JP2011134827A - Multilayer wiring board and method of manufacturing the same - Google Patents

Multilayer wiring board and method of manufacturing the same Download PDF

Info

Publication number
JP2011134827A
JP2011134827A JP2009291909A JP2009291909A JP2011134827A JP 2011134827 A JP2011134827 A JP 2011134827A JP 2009291909 A JP2009291909 A JP 2009291909A JP 2009291909 A JP2009291909 A JP 2009291909A JP 2011134827 A JP2011134827 A JP 2011134827A
Authority
JP
Japan
Prior art keywords
thin film
conductor
layer
film conductor
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009291909A
Other languages
Japanese (ja)
Inventor
Yoshinori Konishi
芳紀 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009291909A priority Critical patent/JP2011134827A/en
Publication of JP2011134827A publication Critical patent/JP2011134827A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer wiring board excellent in the flatness of an upper surface, and a method of manufacturing the same. <P>SOLUTION: The multilayer wiring board is composed by alternately laminating a plurality of resin insulating layers 1 and a plurality of thin-film conductor layers 2 and electrically connecting the upper and lower thin-film conductor layers 2 with each other through a through conductor 3 formed on the resin insulating layer 1. The thin-film conductor layer 2 is housed inside a groove part 4 formed in the same pattern as the thin-film conductor layer 2 on the lower surface of the resin insulating layer 1 laminated on the upper side. The through conductor 3 is formed passing through the resin insulating layer 1 in the thickness direction so that a part of the lower part of the side face is exposed along the inner side face of the groove part 4, a part of the lower part of the side face exposed inside the groove part 4 of the through conductor 3 and the side face of the thin-film conductor layer 2 are brought into contact with each other, and the through conductor 3 and the thin-film conductor layer 2 are electrically connected. Since the thin-film conductor layer 2 is housed inside the groove part 4 and the side face of the through conductor 3 is in contact with the side face of the thin-film conductor layer 2, the deformation of the resin insulating layer 1 on the upper side is suppressed and the flatness is improved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、複数の樹脂絶縁層と複数の薄膜導体層とが交互に積層されてなる多層配線基板およびその製造方法に関するものであり、特に上面等の表面の平坦性に優れた多層配線基板およびその製造方法に関するものである。   The present invention relates to a multilayer wiring board in which a plurality of resin insulating layers and a plurality of thin film conductor layers are alternately laminated, and a method for manufacturing the same, and more particularly to a multilayer wiring board excellent in surface flatness such as an upper surface and the like. It relates to the manufacturing method.

従来、半導体素子を上面の端子に接続し、この端子と電気的に接続された下面の接続パッドを外部電気回路に電気的に接続するための多層配線基板として、複数の樹脂絶縁層と複数の薄膜導体層とが交互に積層されてなる多層配線基板が知られている。このような多層配線基板は、例えば、半導体素子の電気的なチェックを行なう、いわゆるプローブカード用の基板として用いられている。   Conventionally, as a multilayer wiring board for connecting a semiconductor element to a terminal on the upper surface and electrically connecting a connection pad on the lower surface electrically connected to the terminal to an external electric circuit, a plurality of resin insulation layers and a plurality of A multilayer wiring board in which thin film conductor layers are alternately stacked is known. Such a multilayer wiring board is used, for example, as a so-called probe card board for performing an electrical check of a semiconductor element.

薄膜導体層は、多層配線基板の下面および上面に一部が露出するように形成されており、上面に露出した部分が半導体素子の電極と、例えばこの薄膜導体層に接合されたプローブを介して電気的に接続され、下面に露出した部分が電気特性測定用の装置等の外部電気回路基板に電気的に接続される。そして、半導体素子の電極と外部電気回路とが、プローブと薄膜導体層と貫通導体とを介して電気的に接続され、半導体素子の動作確認などの検査が行なわれる。   The thin film conductor layer is formed so that a part is exposed on the lower surface and the upper surface of the multilayer wiring board, and the exposed portion on the upper surface is connected to the electrode of the semiconductor element and, for example, a probe bonded to the thin film conductor layer. The portion that is electrically connected and exposed on the lower surface is electrically connected to an external electric circuit board such as a device for measuring electrical characteristics. Then, the electrode of the semiconductor element and the external electric circuit are electrically connected through the probe, the thin film conductor layer, and the through conductor, and inspection such as operation check of the semiconductor element is performed.

このような多層配線基板は、一般に、まず、エポキシ樹脂等の樹脂材料をシート状に成形して樹脂絶縁層を形成し、次に、その樹脂絶縁層の主面にスパッタリング法やめっき法等の方法でチタンや銅,金等からなる薄膜導体層を被着させるとともに、必要に応じてこの薄膜導体層にフォトリソグラフ法やエッチング法等のパターン形成技術を適用して所定のパターンとし、その後、この薄膜導体層が被着された樹脂絶縁層の上に他の樹脂絶縁層を積層するという各工程を繰り返すことによって製作されている。多層配線基板の層数は、この工程の繰り返しの回数に応じて調整し、必要な層数に積層した後、この積層体を加圧して各層間を密着させるようにしている。   In general, such a multilayer wiring board is generally formed of a resin material such as an epoxy resin into a sheet shape to form a resin insulation layer, and then a main surface of the resin insulation layer such as a sputtering method or a plating method. A thin film conductor layer made of titanium, copper, gold or the like is deposited by a method, and a pattern formation technique such as a photolithographic method or an etching method is applied to the thin film conductor layer as necessary to obtain a predetermined pattern. It is manufactured by repeating each step of laminating another resin insulation layer on the resin insulation layer to which the thin film conductor layer is applied. The number of layers of the multilayer wiring board is adjusted according to the number of repetitions of this step, and after laminating to the required number of layers, the laminate is pressed to adhere each layer.

また、最下層の樹脂絶縁層の下側に、多層配線基板としての剛性の確保等のために、セラミック多層配線基板を接合する場合もある。この場合には、セラミック多層配線基板の配線導体が多層配線基板の薄膜配線導体と電気的に接続され、このセラミック多層配線基板の配線導体と外部電気回路とを電気的に接続することで、半導体素子と外部電気回路とを電気的に接続させることができる。   In some cases, a ceramic multilayer wiring board is bonded to the lower side of the lowermost resin insulating layer in order to ensure rigidity as the multilayer wiring board. In this case, the wiring conductor of the ceramic multilayer wiring board is electrically connected to the thin film wiring conductor of the multilayer wiring board, and the wiring conductor of the ceramic multilayer wiring board and the external electric circuit are electrically connected to each other. An element and an external electric circuit can be electrically connected.

特開2004−253512JP2004-253512

しかしながら、このような多層配線基板およびその製造方法においては、薄膜配線導体が形成されている部分で、薄膜配線導体層の厚みの影響を受けて、その上に積層される樹脂絶縁層が凸状に変形しやすいという問題点があった。   However, in such a multilayer wiring board and a method for manufacturing the same, the resin insulating layer laminated thereon is convex at the portion where the thin film wiring conductor is formed, affected by the thickness of the thin film wiring conductor layer. There was a problem that it was easily deformed.

