JP2011132999A - Rolling bearing device - Google Patents

Rolling bearing device Download PDF

Info

Publication number
JP2011132999A
JP2011132999A JP2009291753A JP2009291753A JP2011132999A JP 2011132999 A JP2011132999 A JP 2011132999A JP 2009291753 A JP2009291753 A JP 2009291753A JP 2009291753 A JP2009291753 A JP 2009291753A JP 2011132999 A JP2011132999 A JP 2011132999A
Authority
JP
Japan
Prior art keywords
cage
rolling bearing
bearing device
rolling
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009291753A
Other languages
Japanese (ja)
Inventor
Hiroki Fujiwara
宏樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009291753A priority Critical patent/JP2011132999A/en
Publication of JP2011132999A publication Critical patent/JP2011132999A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing device which secures a lubricating oil in an amount necessary for the guide surface of a cage, even when the supply of the lubricating oil is reduced. <P>SOLUTION: This rolling bearing device includes a rolling bearing 1 and nozzle members 3 which are installed adjacent to the outer ring 2 of the rolling bearing 1 and which injects a lubricant into the bearing space between the inner and outer rings 1, 2. An annular flange part 11 which is inserted into the bearing space and which has a nozzle hole 11a for the lubricant is provided to the nozzle member 3. The outer diameter surface of the flange part 11 serves as the guide surface 11b of the cage. The inner diameter surface 6a of the cage is guided by the cage guide surface 11b of the flange part 11. The cage guide surface 11b of the flange part 11 is formed into an irregular surface 25. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、例えば、工作機械主軸用軸受等の保持器案内面の潤滑性向上を図ることができる転がり軸受装置に関する。   The present invention relates to a rolling bearing device capable of improving the lubricity of a cage guide surface such as a machine tool spindle bearing.

転がり軸受の保持器の案内形式として、外輪案内、内輪案内、転動体案内の方式がある。転がり軸受が内輪回転で用いられる場合において、前記内輪案内方式の保持器では、内輪回転の遠心力により潤滑油が案内面に保持されにくい。よって高速回転する転がり軸受の保持器は、同保持器の外径面を外輪の肩部で案内する外輪案内方式が多い。しかし、軸受運転中の保持器の遠心膨張および熱膨張により、外輪と保持器との間の案内すきまが減少するおそれがある。
前記案内すきまの減少を避けるため、潤滑油供給用のノズルで保持器内径面を案内する方式が提案されている(特許文献1)。この方式では、ノズルから供給された潤滑油は、保持器案内面を通過し円滑に排出される。これにより、高温の潤滑油が案内面に滞留しないため、案内部の潤滑性に優れる。
There are outer ring guide, inner ring guide, and rolling element guide methods as guide types for the cage of the rolling bearing. In the case where the rolling bearing is used for inner ring rotation, in the inner ring guide type cage, the lubricating oil is hardly held on the guide surface due to the centrifugal force of the inner ring rotation. Therefore, many rolling bearing cages that rotate at high speed have an outer ring guide system in which the outer diameter surface of the cage is guided by the shoulder of the outer ring. However, the guide clearance between the outer ring and the cage may decrease due to the centrifugal expansion and thermal expansion of the cage during bearing operation.
In order to avoid a decrease in the guide clearance, a method of guiding the cage inner surface with a lubricant supply nozzle has been proposed (Patent Document 1). In this method, the lubricating oil supplied from the nozzle passes through the cage guide surface and is smoothly discharged. Thereby, since the high-temperature lubricating oil does not stay on the guide surface, the lubricity of the guide portion is excellent.

特開2009−74682号公報JP 2009-74682 A

転動体、軌道輪間は、潤滑油の攪拌抵抗および粘性抵抗による転がり摩擦損失を低減する観点から、固体同士が接触しない範囲で弾性流体潤滑部の入り口部の潤滑油量を減少させるようにごく微量の潤滑油を供給するほうが望ましい。転がり摩擦損失の増大は、発熱による軸受温度の高温化を招き、工作機械主軸用途では、加工精度の低下につながる。
一方、保持器案内面はすべり摩擦となるので、十分な量の潤滑油を供給し排油する必要がある。したがって、転動体、軌道輪間の転がり摩擦損失を低減させるために供給油量を減少させると、保持器案内面に必要な潤滑油量が確保できなくなるおそれがある。
From the viewpoint of reducing rolling friction loss due to the agitation resistance and viscosity resistance of the lubricating oil, the amount of lubricating oil at the entrance of the elastohydrodynamic lubrication part should be reduced within the range where the solids do not contact each other. It is desirable to supply a small amount of lubricating oil. An increase in rolling friction loss leads to an increase in bearing temperature due to heat generation, leading to a reduction in machining accuracy in machine tool spindle applications.
On the other hand, since the cage guide surface becomes a sliding friction, it is necessary to supply and drain a sufficient amount of lubricating oil. Therefore, if the amount of oil supplied is reduced in order to reduce the rolling friction loss between the rolling elements and the races, it may not be possible to secure the amount of lubricating oil necessary for the cage guide surface.

この発明の目的は、潤滑油の供給を減少させた場合においても、保持器案内面に必要な潤滑油量を確保することができる転がり軸受装置を提供することである。   An object of the present invention is to provide a rolling bearing device capable of ensuring a necessary amount of lubricating oil for the cage guide surface even when the supply of lubricating oil is reduced.

この発明の転がり軸受装置は、内外輪の軌道面間に、環状の保持器に保持された複数の転動体を介在させた転がり軸受と、前記外輪に隣接して設けられて内外輪間の軸受空間に潤滑剤を吐出するノズル部材とを備えた転がり軸受装置において、前記ノズル部材に、前記軸受空間に挿入され潤滑剤のノズル孔を有する環状の鍔部を設け、この鍔部の外径面を前記保持器の内径面を案内する保持器案内面とし、前記保持器内径面および前記鍔部の保持器案内面のいずれか一方または両方を凹凸面としたことを特徴とする。
前記凹凸面は、油が表面に保持される程度の微細な凹凸を有する面を言う。
The rolling bearing device according to the present invention includes a rolling bearing in which a plurality of rolling elements held by an annular cage are interposed between raceway surfaces of inner and outer rings, and a bearing between the inner and outer rings provided adjacent to the outer ring. In a rolling bearing device comprising a nozzle member for discharging a lubricant into a space, the nozzle member is provided with an annular flange portion having a nozzle hole for the lubricant inserted into the bearing space, and an outer diameter surface of the flange portion Is a cage guide surface that guides the inner diameter surface of the cage, and either one or both of the cage inner diameter surface and the cage guide surface of the flange portion is an uneven surface.
The uneven surface refers to a surface having fine unevenness enough to retain oil on the surface.

