JP2011135693A - Piezoelectric bimorph element - Google Patents

Piezoelectric bimorph element Download PDF

Info

Publication number
JP2011135693A
JP2011135693A JP2009292700A JP2009292700A JP2011135693A JP 2011135693 A JP2011135693 A JP 2011135693A JP 2009292700 A JP2009292700 A JP 2009292700A JP 2009292700 A JP2009292700 A JP 2009292700A JP 2011135693 A JP2011135693 A JP 2011135693A
Authority
JP
Japan
Prior art keywords
piezoelectric bimorph
bimorph element
piezoelectric
conductive
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009292700A
Other languages
Japanese (ja)
Other versions
JP5545812B2 (en
Inventor
Shigeru Kano
茂 狩野
Nobuyuki Kurosaki
信之 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2009292700A priority Critical patent/JP5545812B2/en
Publication of JP2011135693A publication Critical patent/JP2011135693A/en
Application granted granted Critical
Publication of JP5545812B2 publication Critical patent/JP5545812B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric bimorph element in which its bending vibration is not impeded and its degradation in characteristics prevented. <P>SOLUTION: In the piezoelectric bimorph element, a support member is installed at both ends of either main surface. The support members are fixed on a fixing support surface having a voltage line. A driven body in contact with a coupling member installed in the center of the other main surface is moved by bending vibration. Voltage is applied by the support members formed of an elastic material containing a conductive rubber. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、表示装置、電子機器或いはPDA、パソコン、携帯電話、携帯型ゲーム機、情報端末等に使用されるパネル等の被振動体を振動させる圧電バイモルフ素子に関するものである。   The present invention relates to a piezoelectric bimorph element that vibrates a vibrating body such as a panel used in a display device, an electronic device or a PDA, a personal computer, a mobile phone, a portable game machine, an information terminal and the like.

近年、圧電バイモルフ素子を用いて被駆動体を振動させる製品には、タッチパネルを圧電バイモルフ素子で振動させることにより、操作するユーザの指先に振動を与えることで、ユーザの指先の触覚を刺激させる触覚フィードバック(Haptics)方式を用いたタッチパネルがある。   In recent years, a product that vibrates a driven body using a piezoelectric bimorph element has a tactile sensation that stimulates the tactile sensation of the user's fingertip by vibrating the touch panel of the touching user's fingertip. There is a touch panel using a feedback (haptics) method.

圧電バイモルフ素子は2枚の厚み方向に分極された圧電素子で弾性体(金属板)を挟んだものであり、圧電素子に電圧を印加すると一方の圧電素子が圧電横効果により伸び、他方の圧電素子が縮み、そのことにより圧電バイモルフ素子は一方に屈曲する。そのことを利用して圧電バイモルフ素子に印加する電圧の正負を切り替えることにより屈曲振動させるものである。図1は従来からの圧電バイモルフ素子の固定方法である。ここで、圧電素子2と圧電素子3は間に弾性体4を挟み込んでおり、圧電素子2、圧電素子3と弾性体4は接着されている。この圧電素子2、圧電素子3、弾性体(金属板)4の組み合わせが圧電バイモルフ素子であり、圧電バイモルフ素子における圧電素子3の弾性体4と接着されている面の反対面の両端部に支持部材6,7が設置されている。支持部材6,7は圧電バイモルフ素子を固定支持するための固定支持面8に組み付け固定されるか、或いは固定支持面8と接着剤を塗布して固定している。そして、圧電バイモルフ素子における圧電素子2の弾性体(板)4と接着されている面の反対面の中央部に連結部材5が設置されている。連結部材5の先端箇所は被駆動体1に接しており、圧電バイモルフ素子に電圧を印加して圧電バイモルフ素子が屈曲振動することで被駆動体1が移動する。   A piezoelectric bimorph element is an element in which an elastic body (metal plate) is sandwiched between two piezoelectric elements polarized in the thickness direction. When a voltage is applied to the piezoelectric element, one piezoelectric element expands due to the piezoelectric lateral effect, and the other piezoelectric element. The element shrinks, which causes the piezoelectric bimorph element to bend in one direction. By utilizing this fact, bending vibration is performed by switching between positive and negative voltages applied to the piezoelectric bimorph element. FIG. 1 shows a conventional method for fixing a piezoelectric bimorph element. Here, the piezoelectric element 2 and the piezoelectric element 3 sandwich an elastic body 4 therebetween, and the piezoelectric element 2 and the piezoelectric element 3 and the elastic body 4 are bonded. The combination of the piezoelectric element 2, the piezoelectric element 3, and the elastic body (metal plate) 4 is a piezoelectric bimorph element, and is supported on both ends of the piezoelectric bimorph element opposite to the surface bonded to the elastic body 4 of the piezoelectric element 3. Members 6 and 7 are installed. The support members 6 and 7 are assembled and fixed to a fixed support surface 8 for fixing and supporting the piezoelectric bimorph element, or are fixed to the fixed support surface 8 by applying an adhesive. And the connection member 5 is installed in the center part of the surface opposite to the surface adhere | attached with the elastic body (plate) 4 of the piezoelectric element 2 in a piezoelectric bimorph element. The distal end portion of the connecting member 5 is in contact with the driven body 1, and the driven body 1 is moved by applying a voltage to the piezoelectric bimorph element and causing the piezoelectric bimorph element to bend and vibrate.

図2は従来からの圧電バイモルフ素子の固定方法で、特に圧電バイモルフ素子で最も大きい応力負荷が発生する箇所を示している。図2(a)は全体図を示しており、図2(b)は最も大きい応力負荷が発生する箇所を示す拡大図である。図2で示しているように圧電バイモルフ素子を固定支持するための固定支持面8と支持部材6,7を強固に固定してしまうと、この固定箇所により圧電バイモルフ素子の屈曲振動が阻害されてしまう。更に圧電バイモルフ素子が屈曲振動する際に圧電素子3と支持部材6,7の接着箇所の端部に該当する2箇所の応力負荷発生箇所9にて最も大きい応力負荷が発生し、圧電バイモルフ素子に局所的な負荷が掛かることで、応力負荷発生箇所9にて故障したり、或いは圧電バイモルフ素子の寿命が短くなることになる。   FIG. 2 shows a conventional method for fixing a piezoelectric bimorph element, and particularly shows a portion where the largest stress load is generated in the piezoelectric bimorph element. FIG. 2A shows an overall view, and FIG. 2B is an enlarged view showing a portion where the largest stress load is generated. As shown in FIG. 2, if the fixed support surface 8 and the support members 6 and 7 for fixing and supporting the piezoelectric bimorph element are firmly fixed, the bending vibration of the piezoelectric bimorph element is hindered by the fixing portion. End up. Further, when the piezoelectric bimorph element is flexibly vibrated, the largest stress load is generated at two stress load generation points 9 corresponding to the end portions of the bonded portions of the piezoelectric element 3 and the support members 6 and 7, and the piezoelectric bimorph element When a local load is applied, a failure occurs at the stress load occurrence point 9 or the life of the piezoelectric bimorph element is shortened.

