JP2011134448A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell Download PDF

Info

Publication number
JP2011134448A
JP2011134448A JP2009290035A JP2009290035A JP2011134448A JP 2011134448 A JP2011134448 A JP 2011134448A JP 2009290035 A JP2009290035 A JP 2009290035A JP 2009290035 A JP2009290035 A JP 2009290035A JP 2011134448 A JP2011134448 A JP 2011134448A
Authority
JP
Japan
Prior art keywords
current collector
electrode current
separator
air
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009290035A
Other languages
Japanese (ja)
Inventor
Shigeru Toda
茂 戸田
Keiji Tsukamoto
啓司 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2009290035A priority Critical patent/JP2011134448A/en
Publication of JP2011134448A publication Critical patent/JP2011134448A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolyte fuel cell capable of preventing deformation of an air electrode collector or a fuel electrode collector. <P>SOLUTION: In the solid electrolyte fuel cell 10, a first separator 17 laminated on a fuel electrode collector 16, and supplying fuel gas to a membrane electrode assembly 12 is provided with a plurality of projections 25, a plurality of through-holes 26 each capable of insertion-coupling with the projection of the first separator are provided on the fuel electrode collector intervened between the first separator and the membrane electrode assembly, a second separator 22 laminated on an air electrode collector 21, and supplying air to the membrane electrode assembly is provided with a plurality of projections 32, and a plurality of through-holes 33 each capable of insertion-coupling with the projection of the second separator are provided on the air electrode collector intervened between the second separator and the membrane electrode assembly. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、膜電極接合体に燃料極集電体を経て燃料ガスを供給するとともに、前記膜電極接合体に空気極集電体を経て空気を供給することにより電力を発生させる固体電解質型燃料電池に関する。   The present invention provides a solid oxide fuel that supplies fuel gas to a membrane electrode assembly through an anode current collector and generates electric power by supplying air to the membrane electrode assembly through an air electrode collector It relates to batteries.

固体電解質型燃料電池は、固体電解質の両側に空気極(カソード)および燃料極(アノード)を積層して膜電極接合体(MEA)が形成され、膜電極接合体の両側に空気極集電体(カソード集電体)および燃料極集電体(アノード集電体)が積層され、空気極集電体および燃料極集電体にセパレータがそれぞれ積層されて単セルが構成されている。   In a solid oxide fuel cell, an air electrode (cathode) and a fuel electrode (anode) are stacked on both sides of a solid electrolyte to form a membrane electrode assembly (MEA), and an air electrode current collector on both sides of the membrane electrode assembly. (Cathode current collector) and a fuel electrode current collector (anode current collector) are stacked, and a separator is stacked on each of the air electrode current collector and the fuel electrode current collector to form a single cell.

この単セルによれば、空気極集電体側のセパレータから空気極集電体に空気(酸素)が供給されるとともに、燃料極集電体のセパレータから燃料極集電体に燃料ガス(水素など)が供給される。
空気極集電体に供給された空気は、空気極集電体の気孔を経て空気極側に到達する。
一方、燃料極集電体に供給された燃料ガスは、燃料極集電体の気孔を経て燃料極側に到達する。
According to this single cell, air (oxygen) is supplied from the separator on the air electrode current collector side to the air electrode current collector, and fuel gas (hydrogen or the like) is supplied from the separator of the fuel electrode current collector to the fuel electrode current collector. ) Is supplied.
The air supplied to the air electrode current collector reaches the air electrode side through the pores of the air electrode current collector.
On the other hand, the fuel gas supplied to the anode current collector reaches the anode side through the pores of the anode current collector.

空気極側に到達した酸素は、空気極内の気孔を経て固体電解質との界面近傍に到達し、燃料極側に到達した燃料ガスは、燃料極内の気孔を経て固体電解質との界面近傍に到達する。
空気極との界面近傍に到達した空気(酸素)は空気極から電子を受け取って酸化物イオンにイオン化される。この酸化物イオンは、固体電解質内を燃料極に向かって拡散移動することにより燃料極との界面近傍に到達する。
The oxygen that has reached the air electrode side reaches the vicinity of the interface with the solid electrolyte via the pores in the air electrode, and the fuel gas that has reached the fuel electrode side near the interface with the solid electrolyte via the pores in the fuel electrode. To reach.
Air (oxygen) that reaches the vicinity of the interface with the air electrode receives electrons from the air electrode and is ionized into oxide ions. The oxide ions reach the vicinity of the interface with the fuel electrode by diffusing and moving in the solid electrolyte toward the fuel electrode.

燃料極との界面近傍に到達した酸化物イオンが、この界面近傍で燃料ガスと反応して電子を放出し、この電子を外部に起電力として単セルから取り出すことで電力を発生させる(例えば、特許文献1参照。)。   Oxide ions that have reached the vicinity of the interface with the fuel electrode react with the fuel gas in the vicinity of this interface to emit electrons, and the electrons are taken out from the single cell as electromotive force to generate electric power (for example, (See Patent Document 1).