この構成によると、ノズル部材の鍔部の外径面を保持器案内面としたため、保持器の振れ回りが大きくなったり、転動体との干渉で同転動体を保持する保持器ポケットが損傷するといった問題を解消することができる。特に、前記保持器内径面および前記鍔部の保持器案内面のいずれか一方または両方を凹凸面としたため、潤滑油が保持され易く、少量の潤滑油であっても前記凹凸面に潤滑油が確実に保持される。そのため、供給油量が少ない場合や、遠心力によって保持器案内面の潤滑油が減少した場合でも、凹凸面に保持された潤滑油により固体同士の接触を生じることなく、正常に潤滑される。したがって、従来の保持器案内形式のものより供給油量を少なくして転動体、軌道輪間の転がり摩擦損失を低減することができると共に、保持器案内面に必要な潤滑油量を確保することができる。供給油量を少なくできるため、潤滑油の攪拌抵抗による発熱を抑え、軸受の温度上昇を抑えることができる。   According to this configuration, since the outer diameter surface of the collar portion of the nozzle member is used as a cage guide surface, the swinging of the cage increases, or the cage pocket holding the rolling element is damaged due to interference with the rolling element. Such a problem can be solved. In particular, since either one or both of the inner diameter surface of the cage and the cage guide surface of the flange portion is an uneven surface, the lubricating oil is easily retained, and even if a small amount of lubricating oil is present, the lubricating oil is applied to the uneven surface. Holds securely. Therefore, even when the amount of supplied oil is small or when the lubricating oil on the cage guide surface is reduced due to centrifugal force, the lubricating oil held on the concave and convex surfaces allows normal lubrication without causing contact between solids. Therefore, it is possible to reduce the amount of oil supplied from the conventional cage guide type to reduce the rolling friction loss between the rolling elements and the races, and to secure the necessary amount of lubricating oil on the cage guide surface. Can do. Since the amount of supplied oil can be reduced, heat generation due to the agitation resistance of the lubricating oil can be suppressed, and the temperature rise of the bearing can be suppressed.

前記凹凸面は、少なくとも円周方向に定められたピッチで複数並べて形成して成る微細構造の周期構造であっても良い。このような微細構造の周期形状であると凹部内に潤滑油が保持され易い。なお、微細構造の周期構造とは、繰り返し周期が0.3μm以上1.2μm以下を言う。
前記各凹部が、軸受軸方向または軸受軸方向に対して傾斜した方向に延びる溝であっても良い。この場合、保持器内径面と鍔部の保持器案内面との相対すべり運動によって、保持器案内すきま及び前記溝に存在する潤滑油に圧力つまり動圧を発生させる。この動圧作用により潤滑油が溝に沿って円滑に導かれるため、保持器案内面の全周にわたる潤滑性がさらに向上する。特に、各凹部が、軸受軸方向に対して傾斜した方向に延びる溝である場合には、前述の相対すべり運動によって動圧をより効果的に発生させることが可能となる。したがって、保持器案内面の潤滑性をさらに向上させることが可能となる。
The irregular surface may be a periodic structure having a fine structure formed by arranging at least a pitch determined in the circumferential direction. Lubricating oil is easily held in the recesses when the periodic structure has such a fine structure. Note that the periodic structure having a fine structure means a repetition period of 0.3 μm or more and 1.2 μm or less.
Each of the recesses may be a groove extending in a bearing axis direction or a direction inclined with respect to the bearing axis direction. In this case, pressure, that is, dynamic pressure, is generated in the lubricating oil existing in the cage guide clearance and the groove by the relative sliding movement between the cage inner diameter surface and the cage guide surface of the flange portion. Since the lubricating oil is smoothly guided along the groove by this dynamic pressure action, the lubricity over the entire circumference of the cage guide surface is further improved. In particular, when each recess is a groove extending in a direction inclined with respect to the bearing axis direction, the dynamic pressure can be generated more effectively by the above-described relative sliding motion. Accordingly, the lubricity of the cage guide surface can be further improved.

前記凹凸面がフェムト秒レーザを用いて加工された面であっても良い。前記保持器内径面および前記鍔部の保持器案内面のいずれか一方または両方に、フェムト秒レーザと呼ばれる極短パルスのレーザ光を照射する。そうすると、レーザ光の干渉作用により波長に応じた周期で、通常0.1μm以上1μm以下の深さの微細加工面が形成される。この微細加工面に潤滑油が確実に保持される。   The uneven surface may be a surface processed using a femtosecond laser. Either one or both of the inner diameter surface of the cage and the cage guide surface of the collar portion is irradiated with an ultrashort pulse laser beam called a femtosecond laser. Then, a finely processed surface having a depth of usually 0.1 μm or more and 1 μm or less is formed with a period according to the wavelength by the interference action of the laser light. Lubricating oil is reliably held on this finely processed surface.

前記鍔部の保持器案内面のみに、前記凹凸面を設けても良い。例えば、レーザ光を照射対象となる面に照射する都合上、鍔部の外径面の径方向外方にレーザ光の光源を配置し、この光源から鍔部の保持器案内面にレーザ光を容易に照射させることができる。また、レーザの光学系を簡単化でき、設備コストの低減を図れる。   The uneven surface may be provided only on the cage guide surface of the flange. For example, for the purpose of irradiating the surface to be irradiated with laser light, a laser light source is arranged radially outward of the outer diameter surface of the collar, and laser light is emitted from this light source to the cage guide surface of the collar. It can be easily irradiated. In addition, the laser optical system can be simplified, and the equipment cost can be reduced.

前記保持器が、積層フェノール樹脂またはポリアミドまたはPEEKから成り、この保持器における前記保持器内径面に前記凹凸面を設けても良い。前記「PEEK」とは、ポリエーテルエーテルケトン(Poly Ether Ether Ketone)の略称である。この保持器を用いて軸受の高速化をより図ることができる。   The cage may be made of laminated phenolic resin, polyamide, or PEEK, and the uneven surface may be provided on the inner diameter surface of the cage in the cage. The “PEEK” is an abbreviation for Polyether Ether Ketone. The speed of the bearing can be further increased by using this cage.

前記保持器が、鋼または銅合金またはマグネシウム合金から成り、この保持器における前記保持器内径面に前記凹凸面を設けても良い。強度と密度の観点からマグネシウム合金を適用することが望ましい。   The cage may be made of steel, a copper alloy, or a magnesium alloy, and the uneven surface may be provided on the inner diameter surface of the cage in the cage. It is desirable to apply a magnesium alloy from the viewpoint of strength and density.

