を回転させて、10mmφの球状体を得た。その後、焼成炉に入れ、400℃で1時間保持し、平均粒径7mmφの塊状物からなるイオンプレーティング用蒸発源材料を得た。なお、得られた蒸発源材料の質量割合をX線分光分析装置(XPS/ESCA)により測定した結果、二酸化ケイ素100に対して、酸化亜鉛の質量割合は30であり、原料粉末の混合割合とほぼ一致していた。ここで、X線分光分析装置として、VG Scientific社製ESCA LAB220i−XLを用いた。 Prior to the formation of the inorganic layer, the following ion source evaporation source material was prepared. That is, with respect to 100 parts by weight of Si 3 N 4 powder (made by high purity chemical, average particle size: 1 μm) as silicon nitride powder, zinc oxide (ZnO) powder (made by high purity chemical, particle size distribution meter) as conductive material -Average particle diameter measured by Coulter counter method: 0.5 μm, 30 parts by weight of volume resistivity measured by 4 probe method according to JIS-K7194 was added and mixed. Next, the raw material powder was rotated while dropping a 2% cellulose aqueous solution as a binder into the raw material powder to obtain a 10 mmφ spherical body. Thereafter, it was put in a baking furnace and held at 400 ° C. for 1 hour to obtain an evaporation source material for ion plating consisting of a lump having an average particle diameter of 7 mmφ. In addition, as a result of measuring the mass ratio of the obtained evaporation source material with an X-ray spectrometer (XPS / ESCA), the mass ratio of zinc oxide is 30 with respect to silicon dioxide 100, and the mixing ratio of the raw material powder and It was almost the same. Here, ESCA LAB220i-XL manufactured by VG Scientific was used as the X-ray spectroscopic analyzer.
無機層は、イオンプレーティング成膜方式で形成した。具体的には、実施例1と同様に、厚み50μmのポリエステルフィルム(東レ株式会社製、PETフィルム、商品名:ルミラーX10S、オリゴマー量:0.65質量%)をプラスチックフィルムとして用い、このプラスチックフィルムの片面へ有機層を形成した。そして、プラスチックフィルムを有機層側に成膜する向きにして、ホローカソード型イオンプレーティング装置にセットした。次いで、作製した蒸発源材料を、ホローカソード型イオンプレーティング装置内の坩堝に投入した後、真空引きを行った。真空度が5×10−4Paまで到達した後、プラズマガンにアルゴンガスを15sccm導入し、電流110A、電圧90Vのプラズマを発電させた。チャンバー内を1×10−3Paに維持することと磁力によりプラズマを所定方向に曲げ、本発明に係る蒸発源材料に照射させた。坩堝内の蒸発源材料は溶融状態を経て昇華することが確認された。イオンプレーティングを5秒間(蒸着レート:360nm/min)行って基板に堆積させることにより、膜厚30nmのSiNZnO層を形成した。 The inorganic layer was formed by an ion plating film formation method. Specifically, in the same manner as in Example 1, a polyester film having a thickness of 50 μm (PET film, trade name: Lumirror X10S, oligomer amount: 0.65 mass%, manufactured by Toray Industries, Inc.) was used as the plastic film. An organic layer was formed on one side. And it set to the hollow cathode type | mold ion plating apparatus in the direction which forms a plastic film in the organic layer side. Next, the produced evaporation source material was put into a crucible in a hollow cathode type ion plating apparatus, and then evacuated. After the degree of vacuum reached 5 × 10 −4 Pa, 15 sccm of argon gas was introduced into the plasma gun, and plasma with a current of 110 A and a voltage of 90 V was generated. Plasma was bent in a predetermined direction by maintaining the inside of the chamber at 1 × 10 −3 Pa and a magnetic force, and the evaporation source material according to the present invention was irradiated. It was confirmed that the evaporation source material in the crucible sublimates through a molten state. Ion plating was performed for 5 seconds (evaporation rate: 360 nm / min) to deposit on the substrate, thereby forming a 30 nm thick SiNZnO layer.