このような従来からの圧電バイモルフ素子の固定方法に対して、特許文献1には圧電素子の一端部をねじり弾性変形構造の長方形の面状ホルダーにて接着して、圧電素子の他端部を同様にねじり弾性変形構造の長方形の面状ホルダーにて接着している。この2つの面状ホルダーは中央部にて回動軸で支持され、この回動軸は面状ホルダーをシーソーのように揺動できる構造になっている。そして、この回動軸もねじり弾性変形構造になっており、圧電素子の変形に応じてねじれることができるようになっている。従って従来からの圧電バイモルフ素子の固定方法でも支持部材がねじり弾性変形構造であれば応力負荷原因が大きく軽減されることになる。   In contrast to such a conventional method for fixing a piezoelectric bimorph element, in Patent Document 1, one end of a piezoelectric element is bonded with a rectangular planar holder having a twisted elastic deformation structure, and the other end of the piezoelectric element is attached. Similarly, they are bonded by a rectangular planar holder having a torsional elastic deformation structure. The two planar holders are supported by a pivot shaft at the center, and the pivot shaft has a structure that can swing the planar holder like a seesaw. The rotating shaft also has a torsion elastic deformation structure, and can be twisted in accordance with the deformation of the piezoelectric element. Therefore, even in the conventional method for fixing a piezoelectric bimorph element, if the support member is a torsional elastic deformation structure, the cause of stress load is greatly reduced.

特開2005−92537JP 2005-92537 A

しかし、支持部材をねじり弾性変形構造のような弾性構造にすると、支持部材の弾性率によっては圧電バイモルフ素子が屈曲振動することによって被駆動体を移動させることができなくなる。更に引用文献1では圧電バイモルフ素子の電極とフレキシブル配線基板が半田付けされており、この構造では圧電素子の特性が劣化している可能性が極めて高い。以下に圧電バイモルフ素子の電極とリード線もしくはフレキシブル配線基板を半田付けする構造では圧電素子の特性が劣化している理由を示す。   However, if the support member is made to have an elastic structure such as a torsion elastic deformation structure, the driven body cannot be moved due to the bending vibration of the piezoelectric bimorph element depending on the elastic modulus of the support member. Further, in the cited document 1, the electrode of the piezoelectric bimorph element and the flexible wiring board are soldered, and it is highly possible that the characteristics of the piezoelectric element are deteriorated in this structure. The reason why the characteristics of the piezoelectric element are deteriorated in the structure in which the electrode of the piezoelectric bimorph element and the lead wire or the flexible wiring board are soldered will be described below.

図3は圧電バイモルフ素子の電極と各種電材との半田付け方法を示している。図3(a)は圧電バイモルフ素子とリード線等の半田付け方法を示す。図3(b)は圧電バイモルフ素子とフレキシブルプリント配線基板の半田付け方法を示す。図4はリード線10と圧電バイモルフ素子の電極との半田付けを含む圧電バイモルフ素子の固定方法を示している。圧電バイモルフ素子11は圧電素子2枚の間に金属板を弾性体として挟んだ構造であるため、圧電素子に電極を形成した後に図3(a)の様に圧電バイモルフ素子の電極とリード線等の導線を半田付けしていて、その後に図4のように圧電バイモルフ素子を固定している。又、図3(b)の様に圧電バイモルフ素子の電極とフレキシブルプリント配線基板12を半田付けもしくは異方性導電フィルム(ACF)にて熱圧着している。   FIG. 3 shows a soldering method between the electrodes of the piezoelectric bimorph element and various electric materials. FIG. 3A shows a soldering method for a piezoelectric bimorph element and a lead wire. FIG. 3B shows a soldering method for the piezoelectric bimorph element and the flexible printed wiring board. FIG. 4 shows a method of fixing the piezoelectric bimorph element including soldering of the lead wire 10 and the electrode of the piezoelectric bimorph element. Since the piezoelectric bimorph element 11 has a structure in which a metal plate is sandwiched between two piezoelectric elements as an elastic body, the electrodes and lead wires of the piezoelectric bimorph element are formed as shown in FIG. These lead wires are soldered, and then the piezoelectric bimorph element is fixed as shown in FIG. Further, as shown in FIG. 3B, the electrodes of the piezoelectric bimorph element and the flexible printed wiring board 12 are soldered or thermocompression bonded with an anisotropic conductive film (ACF).

このような圧電素子の電極での半田付けでは半田箇所13に短時間ではあるものの半田を溶かすために高温を加える必要がある。特に現在は環境への配慮から共晶半田から鉛フリー半田に変わっていることも有り、共晶半田の融点が約183℃であるのに対して、半田の含有成分によるものの錫・銀・銅を主要成分とする鉛フリー半田の融点は約220℃位である。従って半田付け時の温度は約250℃〜約300℃程度の高温になってしまう。
又、図示していないが、異方性導電フィルム(ACF)を用いた場合も、仮圧着で80℃程度を数秒、本圧着では200℃程度を15秒程度印加する必要がある。
その為、分極させた圧電素子の一部の残留分極が消失することになり、局所的ではあるが圧電素子の特性が劣化する問題が生じる。
In the soldering with the electrodes of such a piezoelectric element, it is necessary to apply a high temperature in order to melt the solder at the soldered portion 13 in a short time. In particular, due to environmental considerations, eutectic solder may have changed from lead-free solder, and eutectic solder has a melting point of about 183 ° C, whereas tin, silver, and copper due to solder components The melting point of lead-free solder whose main component is about 220 ° C. Therefore, the temperature during soldering becomes as high as about 250 ° C. to about 300 ° C.
Although not shown, even when an anisotropic conductive film (ACF) is used, it is necessary to apply a temperature of about 80 ° C. for several seconds by temporary pressure bonding and about 200 ° C. for about 15 seconds for main pressure bonding.
Therefore, a part of the remanent polarization of the polarized piezoelectric element disappears, and there is a problem that the characteristics of the piezoelectric element are deteriorated locally.

本発明は、このような事情に鑑みてなされたものであり、圧電バイモルフ素子の屈曲振動を阻害することがなく、且つ特性が劣化することを防止した圧電バイモルフ素子を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a piezoelectric bimorph element that does not hinder bending vibration of the piezoelectric bimorph element and prevents deterioration of characteristics. .