このように樹脂絶縁層の一部が凸状に変形した場合には、最上層の樹脂絶縁層にも変形が生じ、多層配線基板の上面の平坦性が低くなる可能性がある。そして、多層配線基板の上面の平坦性が低くなってしまうと、例えば、その上面の複数の薄膜配線導体を、プローブを介して半導体素子の複数の電極にそれぞれ電気的に接続させることが難しくなってしまうという不具合を生じる。   When a part of the resin insulating layer is deformed in this way, the uppermost resin insulating layer is also deformed, and the flatness of the upper surface of the multilayer wiring board may be lowered. If the flatness of the upper surface of the multilayer wiring board becomes low, for example, it becomes difficult to electrically connect the plurality of thin film wiring conductors on the upper surface to the plurality of electrodes of the semiconductor element through the probe, respectively. This causes a problem that

本発明は上記従来の技術の問題点に鑑みて完成されたものであり、その目的は、上面の平坦性に優れた多層配線基板、およびその製造方法を提供することにある。   The present invention has been completed in view of the above problems of the prior art, and an object of the present invention is to provide a multilayer wiring board excellent in flatness of the upper surface and a manufacturing method thereof.

本発明の多層配線基板は、熱可塑性樹脂材料からなる複数の樹脂絶縁層と複数の薄膜導体層とが交互に積層され、前記樹脂絶縁層に形成された貫通導体を介して上下の前記薄膜導体層同士が電気的に接続されてなる多層配線基板であって、前記薄膜導体層は、上側に積層された前記樹脂絶縁層の下面に前記薄膜導体層と同じパターンで形成された溝部内に収まっており、前記貫通導体は、側面の下部の一部が前記溝部の内側面に沿って露出するように前記樹脂絶縁層を厚み方向に貫通して形成されており、該貫通導体の前記溝部内に露出した前記側面の下部の一部と前記薄膜導体層の側面とが接触して、前記貫通導体と前記薄膜導体層とが電気的に接続されていることを特徴とするものである。   In the multilayer wiring board of the present invention, a plurality of resin insulation layers and a plurality of thin film conductor layers made of a thermoplastic resin material are alternately laminated, and the upper and lower thin film conductors are interposed through through conductors formed in the resin insulation layer. A multilayer wiring board in which layers are electrically connected to each other, wherein the thin film conductor layer is accommodated in a groove formed in the same pattern as the thin film conductor layer on the lower surface of the resin insulating layer laminated on the upper side. The through conductor is formed through the resin insulating layer in the thickness direction so that a part of the lower portion of the side surface is exposed along the inner side surface of the groove portion. A portion of the lower portion of the side surface exposed to the side surface and the side surface of the thin film conductor layer are in contact with each other, and the through conductor and the thin film conductor layer are electrically connected.

本発明の多層配線基板の製造方法は、熱可塑性樹脂材料からなる第1の樹脂絶縁層を準備し、該第1の樹脂絶縁層の上面に薄膜導体層を形成する工程と、
熱可塑性樹脂材料からなる第2の樹脂絶縁層を準備し、該第2の樹脂絶縁層の下面に前記薄膜導体層と同じパターンで溝部を形成する工程と、
外周の一部が前記溝部の内側面と重なる位置に、前記第2の樹脂絶縁層を厚み方向に貫通する貫通孔を形成し、該貫通孔内に、側面の下部の一部が前記溝部の内側面に沿って露出するように貫通導体を配置する工程と、
前記第2の樹脂絶縁層を前記第1の樹脂絶縁層の上面に、前記溝部内に前記薄膜導体層が収まるとともに、前記貫通導体の前記溝部内に露出した前記側面の下部の一部を前記薄膜導体層の側面に接触させるように積層し、該積層体を加熱しながら加圧する工程とを含むことを特徴とするものである。
The method for producing a multilayer wiring board according to the present invention comprises a step of preparing a first resin insulating layer made of a thermoplastic resin material and forming a thin film conductor layer on the upper surface of the first resin insulating layer;
Preparing a second resin insulation layer made of a thermoplastic resin material, and forming a groove in the same pattern as the thin film conductor layer on the lower surface of the second resin insulation layer;
A through-hole penetrating the second resin insulating layer in the thickness direction is formed at a position where a part of the outer periphery overlaps the inner side surface of the groove part, and a part of the lower part of the side surface of the groove part is formed in the through-hole. Arranging the through conductor so as to be exposed along the inner surface;
The second resin insulation layer is placed on the upper surface of the first resin insulation layer, the thin film conductor layer is contained in the groove, and a part of the lower portion of the side surface exposed in the groove of the through conductor is And laminating the thin film conductor layer so as to be in contact with the side surface of the thin film conductor layer, and pressurizing the laminated body while heating.

本発明の多層配線基板によれば、薄膜導体層は、上側に積層された前記樹脂絶縁層の下面に前記薄膜導体層と同じパターンで形成された溝部内に収まっていることから、薄膜導体層の厚みの影響を、その上の樹脂絶縁層が受けることは効果的に抑制される。   According to the multilayer wiring board of the present invention, the thin film conductor layer is accommodated in the groove formed in the same pattern as the thin film conductor layer on the lower surface of the resin insulating layer laminated on the upper side. The influence of the thickness of the resin insulating layer on it is effectively suppressed.

また、貫通導体は、側面の下部の一部が溝部の内側面に沿って露出するように樹脂絶縁層を厚み方向に貫通して形成されており、その貫通導体の溝部内に露出した側面の下部の一部と薄膜導体層の側面とが接触して、貫通導体と薄膜導体層とが電気的に接続されていることから、貫通導体の下端が薄膜配線導体と接しているときに比べて、例えば加圧時に貫通導体の下部が薄膜配線導体と接する方向に延びることによって、貫通導体の上端が樹脂絶縁層の上面よりも高くなってしまうようなことも効果的に抑制することができる。そのため、貫通導体が形成されている部分で、その上側の薄膜導体層や、さらにその上の樹脂絶縁層の一部が凸状に変形するようなことも効果的に抑制することができる。   The through conductor is formed through the resin insulating layer in the thickness direction so that a part of the lower portion of the side surface is exposed along the inner side surface of the groove portion, and the side conductor exposed in the groove portion of the through conductor is formed. Compared to the case where the lower end of the through conductor is in contact with the thin-film wiring conductor because a part of the lower portion and the side surface of the thin-film conductor layer are in contact and the through conductor and the thin film conductor layer are electrically connected. For example, when the lower portion of the through conductor extends in a direction in contact with the thin film wiring conductor during pressurization, it is possible to effectively suppress the upper end of the through conductor from becoming higher than the upper surface of the resin insulating layer. Therefore, it is possible to effectively suppress the upper thin film conductor layer and a part of the resin insulating layer thereon from being deformed into a convex shape at the portion where the through conductor is formed.