以上の様にして得たガスバリア性フィルムの層構成は、ポリエステルフィルム(PETフィルム)/紫外線硬化型有機層/無機層(SiNZnO層)である。このガスバリア性フィルムの水蒸気透過率を実施例1と同様にして測定した。その結果を表−2に示す。 The layer structure of the gas barrier film obtained as described above is polyester film (PET film) / ultraviolet curable organic layer / inorganic layer (SiNZnO layer). The water vapor permeability of this gas barrier film was measured in the same manner as in Example 1. The results are shown in Table-2.
(実施例3)
無機層形成工程において無機層の形成を真空蒸着成膜方式で行い、以下の組成の無機層としたこと以外は、実施例1と同様にしてガスバリア性フィルムを製造した。以下、相違点たる無機層形成工程について記載する。
(Example 3)
In the inorganic layer forming step, a gas barrier film was produced in the same manner as in Example 1 except that the inorganic layer was formed by a vacuum vapor deposition film forming method to obtain an inorganic layer having the following composition. Hereinafter, the inorganic layer forming step as a difference will be described.
実施例1と同様に、厚み50μmのポリエステルフィルム(東レ株式会社製、PETフィルム、商品名:ルミラーX10S、オリゴマー量:0.65質量%)をプラスチックフィルムとして用い、このプラスチックフィルムの片面へ有機層を形成した。そして、プラスチックフィルムを有機層側に成膜する向きにして、真空蒸着装置にセットした。次いで、真空蒸着装置を使用して1.33×10−3Paの真空下でSiOを高周波加熱方式で蒸発させ、有機層上に厚さ40nmのSiOx(x=1.7)層を形成した。 As in Example 1, a polyester film having a thickness of 50 μm (PET film, Toray Industries, Inc., trade name: Lumirror X10S, oligomer amount: 0.65 mass%) was used as a plastic film, and an organic layer was formed on one side of the plastic film. Formed. And it set to the vacuum evaporation apparatus in the direction which forms a plastic film in the organic layer side. Next, SiO was evaporated by a high-frequency heating method under a vacuum of 1.33 × 10 −3 Pa using a vacuum deposition apparatus, and a SiOx (x = 1.7) layer having a thickness of 40 nm was formed on the organic layer. .
以上の様にして得たガスバリア性フィルムの層構成は、ポリエステルフィルム(PETフィルム)/紫外線硬化型有機層/無機層(SiOx(x=1.7))である。このガスバリア性フィルムの水蒸気透過率を実施例1と同様にして測定した。その結果を表−2に示す。 The layer structure of the gas barrier film obtained as described above is polyester film (PET film) / ultraviolet curable organic layer / inorganic layer (SiOx (x = 1.7)). The water vapor permeability of this gas barrier film was measured in the same manner as in Example 1. The results are shown in Table-2.
(実施例4)
プラスチックフィルムとして、厚み125μmのポリエステルフィルム(東レ株式会社製、PETフィルム、商品名:ルミラーX10S、オリゴマー量:0.53質量%)を用いたこと以外は、実施例1と同様にガスバリア性フィルムを製造した。オリゴマー量は、実施例1と同様に、東レ株式会社のホームページに掲載されたデータを用いてものである。また、プラスチックフィルムの表面粗さを実施例1と同様にして測定したところ、最大高低差は、1.5μmであった。得られたガスバリア性フィルムにつき、水蒸気透過率を実施例1と同様にして測定した。その結果を表−2に示す。
Example 4
A gas barrier film was used in the same manner as in Example 1 except that a 125 μm thick polyester film (PET film, trade name: Lumirror X10S, oligomer amount: 0.53 mass%) was used as the plastic film. Manufactured. The amount of oligomer is the same as in Example 1 using data posted on the Toray Industries, Inc. website. Further, when the surface roughness of the plastic film was measured in the same manner as in Example 1, the maximum height difference was 1.5 μm. The water vapor permeability of the obtained gas barrier film was measured in the same manner as in Example 1. The results are shown in Table-2.