上記の目的を達成するため、本発明は、一方の主面における両端部に支持部材が設置され、前記支持部材は電圧ラインを有する固定支持面に固定されていて、他方の主面中央部に設置した連結部材に接する被駆動体を屈曲振動により移動させる圧電バイモルフ素子であって、導電性ゴムを含む弾性材からなる前記支持部材によって電圧が印加されることを特徴としている。   In order to achieve the above object, according to the present invention, support members are installed at both ends of one main surface, the support members are fixed to a fixed support surface having a voltage line, and the other main surface has a central portion. A piezoelectric bimorph element for moving a driven body in contact with an installed connecting member by bending vibration, wherein a voltage is applied by the support member made of an elastic material including conductive rubber.

好適には前記支持部材の少なくとも一方は、前記圧電バイモルフ素子の一方の主面の端部と他方の主面の端部を挟み込むように構成され、且つ導電性ゴムを含む弾性材からなり、前記圧電バイモルフ素子の2つの主面と、前記固定支持面が導通していることを特徴としている。   Preferably, at least one of the support members is configured to sandwich an end portion of one main surface and an end portion of the other main surface of the piezoelectric bimorph element, and is made of an elastic material including conductive rubber, The two main surfaces of the piezoelectric bimorph element are electrically connected to the fixed support surface.

好適には前記支持部材の少なくとも一方及び前記連結部材が導電性ゴムを含む弾性材からなり、電圧ラインを有する前記被駆動体の前記連結部材と接する面と、前記連結部材と、圧電バイモルフ素子の一方の主面が導通していることを特徴としている。   Preferably, at least one of the support member and the connecting member are made of an elastic material including conductive rubber, and a surface of the driven body that has a voltage line is in contact with the connecting member, the connecting member, and a piezoelectric bimorph element. It is characterized in that one main surface is conductive.

好適には前記固定支持面は電圧ラインと接地ラインを有し、前記固定支持面の接地ラインと圧電バイモルフ素子における2つの圧電素子間の弾性体は、導電性ゴムを含む弾性材からなる前記支持部材を間に挟んで導通していることを特徴としている。   Preferably, the fixed support surface has a voltage line and a ground line, and the elastic body between the two piezoelectric elements in the ground line of the fixed support surface and the piezoelectric bimorph element is made of an elastic material including conductive rubber. It is characterized by conducting with a member interposed therebetween.

本発明によれば、圧電バイモルフ素子の電極と電材との半田付けを不要にしたこと、及び異方性導電フィルム(ACF)使用による圧着を不要にしたことにより圧電バイモルフ素子の特性の劣化を防止できる。圧電バイモルフ素子への給電にリード線やフレキシブルプリント基板(FPC)を用いる必要が無いので、圧電バイモフル素子の配置の自由度が増すと共に、圧電バイモフル素子へのリード線、フレキシブル基板の半田付け等の作業をなくし、加工費用を削減することができる。又、2点支持された圧電バイモフル素子の振動を抑制することなく保持し、支持部材より電圧を印加することが可能となる。   According to the present invention, it is possible to prevent the deterioration of the characteristics of the piezoelectric bimorph element by eliminating the need for soldering between the electrode of the piezoelectric bimorph element and the electric material, and eliminating the need for pressure bonding using an anisotropic conductive film (ACF). it can. Since there is no need to use a lead wire or flexible printed circuit board (FPC) to supply power to the piezoelectric bimorph element, the degree of freedom in arranging the piezoelectric bimorph element increases, and the lead wire to the piezoelectric bimorph element, soldering of the flexible board, etc. Work can be eliminated and processing costs can be reduced. In addition, it is possible to hold the piezoelectric bimorph element supported at two points without suppressing the vibration and to apply a voltage from the support member.

従来からの圧電バイモルフ素子の固定方法を示す断面図である。It is sectional drawing which shows the fixing method of the conventional piezoelectric bimorph element. 従来からの圧電バイモルフ素子の固定方法を示す断面図である。It is sectional drawing which shows the fixing method of the conventional piezoelectric bimorph element. 圧電バイモルフ素子の電極と電材との半田付け方法を示す斜視図である。It is a perspective view which shows the soldering method of the electrode and electrical material of a piezoelectric bimorph element. 圧電バイモルフ素子の固定方法を示す断面図である。It is sectional drawing which shows the fixing method of a piezoelectric bimorph element. 本発明の圧電バイモルフ素子の固定方法を示す断面図である。It is sectional drawing which shows the fixing method of the piezoelectric bimorph element of this invention. 導電性ゴムと絶縁性ゴムを交互に積層した支持部材を示す断面図である。It is sectional drawing which shows the supporting member which laminated | stacked conductive rubber and insulating rubber alternately.