前記凹凸面の凹部を除く保持器内径面の最大面粗さ、および前記凹部を除く前記鍔部の保持器案内面の最大面粗さの和に基づいて、前記凹凸面の凹部の底面深さを規定しても良い。
油膜が最大面粗さ以下になったとき、固体同士の接触が生じる。動圧溝は油膜厚さと同程度の深さとすることが一般的であるから、凹凸面の凹部の底面深さは、保持器内径面と鍔部の保持器案内面の最大面粗さの和と同程度とする。これにより、凹部に保持された潤滑油の油膜厚さを最大面粗さよりも厚くして固体同士の接触防止を図れ、保持器案内面の潤滑性をより確実に向上することができる。
Based on the sum of the maximum surface roughness of the inner diameter surface of the cage excluding the concave portion of the concave and convex surface and the maximum surface roughness of the cage guide surface of the flange portion excluding the concave portion, the bottom surface depth of the concave portion of the concave and convex surface May be defined.
When the oil film becomes less than the maximum surface roughness, solids contact with each other. Since the dynamic pressure groove is generally the same depth as the oil film thickness, the bottom surface depth of the concave portion of the uneven surface is the sum of the maximum surface roughness of the cage inner surface and the cage guide surface of the flange portion. And the same level. Thereby, the oil film thickness of the lubricating oil held in the recesses can be made thicker than the maximum surface roughness to prevent solids from contacting each other, and the lubricity of the cage guide surface can be improved more reliably.

前記転がり軸受がアンギュラ玉軸受であっても良い。
前記転がり軸受が円筒ころ軸受であっても良い。
前記転がり軸受がアンギュラ玉軸受または円筒ころ軸受である場合に、前記ノズル部材のノズル孔から吐出する潤滑剤がエアオイルであっても良い。このエアオイルの場合、微量潤滑が行い易い。
The rolling bearing may be an angular ball bearing.
The rolling bearing may be a cylindrical roller bearing.
When the rolling bearing is an angular ball bearing or a cylindrical roller bearing, the lubricant discharged from the nozzle hole of the nozzle member may be air oil. In the case of this air oil, it is easy to perform a minute amount of lubrication.

転がり軸受装置が工作機械の主軸の支持に用いられるものであっても良い。この場合、主軸の高速化および温度上昇の低減を図ることが可能となる。   The rolling bearing device may be used for supporting the main shaft of the machine tool. In this case, it is possible to increase the speed of the spindle and reduce the temperature rise.

この発明の転がり軸受装置は、内外輪の軌道面間に、環状の保持器に保持された複数の転動体を介在させた転がり軸受と、前記外輪に隣接して設けられて内外輪間の軸受空間に潤滑剤を吐出するノズル部材とを備えた転がり軸受装置において、前記ノズル部材に、前記軸受空間に挿入され潤滑剤のノズル孔を有する環状の鍔部を設け、この鍔部の外径面を前記保持器の内径面を案内する保持器案内面とし、前記保持器内径面および前記鍔部の保持器案内面のいずれか一方または両方を凹凸面としたため、潤滑油の供給を減少させた場合においても、保持器案内面に必要な潤滑油量を確保することができる。
前記凹凸面は、凹部を、少なくとも円周方向に定められたピッチで複数並べて形成して成り、前記各凹部の底面が軸受軸方向に沿って凹凸を繰り返す微細構造の周期構造であると、凹部内に潤滑油が保持され易い。
前記各凹部が、軸受軸方向または軸受軸方向に対して傾斜した方向に延びる溝である場合、保持器内径面と鍔部の保持器案内面との相対すべり運動によって、保持器案内すきま及び前記溝に存在する潤滑油に圧力つまり動圧を発生させる。この動圧作用により潤滑油が溝に沿って円滑に導かれるため、保持器案内面の全周にわたる潤滑性がさらに向上する。特に、各凹部が、軸受軸方向に対して傾斜した方向に延びる溝である場合には、前述の相対すべり運動によって動圧をより効果的に発生させることが可能となる。したがって、保持器案内面の潤滑性をさらに向上させることが可能となる。
The rolling bearing device according to the present invention includes a rolling bearing in which a plurality of rolling elements held by an annular cage are interposed between raceway surfaces of inner and outer rings, and a bearing between the inner and outer rings provided adjacent to the outer ring. In a rolling bearing device comprising a nozzle member for discharging a lubricant into a space, the nozzle member is provided with an annular flange portion having a nozzle hole for the lubricant inserted into the bearing space, and an outer diameter surface of the flange portion Was used as a cage guide surface for guiding the inner diameter surface of the cage, and either one or both of the inner diameter surface of the cage and the cage guide surface of the flange portion was an uneven surface, thereby reducing the supply of lubricating oil. Even in this case, it is possible to secure the amount of lubricating oil necessary for the cage guide surface.
The concavo-convex surface is formed by arranging a plurality of concave portions at a pitch determined at least in the circumferential direction, and the concave surface is a fine periodic structure in which the bottom surface of each concave portion repeats the concave and convex portions along the bearing axis direction. Lubricating oil is easily held inside.
When each of the recesses is a groove extending in the bearing axis direction or in a direction inclined with respect to the bearing axis direction, the cage guide clearance and the cage by the relative sliding movement between the cage inner diameter surface and the cage guide surface of the flange portion. Pressure or dynamic pressure is generated in the lubricating oil present in the groove. Since the lubricating oil is smoothly guided along the groove by this dynamic pressure action, the lubricity over the entire circumference of the cage guide surface is further improved. In particular, when each recess is a groove extending in a direction inclined with respect to the bearing axis direction, the dynamic pressure can be generated more effectively by the above-described relative sliding motion. Accordingly, the lubricity of the cage guide surface can be further improved.

(A)は、この発明の一実施形態に係る転がり軸受装置の断面図、(B)は同転がり軸受装置の要部の断面図である。(A) is sectional drawing of the rolling bearing apparatus which concerns on one Embodiment of this invention, (B) is sectional drawing of the principal part of the rolling bearing apparatus. 同転がり軸受装置の要部の拡大平面図である。It is an enlarged plan view of the principal part of the rolling bearing device. この発明の他の実施形態に係る転がり軸受装置の要部の拡大平面図である。It is an enlarged plan view of the principal part of the rolling bearing apparatus which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る転がり軸受装置の要部断面図である。It is principal part sectional drawing of the rolling bearing apparatus which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る転がり軸受装置の要部断面図である。It is principal part sectional drawing of the rolling bearing apparatus which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る転がり軸受装置の要部の拡大平面図である。It is an enlarged plan view of the principal part of the rolling bearing apparatus which concerns on further another embodiment of this invention. この発明のさらに他の実施形態に係る転がり軸受装置の断面図である。It is sectional drawing of the rolling bearing apparatus which concerns on other embodiment of this invention. この発明の実施形態の転がり軸受装置を備えた高速スピンドル装置の断面図である。It is sectional drawing of the high-speed spindle apparatus provided with the rolling bearing apparatus of embodiment of this invention.