本発明の多層配線基板の製造方法によれば、上記各工程を含み、その下側の第1の樹脂絶縁層の上面に形成した薄膜配線導体層を第2の樹脂絶縁層の下面に薄膜導体層と同じパターンで形成した溝部に収めて、第1の樹脂絶縁層に第2の樹脂絶縁層を積層するようにしたことから、第1の樹脂絶縁層の上面の薄膜配線導体の厚みの影響を、その上の第2の樹脂絶縁層が受けることを効果的に抑制して、積層することができる。   According to the multilayer wiring board manufacturing method of the present invention, the thin film wiring conductor layer formed on the upper surface of the lower first resin insulating layer including the above-described steps is formed on the lower surface of the second resin insulating layer. Since the second resin insulation layer is stacked on the first resin insulation layer in the groove formed in the same pattern as the layer, the influence of the thickness of the thin film wiring conductor on the upper surface of the first resin insulation layer Are effectively suppressed from being received by the second resin insulating layer thereon, and can be laminated.

また、上記構成のように第2の樹脂絶縁層に貫通導体を配置するとともに、貫通導体の側面の下部の一部を薄膜導体層の側面に接触させるように積層して、この積層体を加熱しながら加圧するようにしたことから、つまり、貫通導体の側面の下部の一部が薄膜配線導体の側面に接するように配置した貫通導体について、加熱および加圧によって溝部内の薄膜配線導体の側面側に延びて変形できるようにしたことから、加圧によって厚み方向に縮む樹脂絶縁層の上面に比べて貫通導体の上面の方が高くなるようなことも効果的に抑制することができる。そのため、貫通導体が形成されている部分で、その上側の薄膜配線導体層や、さらにその上の樹脂絶縁層の一部が凸状に変形するようなことも効果的に抑制しながら、多層配線基板を製作することができる。   In addition, the through conductor is disposed in the second resin insulating layer as in the above configuration, and a part of the lower portion of the side surface of the through conductor is laminated so as to contact the side surface of the thin film conductor layer, and this laminate is heated. In other words, with respect to the through conductor arranged so that a part of the lower side of the through conductor is in contact with the side surface of the thin film wiring conductor, the side surface of the thin film wiring conductor in the groove is heated and pressurized. Since it can be deformed by extending to the side, it is possible to effectively prevent the upper surface of the through conductor from becoming higher than the upper surface of the resin insulating layer that shrinks in the thickness direction by pressurization. Therefore, in the portion where the through conductor is formed, while effectively suppressing the thin film wiring conductor layer on the upper side and further part of the resin insulation layer above it from being deformed into a convex shape, the multilayer wiring A substrate can be manufactured.

したがって、本発明の多層配線基板およびその製造方法によれば、上面の平坦性に優れた多層配線基板、およびその製造方法を提供することができる。   Therefore, according to the multilayer wiring board and the manufacturing method thereof of the present invention, it is possible to provide a multilayer wiring board excellent in flatness of the upper surface and a manufacturing method thereof.

本発明の多層配線基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the multilayer wiring board of this invention. (a)〜(d)は、それぞれ本発明の多層配線基板の製造方法の一例を工程順に示す断面図である。(A)-(d) is sectional drawing which shows an example of the manufacturing method of the multilayer wiring board of this invention in order of a process, respectively. 図2(d)に示す工程における要部を上側から見た状態を示す要部拡大上面図である。It is a principal part enlarged top view which shows the state which looked at the principal part in the process shown in FIG.2 (d) from the upper side.

本発明の多層配線基板を添付の図面を参照しつつ詳細に説明する。   A multilayer wiring board according to the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の多層配線基板の実施の形態の一例を示す断面図である。図1において、1は樹脂絶縁層,2は薄膜導体層,3は貫通導体,4は溝部である。複数の樹脂絶縁層1と複数の薄膜導体層2とが交互に積層され、樹脂絶縁層1に形成された貫通導体3を介して上下の薄膜導体層2同士が電気的に接続されて多層配線基板が基本的に構成されている。   FIG. 1 is a sectional view showing an example of an embodiment of a multilayer wiring board according to the present invention. In FIG. 1, 1 is a resin insulating layer, 2 is a thin film conductor layer, 3 is a through conductor, and 4 is a groove. A plurality of resin insulation layers 1 and a plurality of thin film conductor layers 2 are alternately laminated, and upper and lower thin film conductor layers 2 are electrically connected to each other through through conductors 3 formed in the resin insulation layer 1 to form a multilayer wiring. The substrate is basically constructed.

なお、この図1に示す例においては、最下層の樹脂絶縁層1の下面にセラミック配線基板6を接合している。セラミック配線基板6は、多層配線基板の剛性等の特性を向上させるためのものであり、上面から下面にかけて配線導体(図示せず)が形成されている。   In the example shown in FIG. 1, a ceramic wiring substrate 6 is bonded to the lower surface of the lowermost resin insulating layer 1. The ceramic wiring board 6 is for improving characteristics such as rigidity of the multilayer wiring board, and a wiring conductor (not shown) is formed from the upper surface to the lower surface.

そして、多層配線基板の上面の薄膜配線導体2が半導体素子(図示せず)の電極とプローブ等を介して電気的に接続され、セラミック配線基板の下面に位置する配線導体(多層配線基板の薄膜配線導体2と電気的に接続されたもの)が電気特性測定用の装置等の外部電気回路に電気的に接続される。これにより、半導体素子の電極と外部電気回路とが、プローブと薄膜導体層2と貫通導体3と配線導体とを介して電気的に接続され、半導体素子の動作確認などの検査が行なわれる。   Then, the thin film wiring conductor 2 on the upper surface of the multilayer wiring board is electrically connected to the electrode of the semiconductor element (not shown) via a probe or the like, and the wiring conductor located on the lower surface of the ceramic wiring board (the thin film of the multilayer wiring board) The one that is electrically connected to the wiring conductor 2) is electrically connected to an external electric circuit such as a device for measuring electrical characteristics. Thereby, the electrode of the semiconductor element and the external electric circuit are electrically connected through the probe, the thin film conductor layer 2, the through conductor 3, and the wiring conductor, and inspection such as operation check of the semiconductor element is performed.

それぞれの絶縁層1は、例えば平面視で1辺の寸法または直径が25mm〜300mm程度の四角形状や円形状である。また、図1に示す例において、平面視でそれぞれの外形寸法および形状は同様であり、多層配線基板の外側面に凹凸が生じないように積層されている。なお、多層配線基板の下面に接合されているセラミック基板6も、平面視で絶縁層1と同様の外形寸法および形状である。   Each insulating layer 1 has, for example, a square shape or a circular shape having a side dimension or diameter of about 25 mm to 300 mm in plan view. In the example shown in FIG. 1, the external dimensions and shapes are the same in a plan view, and the multilayer wiring board is laminated so as not to be uneven. The ceramic substrate 6 bonded to the lower surface of the multilayer wiring board also has the same external dimensions and shape as the insulating layer 1 in plan view.