次に本発明を実施するための最良の形態を図面を用いて説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。図5は本発明の圧電バイモルフ素子の固定方法を示す断面図である。図5(a)は第1の実施例を示す断面図である。図5(a)にて圧電バイモルフ素子は圧電素子2と圧電素子3の間に弾性体(板)4が挟まれており、互いに接着されている。圧電素子2と圧電素子3には導電銀ペースト等が電極上にスクリーン印刷されており、圧電バイモルフ素子は分極済である。圧電バイモルフ素子の上面(圧電素子2の上面)の中央部分には連結部材5が設置されている。連結部材5と圧電素子2は接着剤にて接着されている。連結部材5の圧電素子2と接着した面と反対面は被駆動体1に接しており、圧電バイモルフ素子に電圧を印加して圧電バイモルフ素子が屈曲振動することにより、被駆動体1が移動する。そして圧電バイモルフ素子の下面(圧電素子3の下面)の両端部はそれぞれ別の支持部材と接しており、2つの支持部材は固定支持面8上の信号パターン17に接着或いは嵌め合い手段などで接続されている。ここで、固定支持面8は圧電バイモルフ素子を固定支持するための面であれば何でも良く、例えばタッチパネルやスピーカ等の電気機器を駆動する回路基板が該当する。固定支持面8には信号パターン17が形成されており、更に信号パターン17は一定の電圧が印加されている電圧ラインとGndに該当する接地ラインの2つのパターンに分割されている。ここで、固定支持面8の電圧ラインの電圧は図示されていない外部電源(電源装置、バッテリー、電池等)から供給される。圧電バイモルフ素子を支持する支持部材6は圧電バイモルフ素子の幅方向端部を上面から下面にかけて挟み込むように(圧電素子2の弾性体(板)4と接している面の反対面と、圧電素子3の弾性体(板)4と接している面の反対面に挟み込むように接している)形成され、且つ固定支持面8上の信号パターン17にも接するように形成されている。そして、この支持部材は導電性シリコーンゴム等の導電性ゴム16が内部に埋設されており、導電性ゴム16の周囲は絶縁性シリコーンゴム等の絶縁性ゴム15で被覆されている。支持部材6の一方の端面から支持部材6の途中まで導電性ゴム16が埋設されていて、導電性ゴム16が圧電バイモルフ素子の幅方向端部の上面の電極及び下面の電極、固定支持面8上の信号パターン17に接して導通状態となっている。そして、このことで圧電素子2及び圧電素子3に電圧が印加され、圧電バイモルフ素子が駆動する。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same components in the respective drawings, and duplicate descriptions are omitted. FIG. 5 is a cross-sectional view showing a method for fixing a piezoelectric bimorph element of the present invention. FIG. 5A is a cross-sectional view showing the first embodiment. In FIG. 5A, the piezoelectric bimorph element has an elastic body (plate) 4 sandwiched between the piezoelectric element 2 and the piezoelectric element 3 and is bonded to each other. In the piezoelectric element 2 and the piezoelectric element 3, conductive silver paste or the like is screen-printed on the electrode, and the piezoelectric bimorph element is polarized. A connecting member 5 is installed at the center of the upper surface of the piezoelectric bimorph element (the upper surface of the piezoelectric element 2). The connecting member 5 and the piezoelectric element 2 are bonded with an adhesive. The surface of the connecting member 5 opposite to the surface bonded to the piezoelectric element 2 is in contact with the driven body 1, and the driven body 1 moves when a voltage is applied to the piezoelectric bimorph element and the piezoelectric bimorph element bends and vibrates. . Both ends of the lower surface of the piezoelectric bimorph element (the lower surface of the piezoelectric element 3) are in contact with different support members, and the two support members are connected to the signal pattern 17 on the fixed support surface 8 by bonding or fitting means. Has been. Here, the fixing support surface 8 may be any surface as long as it is a surface for fixing and supporting the piezoelectric bimorph element. A signal pattern 17 is formed on the fixed support surface 8, and the signal pattern 17 is further divided into two patterns: a voltage line to which a constant voltage is applied and a ground line corresponding to Gnd. Here, the voltage of the voltage line of the fixed support surface 8 is supplied from an external power source (power supply device, battery, battery, etc.) not shown. The supporting member 6 that supports the piezoelectric bimorph element sandwiches the widthwise end of the piezoelectric bimorph element from the upper surface to the lower surface (the surface opposite to the surface in contact with the elastic body (plate) 4 of the piezoelectric element 2 and the piezoelectric element 3). The elastic body (plate) 4 is in contact with the surface opposite to the surface in contact with the elastic body (plate) 4, and is also in contact with the signal pattern 17 on the fixed support surface 8. The support member has a conductive rubber 16 such as conductive silicone rubber embedded therein, and the periphery of the conductive rubber 16 is covered with an insulating rubber 15 such as an insulating silicone rubber. A conductive rubber 16 is embedded from one end surface of the support member 6 to the middle of the support member 6, and the conductive rubber 16 is an upper surface electrode and a lower surface electrode of the piezoelectric bimorph element in the width direction, and the fixed support surface 8. The conductive pattern is in contact with the upper signal pattern 17. And a voltage is applied to the piezoelectric element 2 and the piezoelectric element 3 by this, and a piezoelectric bimorph element drives.

図5(a)での圧電バイモルフ素子を支持する支持部材7は、圧電バイモルフ素子の圧電素子3の電極、弾性体(板)4、固定支持面8上の信号パターン17の何れにも接している。この支持部材7は先に説明した別の支持部材と同様に導電性シリコーンゴム等の導電性ゴム16が内部に埋設されており、導電性ゴム16の周囲は絶縁性シリコーンゴム等の絶縁性ゴム15で被覆されている。そして支持部材7の導電性ゴム16は圧電バイモルフ素子の弾性体(板)4と固定支持面8上の信号パターン17に接して導通状態となっている。固定支持面8の分割された信号パターン17の内、Gndに該当する接地ラインと導通している信号パターン17は支持部材7に埋設されている導電性ゴム16を間に挟んで圧電バイモルフ素子の弾性体(板)4と接し、このことで圧電バイモルフ素子の弾性体(板)4は接地状態となる。   The support member 7 that supports the piezoelectric bimorph element in FIG. 5A is in contact with any of the electrodes of the piezoelectric element 3 of the piezoelectric bimorph element, the elastic body (plate) 4, and the signal pattern 17 on the fixed support surface 8. Yes. The support member 7 is embedded with a conductive rubber 16 such as conductive silicone rubber in the same manner as the other support member described above, and the periphery of the conductive rubber 16 is an insulating rubber such as an insulating silicone rubber. 15 is covered. The conductive rubber 16 of the support member 7 is in contact with the elastic body (plate) 4 of the piezoelectric bimorph element and the signal pattern 17 on the fixed support surface 8 and is in a conductive state. Among the divided signal patterns 17 on the fixed support surface 8, the signal pattern 17 connected to the ground line corresponding to Gnd is a piezoelectric bimorph element sandwiched between conductive rubbers 16 embedded in the support member 7. In contact with the elastic body (plate) 4, the elastic body (plate) 4 of the piezoelectric bimorph element is in a grounded state.

図5(a)での支持部材と圧電バイモルフ素子との接続は接着剤によることに限らず、圧電バイモルフ素子の弾性体(板)4に突起物を形成して、支持部材とその突起物を組み合わして保持固定するようにする方法もある。同様に支持部材と信号パターン17との接続も接着以外の信号パターン17に突起物を形成して、支持部材とその突起物を組み合わして保持固定するようにする方法が適切である。このように接着以外の方法で保持固定することで、圧電バイモフル素子の振動を抑制することなく保持することが可能になる。従って以上の構成により、リード線やフレキシブルプリント基板(FPC)を用いて半田付けする必要がないために圧電バイモルフ素子の劣化を防止しながら圧電素子に電圧を給電でき、更に圧電バイモフル素子の振動を抑制することなく保持することができることになる。尚、上記で記載した保持固定方法は図5(a)に限らず、以降に説明する図5(b)に示される第2の実施例及び図5(c)に示される第3の実施例でも同様である。   The connection between the support member and the piezoelectric bimorph element in FIG. 5A is not limited to using an adhesive, but a protrusion is formed on the elastic body (plate) 4 of the piezoelectric bimorph element, and the support member and the protrusion are connected to each other. There is also a method of holding and fixing in combination. Similarly, for the connection between the support member and the signal pattern 17, it is appropriate to form a projection on the signal pattern 17 other than the adhesion, and hold and fix the support member and the projection in combination. In this way, by holding and fixing by a method other than bonding, it is possible to hold without suppressing the vibration of the piezoelectric bi-full element. Therefore, with the above configuration, there is no need to solder using lead wires or flexible printed circuit boards (FPC), so voltage can be supplied to the piezoelectric element while preventing deterioration of the piezoelectric bimorph element, and vibration of the piezoelectric bimorph element can be further reduced. It can be held without being suppressed. The holding and fixing method described above is not limited to FIG. 5 (a), but a second embodiment shown in FIG. 5 (b) and a third embodiment shown in FIG. 5 (c) described below. But the same is true.