特開2002−280026号公報JP 2002-280026 A

ここで、単セルから発生する電力は比較的小さいので、所望の電力を得るために複数個の単セルを積層する必要がある。
加えて、複数個の単セル間の電気抵抗を小さく抑え、かつ、空気や燃料ガスの拡散を防ぐために複数個の単セルは荷重をかけた状態で積層されている。
Here, since the electric power generated from the single cell is relatively small, it is necessary to stack a plurality of single cells in order to obtain a desired electric power.
In addition, the plurality of single cells are stacked with a load applied in order to reduce electrical resistance between the plurality of single cells and to prevent diffusion of air and fuel gas.

一方、空気極集電体に供給された空気を空気極側に到達させるために、空気極集電体の全域に空気を通す複数(多数)の気孔が形成されている。
また、燃料極集電体に供給された燃料ガスを燃料極側に到達させるために、燃料極集電体の全域に燃料ガスを通す複数(多数)の気孔が形成されている。
すなわち、空気極集電体や燃料極集電体は、荷重に対してある程度変形が許容された部材で形成されている。
On the other hand, in order to allow the air supplied to the air electrode current collector to reach the air electrode side, a plurality of (many) pores through which air passes are formed in the entire area of the air electrode current collector.
Further, in order to allow the fuel gas supplied to the fuel electrode current collector to reach the fuel electrode side, a plurality of (many) pores through which the fuel gas passes are formed throughout the fuel electrode current collector.
That is, the air electrode current collector and the fuel electrode current collector are formed of members that are allowed to deform to some extent with respect to the load.

一方、固体電解質型燃料電池は、前述したように、複数個の単セルに荷重をかけた状態で積層されている。
このため、固体電解質型燃料電池で電力を発生する際の熱で空気極集電体や燃料極集電体が経時的に変形する(潰れが発生する)ことが考えられる。
このように、空気極集電体や燃料極集電体が変形することで、複数個の単セルに所望の荷重をかけた状態に保つことが難しくなる。
On the other hand, as described above, the solid oxide fuel cell is stacked in a state where a load is applied to a plurality of single cells.
For this reason, it is conceivable that the air electrode current collector and the fuel electrode current collector are deformed with time due to heat generated when generating power in the solid oxide fuel cell (crushing occurs).
As described above, the air electrode current collector and the fuel electrode current collector are deformed, so that it becomes difficult to maintain a desired load on a plurality of single cells.

本発明は、空気極集電体や燃料極集電体が変形することを阻止できる固体電解質型燃料電池を提供することを課題とする。   An object of the present invention is to provide a solid oxide fuel cell capable of preventing the air electrode current collector and the fuel electrode current collector from being deformed.

請求項1に係る発明は、膜電極接合体に燃料極集電体を経て燃料ガスを供給するとともに、前記膜電極接合体に空気極集電体を経て空気を供給することにより電力を発生させる固体電解質型燃料電池において、前記燃料極集電体に積層され、前記膜電極接合体に前記燃料ガスを供給する第1セパレータに突部を設け、前記第1セパレータおよび前記膜電極接合体間に介在された前記燃料極集電体に、前記第1セパレータの突部が嵌合可能な貫通孔を設け、前記空気極集電体に積層され、前記膜電極接合体に前記空気を供給する第2セパレータに突部を設け、前記第2セパレータおよび前記膜電極接合体間に介在された前記空気極集電体に、前記第2セパレータの突部が嵌合可能な貫通孔を設けたことを特徴とする。   According to the first aspect of the present invention, fuel gas is supplied to the membrane electrode assembly through the fuel electrode current collector, and electric power is generated by supplying air to the membrane electrode assembly through the air electrode current collector. In the solid oxide fuel cell, a protrusion is provided on a first separator that is stacked on the fuel electrode current collector and supplies the fuel gas to the membrane electrode assembly, and is provided between the first separator and the membrane electrode assembly. A through hole into which the protruding portion of the first separator can be fitted is provided in the interposed fuel electrode current collector, and is stacked on the air electrode current collector to supply the air to the membrane electrode assembly. Protrusions are provided on two separators, and through holes into which the protrusions of the second separator can be fitted are provided in the air electrode current collector interposed between the second separator and the membrane electrode assembly. Features.

請求項2に係る発明は、前記燃料極集電体および前記空気極集電体は、導電性金属からなる発泡体、あるいは導電性金属からなるメッシュ部材で形成されたことを特徴とする。   The invention according to claim 2 is characterized in that the fuel electrode current collector and the air electrode current collector are formed of a foam made of a conductive metal or a mesh member made of a conductive metal.

請求項1に係る発明では、第1セパレータに突部を設け、第1セパレータの突部が嵌合可能に燃料極集電体に貫通孔を設けた。
また、第2セパレータに突部を設け、第2セパレータの突部が嵌合可能に空気極集電体に貫通孔を設けた。
In the invention which concerns on Claim 1, the protrusion was provided in the 1st separator and the through-hole was provided in the anode current collector so that the protrusion of the 1st separator can fit.
Further, a protrusion is provided on the second separator, and a through hole is provided in the air electrode current collector so that the protrusion of the second separator can be fitted.

よって、第1セパレータの突部を燃料極集電体の貫通孔に嵌合するとともに、第2セパレータの突部を空気極集電体の貫通孔に嵌合することができる。
さらに、積層した複数個の単セルに荷重をかけた状態で、第1セパレータの突部を膜電極接合体に当接(接触)させ、第2セパレータの突部を膜電極接合体に当接(接触)させることができる。
Therefore, the protrusion of the first separator can be fitted into the through hole of the fuel electrode current collector, and the protrusion of the second separator can be fitted into the through hole of the air electrode current collector.
Further, with the load applied to the plurality of stacked single cells, the protrusion of the first separator is brought into contact with the membrane electrode assembly, and the protrusion of the second separator is brought into contact with the membrane electrode assembly. (Contact).

これにより、複数個の単セルにかけた荷重を、第1、第2のセパレータに設けた突部で受けることが可能になり、燃料極集電体や空気極集電体に荷重が作用することを防止できる。
燃料極集電体や空気極集電体に荷重が作用することを防止することで、燃料極集電体や空気極集電体が荷重で変形する(潰れが発生する)ことを阻止できる。
As a result, the load applied to the plurality of single cells can be received by the protrusions provided on the first and second separators, and the load acts on the fuel electrode current collector and the air electrode current collector. Can be prevented.
By preventing the load from acting on the fuel electrode current collector and the air electrode current collector, it is possible to prevent the fuel electrode current collector and the air electrode current collector from being deformed (crushed).

したがって、単セル間の電気抵抗を小さく抑えることができ、接触抵抗増加による通電性の低下を防ぐことができる。
加えて、単セル間に隙間が発生することを抑えることができ、単セル間の隙間から空気や燃料ガスが拡散することを阻止できる。
この結果、単セル間の電気抵抗を小さく抑えるとともに、単セル間から空気や燃料ガスが拡散することを阻止でき、固体電解質型燃料電池の発電効率を高めることができる。
Therefore, the electrical resistance between the single cells can be kept small, and a decrease in the conductivity due to an increase in contact resistance can be prevented.
In addition, the occurrence of a gap between the single cells can be suppressed, and the diffusion of air and fuel gas from the gap between the single cells can be prevented.
As a result, the electrical resistance between the single cells can be suppressed to a low level, and air and fuel gas can be prevented from diffusing between the single cells, so that the power generation efficiency of the solid oxide fuel cell can be increased.

さらに、燃料極集電体や空気極集電体が荷重で変形する(潰れが発生する)ことを防ぐことで、膜電極接合体および燃料極集電体間に隙間が発生することや、膜電極接合体および空気極集電体間に隙間が発生することを防止できる。
よって、膜電極接合体の両面を燃料極集電体や空気極集電体で覆うことができる。
Furthermore, by preventing the fuel electrode current collector and the air electrode current collector from being deformed (crushed) by a load, a gap is generated between the membrane electrode assembly and the fuel electrode current collector, It is possible to prevent a gap from being generated between the electrode assembly and the air electrode current collector.
Therefore, both surfaces of the membrane electrode assembly can be covered with the fuel electrode current collector or the air electrode current collector.

請求項2に係る発明では、燃料極集電体および空気極集電体を発泡体やメッシュ部材で形成した。
すなわち、前述したように、複数個の単セルにかけた荷重を、第1、第2のセパレータに設けた突部で受けることで、燃料極集電体や空気極集電体に荷重が作用することを防止できる。
In the invention according to claim 2, the fuel electrode current collector and the air electrode current collector are formed of a foam or a mesh member.
That is, as described above, the load is applied to the fuel electrode current collector and the air electrode current collector by receiving the load applied to the plurality of single cells by the protrusions provided on the first and second separators. Can be prevented.

よって、燃料極集電体および空気極集電体の強度(剛性)を必要以上に高める必要がない。
これにより、燃料極集電体および空気極集電体を、比較的剛性を考慮する必要のない発泡体やメッシュ部材で容易に形成でき、燃料極集電体および空気極集電体のコストを抑えることができる。
Therefore, it is not necessary to increase the strength (rigidity) of the fuel electrode current collector and the air electrode current collector more than necessary.
As a result, the fuel electrode current collector and the air electrode current collector can be easily formed of a foam or mesh member that does not need to be relatively rigid, and the cost of the fuel electrode current collector and the air electrode current collector can be reduced. Can be suppressed.

本発明に係る固体電解質型燃料電池を示す断面図である。1 is a cross-sectional view showing a solid oxide fuel cell according to the present invention. 図1の単セルを分解した状態で示す断面図である。It is sectional drawing shown in the state which decomposed | disassembled the single cell of FIG. 図3(a)は図2の3a−3a線断面図、図3(b)は図2の3b−3b線断面図である。3A is a cross-sectional view taken along line 3a-3a in FIG. 2, and FIG. 3B is a cross-sectional view taken along line 3b-3b in FIG. 本発明に係る第1、第2のセパレータの突起で荷重を支える例を説明する図である。It is a figure explaining the example which supports a load with protrusion of the 1st and 2nd separator concerning the present invention. 本発明に係る固体電解質型燃料電池で電力を発生させる例を説明する図である。It is a figure explaining the example which generate | occur | produces electric power with the solid oxide fuel cell which concerns on this invention.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

実施例に係る固体電解質型燃料電池10について説明する。
図1に示すように、固体電解質型燃料電池10は、複数の単セル11を荷重F1をかけた状態で積層することで、所望の電力を得ることができるように構成されている。
A solid oxide fuel cell 10 according to an embodiment will be described.
As shown in FIG. 1, the solid oxide fuel cell 10 is configured such that desired power can be obtained by stacking a plurality of single cells 11 with a load F1 applied.