この発明の一実施形態を図1および図2と共に説明する。
この実施形態に係る転がり軸受装置は、工作機械の主軸軸受として用いられる。同転がり軸受装置は、転がり軸受1と、この転がり軸受1の外輪2に隣接して設けたノズル部材3とを備えている。転がり軸受1は、内輪4と、外輪2と、これら内外輪4,2の軌道面4a,2a間に介在させた複数の転動体5と、これら転動体5を円周方向一定間隔おきに保持する環状の保持器6とを有する。この例では、転がり軸受1として円筒ころ軸受が適用され、転動体5として円筒ころが適用される。保持器6は、例えば、積層フェノール樹脂,ポリアミド,PEEK等の樹脂材料や、鋼、銅合金、マグネシウム合金等から成る。
An embodiment of the present invention will be described with reference to FIGS.
The rolling bearing device according to this embodiment is used as a main shaft bearing of a machine tool. The rolling bearing device includes a rolling bearing 1 and a nozzle member 3 provided adjacent to the outer ring 2 of the rolling bearing 1. The rolling bearing 1 includes an inner ring 4, an outer ring 2, a plurality of rolling elements 5 interposed between the raceway surfaces 4 a and 2 a of the inner and outer rings 4 and 2, and the rolling elements 5 held at regular intervals in the circumferential direction. And an annular cage 6. In this example, a cylindrical roller bearing is applied as the rolling bearing 1, and a cylindrical roller is applied as the rolling element 5. The cage 6 is made of, for example, a resin material such as laminated phenol resin, polyamide, PEEK, steel, copper alloy, magnesium alloy, or the like.

内輪4は、図示外の主軸の外径面に嵌合する。内輪4における、軌道面4aの軸方向両側の外径面には、内輪端面側から軌道面4a側に向かうに従って大径となる斜面部4bがそれぞれ設けられている。
外輪2は、軸受箱Hs内に固定される。外輪2の軸方向両側には、外輪端面に隣接して後述のノズル部材3がそれぞれ配置されている。外輪2は、軌道面2aの両側に鍔7を有する鍔付き外輪である。外輪2のうち、鍔7を形成する軸方向両側の内周面に繋がる内径面には、外輪端面側に向かうに従って大径となる斜面部2bがそれぞれ設けられている。外輪2には、この軌道面2aに滞留する潤滑油を軸受外へ排出する貫通孔8および溝9が形成されている。図1(A)の例では、貫通孔8は、外輪2の軌道面2a,鍔面7a間の両隅部から、径方向外方にそれぞれ延び外輪外径面2cまで貫通する。これら貫通孔8は例えば円周方向複数箇所に一定間隔おきに形成される。
The inner ring 4 is fitted to the outer diameter surface of the main shaft (not shown). On the outer diameter surfaces of the inner ring 4 on both sides in the axial direction of the raceway surface 4a, sloped portions 4b having larger diameters from the inner ring end surface side toward the raceway surface 4a side are respectively provided.
The outer ring 2 is fixed in the bearing housing Hs. On both sides of the outer ring 2 in the axial direction, nozzle members 3 described later are arranged adjacent to the outer ring end face. The outer ring 2 is a hooked outer ring having hooks 7 on both sides of the raceway surface 2a. In the outer ring 2, on the inner diameter surface connected to the inner peripheral surfaces on both sides in the axial direction forming the flange 7, slope portions 2b having a larger diameter toward the outer ring end surface side are respectively provided. The outer ring 2 is formed with a through hole 8 and a groove 9 through which the lubricating oil staying on the raceway surface 2a is discharged out of the bearing. In the example of FIG. 1 (A), the through hole 8 extends radially outward from both corners between the raceway surface 2a and the flange surface 7a of the outer ring 2 and penetrates to the outer ring outer diameter surface 2c. These through-holes 8 are formed at regular intervals, for example, at a plurality of locations in the circumferential direction.

外輪外径面2cには、前記各貫通孔8の開口部から軸方向一方および他方に延びる前記溝9が形成されている。つまり、外輪2における、貫通孔8が形成された円周位置と同位相となる位置に前記溝9が、軸方向に沿い両側縁まで延びて形成されている。軸受箱Hsには、前記溝9に連通する環状溝10が形成され、この環状溝10が図示外の排油路に連通する。よって、外輪2の軌道面2aに滞留する潤滑油は、順次、貫通孔8、溝9、環状溝10を経由して排出され得る。   The outer ring outer diameter surface 2c is formed with the groove 9 extending in the axial direction from the opening of each through hole 8 to the other side. That is, the groove 9 is formed in the outer ring 2 so as to extend to both side edges along the axial direction at a position that is in phase with the circumferential position where the through hole 8 is formed. An annular groove 10 that communicates with the groove 9 is formed in the bearing housing Hs, and the annular groove 10 communicates with an oil drain passage that is not shown. Therefore, the lubricating oil staying on the raceway surface 2a of the outer ring 2 can be discharged sequentially through the through hole 8, the groove 9, and the annular groove 10.

前記ノズル部材3は、例えば、軸受鋼等からなり、軸受箱Hs内に固定される。ノズル部材3は、内外輪1,2間の軸受空間に潤滑剤を吐出するものであり、この潤滑剤として、搬送エアに潤滑油を混入したエアオイルが用いられる。このノズル部材3は、軸受空間に挿入されエアオイルのノズル孔11aを有する環状の鍔部11と、この鍔部11に一体に設けられるノズル部材本体12とを有する。ノズル部材本体12は、外輪2の軸方向位置を位置決めする間座としての機能と、鍔部11のノズル孔11aにエアオイルを供給する給油路13としての機能とを有する。給油路13は、ノズル部材本体12の外径面から径方向に定められた深さ開口し、鍔部11のノズル孔11aに連通する。前記ノズル孔11aは、環状の鍔部11における円周方向複数箇所に設けられる。各ノズル孔11aは、吐出側先端に向かうに従って内径側に傾斜する。このノズル孔11aの吐出側先端から、内輪4の斜面部4bにおける内輪端面付近に向けてエアオイルが吐出される。   The nozzle member 3 is made of, for example, bearing steel and is fixed in the bearing housing Hs. The nozzle member 3 discharges a lubricant into the bearing space between the inner and outer rings 1 and 2, and as this lubricant, air oil in which lubricating oil is mixed into the carrier air is used. The nozzle member 3 includes an annular flange 11 having an air oil nozzle hole 11 a inserted into the bearing space, and a nozzle member main body 12 provided integrally with the flange 11. The nozzle member main body 12 has a function as a spacer for positioning the axial position of the outer ring 2 and a function as an oil supply passage 13 for supplying air oil to the nozzle hole 11 a of the flange portion 11. The oil supply passage 13 opens from the outer diameter surface of the nozzle member main body 12 to a depth determined in the radial direction, and communicates with the nozzle hole 11 a of the flange portion 11. The nozzle holes 11 a are provided at a plurality of locations in the circumferential direction of the annular flange 11. Each nozzle hole 11a is inclined toward the inner diameter side toward the discharge-side tip. Air oil is discharged from the discharge-side tip of the nozzle hole 11a toward the vicinity of the end surface of the inner ring 4 on the inclined surface 4b.

図1(B)に示すように、前記鍔部11の外径面を保持器案内面11bとし、この鍔部11の保持器案内面11bで保持器内径面6aを案内させる。また、ノズル部材3の鍔部11の内径面11cは、内輪4の対応する斜面部4bに沿って、同斜面部4bとの間に微小隙間δ1を形成する。   As shown in FIG. 1B, the outer diameter surface of the flange portion 11 is a cage guide surface 11b, and the cage inner diameter surface 6a is guided by the cage guide surface 11b of the flange portion 11. Further, the inner diameter surface 11c of the flange portion 11 of the nozzle member 3 forms a minute gap δ1 between the inner ring 4 and the inclined surface portion 4b along the corresponding inclined surface portion 4b.

図1(B)、図2に示すように、鍔部11の外径面における、保持器内径面6aに臨む箇所全体を、凹凸形状からなる凹凸面25としている。この凹凸面25は、油が表面に保持される程度の微細な凹凸を有する面を言い、凹部である溝14が図2矢符L3で表記する円周方向に定められたピッチで複数並べて形成される。各溝14は、図2矢符L1で表記する軸受軸方向に所定距離L2延びる。図2では、各溝14をハッチングで表している。各溝14の底面は、微細加工による微細構造の周期構造、すなわち微細周期構造であり、図1(B)に示すように、軸受軸方向に沿って波長(後述する)オーダーの凹凸を繰り返す周期構造である。これら溝14を含む凹凸面25は、例えば、フェムト秒レーザと呼ばれる極短パルスのレーザを用いて加工している。フェムト秒レーザは、一定のパルス幅で発振するパルスレーザの一種であって、前記パルス幅がフェムト秒レベルである。1フェムト秒は1000兆分の1秒である。このフェムト秒レーザのレーザ強度は、パルスエネルギーEを、ビームスポットの面積Sにレーザパルスの時間幅tを乗じた値で除す(E/St)ことにより求められる。   As shown in FIGS. 1B and 2, the entire portion of the outer diameter surface of the flange portion 11 facing the cage inner diameter surface 6 a is an uneven surface 25 having an uneven shape. The uneven surface 25 is a surface having fine unevenness to the extent that oil is held on the surface, and a plurality of grooves 14 that are recesses are formed side by side at a pitch determined in the circumferential direction indicated by an arrow L3 in FIG. Is done. Each groove 14 extends a predetermined distance L2 in the bearing axial direction represented by the arrow L1 in FIG. In FIG. 2, each groove 14 is represented by hatching. The bottom surface of each groove 14 is a periodic structure of a fine structure by microfabrication, that is, a fine periodic structure. As shown in FIG. 1B, a period in which irregularities of the order of wavelength (described later) are repeated along the bearing axis direction. Structure. The concavo-convex surface 25 including these grooves 14 is processed using, for example, an extremely short pulse laser called a femtosecond laser. The femtosecond laser is a kind of pulse laser that oscillates with a constant pulse width, and the pulse width is at a femtosecond level. One femtosecond is one thousandth of a second. The laser intensity of this femtosecond laser is obtained by dividing the pulse energy E by the value obtained by multiplying the area S of the beam spot by the time width t of the laser pulse (E / St).

この例では、鍔部11の外径面の径方向外方に、レーザ光の光源(図示せず)を配置し、この光源から鍔部11の外径面に、前記フェムト秒レーザのレーザ光を照射させている。そうすると、図1(B)、図2に示すように、レーザ光の干渉作用により波長に応じた周期Tで、通常0.1μm以上1μm以下の深さD1の局部的な凹凸14aからなる溝14が軸方向に沿って自己組織的に形成される。前記鍔部11の外径面に照射されたレーザスポットRSの範囲内において、前述のレーザ光の干渉作用が生じて複数列(図2の例では5列)の溝14が略同時に形成される。これら複数列の溝14の溝幅H1、および溝間隔H2は、前記レーザ光の波長に応じて例えば数μm程度に形成される。このように複数列の溝14を形成した後、前記光源に対して鍔部11を軸心回りに相対的に変位させ、前記と同様にレーザスポットRSの範囲内において複数列の溝14を形成していく。この工程を鍔部11の外径面全周にわたって繰り返すことにより、凹凸面25を形成する。   In this example, a laser light source (not shown) is disposed radially outward of the outer diameter surface of the flange portion 11, and the laser light of the femtosecond laser is disposed from the light source to the outer diameter surface of the flange portion 11. Is irradiated. Then, as shown in FIG. 1B and FIG. 2, a groove 14 composed of local irregularities 14a having a depth D1 of usually 0.1 μm or more and 1 μm or less at a period T according to the wavelength due to the interference action of laser light. Are self-organized along the axial direction. Within the range of the laser spot RS irradiated on the outer diameter surface of the flange 11, the above-mentioned interference action of the laser beam occurs, and a plurality of rows (5 rows in the example of FIG. 2) of grooves 14 are formed substantially simultaneously. . The groove width H1 and the groove interval H2 of the plurality of rows of grooves 14 are, for example, about several μm depending on the wavelength of the laser beam. After forming a plurality of rows of grooves 14 in this way, the flange portion 11 is relatively displaced about the axis with respect to the light source, and a plurality of rows of grooves 14 are formed within the range of the laser spot RS as described above. I will do it. The uneven surface 25 is formed by repeating this step over the entire outer diameter surface of the flange portion 11.

油膜が最大面粗さ以下になったとき、固体同士の接触が生じる。動圧溝は油膜厚さと同程度の深さとすることが一般的であるから、溝14の深さD1は、保持器内径面6aと鍔部11の保持器案内面6aの最大面粗さの和と同程度とする。   When the oil film becomes less than the maximum surface roughness, solids contact with each other. Since the dynamic pressure groove is generally the same depth as the oil film thickness, the depth D1 of the groove 14 is the maximum surface roughness of the cage inner diameter surface 6a and the cage guide surface 6a of the flange portion 11. Same as the sum.