そして図5(b)は第2の実施例を示す断面図である。先に説明した図5(a)で示される第1の実施例と異なる箇所は圧電バイモルフ素子の下面(圧電素子3の下面)の両端部に接している支持部材、及び圧電バイモルフ素子の上面(圧電素子2の上面)の中央部分の連結部材5の構成である。他の箇所は図5(a)で示される第1の実施例と同じであり、説明済のために説明を省略する。図5(b)では圧電バイモルフ素子の下面(圧電素子3の下面)の端部の一方に支持部材6が接しており、この支持部材は固定支持面8に接着或いは嵌め合い手段などで接続されている。   FIG. 5B is a sectional view showing the second embodiment. The difference from the first embodiment shown in FIG. 5A described above is that the supporting member is in contact with both ends of the lower surface of the piezoelectric bimorph element (the lower surface of the piezoelectric element 3), and the upper surface of the piezoelectric bimorph element ( This is a configuration of the connecting member 5 in the central portion of the upper surface of the piezoelectric element 2. Other portions are the same as those of the first embodiment shown in FIG. 5A, and the description thereof is omitted for the sake of explanation. In FIG. 5B, the support member 6 is in contact with one end of the lower surface of the piezoelectric bimorph element (the lower surface of the piezoelectric element 3), and this support member is connected to the fixed support surface 8 by adhesion or fitting means. ing.

図5(b)での圧電バイモルフ素子を支持する他方の支持部材7は、圧電バイモルフ素子の圧電素子3の電極、弾性体(板)4、固定支持面8上の信号パターン17の何れにも接している。この支持部材7は先に説明した別の支持部材と同様に導電性シリコーンゴム等の導電性ゴム16が内部に埋設されており、導電性ゴム16の周囲は絶縁性シリコーンゴム等の絶縁性ゴム15で被覆されている。そして支持部材7の一方の端面から他方の端面まで2本以上の導電性ゴム16が埋設されていて、少なくとも1本の導電性ゴム16は圧電バイモルフ素子の一方の面の電極(圧電素子3の一方の面の電極)と固定支持面8上の信号パターン17に接して導通状態となっている。又、少なくとも1本の導電性ゴム16は圧電バイモルフ素子の弾性体(板)4と固定支持面8上の信号パターン17に接して導通状態となっている。固定支持面8の分割された信号パターン17の内、一定の電圧が印加されている電圧ラインと導通している信号パターン17は支持部材7に埋設されている導電性ゴム16を間に挟んで圧電バイモルフ素子の一方の面の電極(圧電素子3の一方の面の電極)と接し、このことで圧電素子3に電圧が印加される。又、固定支持面8の分割された信号パターン17の内、Gndに該当する接地ラインと導通している信号パターン17は支持部材7に埋設されている導電性ゴム16を間に挟んで圧電バイモルフ素子の弾性体(板)4と接し、このことで圧電バイモルフ素子の弾性体(板)4は接地状態となる。   The other support member 7 that supports the piezoelectric bimorph element in FIG. 5B is provided on any of the electrodes of the piezoelectric element 3 of the piezoelectric bimorph element, the elastic body (plate) 4, and the signal pattern 17 on the fixed support surface 8. It touches. The support member 7 is embedded with a conductive rubber 16 such as conductive silicone rubber in the same manner as the other support member described above, and the periphery of the conductive rubber 16 is an insulating rubber such as an insulating silicone rubber. 15 is covered. Two or more conductive rubbers 16 are embedded from one end surface of the support member 7 to the other end surface, and at least one conductive rubber 16 is an electrode on one surface of the piezoelectric bimorph element (of the piezoelectric element 3). The electrode on one side) is in contact with the signal pattern 17 on the fixed support surface 8 and is in a conductive state. Further, at least one conductive rubber 16 is in contact with the elastic body (plate) 4 of the piezoelectric bimorph element and the signal pattern 17 on the fixed support surface 8 and is in a conductive state. Among the divided signal patterns 17 on the fixed support surface 8, the signal pattern 17 connected to the voltage line to which a constant voltage is applied is sandwiched between the conductive rubber 16 embedded in the support member 7. The piezoelectric bimorph element is in contact with an electrode on one surface (an electrode on one surface of the piezoelectric element 3), whereby a voltage is applied to the piezoelectric element 3. Of the divided signal patterns 17 on the fixed support surface 8, the signal pattern 17 connected to the ground line corresponding to Gnd is a piezoelectric bimorph sandwiched between conductive rubbers 16 embedded in the support member 7. The elastic body (plate) 4 of the piezoelectric bimorph element comes into contact with the elastic body (plate) 4 of the element.

そして、図5(b)での被駆動体1は連結部材5に接する側の面で一定の電圧が給電されている電圧ラインを有する。この電圧ラインには図示されていない外部電源(電源装置、バッテリー、電池等)から一定の電圧が供給される。被駆動体1には信号パターン17が形成され、この信号パターン17は電圧ラインと導通している。連結部材5は導電性シリコーンゴム等の導電性ゴム16が内部に埋設されており、導電性ゴム16の周囲は絶縁性シリコーンゴム等の絶縁性ゴム15で被覆されている。そして連結部材5の一方の端面から他方の端面まで導電性ゴム16が埋設されていて、この導電性ゴム16を間に挟んで圧電バイモルフ素子の一方の面の電極(圧電素子2の一方の面の電極)と被駆動体1の信号パターン17が導通状態となり、圧電素子2に電圧が印加されることになる。従って以上の構成により圧電素子2及び圧電素子3に電圧が印加されて、圧電バイモルフ素子が駆動することになる。   The driven body 1 in FIG. 5B has a voltage line to which a constant voltage is fed on the surface in contact with the connecting member 5. A constant voltage is supplied to the voltage line from an external power source (power supply device, battery, battery, etc.) not shown. A signal pattern 17 is formed on the driven body 1, and the signal pattern 17 is electrically connected to the voltage line. The connecting member 5 has a conductive rubber 16 such as conductive silicone rubber embedded therein, and the periphery of the conductive rubber 16 is covered with an insulating rubber 15 such as an insulating silicone rubber. A conductive rubber 16 is embedded from one end surface of the connecting member 5 to the other end surface, and an electrode on one surface of the piezoelectric bimorph element (one surface of the piezoelectric element 2) is sandwiched between the conductive rubbers 16. Electrode) and the signal pattern 17 of the driven body 1 become conductive, and a voltage is applied to the piezoelectric element 2. Accordingly, voltage is applied to the piezoelectric element 2 and the piezoelectric element 3 with the above configuration, and the piezoelectric bimorph element is driven.