つまり、多層配線基板は、例えば全体が四角板状や円板状等であり、上面が、実装や電気チェックを行なう半導体素子(図示せず)を搭載(半導体素子に対して電気的なチェックを施すための一時的な載置、または半導体素子を多層配線基板に電気的および機械的に接続して半導体装置とするための実装)するための部位として使用される。半導体素子としては、ICやLSI等の半導体集積回路素子や、半導体基板の表面に微小な電子機械機構が形成されてなるマイクロマシン(いわゆるMEMS素子)等が挙げられる。   In other words, the multilayer wiring board has, for example, a square plate shape or a disk shape as a whole, and has an upper surface mounted with a semiconductor element (not shown) for mounting and electrical check (electrical check is performed on the semiconductor element). It is used as a part for temporary mounting to be applied or mounting for making a semiconductor device by electrically and mechanically connecting a semiconductor element to a multilayer wiring board. Examples of semiconductor elements include semiconductor integrated circuit elements such as ICs and LSIs, and micromachines (so-called MEMS elements) in which a minute electromechanical mechanism is formed on the surface of a semiconductor substrate.

絶縁層1は、例えば、厚みが25〜100μm程度であり、ポリイミド樹脂やポリアミドイミド樹脂,ポリエーテルエーテルケトン樹脂,液晶ポリマー樹脂等の熱可塑性樹脂材料からなり、この樹脂材料をフィルム状に成形することによって作製されている。   The insulating layer 1 has a thickness of, for example, about 25 to 100 μm and is made of a thermoplastic resin material such as a polyimide resin, a polyamideimide resin, a polyether ether ketone resin, or a liquid crystal polymer resin, and the resin material is formed into a film shape. It is produced by.

また、この多層配線基板は、下面(図1に示す例では下面に接合したセラミック配線基板6の下面)側が外部電気回路(図示せず)と対向して、外部電気回路の端子等の所定部位と電気的に接続される部位となる。   The multilayer wiring board has a lower surface (the lower surface of the ceramic wiring substrate 6 bonded to the lower surface in the example shown in FIG. 1) facing an external electric circuit (not shown), and a predetermined portion such as a terminal of the external electric circuit. It becomes a part electrically connected with.

多層配線基板の下面の薄膜導体層2とセラミック配線基板の配線導体を介して電気的に接続される外部電気回路と、上面の薄膜導体層2に電気的に接続される半導体素子の電極とが、薄膜配線導体2,貫通導体3およびセラミック基板6の配線導体からなる導電路を介して電気的に接続される。そして、半導体素子と外部電気回路とが多層配線基板を介して電気的に接続され、各種の信号の授受や半導体素子に対する電気的な検査等が行なわれる。   The thin film conductor layer 2 on the lower surface of the multilayer wiring board, an external electric circuit electrically connected via the wiring conductor of the ceramic wiring board, and the electrode of the semiconductor element electrically connected to the thin film conductor layer 2 on the upper surface The thin film wiring conductor 2, the through conductor 3 and the ceramic substrate 6 are electrically connected via a conductive path. And a semiconductor element and an external electric circuit are electrically connected through a multilayer wiring board, and transmission / reception of various signals, electrical inspection of the semiconductor element, and the like are performed.

つまり、薄膜導体層2および貫通導体3は、半導体素子と外部電気回路とを電気的に接続する導電路の一部として機能する。薄膜導体層2は、回路状のパターンや、四角形状や円形状等のパッド状のパターン等であり、例えば線幅が20〜50μmで厚みが3〜18μm程度の回路状のパターンで形成されている。また、貫通導体3は、平面視で円形状や楕円形状等であり、例えば、直径が30〜100μm程度の円形状に形成されている。   That is, the thin film conductor layer 2 and the through conductor 3 function as a part of a conductive path that electrically connects the semiconductor element and the external electric circuit. The thin film conductor layer 2 is a circuit pattern, a pad pattern such as a quadrangle or a circle, and the like. For example, the thin film conductor layer 2 is formed as a circuit pattern having a line width of 20 to 50 μm and a thickness of about 3 to 18 μm. Yes. Further, the through conductor 3 has a circular shape, an elliptical shape, or the like in plan view, and is formed in a circular shape having a diameter of about 30 to 100 μm, for example.

薄膜導体層2は、例えばチタンやクロム,銅,銀,パラジウム,金,白金等の金属材料からなる。薄膜導体層2は、例えば、チタンや銅等の金属材料をスパッタリング法や蒸着法,めっき法等の方法で絶縁層1の表面に被着させることにより形成することができる。   The thin film conductor layer 2 is made of a metal material such as titanium, chromium, copper, silver, palladium, gold, or platinum. The thin film conductor layer 2 can be formed, for example, by depositing a metal material such as titanium or copper on the surface of the insulating layer 1 by a method such as sputtering, vapor deposition, or plating.

また、貫通導体3は、錫−銀系や錫−銀−銅系等のはんだ等の金属材料によって形成されている。貫通導体3は、例えば錫−銀系はんだからなる場合であれば、絶縁層1にドリル加工やレーザ加工等の方法で貫通孔5を形成しておいて、この貫通孔5内にはんだのペーストを充填する方法で形成することができる。   The through conductor 3 is made of a metal material such as tin-silver or tin-silver-copper solder. If the through conductor 3 is made of, for example, tin-silver solder, a through hole 5 is formed in the insulating layer 1 by a method such as drilling or laser processing, and a solder paste is formed in the through hole 5. Can be formed by a method of filling.

本発明の多層配線基板において、薄膜導体層2は、上側に積層された樹脂絶縁層1の下面に薄膜導体層2と同じパターンで形成された溝部4内に収まっており、貫通導体3は、側面の下部の一部が溝部4の内側面に沿って露出するように樹脂絶縁層1を厚み方向に貫通して形成されており、貫通導体3の溝部4内に露出した側面の下部の一部と薄膜導体層2の側面とが接触して、貫通導体3と薄膜導体層2とが電気的に接続されている。   In the multilayer wiring board of the present invention, the thin film conductor layer 2 is housed in the groove 4 formed in the same pattern as the thin film conductor layer 2 on the lower surface of the resin insulating layer 1 laminated on the upper side, The resin insulating layer 1 is formed through the resin insulation layer 1 in the thickness direction so that a part of the lower portion of the side surface is exposed along the inner side surface of the groove portion 4, and the lower portion of the side surface exposed in the groove portion 4 of the through conductor 3 is formed. The through conductor 3 and the thin film conductor layer 2 are electrically connected to each other and the side surface of the thin film conductor layer 2 is in contact with each other.

このような多層配線基板によれば、薄膜導体層2が、上側に積層された樹脂絶縁層1の下面に薄膜導体層2と同じパターンで形成された溝部4内に収まっていることから、薄膜導体層2の厚みの影響を、その上の樹脂絶縁層1が受けることは効果的に抑制される。   According to such a multilayer wiring board, the thin film conductor layer 2 is accommodated in the groove 4 formed in the same pattern as the thin film conductor layer 2 on the lower surface of the resin insulating layer 1 laminated on the upper side. The effect of the thickness of the conductor layer 2 on the resin insulating layer 1 thereon is effectively suppressed.

また、貫通導体3は、側面の下部の一部が溝部4の内側面に沿って露出するように樹脂絶縁層1を厚み方向に貫通して形成されており、その貫通導体3の溝部4内に露出した側面の下部の一部と薄膜導体層2の側面とが接触して、貫通導体3と薄膜導体層2とが電気的に接続されていることから、貫通導体3の下端が薄膜配線導体と接しているとき(図示せず)に比べて、例えば加圧時に貫通導体3の下部が薄膜配線導体3と接する方向に延びることによって、貫通導体3の上端が樹脂絶縁層1の上面よりも高くなってしまうようなことも効果的に抑制することができる。そのため、貫通導体3が形成されている部分で、その上側の薄膜導体層2や、さらにその上の樹脂絶縁層1の一部が凸状に変形するようなことも効果的に抑制することができる。したがって、本発明の多層配線基板によれば、上面の平坦性に優れた多層配線基板を提供することができる。   The through conductor 3 is formed so as to penetrate the resin insulating layer 1 in the thickness direction so that a part of the lower portion of the side surface is exposed along the inner side surface of the groove portion 4. Since the part of the lower part of the side exposed to the side and the side of the thin film conductor layer 2 are in contact with each other and the through conductor 3 and the thin film conductor layer 2 are electrically connected, the lower end of the through conductor 3 is the thin film wiring. Compared to the case where the conductor is in contact with the conductor (not shown), for example, the lower portion of the through conductor 3 extends in a direction in contact with the thin film wiring conductor 3 during pressurization. Can also be effectively suppressed. Therefore, it is possible to effectively suppress the upper thin film conductor layer 2 and a part of the resin insulating layer 1 thereon from being deformed into a convex shape at the portion where the through conductor 3 is formed. it can. Therefore, according to the multilayer wiring board of the present invention, it is possible to provide a multilayer wiring board excellent in flatness of the upper surface.

このような溝部4は、例えば、樹脂絶縁層1の表面に、エッチング法等の方法で薄膜導体層と同様の形状に加工した金属板(図示せず)を押し付けて凹ませる方法で形成することができる。また、樹脂絶縁層1の表面に薄膜導体層2と同じパターンで開口を設けるようにマスク材(図示せず)をセットしておいて、エッチング加工を施して樹脂絶縁層1の表面部分を一定の深さで、薄膜導体層2と同じパターンで除去する方法等によっても、溝部4を形成することができる。   Such a groove portion 4 is formed by, for example, a method in which a metal plate (not shown) processed into the same shape as the thin film conductor layer by a method such as an etching method is pressed on the surface of the resin insulating layer 1 to be recessed. Can do. Further, a mask material (not shown) is set on the surface of the resin insulation layer 1 so as to provide openings in the same pattern as the thin film conductor layer 2, and etching is applied to keep the surface portion of the resin insulation layer 1 constant. The groove portion 4 can also be formed by a method of removing with the same pattern as the thin film conductor layer 2 at a depth of.

貫通導体3は、前述したように樹脂絶縁層1に形成した貫通孔5内にはんだ等の導体を充填することにより形成されているが、この貫通導体3の側面の下部の一部を、溝部4の内側面に沿って露出させるようにしておく必要がある。このような貫通導体3は、貫通孔5について、その側面の一部が溝部4の内側面と重なるようにしておけば、形成することができる。つまり、溝部4の内側面と重なる部分において、貫通孔5内に充填した導体(貫通導体3)が溝部4内に露出する。このような貫通孔5内への導体の充填方法については後に詳しく説明する。   The through conductor 3 is formed by filling a conductor such as solder into the through hole 5 formed in the resin insulating layer 1 as described above. It is necessary to make it exposed along the inner surface of 4. Such a through-conductor 3 can be formed if a part of the side surface of the through-hole 5 overlaps the inner side surface of the groove 4. That is, the conductor (through conductor 3) filled in the through hole 5 is exposed in the groove 4 at a portion overlapping the inner surface of the groove 4. A method of filling the through hole 5 with the conductor will be described in detail later.

次に、本発明の多層配線基板の製造方法について、図2(a)〜(d)を参照しつつ説明する。図2(a)〜(d)は、それぞれ本発明の多層配線基板の製造方法を工程順に示す断面図である。図2において図1と同様の部位には同様の符号を付している。   Next, the manufacturing method of the multilayer wiring board of this invention is demonstrated, referring FIG. 2 (a)-(d). 2 (a) to 2 (d) are cross-sectional views showing the method for manufacturing a multilayer wiring board according to the present invention in the order of steps. In FIG. 2, the same parts as those in FIG.

まず、図2(a)に示すように、熱可塑性樹脂材料からなる第1の樹脂絶縁層1aを準備し、この第1の樹脂絶縁層1aの上面に薄膜導体層2を形成する。熱可塑性樹脂材料としては、前述したような各種の熱可塑性樹脂を用いることができる。   First, as shown in FIG. 2A, a first resin insulation layer 1a made of a thermoplastic resin material is prepared, and a thin film conductor layer 2 is formed on the upper surface of the first resin insulation layer 1a. As the thermoplastic resin material, various thermoplastic resins as described above can be used.

また、薄膜導体層2は、前述したようにチタンやクロム,銅,銀,パラジウム,金,白金等の金属材料からなる。薄膜導体層2は、例えば、まずチタン等の金属材料を密着層(図示せず)としてスパッタリング法で第1の樹脂絶縁層1aの表面に1μm程度の厚みで被着させ、その後、密着層の表面に銅や金等の金属材料を導体層(図示せず)としてスパッタリング法やめっき法で3〜18μm程度の厚みで被着させることによって形成することができる。   The thin film conductor layer 2 is made of a metal material such as titanium, chromium, copper, silver, palladium, gold, or platinum as described above. The thin film conductor layer 2 is formed by, for example, depositing a metal material such as titanium as an adhesion layer (not shown) on the surface of the first resin insulating layer 1a with a thickness of about 1 μm by a sputtering method, and then forming an adhesion layer. It can be formed by depositing a metal material such as copper or gold on the surface as a conductor layer (not shown) with a thickness of about 3 to 18 μm by sputtering or plating.

次に、図2(b)に示すように、熱可塑性樹脂材料からなる第2の樹脂絶縁層1bを準備し、この第2の樹脂絶縁層1bの下面に薄膜導体層2と同じパターンで溝部4を形成する。   Next, as shown in FIG. 2 (b), a second resin insulating layer 1b made of a thermoplastic resin material is prepared, and groove portions are formed in the same pattern as the thin film conductor layer 2 on the lower surface of the second resin insulating layer 1b. 4 is formed.