以上説明した転がり軸受装置によると、ノズル部材3の鍔部11の外径面を保持器案内面11bとしたため、保持器6の振れ回りが大きくなったり、転動体5との干渉で同転動体5を保持する保持器ポケットPtが損傷するといった問題を解消することができる。特に、鍔部11の保持器案内面11bを、凹凸面25としたため、潤滑油が保持され易く、少量の潤滑油であっても前記凹凸面25に潤滑油が確実に保持される。そのため、供給油量が少ない場合や、遠心力によって保持器案内面11bの潤滑油が減少した場合でも、凹凸面25に保持された潤滑油により固体同士の接触を生じることなく、正常に潤滑される。   According to the rolling bearing device described above, since the outer diameter surface of the flange portion 11 of the nozzle member 3 is the cage guide surface 11b, the whirling of the cage 6 is increased or the rolling element is caused by interference with the rolling element 5. The problem that the cage pocket Pt holding 5 is damaged can be solved. In particular, since the cage guide surface 11b of the flange portion 11 is the uneven surface 25, the lubricating oil is easily held, and the lubricating oil is reliably held on the uneven surface 25 even with a small amount of lubricating oil. Therefore, even when the amount of supplied oil is small or when the lubricating oil on the cage guide surface 11b decreases due to centrifugal force, the lubricating oil retained on the uneven surface 25 does not cause contact between solids and is normally lubricated. The

したがって、従来の保持器案内形式のものより、ノズル部材3からの供給油量を少なくして転動体5、軌道輪4,2間の転がり摩擦損失を低減することができると共に、保持器案内面11bに必要な潤滑油量を確保することができる。供給油量を少なくできるため、潤滑油の攪拌抵抗による発熱を抑え、軸受の温度上昇を抑えることができる。軸受全体としての発熱量が減少するため、より高速での回転が可能となる。また、潤滑剤をエアオイルとしたことで微量潤滑が行い易い。外輪2の軌道面2aに滞留する潤滑油は、軸受運転時、順次、貫通孔8、溝9、環状溝10を経由して排出されるため、転がり摩擦損失の低減をより確実に図ることができる。   Accordingly, the amount of oil supplied from the nozzle member 3 can be reduced as compared with the conventional cage guide type to reduce the rolling friction loss between the rolling elements 5 and the race rings 4 and 2, and the cage guide surface. The amount of lubricating oil required for 11b can be ensured. Since the amount of supplied oil can be reduced, heat generation due to the agitation resistance of the lubricating oil can be suppressed, and an increase in bearing temperature can be suppressed. Since the heat generation amount of the entire bearing is reduced, rotation at a higher speed is possible. Further, since the lubricant is air oil, it is easy to carry out a minute amount of lubrication. Since the lubricating oil staying on the raceway surface 2a of the outer ring 2 is sequentially discharged through the through hole 8, the groove 9, and the annular groove 10 during the bearing operation, the rolling friction loss can be more reliably reduced. it can.

前記溝14の底面が軸受軸方向に沿って局部的な凹凸14aを繰り返す周期構造であり、各溝14が、軸受軸方向に延びる溝であるため、保持器内径面6aと鍔部11の保持器案内面11bとの相対すべり運動によって、保持器案内すきまδ2及び溝14に存在する潤滑油に圧力つまり動圧を発生させる。この動圧作用により潤滑油が溝14に沿って円滑に導かれるため、保持器案内面11bの全周にわたる潤滑性がさらに向上する。   Since the groove 14 has a periodic structure in which the bottom surface of the groove 14 repeats local irregularities 14a along the bearing axis direction, and each groove 14 is a groove extending in the bearing axis direction, the retainer inner diameter surface 6a and the flange portion 11 are held. By the relative sliding movement with respect to the cage guide surface 11b, pressure is generated in the lubricating oil existing in the cage guide clearance δ2 and the groove 14, that is, dynamic pressure. Since the lubricating oil is smoothly guided along the groove 14 by this dynamic pressure action, the lubricity over the entire circumference of the cage guide surface 11b is further improved.

前記実施形態では、フェムト秒レーザを用いて凹凸面25を形成しているが、他の加工方法により凹凸面25を形成しても良い。
図3に示すように、例えば、遠心流動バレル研磨法により、チップを用いて被加工物の表面に丸い複数のくぼみ14Aを形成した後、洗浄し、さらにバレル研磨法により表面仕上げ処理を施し、表面の微小な凸を除去または丸めても良い。このように形成した凹凸面25のくぼみ14Aの深さを、保持器内径面6aと鍔部11の保持器案内面11bの最大面粗さの和と同程度に加工することで、凹凸面25に保持された潤滑油により固体同士の接触を生じることなく、正常に潤滑される。
また、ショットブラスト加工、ショットピーニング加工、エッチング、金型からの転写等によって凹凸面25を形成しても良い。ただし、これらの方法は、被加工物の材質により加工性が変化するため、被加工物の材質に応じた種々の調整が必要である。一方、フェムト秒レーザを用いた場合、被加工物の材質によらず加工可能であり、被加工物の材質を変更する際の工数低減を図れる。
In the embodiment, the concave / convex surface 25 is formed using a femtosecond laser, but the concave / convex surface 25 may be formed by other processing methods.
As shown in FIG. 3, for example, a centrifugal flow barrel polishing method is used to form a plurality of round recesses 14A on the surface of the workpiece using a tip, followed by washing, and a surface finishing process is performed by a barrel polishing method. Small convexities on the surface may be removed or rounded. By processing the depth of the recess 14 </ b> A of the uneven surface 25 formed in this way to the same degree as the sum of the maximum surface roughnesses of the retainer inner diameter surface 6 a and the cage guide surface 11 b of the flange portion 11, the uneven surface 25. The lubricating oil held in the cylinder is normally lubricated without causing contact between solids.
Further, the uneven surface 25 may be formed by shot blasting, shot peening, etching, transfer from a mold, or the like. However, these methods require various adjustments according to the material of the workpiece because the workability varies depending on the material of the workpiece. On the other hand, when a femtosecond laser is used, processing is possible regardless of the material of the workpiece, and man-hours when changing the material of the workpiece can be reduced.