そして図5(c)は第3の実施例を示す断面図である。先に説明した図5(a)で示される第1の実施例と異なる箇所は圧電バイモルフ素子の下面(圧電素子3の下面)の両端部に接している支持部材、及び圧電バイモルフ素子の上面(圧電素子2の上面)の中央部分の連結部材5の構成である。他の箇所は図5(a)で示される第1の実施例と同じであり、説明済のために説明を省略する。図5(c)では圧電バイモルフ素子の下面(圧電素子3の下面)の端部の一方に支持部材6が接しており、この支持部材は固定支持面8に接着或いは嵌め合い手段などで接続されている。この支持部材6は導電性シリコーンゴム等の導電性ゴム16が内部に埋設されており、導電性ゴム16の周囲は絶縁性シリコーンゴム等の絶縁性ゴム15で被覆されている。そして支持部材6の一方の端面から他方の端面まで導電性ゴム16が埋設されていて、この導電性ゴム16を間に挟んで圧電バイモルフ素子の一方の面の電極(圧電素子3の一方の面の電極)と固定支持面8の一定の電圧が印加されている電圧ラインと導通している信号パターン17が導通状態となり、圧電素子3に電圧が印加されることになる。   FIG. 5C is a cross-sectional view showing a third embodiment. The difference from the first embodiment shown in FIG. 5A described above is that the supporting member is in contact with both ends of the lower surface of the piezoelectric bimorph element (the lower surface of the piezoelectric element 3), and the upper surface of the piezoelectric bimorph element ( This is a configuration of the connecting member 5 in the central portion of the upper surface of the piezoelectric element 2. Other portions are the same as those of the first embodiment shown in FIG. 5A, and the description thereof is omitted for the sake of explanation. In FIG. 5C, the support member 6 is in contact with one end of the lower surface of the piezoelectric bimorph element (the lower surface of the piezoelectric element 3), and this support member is connected to the fixed support surface 8 by adhesion or fitting means. ing. The support member 6 has a conductive rubber 16 such as conductive silicone rubber embedded therein, and the periphery of the conductive rubber 16 is covered with an insulating rubber 15 such as an insulating silicone rubber. A conductive rubber 16 is embedded from one end surface of the support member 6 to the other end surface, and an electrode on one surface of the piezoelectric bimorph element (one surface of the piezoelectric element 3) is sandwiched between the conductive rubber 16. Electrode) and a signal line 17 that is in conduction with a voltage line to which a fixed voltage is applied to the fixed support surface 8 is brought into conduction, and a voltage is applied to the piezoelectric element 3.

図5(c)での圧電バイモルフ素子を支持する他方の支持部材7は、圧電バイモルフ素子の圧電素子3、弾性体(板)4、固定支持面8上の信号パターン17の何れにも接している。この支持部材は先に説明した別の支持部材と同様に導電性シリコーンゴム等の導電性ゴム16が内部に埋設されており、導電性ゴム16の周囲は絶縁性シリコーンゴム等の絶縁性ゴム15で被覆されている。そして支持部材7の導電性ゴム16は圧電バイモルフ素子の弾性体(板)4と固定支持面8上の信号パターン17に接して導通状態となっている。固定支持面8の分割された信号パターン17の内、Gndに該当する接地ラインと導通している信号パターン17は支持部材に埋設されている導電性ゴム16を間に挟んで圧電バイモルフ素子の弾性体(板)4と接し、このことで圧電バイモルフ素子の弾性体(板)4は接地状態となる。   The other support member 7 that supports the piezoelectric bimorph element in FIG. 5C is in contact with any of the piezoelectric element 3 of the piezoelectric bimorph element, the elastic body (plate) 4, and the signal pattern 17 on the fixed support surface 8. Yes. This support member is embedded with a conductive rubber 16 such as conductive silicone rubber in the same manner as the other support member described above, and the periphery of the conductive rubber 16 is an insulating rubber 15 such as an insulating silicone rubber. It is covered with. The conductive rubber 16 of the support member 7 is in contact with the elastic body (plate) 4 of the piezoelectric bimorph element and the signal pattern 17 on the fixed support surface 8 and is in a conductive state. Among the divided signal patterns 17 on the fixed support surface 8, the signal pattern 17 connected to the ground line corresponding to Gnd is the elasticity of the piezoelectric bimorph element with the conductive rubber 16 embedded in the support member interposed therebetween. In contact with the body (plate) 4, the elastic body (plate) 4 of the piezoelectric bimorph element is in a grounded state.

図5(c)での被駆動体1は連結部材5に接する側の面で一定の電圧が給電されている電圧ラインを有する。この電圧ラインには図示されていない外部電源(電源装置、バッテリー、電池等)から一定の電圧が供給される。被駆動体1には信号パターン17が形成され、この信号パターン17は電圧ラインと導通している。連結部材5は導電性シリコーンゴム等の導電性ゴム16が内部に埋設されており、導電性ゴム16の周囲は絶縁性シリコーンゴム等の絶縁性ゴム15で被覆されている。そして連結部材5の一方の端面から他方の端面まで導電性ゴム16が埋設されていて、この導電性ゴム16を間に挟んで圧電バイモルフ素子の一方の面(圧電素子2の一方の面)と被駆動体1の信号パターン17が導通状態となり、圧電素子2に電圧が印加されることになる。従って以上の構成により圧電素子2及び圧電素子3に電圧が印加されて、圧電バイモルフ素子が駆動することになる。   The driven body 1 in FIG. 5C has a voltage line to which a constant voltage is fed on the surface in contact with the connecting member 5. A constant voltage is supplied to the voltage line from an external power source (power supply device, battery, battery, etc.) not shown. A signal pattern 17 is formed on the driven body 1, and the signal pattern 17 is electrically connected to the voltage line. The connecting member 5 has a conductive rubber 16 such as conductive silicone rubber embedded therein, and the periphery of the conductive rubber 16 is covered with an insulating rubber 15 such as an insulating silicone rubber. A conductive rubber 16 is embedded from one end surface of the connecting member 5 to the other end surface, and one surface of the piezoelectric bimorph element (one surface of the piezoelectric element 2) is sandwiched between the conductive rubber 16 and the other surface. The signal pattern 17 of the driven body 1 becomes conductive, and a voltage is applied to the piezoelectric element 2. Accordingly, voltage is applied to the piezoelectric element 2 and the piezoelectric element 3 with the above configuration, and the piezoelectric bimorph element is driven.