(実施例5)
プラスチックフィルムとして、厚み300μmのポリエステルフィルム(東レ株式会社製、PETフィルム、商品名:ルミラーX10S、オリゴマー量:0.37質量%)を用いたこと以外は、実施例1と同様にガスバリア性フィルムを製造した。オリゴマー量は、実施例1と同様に、東レ株式会社のホームページに掲載されたデータを用いてものである。また、プラスチックフィルムの表面粗さを実施例1と同様にして測定したところ、最大高低差は、1.6μmであった。得られたガスバリア性フィルムにつき、水蒸気透過率を実施例1と同様にして測定した。その結果を表−2に示す。
(Example 5)
A gas barrier film was obtained in the same manner as in Example 1 except that a 300 μm thick polyester film (PET film, trade name: Lumirror X10S, oligomer amount: 0.37% by mass) was used as the plastic film. Manufactured. The amount of oligomer is the same as in Example 1 using data posted on the Toray Industries, Inc. website. Further, when the surface roughness of the plastic film was measured in the same manner as in Example 1, the maximum height difference was 1.6 μm. The water vapor permeability of the obtained gas barrier film was measured in the same manner as in Example 1. The results are shown in Table-2.
(実施例6)
有機層の厚みを3μmとしたこと以外は、実施例1と同様にガスバリア性フィルムを製造した。得られたガスバリア性フィルムにつき、水蒸気透過率を実施例1と同様にして測定した。その結果を表−2に示す。
(Example 6)
A gas barrier film was produced in the same manner as in Example 1 except that the thickness of the organic layer was 3 μm. The water vapor permeability of the obtained gas barrier film was measured in the same manner as in Example 1. The results are shown in Table-2.
(実施例7)
有機層の厚みを2.0μmとしたこと以外は、実施例1と同様にガスバリア性フィルムを製造した。得られたガスバリア性フィルムにつき、水蒸気透過率を実施例1と同様にして測定した。その結果を表−2に示す。
(Example 7)
A gas barrier film was produced in the same manner as in Example 1 except that the thickness of the organic layer was 2.0 μm. The water vapor permeability of the obtained gas barrier film was measured in the same manner as in Example 1. The results are shown in Table-2.
(実施例8)
有機層の厚みを1.7μmとしたこと以外は、実施例1と同様にガスバリア性フィルムを製造した。得られたガスバリア性フィルムにつき、水蒸気透過率を実施例1と同様にして測定した。その結果を表−2に示す。
(Example 8)
A gas barrier film was produced in the same manner as in Example 1 except that the thickness of the organic layer was 1.7 μm. The water vapor permeability of the obtained gas barrier film was measured in the same manner as in Example 1. The results are shown in Table-2.
(比較例1)
有機層を形成しなかったこと以外は、実施例1と同様にガスバリア性フィルムを製造した。得られたガスバリア性フィルムにつき、水蒸気透過率を実施例1と同様にして測定した。その結果を表−2に示す。
(Comparative Example 1)
A gas barrier film was produced in the same manner as in Example 1 except that the organic layer was not formed. The water vapor permeability of the obtained gas barrier film was measured in the same manner as in Example 1. The results are shown in Table-2.
(比較例2)
有機層の厚みを1μmとしたこと以外は、実施例1と同様にガスバリア性フィルムを製造した。得られたガスバリア性フィルムにつき、水蒸気透過率を実施例1と同様にして測定した。その結果を表−2に示す。
(Comparative Example 2)
A gas barrier film was produced in the same manner as in Example 1 except that the thickness of the organic layer was 1 μm. The water vapor permeability of the obtained gas barrier film was measured in the same manner as in Example 1. The results are shown in Table-2.
(比較例3)
オリゴマー量が低減されていないプラスチックフィルムとして、厚さ50μmのポリエステルフィルム(東レ株式会社製、PETフィルム、商品名:ルミラーS10、オリゴマー量:約1.6質量%)を用いた以外は、実施例1と同様にガスバリア性フィルムを製造した。オリゴマー量は、実施例1と同様に、東レ株式会社のホームページに掲載されたデータを用いてものであるが、さらに以下の方法を用いて求めた。すなわち、同ホームページには、ルミラーS10については厚さ250μmのオリゴマー量(オリゴマー分量)が1.4質量%と記載されているところ、ルミラーX10Sでは、厚さが250μmから50μmとなると、オリゴマー量が0.46質量%から0.65質量%となり0.2質量%程度増加している。そこで、厚さ50μmのルミラーS10についても、250μmのものよりも0.2質量%程度オリゴマー量が増加していると考え、オリゴマー量を1.4+0.2=1.6質量%とした。また、オリゴマー量が低減されていないプラスチックフィルムの表面粗さを実施例1と同様にして測定したところ、最大高低差は、0.6μmであった。得られたガスバリア性フィルムにつき、水蒸気透過率を実施例1と同様にして測定した。その結果を表−2に示す。
(Comparative Example 3)
Example except that a polyester film having a thickness of 50 μm (PET film, product name: Lumirror S10, oligomer amount: about 1.6% by mass, manufactured by Toray Industries, Inc.) was used as a plastic film in which the oligomer amount was not reduced. A gas barrier film was produced in the same manner as in Example 1. Similarly to Example 1, the amount of oligomer was obtained using data posted on the Toray Industries, Inc. website, and was further determined using the following method. That is, the Lumirror S10 describes that the amount of oligomer having a thickness of 250 μm (oligomer content) is 1.4% by mass. In Lumirror X10S, when the thickness is 250 μm to 50 μm, From 0.46% by mass to 0.65% by mass, it is increased by about 0.2% by mass. Therefore, it is considered that the amount of oligomer is about 0.2% by mass for Lumirror S10 having a thickness of 50 μm, and the amount of oligomer is set to 1.4 + 0.2 = 1.6% by mass. Moreover, when the surface roughness of the plastic film in which the oligomer amount was not reduced was measured in the same manner as in Example 1, the maximum height difference was 0.6 μm. The water vapor permeability of the obtained gas barrier film was measured in the same manner as in Example 1. The results are shown in Table-2.
図2は、プラスチックフィルムに含有されるオリゴマー量と水蒸気透過率との関係を示すグラフである。具体的には、表−2に示したデータのうち、有機層の厚みが5μmで無機層の成膜方式がスパッタ法であるガスバリア性フィルム(実施例1、4〜8、比較例3)につき、プラスチックフィルムに含有されるオリゴマー量と水蒸気透過率との関係をプロットしたグラフである。図2から、プラスチックフィルムに含有されるオリゴマー量を1.0質量%以下とすることで、水蒸気透過率を10−2g/m2/dayレベル以下(0.01g/m2/day以下)とすることができ、非常に高いレベルのガスバリア性を達成できることがわかる。 FIG. 2 is a graph showing the relationship between the amount of oligomer contained in the plastic film and the water vapor transmission rate. Specifically, among the data shown in Table 2, per gas barrier film (Examples 1, 4 to 8, Comparative Example 3) in which the organic layer has a thickness of 5 μm and the inorganic layer is formed by a sputtering method. It is the graph which plotted the relationship between the amount of oligomers contained in a plastic film, and water vapor transmission rate. From FIG. 2, by setting the amount of oligomer contained in the plastic film to 1.0% by mass or less, the water vapor transmission rate is 10 −2 g / m 2 / day level or less (0.01 g / m 2 / day or less). It can be seen that a very high level of gas barrier properties can be achieved.
1 ガスバリア性フィルム
2 プラスチックフィルム
3 有機層
4 無機層
1
Claims (5)
前記有機層の厚さが、前記プラスチックフィルム表面における最大高低差よりも大きくなっている、ことを特徴とするガスバリア性フィルム。 A plastic film having an oligomer content of 1% by mass or less, an organic layer made of an ultraviolet curable resin provided on the plastic film, and an inorganic layer provided on the organic layer;
A gas barrier film, wherein the organic layer has a thickness greater than a maximum height difference on the surface of the plastic film.
前記有機層の厚さが、1.7μm以上、10μm以下である、ことを特徴とするガスバリア性フィルム。 A plastic film having an oligomer content of 1% by mass or less, an organic layer made of an ultraviolet curable resin provided on the plastic film, and an inorganic layer provided on the organic layer;
A gas barrier film, wherein the organic layer has a thickness of 1.7 μm or more and 10 μm or less.