図4に示すように、鍔部11の保持器案内面11bおよび保持器内径面6aに、凹凸面25を設けても良い。この場合、両凹凸面25に保持された潤滑油により固体同士の接触を生じることなく、図1のものより潤滑性に優れた構造にできる。
図5に示すように、保持器内径面6aのみに凹凸面25を設けても良い。保持器内径面6aに前記凹凸面25を設ける場合、保持器材料として、強度と密度の観点からマグネシウム合金を適用することが望ましい。
図6に示すように、溝14を、軸受軸方向L1に対して傾斜した方向に延びる溝としても良い。軸受運転時において、各溝14の傾斜角度αにより溝14に発生する動圧の効果をより高め潤滑性がさらに向上する。
As shown in FIG. 4, an uneven surface 25 may be provided on the cage guide surface 11 b and the cage inner diameter surface 6 a of the flange portion 11. In this case, the lubricating oil held on both the concave and convex surfaces 25 does not cause solids to contact each other, and a structure having better lubricity than that of FIG. 1 can be obtained.
As shown in FIG. 5, the uneven surface 25 may be provided only on the inner diameter surface 6a of the cage. When the concave / convex surface 25 is provided on the inner diameter surface 6a of the cage, it is desirable to apply a magnesium alloy as the cage material from the viewpoint of strength and density.
As shown in FIG. 6, the groove 14 may be a groove extending in a direction inclined with respect to the bearing axial direction L1. During the operation of the bearing, the effect of the dynamic pressure generated in the groove 14 by the inclination angle α of each groove 14 is further increased, and the lubricity is further improved.

図7に示すように、転がり軸受1がアンギュラ玉軸受であっても良い。この場合、ノズル部材3は、アンギュラ玉軸受の外輪背面側のみに配置され、外輪正面側には配置されない。また、ノズル部材3の鍔部11のノズル孔11aから、内輪4のカウンターボア部をなす斜面部4bに向けてエアオイルが吐出されるようになっている。その他の構成、作用効果は図1,2の例と同様である。   As shown in FIG. 7, the rolling bearing 1 may be an angular ball bearing. In this case, the nozzle member 3 is disposed only on the outer ring rear side of the angular ball bearing, and is not disposed on the outer ring front side. In addition, air oil is discharged from the nozzle hole 11 a of the flange portion 11 of the nozzle member 3 toward the slope portion 4 b forming the counter bore portion of the inner ring 4. Other configurations and operational effects are the same as those in the examples of FIGS.

図8は、前記実施形態の転がり軸受装置を備えた高速スピンドル装置の一例を示す。このスピンドル装置SMは工作機械に応用されるものであり、主軸15の前側(加工側)端部に工具またはワークのチャックが取付けられる。主軸15は、軸方向前側が2列1組のアンギュラ玉軸受型の転がり軸受装置(図7)により支持され、軸方向後側が円筒ころ軸受型の転がり軸受装置(図1(A))により支持されている。各転がり軸受1の内輪4は主軸15の外径面に嵌合し、外輪2は軸受箱Hsの内径面に嵌合している。   FIG. 8 shows an example of a high-speed spindle device provided with the rolling bearing device of the embodiment. The spindle device SM is applied to a machine tool, and a tool or workpiece chuck is attached to the front side (machining side) end of the spindle 15. The main shaft 15 is supported on the front side in the axial direction by a pair of angular ball bearing type rolling bearing devices (FIG. 7), and on the rear side in the axial direction by a cylindrical roller bearing type rolling bearing device (FIG. 1A). Has been. The inner ring 4 of each rolling bearing 1 is fitted to the outer diameter surface of the main shaft 15, and the outer ring 2 is fitted to the inner diameter surface of the bearing housing Hs.

主軸前側の転がり軸受1については、その内輪4が主軸15の段面15aにより、外輪2が外輪位置決め間座17aを介して押さえ蓋16Aにより、軸受箱Hs内に固定されている主軸後ろ側の転がり軸受1については、その内輪4が内輪位置決め間座17bにより、外輪3がノズル部材3を介して押さえ蓋16Bにより、軸受箱Hs内に固定されている。軸受箱Hsは、内周軸受箱HsAと外周軸受箱HsBの二重構造とされ、内外の軸受箱HsA,HsB間に冷却溝18が形成されている。両転がり軸受1の外輪2の他方の端面側にはそれぞれノズル部材3が配置され、これらノズル部材3,3間に内周軸受箱HsAが介在している。主軸15の後端部には、内輪位置決め間座17に押し当てて転がり軸受1を固定する軸受固定ナット19が螺着されている。   As for the rolling bearing 1 on the front side of the main shaft, the inner ring 4 is fixed in the bearing housing Hs by the stepped surface 15a of the main shaft 15 and the outer ring 2 is fixed in the bearing housing Hs by the pressing lid 16A through the outer ring positioning spacer 17a. As for the rolling bearing 1, the inner ring 4 is fixed in the bearing box Hs by an inner ring positioning spacer 17b, and the outer ring 3 is fixed by a pressing lid 16B through the nozzle member 3. The bearing housing Hs has a double structure of an inner circumferential bearing housing HsA and an outer circumferential bearing housing HsB, and a cooling groove 18 is formed between the inner and outer bearing housings HsA and HsB. Nozzle members 3 are arranged on the other end face side of the outer ring 2 of the both rolling bearings 1, and an inner peripheral bearing box HsA is interposed between the nozzle members 3 and 3. A bearing fixing nut 19 that presses against the inner ring positioning spacer 17 and fixes the rolling bearing 1 is screwed to the rear end portion of the main shaft 15.

前記押さえ蓋16A,16Bには、転がり軸受1をエアオイル潤滑する場合の供給源であるエアオイル供給装置20A,20Bからエアオイルを導入するエアオイル導入孔21がそれぞれ設けられ、これらエアオイル導入孔21は内周軸受箱HsAに設けられたエアオイル供給路22に連通している。また、押さえ蓋16A,16Bには排油孔23が設けられ、これら排油孔23は内周軸受箱HsAに設けられた排油路24に連通している。
このように構成されたスピンドル装置SMでは、前記転がり軸受装置を組み込んでいるため、供給油量を少なくして転動体5、軌道輪4,2間の転がり摩擦損失を低減することができると共に、保持器案内面に必要な潤滑油量を確保することができる。
The holding lids 16A and 16B are provided with air oil introduction holes 21 for introducing air oil from air oil supply devices 20A and 20B, which are supply sources when the rolling bearing 1 is air-oil lubricated, respectively. It communicates with an air oil supply path 22 provided in the bearing housing HsA. In addition, the holding lids 16A and 16B are provided with oil drain holes 23, and these oil drain holes 23 communicate with an oil drain passage 24 provided in the inner peripheral bearing box HsA.
In the spindle device SM configured as described above, since the rolling bearing device is incorporated, the amount of oil to be supplied can be reduced to reduce the rolling friction loss between the rolling element 5 and the race rings 4 and 2, The amount of lubricating oil required for the cage guide surface can be ensured.