溝部4は、後の工程で薄膜導体層2を内側に収めるためのものであるため、薄膜導体層2と同じパターンで形成する必要がある。また、溝部4は、薄膜導体層2を収めるのを容易とするためには、薄膜導体層2よりも大きく(外形寸法および深さを大きく)しておくようにすればよい。例えば、薄膜導体層2が線幅約20μmで高さが約18μmの線状のパターンの場合であれば、溝部4は、線幅約25μmで深さが約18μmの線状の溝とすればよい。   Since the groove 4 is for accommodating the thin film conductor layer 2 in a later step, it is necessary to form the groove 4 in the same pattern as the thin film conductor layer 2. Further, in order to make it easy to accommodate the thin film conductor layer 2, the groove portion 4 may be larger than the thin film conductor layer 2 (external dimensions and depth are increased). For example, if the thin-film conductor layer 2 has a linear pattern with a line width of about 20 μm and a height of about 18 μm, the groove 4 can be a linear groove with a line width of about 25 μm and a depth of about 18 μm. Good.

このような溝部4は、例えば、前述したように、樹脂絶縁層1の表面(第2の樹脂絶縁層1bの下面)に、エッチング法等の方法で薄膜導体層2と同様の形状に加工したアルミ合金、鋼材等の金属板を押し付けて凹ませる方法で形成することができる。また、樹脂絶縁層1の表面(第2の樹脂絶縁層1bの下面)に薄膜導体層2と同じパターンで開口を設けるようにマスク材をセットしておいて、エッチング加工を施して樹脂絶縁層1の表面(第2の樹脂絶縁層1bの下面)部分を一定の深さで、薄膜導体層2と同じパターンで除去する方法等によっても、溝部4を形成することができる。このエッチング加工は、例えばプラズマを用いたドライエッチングで行なう。   For example, as described above, the groove 4 is processed on the surface of the resin insulating layer 1 (the lower surface of the second resin insulating layer 1b) in the same shape as the thin film conductor layer 2 by an etching method or the like. It can be formed by a method of pressing and denting a metal plate such as an aluminum alloy or steel material. In addition, a mask material is set on the surface of the resin insulating layer 1 (the lower surface of the second resin insulating layer 1b) so as to provide openings in the same pattern as the thin film conductor layer 2, and etching is applied to the resin insulating layer. The groove 4 can also be formed by a method of removing the surface of 1 (the lower surface of the second resin insulation layer 1b) with a constant depth and the same pattern as the thin film conductor layer 2. This etching process is performed by dry etching using plasma, for example.

次に、図2(c)に示すように、外周の一部が溝部4の内側面と重なる位置に、第2の樹脂絶縁層1bを厚み方向に貫通する貫通孔5を形成し、この貫通孔5内に、側面の下部の一部が溝部4の内側面に沿って露出するように貫通導体3を配置する。   Next, as shown in FIG. 2 (c), a through hole 5 that penetrates the second resin insulating layer 1b in the thickness direction is formed at a position where a part of the outer periphery overlaps the inner side surface of the groove portion 4, and this penetration The through conductor 3 is disposed in the hole 5 so that a part of the lower portion of the side surface is exposed along the inner surface of the groove 4.

貫通孔5は、例えば絶縁層2にドリル加工やレーザ加工等の孔あけ加工を施すことによって形成することができる。この貫通孔5は、その内側に配置する貫通導体3の側面の下部の一部を溝部4内に露出させる必要があるため、外周の一部が溝部4の内側面と重なる位置に形成する必要がある。   The through hole 5 can be formed, for example, by subjecting the insulating layer 2 to a drilling process such as drilling or laser processing. The through hole 5 needs to be formed at a position where a part of the outer periphery overlaps the inner side surface of the groove part 4 because a part of the lower part of the side surface of the through conductor 3 disposed inside the through hole 5 needs to be exposed in the groove part 4. There is.

貫通孔5と溝部4との重なる範囲については、貫通孔5の寸法や溝部4の形状および寸法等に応じて適宜設定すればよい。例えば、貫通孔5が直径約30〜100μm程度の円形状の場合であれば、平面視で、その円周の約50%以下程度の範囲が溝部4と重なる位置に形成すればよい。   What is necessary is just to set suitably about the range with which the through-hole 5 and the groove part 4 overlap according to the dimension of the through-hole 5, the shape and dimension of the groove part 4, etc. FIG. For example, if the through hole 5 has a circular shape with a diameter of about 30 to 100 μm, it may be formed at a position where a range of about 50% or less of the circumference overlaps with the groove portion 4 in plan view.

貫通導体3は、前述したように錫−銀系等のはんだ等の金属材料によって形成されている。このような貫通導体3は、例えば錫−銀系はんだのペーストを貫通孔5内にスクリーン印刷法等の方法で充填することによって貫通孔5内に配置することができる。   As described above, the through conductor 3 is made of a metal material such as tin-silver solder. Such a through conductor 3 can be disposed in the through hole 5 by filling the through hole 5 with a paste of tin-silver solder, for example, by a screen printing method or the like.

この工程において、積層時の熱可塑性樹脂の収縮体積(厚みの10%程度)分の体積の貫通導体3の一部が薄膜導体層2と接する方向に伸びることで、貫通導体3の上層部が平坦化する。なお、貫通孔5の外周の一部が溝部4の内側面と重なっている、つまり貫通孔5の外周の下部の一部において内側面が途切れている貫通孔5内に貫通導体3となる金属材料を充填する際には、例えば溝部4の内部に、貫通孔5の外周に相当する部分に沿ってレジスト材を充填しておいて、貫通導体3となるはんだペーストが溝部4内に余計に広がってしまわないようにすればよい。   In this step, a part of the through conductor 3 having a volume corresponding to the shrinkage volume (about 10% of the thickness) of the thermoplastic resin at the time of lamination extends in a direction in contact with the thin film conductor layer 2, so that the upper layer portion of the through conductor 3 is formed. Flatten. In addition, the metal which becomes the penetration conductor 3 in the through-hole 5 in which a part of the outer periphery of the through-hole 5 overlaps with the inner surface of the groove 4, that is, the inner surface is interrupted in a part of the lower part of the outer periphery of the through-hole 5. When filling the material, for example, the groove portion 4 is filled with a resist material along a portion corresponding to the outer periphery of the through hole 5, and the solder paste that becomes the through conductor 3 is excessively added to the groove portion 4. You don't have to spread.

そして、図2(d)に示すように、第2の樹脂絶縁層1bを第1の樹脂絶縁層1aの上面に、溝部4内に薄膜導体層2が収まるとともに、貫通導体3の溝部4内に露出した側面の下部の一部を薄膜導体層2の側面に接触させるように積層し、この積層体(符号なし)を加熱しながら加圧する。   As shown in FIG. 2D, the second resin insulation layer 1b is placed on the upper surface of the first resin insulation layer 1a, the thin film conductor layer 2 is accommodated in the groove 4, and the groove 4 of the through conductor 3 is accommodated. A part of the lower part of the side exposed at the side is laminated so as to be in contact with the side of the thin film conductor layer 2, and this laminated body (no symbol) is pressed while being heated.

溝部4内に薄膜導体層2を収めるための位置合わせは、例えば、第1の樹脂絶縁層1aおよび第2の樹脂絶縁層1bそれぞれの外周の形状および寸法を揃えておいて、この外周の位置を一致させるように積層することによって行なうことができる。   The alignment for accommodating the thin-film conductor layer 2 in the groove portion 4 is performed, for example, by aligning the outer shapes and dimensions of the first resin insulating layer 1a and the second resin insulating layer 1b. Can be performed by stacking them so that they match.

溝部4内において、収められた薄膜導体層2と貫通孔5および貫通導体3の状態の一例を図3に示す。図3は、 図2(d)に示す工程における要部を上側から見た状態を示す要部拡大上面図である。図3において図2と同様の部位には同様の符号を付している。   An example of the state of the thin film conductor layer 2, the through hole 5, and the through conductor 3 accommodated in the groove 4 is shown in FIG. 3. FIG. 3 is an enlarged top view of the main part showing a state in which the main part in the step shown in FIG. 3, parts similar to those in FIG. 2 are denoted by the same reference numerals.

積層体に対する加熱および加圧は、上下の第1および第2の樹脂絶縁層1a,1bの間を密着させるとともに、薄膜導体層2に比べて大きく形成しておいた溝部4の内側面を薄膜導体層2に密着させるための加工である。   The heating and pressurization of the laminated body brings the upper and lower first and second resin insulation layers 1a and 1b into close contact with each other, and the inner surface of the groove portion 4 formed larger than the thin film conductor layer 2 is thinned. This is a process for bringing the conductor layer 2 into close contact.

例えば、第1および第2の樹脂絶縁層1a,1bが厚み25μm程度の、液晶ポリマー樹脂からなる場合であり、溝部4の内側面と薄膜導体層2との間の隙間が10μm程度の場合であれば、加圧の条件としては、2〜4MPa程度が適当であり、加熱の条件としては260〜300℃で5〜60分程度が適当である。   For example, the first and second resin insulation layers 1a and 1b are made of a liquid crystal polymer resin having a thickness of about 25 μm, and the gap between the inner surface of the groove 4 and the thin film conductor layer 2 is about 10 μm. If it exists, about 2-4 Mpa is suitable as conditions for pressurization, and about 60 minutes at 60-300 degreeC is suitable as conditions for heating.

なお、以上の各工程は、2層分の樹脂絶縁層1(第1および第2の樹脂絶縁層1a,1b)のみを示すものであり、これらの工程を繰り返すことによって3層以上の樹脂絶縁層1からなる多層配線基板を製作することができる。この場合には、全ての樹脂絶縁層1および薄膜導体層2の積層を終えてから、その積層体の全体にまとめて加熱しながら加圧する加工を行なうようにすれば、多層配線基板の生産性を高める上で有利である。   Each of the above steps shows only two resin insulation layers 1 (first and second resin insulation layers 1a and 1b). By repeating these steps, three or more layers of resin insulation are shown. A multilayer wiring board made of layer 1 can be manufactured. In this case, if all the resin insulation layers 1 and the thin film conductor layers 2 are laminated and then the whole laminate is heated and pressed while being heated, the productivity of the multilayer wiring board is achieved. It is advantageous in increasing

また、最上層の薄膜導体層2に被着される薄膜導体層2、つまり多層配線基板の上面の薄膜導体層2については、その露出表面を金めっき層で被覆して、酸化の抑制やプローブピンの接続性の向上等を図るようにしてもよい。   Further, with respect to the thin film conductor layer 2 to be deposited on the uppermost thin film conductor layer 2, that is, the thin film conductor layer 2 on the upper surface of the multilayer wiring board, the exposed surface is covered with a gold plating layer to suppress oxidation or probe. The pin connectivity may be improved.

多層配線基板に接続される端子が、50×50個の縦横の並びで、互いの隣接間隔が1mmとして樹脂絶縁基板の上面に配列された回路基板と、シリコン基板の下面に電極が、50×50個の縦横の並びで、互いの隣接間隔が0.2mmとして配列された半導体集積回路素子とを電気的に接続するための多層配線基板として、本発明の多層配線基板における1実施例の多層配線基板と、比較例としての従来技術による多層配線基板とを作製し、それぞれの上面の平坦度を測定して比較した。   The terminals connected to the multilayer wiring board are arranged in 50 × 50 vertical and horizontal directions, and the adjacent spacing is 1 mm. The circuit board is arranged on the upper surface of the resin insulating substrate, and the electrode on the lower surface of the silicon substrate is 50 × A multilayer wiring board according to one embodiment of the multilayer wiring board of the present invention is used as a multilayer wiring board for electrically connecting semiconductor integrated circuit elements arranged in 50 vertical and horizontal rows and having an adjacent interval of 0.2 mm. A substrate and a multilayer wiring substrate according to the prior art as a comparative example were manufactured, and the flatness of each upper surface was measured and compared.

実施例の多層配線基板は液晶ポリマー樹脂からなる厚さ25μmで、1辺の寸法が76mmの正方形状の樹脂絶縁層を10層積層して作製した。この樹脂絶縁層と交互に積層した薄膜導体層は、厚みが12μmの銅からなる導体層とによって形成し、その上側に積層した樹脂絶縁層の下面にあらかじめプラズマを用いたドライエッチングによって形成しておいた溝部内に収めるようにした。また、貫通導体は、樹脂絶縁層に形成した直径約50μmの円形状の貫通孔内に錫−銀はんだを配置して形成した。   The multilayer wiring board of the example was manufactured by laminating 10 square resin insulating layers made of liquid crystal polymer resin and having a thickness of 25 μm and a side dimension of 76 mm. The thin film conductor layer alternately laminated with the resin insulation layer is formed by a conductor layer made of copper having a thickness of 12 μm, and is formed by dry etching using plasma in advance on the lower surface of the resin insulation layer laminated thereon. It was designed to fit in the groove. The through conductor was formed by arranging tin-silver solder in a circular through hole having a diameter of about 50 μm formed in the resin insulating layer.

比較例の多層配線基板は、樹脂絶縁層の材料および寸法、ならびに薄膜配線導体層および貫通導体の材料を上記実施例の多層配線基板と同様にして作製した。この比較例の多層配線基板においては、樹脂絶縁層には溝部は形成せず、薄膜配線導体に対する貫通導体の接続は、下層の薄膜配線導体の位置で樹脂絶縁層を厚み方向に貫通する貫通導体を形成し、この貫通導体の下端を薄膜配線導体と接続する従来の技術によって行なった。   The multilayer wiring board of the comparative example was produced in the same manner as the multilayer wiring board of the above example with the material and dimensions of the resin insulating layer and the material of the thin film wiring conductor layer and the through conductor. In the multilayer wiring board of this comparative example, no groove is formed in the resin insulating layer, and the through conductor is connected to the thin film wiring conductor through the resin insulating layer in the thickness direction at the position of the lower thin film wiring conductor. And a conventional technique of connecting the lower end of the through conductor to the thin film wiring conductor.

これらの実施例および比較例の多層配線基板について、その上面の平坦度を表面粗さ計で測定した。その結果、実施例の多層配線基板では最大表面粗さRmaxが13μm以下であったのに対し、比較例の多層配線基板ではRmaxが37μm程度であった。 For the multilayer wiring boards of these Examples and Comparative Examples, the flatness of the upper surface was measured with a surface roughness meter. As a result, the maximum surface roughness R max was 13 μm or less in the multilayer wiring board of the example, whereas the R max was about 37 μm in the multilayer wiring board of the comparative example.