単セル11は、膜電極接合体(MEA)12と、膜電極接合体(MEA)12の下面(後述する燃料極14の下面)14aに積層された燃料極集電体(アノード集電体)16と、燃料極集電体16の下面16aに積層された第1セパレータ17と、膜電極接合体12の上面(後述する空気極15の上面)15aに積層された空気極集電体(カソード集電体)21と、空気極集電体21の上面21aに積層された第2セパレータ22とを備えている。   The single cell 11 includes a membrane electrode assembly (MEA) 12 and a fuel electrode current collector (anode current collector) laminated on a lower surface (lower surface of a fuel electrode 14 described later) 14a of the membrane electrode assembly (MEA) 12. 16, the first separator 17 stacked on the lower surface 16 a of the fuel electrode current collector 16, and the air electrode current collector (cathode) stacked on the upper surface (upper surface of the air electrode 15 described later) 15 a of the membrane electrode assembly 12. Current collector) 21 and a second separator 22 stacked on the upper surface 21 a of the air electrode current collector 21.

膜電極接合体12は、固体電解質13と、固体電解質13の下面13aに積層された燃料極(アノード)14と、固体電解質13の上面13bに積層された空気極(カソード)15とを備えている。   The membrane electrode assembly 12 includes a solid electrolyte 13, a fuel electrode (anode) 14 stacked on the lower surface 13 a of the solid electrolyte 13, and an air electrode (cathode) 15 stacked on the upper surface 13 b of the solid electrolyte 13. Yes.

図2、図3に示すように、第1セパレータ17は、燃料極集電体16に燃料ガス(水素など)を供給するための燃料ガス供給流路24が設けられ、燃料ガス供給流路24の供給口24aが中央17aに設けられている。
この第1セパレータ17は、燃料極集電体16に対向する面17bに複数の突部25が設けられている。
第1セパレータ17の複数の突部25は、一例として、エンボス加工で形成されている。
As shown in FIGS. 2 and 3, the first separator 17 is provided with a fuel gas supply channel 24 for supplying a fuel gas (such as hydrogen) to the anode current collector 16. The supply port 24a is provided in the center 17a.
The first separator 17 is provided with a plurality of protrusions 25 on a surface 17 b facing the anode current collector 16.
As an example, the plurality of protrusions 25 of the first separator 17 are formed by embossing.

燃料極集電体16は、導電性金属からなる発泡体、あるいは導電性金属からなるメッシュ部材で形成されることにより、燃料ガス供給流路24の供給口24aから供給された燃料ガスを膜電極接合体12の燃料極14に導く複数の気孔(図示せず)を備えている。
発泡体は、連続した固体物質の中に複数(多数)の気孔を有する部材である。
メッシュ部材は、線材を網目状に編むことにより複数(多数)の気孔を有する部材である。
この燃料極集電体16は、第1セパレータ17に対向する下面16aから燃料極14に対向する上面16bまで貫通するように複数の貫通孔26が形成されている。
The fuel electrode current collector 16 is formed of a foam made of a conductive metal or a mesh member made of a conductive metal, so that the fuel gas supplied from the supply port 24a of the fuel gas supply channel 24 is converted into a membrane electrode. A plurality of pores (not shown) led to the fuel electrode 14 of the joined body 12 are provided.
A foam is a member having a plurality of (many) pores in a continuous solid material.
The mesh member is a member having a plurality of (many) pores by knitting a wire in a mesh shape.
The fuel electrode current collector 16 is formed with a plurality of through holes 26 so as to penetrate from the lower surface 16 a facing the first separator 17 to the upper surface 16 b facing the fuel electrode 14.

燃料極集電体16に第1セパレータ17を積層した状態において、複数の貫通孔26に複数の突部25が嵌入され、複数の突部25の先端25aが膜電極接合体12の燃料極14に当接(接触)する(図1参照)。
よって、複数の単セル11を荷重F1をかけて積層した状態において、第1セパレータ17に作用する荷重F1が複数の突部25を経て燃料極14に伝えられ、燃料極集電体16に荷重F1が作用することを防止できる。
In a state where the first separator 17 is stacked on the fuel electrode current collector 16, a plurality of protrusions 25 are fitted into the plurality of through holes 26, and the tips 25 a of the plurality of protrusions 25 are the fuel electrodes 14 of the membrane electrode assembly 12. (See FIG. 1).
Therefore, in a state where the plurality of single cells 11 are stacked with the load F 1, the load F 1 acting on the first separator 17 is transmitted to the fuel electrode 14 through the plurality of protrusions 25, and the load is applied to the fuel electrode current collector 16. F1 can be prevented from acting.

これにより、燃料極集電体16の強度(剛性)を必要以上に高める必要がない。
したがって、燃料極集電体16を、比較的剛性を考慮する必要のない発泡体やメッシュ部材で容易に形成でき、燃料極集電体16のコストを抑えることができる。
Thereby, it is not necessary to increase the strength (rigidity) of the fuel electrode current collector 16 more than necessary.
Therefore, the fuel electrode current collector 16 can be easily formed of a foam or mesh member that does not require relatively rigidity, and the cost of the fuel electrode current collector 16 can be reduced.