前記プラスチックフィルム上に、該プラスチックフィルム表面における最大高低差よりも厚い有機層を紫外線硬化型樹脂で形成する有機層形成工程、
前記有機層上に、無機層を形成する無機層形成工程、を有することを特徴とするガスバリア性フィルムの製造方法。 A plastic film preparation step of preparing a plastic film having an oligomer amount of 1% by mass or less,
On the plastic film, an organic layer forming step of forming an organic layer thicker than the maximum height difference on the plastic film surface with an ultraviolet curable resin ,
An inorganic layer forming step of forming an inorganic layer on the organic layer. A method for producing a gas barrier film, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011086972A JP2011136584A (en) | 2009-11-27 | 2011-04-11 | Gas barrier film, device, and manufacturing method for the gas barrier film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009269391 | 2009-11-27 | ||
JP2009269391 | 2009-11-27 | ||
JP2011086972A JP2011136584A (en) | 2009-11-27 | 2011-04-11 | Gas barrier film, device, and manufacturing method for the gas barrier film |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010258551A Division JP4821925B2 (en) | 2009-11-27 | 2010-11-19 | GAS BARRIER FILM, DEVICE, AND METHOD FOR PRODUCING GAS BARRIER FILM |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011136584A true JP2011136584A (en) | 2011-07-14 |
Family
ID=44348466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011086972A Withdrawn JP2011136584A (en) | 2009-11-27 | 2011-04-11 | Gas barrier film, device, and manufacturing method for the gas barrier film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011136584A (en) |
-
2011
- 2011-04-11 JP JP2011086972A patent/JP2011136584A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4821925B2 (en) | GAS BARRIER FILM, DEVICE, AND METHOD FOR PRODUCING GAS BARRIER FILM | |
CN101588912B (en) | Method for producing a nanostructure on a plastic surface | |
Fortunato et al. | Growth of ZnO: Ga thin films at room temperature on polymeric substrates: thickness dependence | |
KR101277433B1 (en) | Transparent conductive film and touch panel | |
Gao et al. | Enhanced optical properties of TiN-based spectrally selective solar absorbers deposited at a high substrate temperature | |
WO2012137662A1 (en) | Gas barrier film | |
Hora et al. | Inorganic thin film deposition and application on organic polymer substrates | |
CN104969305B (en) | Transparent stacked film, transparent conductive film, and gas barrier stacked film | |
JPWO2005100014A1 (en) | Transparent gas barrier laminate film | |
CN103140298B (en) | Method for producing laminated film | |
CN103875042A (en) | Transparent conductive film | |
Biederman | Nanocomposites and nanostructures based on plasma polymers | |
Kumar et al. | Broadband and wide angle anti-reflective nanoporous surface on poly (ethylene terephthalate) substrate using a single step plasma etching for applications in flexible electronics | |
JP2005313560A (en) | Gas barrier film | |
Lu et al. | Magnetron sputtered oxidation resistant and antireflection protective coatings for freestanding diamond film IR windows | |
Lin et al. | Effects of laser annealing parameters on optical and electrical properties of ITO/metallic glass alloy Bi-layer films | |
WO2010071009A1 (en) | Flexible resin substrate and display device using same | |
CN107797334A (en) | Optical reflection film and back light for liquid crystal display device unit | |
TW202206270A (en) | Optical film, optical film manufacturing method, transparent conductive film, and gas barrier film | |
KR101165770B1 (en) | Method for manufacturing ito thin film with high-transmittance and low-resistance | |
JP2011136584A (en) | Gas barrier film, device, and manufacturing method for the gas barrier film | |
JP5598080B2 (en) | Method for producing gas barrier sheet | |
Eshaghi et al. | Influence of physical plasma etching treatment on optical and hydrophilic MgF2 thin film | |
WO2010150570A1 (en) | Film mirror, method for producing same, and sunlight reflecting mirror using same | |
JP2009143759A (en) | Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and its manufacturing method and gas barrier sheet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140204 |