以上のように、本発明の多層配線基板においては、上面の平坦性を効果的に向上させることができることが確認できた。   As described above, it was confirmed that the flatness of the upper surface can be effectively improved in the multilayer wiring board of the present invention.

1・・・樹脂絶縁層
1a・・第1の樹脂絶縁層
1b・・第2の樹脂絶縁層
2・・・薄膜導体層
3・・・貫通導体
4・・・溝部
5・・・貫通孔
6・・・セラミック配線基板
DESCRIPTION OF SYMBOLS 1 ... Resin insulation layer 1a ... 1st resin insulation layer 1b ... 2nd resin insulation layer 2 ... Thin film conductor layer 3 ... Through-conductor 4 ... Groove part 5 ... Through-hole 6 ... Ceramic wiring boards

Claims (2)

熱可塑性樹脂材料からなる複数の樹脂絶縁層と複数の薄膜導体層とが交互に積層され、前記樹脂絶縁層に形成された貫通導体を介して上下の前記薄膜導体層同士が電気的に接続されてなる多層配線基板であって、前記薄膜導体層は、上側に積層された前記樹脂絶縁層の下面に前記薄膜導体層と同じパターンで形成された溝部内に収まっており、前記貫通導体は、側面の下部の一部が前記溝部の内側面に沿って露出するように前記樹脂絶縁層を厚み方向に貫通して形成されており、該貫通導体の前記溝部内に露出した前記側面の下部の一部と前記薄膜導体層の側面とが接触して、前記貫通導体と前記薄膜導体層とが電気的に接続されていることを特徴とする多層配線基板。 A plurality of resin insulation layers made of a thermoplastic resin material and a plurality of thin film conductor layers are alternately laminated, and the upper and lower thin film conductor layers are electrically connected to each other through through conductors formed in the resin insulation layer. The thin film conductor layer is housed in a groove formed in the same pattern as the thin film conductor layer on the lower surface of the resin insulating layer laminated on the upper side, and the through conductor is The resin insulating layer is formed in the thickness direction so that a part of the lower portion of the side surface is exposed along the inner surface of the groove portion, and the lower portion of the side surface exposed in the groove portion of the through conductor is formed. A multilayer wiring board, wherein a part and a side surface of the thin film conductor layer are in contact with each other, and the through conductor and the thin film conductor layer are electrically connected. 熱可塑性樹脂材料からなる第1の樹脂絶縁層を準備し、該第1の樹脂絶縁層の上面に薄膜導体層を形成する工程と、
熱可塑性樹脂材料からなる第2の樹脂絶縁層を準備し、該第2の樹脂絶縁層の下面に前記薄膜導体層と同じパターンで溝部を形成する工程と、
外周の一部が前記溝部の内側面と重なる位置に、前記第2の樹脂絶縁層を厚み方向に貫通する貫通孔を形成し、該貫通孔内に、側面の下部の一部が前記溝部の内側面に沿って露出するように貫通導体を配置する工程と、
前記第2の樹脂絶縁層を前記第1の樹脂絶縁層の上面に、前記溝部内に前記薄膜導体層が収まるとともに、前記貫通導体の前記溝部内に露出した前記側面の下部の一部を前記薄膜導体層の側面に接触させるように積層し、該積層体を加熱しながら加圧する工程とを含むことを特徴とする多層配線基板の製造方法。
Preparing a first resin insulation layer made of a thermoplastic resin material, and forming a thin film conductor layer on the upper surface of the first resin insulation layer;
Preparing a second resin insulation layer made of a thermoplastic resin material, and forming a groove in the same pattern as the thin film conductor layer on the lower surface of the second resin insulation layer;
A through-hole penetrating the second resin insulating layer in the thickness direction is formed at a position where a part of the outer periphery overlaps the inner side surface of the groove part, and a part of the lower part of the side surface of the groove part is formed in the through-hole. Arranging the through conductor so as to be exposed along the inner surface;
The second resin insulation layer is placed on the upper surface of the first resin insulation layer, the thin film conductor layer is contained in the groove, and a part of the lower portion of the side surface exposed in the groove of the through conductor is And a step of laminating the thin film conductor layer so as to be in contact with the side surface of the thin film conductor layer and pressurizing the laminated body while heating.
JP2009291909A 2009-12-24 2009-12-24 Multilayer wiring board and method of manufacturing the same Pending JP2011134827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291909A JP2011134827A (en) 2009-12-24 2009-12-24 Multilayer wiring board and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291909A JP2011134827A (en) 2009-12-24 2009-12-24 Multilayer wiring board and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011134827A true JP2011134827A (en) 2011-07-07

Family

ID=44347264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291909A Pending JP2011134827A (en) 2009-12-24 2009-12-24 Multilayer wiring board and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011134827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114501853A (en) * 2020-10-26 2022-05-13 宏恒胜电子科技(淮安)有限公司 Circuit board and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114501853A (en) * 2020-10-26 2022-05-13 宏恒胜电子科技(淮安)有限公司 Circuit board and manufacturing method thereof
CN114501853B (en) * 2020-10-26 2023-08-11 宏恒胜电子科技(淮安)有限公司 Circuit board and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5550280B2 (en) Multilayer wiring board
JP6304263B2 (en) Multilayer wiring board and inspection apparatus including the same
KR101323541B1 (en) Multilayered wiring substrate
JP6606331B2 (en) Electronic equipment
TWI466606B (en) Printed circuit board having buried component and method for manufacturing same
WO2015102107A1 (en) Stacked wiring substrate, and inspection device provided with same
US20150144384A1 (en) Packaging substrate and fabrication method thereof
JP5744210B2 (en) Thin film wiring board and probe card board
JPWO2014065035A1 (en) Electronic component built-in module
CN103871996A (en) Package structure and manufacturing method thereof
JP5715237B2 (en) Flexible multilayer board
JP2014049509A (en) Wiring board manufacturing method
JP6100617B2 (en) Multi-layer wiring board and probe card board
JP2011134827A (en) Multilayer wiring board and method of manufacturing the same
JP2010087021A (en) Hybrid circuit device, manufacturing method therefor, and hybrid circuit laminate
JP5836751B2 (en) Thin film wiring board
KR101527630B1 (en) Method of manufacturing multilayer wiring substrate
JP2015159242A (en) Wiring board, and multilayer wiring board including the same
JP2013191678A (en) Multilayer wiring board
JP5690892B2 (en) Coreless multilayer wiring board and manufacturing method thereof
CN110798977B (en) Thin antenna circuit board and manufacturing method thereof
JPWO2018047612A1 (en) Component built-in substrate and method of manufacturing the same
JP2011049379A (en) Electronic component and method of manufacturing the same
JP6887862B2 (en) Organic circuit boards, circuit boards and probe cards
JP5511922B2 (en) Wiring board and manufacturing method thereof