また、第2セパレータ22は、空気極集電体21に空気(酸素)を供給するための空気供給流路31が設けられ、空気供給流路31の供給口31aが中央22aに設けられている。
この第2セパレータ22は、空気極集電体21に対向する面22bに複数の突部32が設けられている。
第2セパレータ22の複数の突部32は、第1セパレータ17の複数の突部25と同様に、一例として、エンボス加工で形成されている。
The second separator 22 is provided with an air supply channel 31 for supplying air (oxygen) to the air electrode current collector 21, and a supply port 31a of the air supply channel 31 is provided in the center 22a. .
The second separator 22 is provided with a plurality of protrusions 32 on a surface 22 b facing the air electrode current collector 21.
The plurality of protrusions 32 of the second separator 22 are formed by embossing as an example, similarly to the plurality of protrusions 25 of the first separator 17.

空気極集電体21は、導電性金属からなる発泡体、あるいは導電性金属からなるメッシュ部材で形成されることにより、空気供給流路31の供給口31aから供給された空気を膜電極接合体12の空気極15に導く複数の気孔(図示せず)を備えている。
発泡体は、連続した固体物質の中に複数(多数)の気孔を有する部材である。
メッシュ部材は、線材を網目状に編むことにより複数(多数)の気孔を有する部材である。
この空気極集電体21は、第2セパレータ22に対向する上面21aから空気極15に対向する下面21bまで貫通するように複数の貫通孔33が形成されている。
The air electrode current collector 21 is formed of a foam made of a conductive metal or a mesh member made of a conductive metal, so that air supplied from the supply port 31a of the air supply flow path 31 is converted into a membrane electrode assembly. A plurality of pores (not shown) leading to 12 air electrodes 15 are provided.
A foam is a member having a plurality of (many) pores in a continuous solid material.
The mesh member is a member having a plurality of (many) pores by knitting a wire in a mesh shape.
The air electrode current collector 21 has a plurality of through holes 33 so as to penetrate from the upper surface 21 a facing the second separator 22 to the lower surface 21 b facing the air electrode 15.

空気極集電体21に第2セパレータ22を積層した状態において、複数の貫通孔33に複数の突部32が嵌入され、複数の突部32の先端32aが膜電極接合体12の空気極15に当接(接触)する(図1参照)。
よって、複数の単セル11を荷重F1をかけて積層した状態において、第2セパレータ22に作用する荷重F1が複数の突部32を経て空気極15に伝えられ、空気極集電体21に荷重F1が作用することを防止できる。
In the state where the second separator 22 is stacked on the air electrode current collector 21, the plurality of protrusions 32 are fitted into the plurality of through holes 33, and the tips 32 a of the plurality of protrusions 32 are the air electrodes 15 of the membrane electrode assembly 12. (See FIG. 1).
Therefore, in a state where the plurality of single cells 11 are stacked with the load F1, the load F1 acting on the second separator 22 is transmitted to the air electrode 15 through the plurality of protrusions 32, and the load is applied to the air electrode current collector 21. F1 can be prevented from acting.

これにより、空気極集電体21の強度(剛性)を必要以上に高める必要がない。
したがって、空気極集電体21を、比較的剛性を考慮する必要のない発泡体やメッシュ部材で容易に形成でき、空気極集電体21のコストを抑えることができる。
Thereby, it is not necessary to increase the strength (rigidity) of the air electrode current collector 21 more than necessary.
Therefore, the air electrode current collector 21 can be easily formed of a foam or a mesh member that does not need to consider relatively rigidity, and the cost of the air electrode current collector 21 can be suppressed.

つぎに、第1、第2のセパレータ17,22の突起25,32で荷重F1を支える例を図4に基づいて説明する。
図4に示すように、燃料極集電体16に第1セパレータ17を積層した状態において、複数の突部25の先端25aが膜電極接合体12の燃料極14に当接する。
同様に、空気極集電体21に第2セパレータ22を積層した状態において、複数の突部32の先端32aが膜電極接合体12の空気極15に当接する。
Next, an example in which the load F1 is supported by the protrusions 25 and 32 of the first and second separators 17 and 22 will be described with reference to FIG.
As shown in FIG. 4, in the state where the first separator 17 is laminated on the fuel electrode current collector 16, the tips 25 a of the plurality of protrusions 25 abut against the fuel electrode 14 of the membrane electrode assembly 12.
Similarly, in a state where the second separator 22 is stacked on the air electrode current collector 21, the tips 32 a of the plurality of protrusions 32 come into contact with the air electrode 15 of the membrane electrode assembly 12.