圧電バイモルフ素子に一つの信号を伝送するだけならば、低抵抗の導電性シリコーンゴムの周囲に薄い絶縁層をコーティングするだけで良い。それに対して図5(b)で示されている支持部材のように一方の端面から他方の端面まで2本以上の導電性ゴム16が内部に埋設されていて、導電性ゴム16の周囲は絶縁性シリコーンゴム等の絶縁性ゴム15で被覆されている構成により圧電素子と弾性体である金属板に異なった信号を印加することができる。   If only one signal is transmitted to the piezoelectric bimorph element, it is only necessary to coat a thin insulating layer around the low-resistance conductive silicone rubber. On the other hand, two or more conductive rubbers 16 are embedded inside from one end surface to the other end surface as in the support member shown in FIG. 5B, and the periphery of the conductive rubber 16 is insulated. Different signals can be applied to the piezoelectric element and the metal plate, which is an elastic body, by the structure covered with the insulating rubber 15 such as the conductive silicone rubber.

図5(b)で示されている支持部材の一例を図6に示す。図6は導電性ゴムと絶縁性ゴムを交互に積層した支持部材を示す断面図である。図6の導電性ゴム16は銀系微粉末を充填した低抵抗の導電性シリコーンゴムである。導電性ゴム16と絶縁性ゴム15は交互に積層され、この積層されたシリコーンゴムを挟むように絶縁性シリコーンゴムからなるサイドサポート部19が形成されている。そして、サイドサポート部19の周囲に薄い絶縁層18をコーティングしている。   An example of the support member shown in FIG. 5B is shown in FIG. FIG. 6 is a cross-sectional view showing a support member in which conductive rubber and insulating rubber are alternately laminated. The conductive rubber 16 in FIG. 6 is a low resistance conductive silicone rubber filled with silver-based fine powder. The conductive rubber 16 and the insulating rubber 15 are alternately laminated, and a side support portion 19 made of insulating silicone rubber is formed so as to sandwich the laminated silicone rubber. A thin insulating layer 18 is coated around the side support portion 19.

銀系微粉末を充填した低抵抗の導電性シリコーンゴムの体積抵抗率は1x10-4cm程度のものがある。この様な導電性シリコーンゴムを用いて、圧電バイモルフ素子の電極に電圧信号を印加する場合の抵抗は、たとえば導電性シリコーンゴムの幅を5mmとして、高さを1mmとした場合接触する固定支持面8上に形成する信号パターン17の幅にもよるが、0.2Ω程度に設計することが可能である。   Low resistance conductive silicone rubber filled with silver fine powder has a volume resistivity of about 1 × 10 −4 cm. When such a conductive silicone rubber is used and a voltage signal is applied to the electrodes of the piezoelectric bimorph element, for example, the resistance is fixed when the width of the conductive silicone rubber is 5 mm and the height is 1 mm. Although it depends on the width of the signal pattern 17 formed on 8, it can be designed to be about 0.2Ω.

単板の圧電素子にて作った圧電バイモルフ素子の駆動電圧は、100〜150V程度で、駆動電流は定常的には数十mA程度となる。突入電流を加味しても100mA程度なので、低抵抗導電性シリコーンを介して固定支持面8上の信号パターン17を接続しても、電圧の降下レベルは圧電バイモルフ素子の駆動には影響を及ぼさない程度の小さなものとなる。圧電バイモルフ素子の駆動を考えた場合、導電性ゴムの抵抗は1Ω程度でも支障を来たさない。   The drive voltage of a piezoelectric bimorph element made of a single-plate piezoelectric element is about 100 to 150 V, and the drive current is normally about several tens of mA. Even if the inrush current is taken into account, it is about 100 mA. Therefore, even if the signal pattern 17 on the fixed support surface 8 is connected via the low-resistance conductive silicone, the voltage drop level does not affect the driving of the piezoelectric bimorph element. It will be small. Considering the driving of the piezoelectric bimorph element, even if the resistance of the conductive rubber is about 1Ω, there is no problem.

また、圧電バイモルフ素子に積層圧電素子を用いて低電圧駆動を行う場合で、支持部材の導電性ゴムの抵抗を低く抑えなければならない場合は、導電性ゴムの代わりに金属細線を低ピッチで配列し、周囲を絶縁性シリコーンゴムでサポートした導電性ゴムを用いることで接続抵抗を0.1Ω以下に抑えることも可能である。   Also, when low voltage drive is performed using a laminated piezoelectric element as a piezoelectric bimorph element, and the resistance of the conductive rubber of the support member must be kept low, the metal thin wires are arranged at a low pitch instead of the conductive rubber In addition, the connection resistance can be suppressed to 0.1Ω or less by using conductive rubber whose periphery is supported by insulating silicone rubber.

尚、導電性ゴムの弾性率は、図6の交互に積層する絶縁性シリコーンゴム又はその周囲に配置するサイドサポート部のシリコーンゴムで調整することが可能である。   It should be noted that the elastic modulus of the conductive rubber can be adjusted by the insulating silicone rubber alternately laminated in FIG. 6 or the silicone rubber of the side support portion arranged around the insulating silicone rubber.

以上の様に導電性ゴムと絶縁性ゴムが埋設された支持部材を用いることにより、圧電バイモフル素子の振動を抑制することなく保持することができて、フレキシブルプリント基板(FPC)等の電材にて半田付けすることが不要な構成で圧電バイモルフ素子に電圧を印加することができる。   As described above, by using a support member embedded with conductive rubber and insulating rubber, it can be held without suppressing vibration of the piezoelectric bi-moful element, and can be used with electric materials such as flexible printed circuit boards (FPC). A voltage can be applied to the piezoelectric bimorph element with a configuration that does not require soldering.