1…転がり軸受
2…外輪
2a…軌道面
3…ノズル部材
4…内輪
4a…軌道面
5…転動体
6…保持器
11…鍔部
11a…ノズル孔
11b…保持器案内面
14…溝
25…凹凸面
DESCRIPTION OF SYMBOLS 1 ... Rolling bearing 2 ... Outer ring 2a ... Raceway surface 3 ... Nozzle member 4 ... Inner ring 4a ... Raceway surface 5 ... Rolling body 6 ... Retainer 11 ... Gutter 11a ... Nozzle hole 11b ... Retainer guide surface 14 ... Groove 25 ... Unevenness surface

Claims (11)

内外輪の軌道面間に、環状の保持器に保持された複数の転動体を介在させた転がり軸受と、前記外輪に隣接して設けられて内外輪間の軸受空間に潤滑剤を吐出するノズル部材とを備えた転がり軸受装置において、
前記ノズル部材に、前記軸受空間に挿入され潤滑剤のノズル孔を有する環状の鍔部を設け、この鍔部の外径面を前記保持器の内径面を案内する保持器案内面とし、前記保持器内径面および前記鍔部の保持器案内面のいずれか一方または両方を凹凸面としたことを特徴とする転がり軸受装置。
A rolling bearing in which a plurality of rolling elements held by an annular cage are interposed between the raceway surfaces of the inner and outer rings, and a nozzle that is provided adjacent to the outer ring and discharges lubricant into a bearing space between the inner and outer rings. In a rolling bearing device comprising a member,
The nozzle member is provided with an annular flange portion inserted into the bearing space and having a nozzle hole for lubricant, and the outer diameter surface of the flange portion is used as a cage guide surface for guiding the inner diameter surface of the cage, and the holding A rolling bearing device characterized in that either one or both of the inner diameter surface of the cage and the cage guide surface of the flange portion are uneven surfaces.
請求項1において、前記凹凸面は、少なくとも円周方向に定められたピッチで複数並べて形成して成る微細構造の周期構造である転がり軸受装置。   2. The rolling bearing device according to claim 1, wherein the irregular surface is a fine periodic structure formed by arranging a plurality of the concave and convex surfaces at least at a pitch determined in a circumferential direction. 請求項2において、前記各凹部が、軸受軸方向または軸受軸方向に対して傾斜した方向に延びる溝である転がり軸受装置。   The rolling bearing device according to claim 2, wherein each of the recesses is a groove extending in a bearing axis direction or a direction inclined with respect to the bearing axis direction. 請求項1ないし請求項3のいずれか1項において、前記凹凸面がフェムト秒レーザを用いて加工された面である転がり軸受装置。   The rolling bearing device according to claim 1, wherein the uneven surface is a surface processed using a femtosecond laser. 請求項1ないし請求項4のいずれか1項において、前記鍔部の保持器案内面のみに、前記凹凸面を設けた転がり軸受装置。   The rolling bearing device according to any one of claims 1 to 4, wherein the uneven surface is provided only on the cage guide surface of the flange portion. 請求項1ないし請求項4のいずれか1項において、前記保持器が、積層フェノール樹脂またはポリアミドまたはPEEKから成り、この保持器における前記保持器内径面に前記凹凸面を設けた転がり軸受装置。   The rolling bearing device according to any one of claims 1 to 4, wherein the cage is made of laminated phenolic resin, polyamide, or PEEK, and the concave and convex surfaces are provided on the inner diameter surface of the cage in the cage. 請求項1ないし請求項4のいずれか1項において、前記保持器が、鋼または銅合金またはマグネシウム合金から成り、この保持器における前記保持器内径面に前記凹凸面を設けた転がり軸受装置。   5. The rolling bearing device according to claim 1, wherein the cage is made of steel, a copper alloy, or a magnesium alloy, and the concave / convex surface is provided on the inner diameter surface of the cage in the cage. 請求項1ないし請求項7のいずれか1項において、前記転がり軸受がアンギュラ玉軸受である転がり軸受装置。   The rolling bearing device according to claim 1, wherein the rolling bearing is an angular ball bearing. 請求項1ないし請求項7のいずれか1項において、前記転がり軸受が円筒ころ軸受である転がり軸受装置。   The rolling bearing device according to any one of claims 1 to 7, wherein the rolling bearing is a cylindrical roller bearing. 請求項8または請求項9において、前記ノズル部材のノズル孔から吐出する潤滑剤がエアオイルである転がり軸受装置。   The rolling bearing device according to claim 8 or 9, wherein the lubricant discharged from the nozzle hole of the nozzle member is air oil. 請求項8ないし請求項10のいずれか1項において、工作機械の主軸の支持に用いられるものである転がり軸受装置。
11. The rolling bearing device according to claim 8, wherein the rolling bearing device is used for supporting a main shaft of a machine tool.
JP2009291753A 2009-12-24 2009-12-24 Rolling bearing device Pending JP2011132999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291753A JP2011132999A (en) 2009-12-24 2009-12-24 Rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291753A JP2011132999A (en) 2009-12-24 2009-12-24 Rolling bearing device

Publications (1)

Publication Number Publication Date
JP2011132999A true JP2011132999A (en) 2011-07-07

Family

ID=44345959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291753A Pending JP2011132999A (en) 2009-12-24 2009-12-24 Rolling bearing device

Country Status (1)

Country Link
JP (1) JP2011132999A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018002227T5 (en) 2017-04-28 2020-01-09 Ntn Corporation Angular contact ball bearing holder and angular contact ball bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018002227T5 (en) 2017-04-28 2020-01-09 Ntn Corporation Angular contact ball bearing holder and angular contact ball bearing

Similar Documents

Publication Publication Date Title
JP2010164122A (en) Angular ball bearing
JP2007107588A (en) Rolling bearing
US20120033907A1 (en) Roller bearing
US10634186B2 (en) Ball bearing, spindle device, and machine tool
JP2009121659A (en) Rolling member
JP2007321802A (en) Conical roller bearing
JP2008223942A (en) Rolling bearing
JP5675263B2 (en) Rolling bearing
JP2007024252A (en) Lubricating device of rolling bearing
KR20210044827A (en) Rolling bearings and spindle units equipped with the rolling bearings
JP2011133000A (en) Cylindrical roller bearing device
JP2011132999A (en) Rolling bearing device
JP2009287678A (en) Roller bearing and bearing structure
JP2009115187A (en) Rolling member
JP2009162341A (en) Rolling bearing
JP2007192330A (en) Rolling bearing
JP2006226427A (en) Rolling bearing
JP2011133060A (en) Rolling bearing
JP2005180629A (en) Rolling bearing
JP2008298144A (en) Method of processing of rolling contact surface
JP2010038351A (en) Rolling bearing
JP2005299757A (en) Rolling bearing
JP2008082497A (en) Lubricating device of roll bearing
JP5351686B2 (en) Roller bearing
JP2007255536A (en) Tapered roller bearing, spacer, and spindle supporting structure of wind power generator