よって、複数の単セル11を荷重F1をかけて積層した状態において、第1セパレータ17に作用する荷重F1は複数の突部32を経て燃料極14に伝えられる。
これにより、燃料極集電体16に荷重F1が作用することを防ぐことができる。
同様に、複数の単セル11を荷重F1をかけて積層した状態において、第2セパレータ22に作用する荷重F1は複数の突部32を経て空気極15に伝えられる。
したがって、空気極集電体21に荷重F1が作用することを防ぐことができる。
Therefore, in a state where the plurality of single cells 11 are stacked with the load F <b> 1, the load F <b> 1 acting on the first separator 17 is transmitted to the fuel electrode 14 via the plurality of protrusions 32.
Thereby, it is possible to prevent the load F1 from acting on the fuel electrode current collector 16.
Similarly, in a state where the plurality of single cells 11 are stacked with the load F 1, the load F 1 acting on the second separator 22 is transmitted to the air electrode 15 via the plurality of protrusions 32.
Therefore, it is possible to prevent the load F1 from acting on the air electrode current collector 21.

ついで、固体電解質型燃料電池10に燃料ガス(水素など)や空気(酸素)を供給して電力を発生させる例を図5に基づいて説明する。
図5に示すように、第1セパレータ17の燃料ガス供給流路24の供給口24aから燃料極集電体16に燃料ガス(水素など)を矢印Aの如く供給する。
さらに、第2セパレータ22の空気供給流路31の供給口31aから空気極集電体21に空気(酸素)を矢印Bの如く供給する。
Next, an example of generating electric power by supplying fuel gas (hydrogen or the like) or air (oxygen) to the solid oxide fuel cell 10 will be described with reference to FIG.
As shown in FIG. 5, fuel gas (such as hydrogen) is supplied to the anode current collector 16 from the supply port 24 a of the fuel gas supply channel 24 of the first separator 17 as indicated by an arrow A.
Further, air (oxygen) is supplied to the air electrode current collector 21 from the supply port 31 a of the air supply flow path 31 of the second separator 22 as indicated by an arrow B.

燃料極集電体16に供給された燃料ガスは、燃料極集電体16の気孔を経て燃料極14に矢印Cの如く到達する。燃料極14に到達した燃料ガスは、燃料極14内の気孔を経て燃料極14および固体電解質13との界面32近傍に到達する。   The fuel gas supplied to the anode current collector 16 reaches the anode 14 as indicated by an arrow C through the pores of the anode current collector 16. The fuel gas that has reached the fuel electrode 14 reaches the vicinity of the interface 32 between the fuel electrode 14 and the solid electrolyte 13 through pores in the fuel electrode 14.

一方、空気極集電体21に供給された空気は、空気極集電体21の気孔を経て空気極15に矢印Dの如く到達する。空気極15側に到達した空気は、空気極15内の気孔を経て空気極15および固体電解質13との界面31近傍に到達する。   On the other hand, the air supplied to the air electrode current collector 21 reaches the air electrode 15 as indicated by an arrow D through the pores of the air electrode current collector 21. The air that has reached the air electrode 15 side passes through the pores in the air electrode 15 and reaches the vicinity of the interface 31 between the air electrode 15 and the solid electrolyte 13.

空気極15および固体電解質13の界面31近傍に到達した空気(酸素)は空気極15から電子を受け取って酸化物イオンにイオン化される。この酸化物イオンは、固体電解質13内を燃料極14に向かって拡散移動する。
燃料極14および固体電解質13の界面32近傍に到達した酸化物イオンが、この界面32近傍で燃料ガスと反応して電子を放出し、この電子を外部に起電力として取り出すことで電力が発生する。
Air (oxygen) that reaches the vicinity of the interface 31 between the air electrode 15 and the solid electrolyte 13 receives electrons from the air electrode 15 and is ionized into oxide ions. The oxide ions diffuse and move in the solid electrolyte 13 toward the fuel electrode 14.
The oxide ions that have reached the vicinity of the interface 32 between the fuel electrode 14 and the solid electrolyte 13 react with the fuel gas in the vicinity of the interface 32 to emit electrons, and the electrons are taken out as electromotive force to generate electric power. .

ここで、従来の固体電解質型燃料電池は、第1セパレータ17に作用する荷重F1が燃料極集電体16に伝わり、かつ、第2セパレータ22に作用する荷重F1が空気極集電体21に伝わる。
このように、燃料極集電体16や空気極集電体21に荷重F1が作用する場合、燃料極集電体16や空気極集電体21が電力を発生する際の熱で経時的に変形する(潰れが発生する)ことが考えられる。
Here, in the conventional solid oxide fuel cell, the load F1 acting on the first separator 17 is transmitted to the anode current collector 16, and the load F1 acting on the second separator 22 is applied to the air electrode current collector 21. It is transmitted.
Thus, when the load F1 acts on the anode current collector 16 and the air electrode current collector 21, the heat generated when the fuel electrode current collector 16 and the air electrode current collector 21 generate electric power over time. It is conceivable that the material is deformed (crushed).

これに対して、固体電解質型燃料電池10は、図4に示すように、第1セパレータ17に作用する荷重F1が複数の突部25を経て燃料極14に荷重F2として伝えられ、燃料極集電体16に荷重F1が作用することを防止できる。
同様に、第2セパレータ22に作用する荷重F1が複数の突部32を経て空気極15に荷重F2として伝えられ、空気極集電体21に荷重F1が作用することを防止できる。
On the other hand, as shown in FIG. 4, in the solid oxide fuel cell 10, the load F <b> 1 acting on the first separator 17 is transmitted as the load F <b> 2 to the fuel electrode 14 through the plurality of protrusions 25. It is possible to prevent the load F1 from acting on the electric body 16.
Similarly, the load F1 acting on the second separator 22 is transmitted as the load F2 to the air electrode 15 through the plurality of protrusions 32, and the load F1 can be prevented from acting on the air electrode current collector 21.

よって、燃料極集電体16や空気極集電体21が荷重F1で経時的に変形する(潰れが発生する)ことを阻止できる。
これにより、単セル11間の電気抵抗を小さく抑えることができ、接触抵抗増加による通電性の低下を防ぐことができる。
加えて、単セル11間に隙間が発生することを抑えることができ、単セル11間の隙間から空気や燃料ガスが拡散することを阻止できる。
Therefore, it is possible to prevent the fuel electrode current collector 16 and the air electrode current collector 21 from being deformed over time (caused to be crushed) by the load F1.
Thereby, the electrical resistance between the single cells 11 can be suppressed to a low level, and a decrease in electrical conductivity due to an increase in contact resistance can be prevented.
In addition, the generation of a gap between the single cells 11 can be suppressed, and the diffusion of air and fuel gas from the gap between the single cells 11 can be prevented.

このように、単セル11間の電気抵抗を小さく抑えるとともに、単セル11間から空気や燃料ガスが拡散することを阻止することで、固体電解質型燃料電池10の発電効率を高めることができる。   Thus, while suppressing the electrical resistance between the single cells 11 and preventing the air and the fuel gas from diffusing from between the single cells 11, the power generation efficiency of the solid oxide fuel cell 10 can be increased.

さらに、燃料極集電体16や空気極集電体21が荷重F1で変形する(潰れが発生する)ことを防ぐことで、膜電極接合体12および燃料極集電体16間に隙間が発生することや、膜電極接合体12および空気極集電体21間に隙間が発生することを防止できる。
よって、膜電極接合体12の上面(すなわち、空気極15の上面)15aを空気極集電体21で覆うことができる。
同様に、膜電極接合体12の下面(すなわち、燃料極14の下面)14aを燃料極集電体16で覆うことができる。
Further, a gap is generated between the membrane electrode assembly 12 and the fuel electrode current collector 16 by preventing the fuel electrode current collector 16 and the air electrode current collector 21 from being deformed (crushed) by the load F1. It is possible to prevent the gap between the membrane electrode assembly 12 and the air electrode current collector 21 from being generated.
Therefore, the upper surface 15 a of the membrane electrode assembly 12 (that is, the upper surface of the air electrode 15) 15 a can be covered with the air electrode current collector 21.
Similarly, the lower surface 14 a of the membrane electrode assembly 12 (that is, the lower surface of the fuel electrode 14) 14 a can be covered with the fuel electrode current collector 16.

なお、本発明に係る固体電解質型燃料電池10は、前述した実施例に限定されるものではなく適宜変更、改良などが可能である。
例えば、前記実施例では、第1、第2のセパレータ17,22の突部25,32をエンボス加工で形成する例について説明したが、これに限らないで、その他の方法で形成することも可能である。
The solid oxide fuel cell 10 according to the present invention is not limited to the above-described embodiments, and can be changed or improved as appropriate.
For example, in the above-described embodiment, the example in which the protrusions 25 and 32 of the first and second separators 17 and 22 are formed by embossing is described. However, the present invention is not limited to this, and other methods may be used. It is.

また、前記実施例で示した固体電解質型燃料電池10、単セル11、膜電極接合体12、燃料極集電体16、第1セパレータ17、空気極集電体21、第2セパレータ22、突起25,32および貫通孔26,33などの形状や構成は例示したものに限定するものではなく適宜変更が可能である。   In addition, the solid oxide fuel cell 10, the single cell 11, the membrane electrode assembly 12, the fuel electrode current collector 16, the first separator 17, the air electrode current collector 21, the second separator 22, and the protrusions shown in the above embodiment. The shapes and configurations of 25 and 32 and the through holes 26 and 33 are not limited to those illustrated, and can be changed as appropriate.

本発明は、膜電極接合体に燃料極集電体を経て燃料ガスを供給するとともに空気極集電体を経て空気を供給することにより電力を発生させる固体電解質型燃料電池への適用に好適である。   The present invention is suitable for application to a solid oxide fuel cell in which electric power is generated by supplying fuel gas to a membrane electrode assembly through an anode current collector and supplying air through an air electrode current collector. is there.

10…固体電解質型燃料電池、11…単セル、12…膜電極接合体、16…燃料極集電体、17…第1セパレータ、21…空気極集電体、22…第2セパレータ、25,32…突起、26,33…貫通孔。   DESCRIPTION OF SYMBOLS 10 ... Solid electrolyte type fuel cell, 11 ... Single cell, 12 ... Membrane electrode assembly, 16 ... Fuel electrode current collector, 17 ... First separator, 21 ... Air electrode current collector, 22 ... Second separator, 25, 32 ... protrusions, 26, 33 ... through holes.

Claims (2)

膜電極接合体に燃料極集電体を経て燃料ガスを供給するとともに、前記膜電極接合体に空気極集電体を経て空気を供給することにより電力を発生させる固体電解質型燃料電池において、
前記燃料極集電体に積層され、前記膜電極接合体に前記燃料ガスを供給する第1セパレータに突部を設け、
前記第1セパレータおよび前記膜電極接合体間に介在された前記燃料極集電体に、前記第1セパレータの突部が嵌合可能な貫通孔を設け、
前記空気極集電体に積層され、前記膜電極接合体に前記空気を供給する第2セパレータに突部を設け、
前記第2セパレータおよび前記膜電極接合体間に介在された前記空気極集電体に、前記第2セパレータの突部が嵌合可能な貫通孔を設けたことを特徴とする固体電解質型燃料電池。
In a solid electrolyte fuel cell that generates fuel by supplying fuel gas to a membrane electrode assembly through an anode current collector and supplying air to the membrane electrode assembly through an air electrode current collector,
Protruding to the first separator that is laminated on the fuel electrode current collector and supplies the fuel gas to the membrane electrode assembly,
The fuel electrode current collector interposed between the first separator and the membrane electrode assembly is provided with a through hole into which a protrusion of the first separator can be fitted,
Protruding to the second separator that is stacked on the air electrode current collector and supplies the air to the membrane electrode assembly,
A solid oxide fuel cell, wherein a through-hole into which a protrusion of the second separator can be fitted is provided in the air electrode current collector interposed between the second separator and the membrane electrode assembly. .
前記燃料極集電体および前記空気極集電体は、導電性金属からなる発泡体、あるいは導電性金属からなるメッシュ部材で形成されたことを特徴とする請求項1記載の固体電解質型燃料電池。   2. The solid oxide fuel cell according to claim 1, wherein the fuel electrode current collector and the air electrode current collector are formed of a foam made of a conductive metal or a mesh member made of a conductive metal. .
JP2009290035A 2009-12-22 2009-12-22 Solid electrolyte fuel cell Pending JP2011134448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009290035A JP2011134448A (en) 2009-12-22 2009-12-22 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009290035A JP2011134448A (en) 2009-12-22 2009-12-22 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2011134448A true JP2011134448A (en) 2011-07-07

Family

ID=44346991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009290035A Pending JP2011134448A (en) 2009-12-22 2009-12-22 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2011134448A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012058A1 (en) * 2011-07-21 2013-01-24 株式会社村田製作所 Electrical connection material for solid oxide fuel cell, joining material for solid oxide fuel cell, and solid oxide fuel cell
WO2017154034A1 (en) * 2016-03-07 2017-09-14 株式会社 東芝 Electrochemical apparatus
WO2019050256A1 (en) * 2017-09-07 2019-03-14 주식회사 엘지화학 Solid oxide fuel cell and cell module
WO2019050327A1 (en) * 2017-09-07 2019-03-14 주식회사 엘지화학 Solid oxide fuel cell and cell module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012058A1 (en) * 2011-07-21 2013-01-24 株式会社村田製作所 Electrical connection material for solid oxide fuel cell, joining material for solid oxide fuel cell, and solid oxide fuel cell
JPWO2013012058A1 (en) * 2011-07-21 2015-02-23 株式会社村田製作所 Electrical connection material for solid oxide fuel cell, bonding material for solid oxide fuel cell, and solid oxide fuel cell
WO2017154034A1 (en) * 2016-03-07 2017-09-14 株式会社 東芝 Electrochemical apparatus
WO2019050256A1 (en) * 2017-09-07 2019-03-14 주식회사 엘지화학 Solid oxide fuel cell and cell module
WO2019050327A1 (en) * 2017-09-07 2019-03-14 주식회사 엘지화학 Solid oxide fuel cell and cell module

Similar Documents

Publication Publication Date Title
US9356301B2 (en) Flat tubular solid oxide fuel cell stack
US10903507B2 (en) Method for producing a flow plate for a fuel cell
JP5130244B2 (en) Metal support and solid oxide fuel cell comprising the same
JP5074898B2 (en) Solid oxide fuel cell
JP2011134448A (en) Solid electrolyte fuel cell
JP2007059187A (en) Fuel cell
JP5343532B2 (en) Fuel cell and fuel cell stack manufacturing method
US9190691B2 (en) Fuel cell stack
JP4461949B2 (en) Solid oxide fuel cell
JP2010238437A (en) Solid electrolyte for flat-plate solid oxide fuel cell, and flat-plate solid oxide fuel cell
US20140178793A1 (en) Solid oxide fuel cell
JP2019531577A (en) Fuel cell
JP2006269409A (en) Solid oxide fuel cell, sofc
KR20090012562A (en) Anode supported solid oxide fuel cell
KR101228763B1 (en) Planar solid oxide fuel cell having improved reaction area and method for manufacturing the same
JP6403099B2 (en) Fuel cell module
JP2005235550A (en) Fuel cell
EP2741358A1 (en) Polymer electrolyte fuel cell
JP2006086018A (en) Solid oxide fuel cell
JP2006351452A (en) Fuel cell
KR101220740B1 (en) Solid oxide fuel cell separator comprising collector formed channel and method for manufacturing the same
JP6947228B2 (en) Cell unit
JP2008305755A (en) Fuel cell
JP2006331688A (en) Fuel cell
JP2020177732A (en) Separator for fuel cell