1 被駆動体
2 圧電素子
3 圧電素子
4 弾性体(金属板)
5 連結部材
6 支持部材
7 支持部材
8 固定支持面
9 応力負荷発生箇所
10 リード線
11 圧電バイモフル素子
12 フレキシブルプリント配線基板
13 半田箇所
14 プリントパターン
15 絶縁性ゴム
16 導電性ゴム
17 信号パターン
18 絶縁層
19 サイドサポート部
DESCRIPTION OF SYMBOLS 1 Driven body 2 Piezoelectric element 3 Piezoelectric element 4 Elastic body (metal plate)
DESCRIPTION OF SYMBOLS 5 Connection member 6 Support member 7 Support member 8 Fixed support surface 9 Stress load generation | occurrence | production location 10 Lead wire 11 Piezoelectric bimorph element 12 Flexible printed wiring board 13 Solder location 14 Print pattern 15 Insulation rubber 16 Conductive rubber 17 Signal pattern 18 Insulation layer 19 Side support

Claims (4)

一方の主面における両端部に支持部材が設置され、前記支持部材は電圧ラインを有する固定支持面に固定されていて、他方の主面中央部に設置した連結部材に接する被駆動体を屈曲振動により移動させる圧電バイモルフ素子であって、導電性ゴムを含む弾性材からなる前記支持部材によって電圧が印加されることを特徴とする圧電バイモルフ素子。   Support members are installed at both ends of one main surface, the support members are fixed to a fixed support surface having a voltage line, and the driven body that contacts the connecting member installed at the center of the other main surface is bent and vibrated. The piezoelectric bimorph element is a piezoelectric bimorph element that is moved by a voltage applied by the support member made of an elastic material including a conductive rubber. 前記支持部材の少なくとも一方は、前記圧電バイモルフ素子の一方の主面の端部と他方の主面の端部を挟み込むように構成され、且つ導電性ゴムを含む弾性材からなり、前記圧電バイモルフ素子の2つの主面と、前記固定支持面が導通していることを特徴とする請求項1に記載の圧電バイモルフ素子。   At least one of the support members is configured to sandwich an end portion of one main surface of the piezoelectric bimorph element and an end portion of the other main surface, and is made of an elastic material including conductive rubber, and the piezoelectric bimorph element 2. The piezoelectric bimorph element according to claim 1, wherein the two main surfaces are electrically connected to the fixed support surface. 前記支持部材の少なくとも一方及び前記連結部材が導電性ゴムを含む弾性材からなり、電圧ラインを有する前記被駆動体の前記連結部材と接する面と、前記連結部材と、圧電バイモルフ素子の一方の主面が導通していることを特徴とする請求項1または請求項2に記載の圧電バイモルフ素子。   At least one of the support member and the connecting member are made of an elastic material including conductive rubber, and a surface of the driven body that has a voltage line is in contact with the connecting member, the connecting member, and one main of the piezoelectric bimorph element. 3. The piezoelectric bimorph element according to claim 1, wherein the surface is conductive. 前記固定支持面は電圧ラインと接地ラインを有し、前記固定支持面の接地ラインと圧電バイモルフ素子における2つの圧電素子間の弾性体は、導電性ゴムを含む弾性材からなる前記支持部材を間に挟んで導通していることを特徴とする請求項1〜3のいずれかに記載の圧電バイモルフ素子。   The fixed support surface has a voltage line and a ground line, and the elastic body between the two piezoelectric elements in the ground line of the fixed support surface and the piezoelectric bimorph element has the support member made of an elastic material including conductive rubber interposed therebetween. The piezoelectric bimorph element according to any one of claims 1 to 3, wherein the piezoelectric bimorph element is electrically connected between the two.
JP2009292700A 2009-12-24 2009-12-24 Piezoelectric bimorph element Expired - Fee Related JP5545812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009292700A JP5545812B2 (en) 2009-12-24 2009-12-24 Piezoelectric bimorph element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009292700A JP5545812B2 (en) 2009-12-24 2009-12-24 Piezoelectric bimorph element

Publications (2)

Publication Number Publication Date
JP2011135693A true JP2011135693A (en) 2011-07-07
JP5545812B2 JP5545812B2 (en) 2014-07-09

Family

ID=44347840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009292700A Expired - Fee Related JP5545812B2 (en) 2009-12-24 2009-12-24 Piezoelectric bimorph element

Country Status (1)

Country Link
JP (1) JP5545812B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386489A (en) * 1986-09-30 1988-04-16 Matsushita Electric Ind Co Ltd Piezoelectric actuator
JPH11233843A (en) * 1998-02-12 1999-08-27 Denso Corp Piezoelectric bimorph laminated actuator
JP2005303937A (en) * 2004-04-16 2005-10-27 Sony Corp Supporting structure of piezoelectric bimorph element
WO2009050836A1 (en) * 2007-10-18 2009-04-23 Panasonic Corporation Vibration actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6386489A (en) * 1986-09-30 1988-04-16 Matsushita Electric Ind Co Ltd Piezoelectric actuator
JPH11233843A (en) * 1998-02-12 1999-08-27 Denso Corp Piezoelectric bimorph laminated actuator
JP2005303937A (en) * 2004-04-16 2005-10-27 Sony Corp Supporting structure of piezoelectric bimorph element
WO2009050836A1 (en) * 2007-10-18 2009-04-23 Panasonic Corporation Vibration actuator

Also Published As

Publication number Publication date
JP5545812B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
CN104350765B (en) Piezo-activator, piezoelectric vibrating device and portable terminal device
US9634228B2 (en) Piezo vibration module
JP5161305B2 (en) Display device provided with touch panel and piezoelectric actuator
US20130162543A1 (en) Piezoelectric Actuator Interface and Method
WO2013171913A1 (en) Piezoelectric actuator, piezoelectric vibration device, and mobile terminal
US9793463B2 (en) Piezoelectric vibration module
US9590162B2 (en) Piezoelectric vibration component and portable terminal
JP4622249B2 (en) Transparent touch panel
JP4174798B2 (en) Display device
TWI520390B (en) Piezoelectric actuators, piezoelectric vibrators and mobile terminals
JP5545812B2 (en) Piezoelectric bimorph element
JP7211577B2 (en) Piezoelectric actuators, vibration generators, and electronic devices
JP6741609B2 (en) Piezoelectric actuator, piezoelectric vibration device, and electronic device
JPWO2013171918A1 (en) Piezoelectric actuator, piezoelectric vibration device, and portable terminal
KR101610794B1 (en) Electrostatic force based actuator including conductive polymer layer
CN215576536U (en) Touch module with vibration feedback
JP2019033242A (en) Multilayer piezoelectric element, piezoelectric vibration device, and electronic apparatus
JP2006049671A (en) Piezoelectric transformer component
JP2008306050A (en) Electrode connection structure and liquid crystal display unit
JP2024007723A (en) piezoelectric vibration unit
KR20140115915A (en) Piezoelectric vibration device
JP2008251815A (en) Electronic component mounting substrate
US20190042012A1 (en) Substrate
JP2006128167A (en) Electronic apparatus and flexible printed circuit board
KR101154363B1 (en) Vibration Actuator Module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140509

R150 Certificate of patent or registration of utility model

Ref document number: 5545812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees