JP2011133000A - Cylindrical roller bearing device - Google Patents

Cylindrical roller bearing device Download PDF

Info

Publication number
JP2011133000A
JP2011133000A JP2009291754A JP2009291754A JP2011133000A JP 2011133000 A JP2011133000 A JP 2011133000A JP 2009291754 A JP2009291754 A JP 2009291754A JP 2009291754 A JP2009291754 A JP 2009291754A JP 2011133000 A JP2011133000 A JP 2011133000A
Authority
JP
Japan
Prior art keywords
cylindrical roller
roller bearing
bearing device
bearing
nozzle member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009291754A
Other languages
Japanese (ja)
Inventor
Masatsugu Mori
正継 森
Hiroki Fujiwara
宏樹 藤原
Tetsuto Ishii
哲人 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2009291754A priority Critical patent/JP2011133000A/en
Publication of JP2011133000A publication Critical patent/JP2011133000A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical roller bearing device which reduces the manufacturing cost of a constitutive component such as a bearing ring, and provides a high-speed bearing. <P>SOLUTION: This cylindrical roller bearing device includes a cylindrical roller bearing 1 interposed with a plurality of cylindrical rollers 5 held by an annular retainer 6, between raceway surfaces 4a, 2a of inner and outer rings 4, 2, and a nozzle member 3 provided adjacent to axial-directional both sides of the outer ring 2 for delivering a lubricant into a bearing space between the inner and outer rings 4, 2. The inner ring 4 is constituted to have no flange part, the nozzle part 3 is provided with an annular flange part 8 inserted into the bearing space and having a nozzle hole 8a for the lubricant, and the tip face of the flange part 8 is made to serve as a roller guide face 8c for guiding the end face of each cylindrical roller 5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、例えば、工作機械の主軸等に使用する円筒ころ軸受に関し、従来技術による軸受機能を維持させながら、軸受加工の容易性、構成部品の点数削減に着目した技術に関する。   The present invention relates to a cylindrical roller bearing used for a main shaft of a machine tool, for example, and relates to a technique that focuses on ease of bearing processing and reduction in the number of components while maintaining a conventional bearing function.

一般に工作機械の主軸には、アンギュラ玉軸受と円筒ころ軸受とが組合されて使用される場合が多い。これらの軸受には、製品の加工精度を確保するための剛性と、加工効率向上のための高速化が要求される。アンギュラ玉軸受は、高速性に優れるが、剛性の面で円筒ころ軸受に比べ劣る。一方、円筒ころ軸受は、剛性では優れているもののアンギュラ玉軸受に比べ高速性で劣っている。すなわち、主軸の高剛性と高速性とを両立させるためには、アンギュラ玉軸受と併用される円筒ころ軸受の高速化が必要不可欠となってきている。   In general, angular ball bearings and cylindrical roller bearings are often used in combination on the spindle of a machine tool. These bearings are required to have rigidity for ensuring the processing accuracy of the product and high speed for improving processing efficiency. Angular contact ball bearings are excellent in high speed performance, but are inferior to cylindrical roller bearings in terms of rigidity. On the other hand, although the cylindrical roller bearing is excellent in rigidity, it is inferior in high-speed performance compared with the angular ball bearing. That is, in order to achieve both high rigidity and high speed of the main shaft, it is indispensable to increase the speed of the cylindrical roller bearing used in combination with the angular ball bearing.

円筒ころ軸受の高速性を阻害している主要因として、
(1)運転中の内輪膨張(温度上昇および遠心力による)に起因する予圧の増大、
(2)ころ端面と滑り接触するつば部および保持器案内部の潤滑、
の2点が考えられる。このような阻害要因に対して、本件出願人は改良技術(特許文献1)を提案している。
As a main factor hindering the high speed of cylindrical roller bearings,
(1) Increase in preload due to inner ring expansion (due to temperature rise and centrifugal force) during operation,
(2) Lubrication of the flange portion and the cage guide portion that are in sliding contact with the roller end surface;
There are two possible points. The present applicant has proposed an improved technique (Patent Document 1) for such an obstruction factor.

この改良技術の対象とする円筒ころ軸受は、内輪側にころ案内用のつば部を有するいわゆるN形構造となっている。細部の構成は、外輪の両側に外輪の位置決め間座を配置し、各位置決め間座の内径側に、潤滑剤を吐出するノズル部材を前記位置決め間座と別体で設けている。前記ノズル部材の外径面で保持器の内径面を案内する。この案内方式を採用することで、案内面での潤滑油確保および保持器挙動の安定化等に有効となる。また、軸受の高速化を目的に、セラミックスからなる内輪を適用し、運転中の内輪膨張量を抑制できる技術も開示されている。   The cylindrical roller bearing which is an object of this improved technology has a so-called N-type structure having a roller guide collar on the inner ring side. In the detailed configuration, positioning spacers for the outer ring are arranged on both sides of the outer ring, and a nozzle member for discharging a lubricant is provided separately from the positioning spacer on the inner diameter side of each positioning spacer. The inner diameter surface of the cage is guided by the outer diameter surface of the nozzle member. Adopting this guide system is effective for securing lubricating oil on the guide surface and stabilizing the cage behavior. In addition, for the purpose of speeding up the bearing, a technique is also disclosed in which an inner ring made of ceramics is applied and the amount of expansion of the inner ring during operation can be suppressed.

特願2008−162439Japanese Patent Application No. 2008-162439

円筒ころ軸受を高速で運転するための技術要素として、運転中の内輪膨張に起因する予圧増大を抑制すること、また、潤滑油を必要とする箇所に確実に供給することが重要である。
前記内輪側にころ案内用のつば部を有する円筒ころ軸受では、内輪形状が複雑となるN形構造であるため、成形自体が容易でなくその成形後の機械加工に手間がかかる。このため、製作コストが高くなってしまう。製作コストの低減を図るには、内輪形状を簡素化できるつば部のないいわゆるNU形構造とすることが考えられる。しかし、NU形構造にすることは、外輪側につば部を有することになる。この場合、外輪軌道部での油滞留に起因した発熱原因にもなりかねない。このような油滞留に起因する発熱は、軸受温度の高温化を招き、工作機械主軸用途では、加工精度の低下につながる。
As technical elements for operating the cylindrical roller bearing at a high speed, it is important to suppress an increase in preload due to the expansion of the inner ring during operation and to reliably supply the lubricating oil to a place where the lubricating oil is required.
The cylindrical roller bearing having a roller guide flange on the inner ring side has an N-shaped structure that complicates the inner ring shape. Therefore, the molding itself is not easy and the machining after the molding takes time. This increases the manufacturing cost. In order to reduce the manufacturing cost, it is conceivable to use a so-called NU type structure without a collar portion that can simplify the inner ring shape. However, the NU type structure has a collar portion on the outer ring side. In this case, it may cause heat generation due to oil retention in the outer ring raceway. Such heat generation due to oil retention leads to a high bearing temperature, which leads to a decrease in machining accuracy in machine tool spindle applications.

この発明の目的は、軌道輪等の構成部品の製作コストの低減を図れ、且つ、軸受の高速化を図ることができる円筒ころ軸受装置を提供することである。   An object of the present invention is to provide a cylindrical roller bearing device capable of reducing the manufacturing cost of components such as a bearing ring and increasing the speed of the bearing.

この発明の円筒ころ軸受装置は、内外輪の軌道面間に、環状の保持器に保持された複数の円筒ころを介在させた円筒ころ軸受と、前記外輪の軸方向両側に隣接して設けられ、内外輪間の軸受空間に潤滑剤を吐出するノズル部材とを備えた円筒ころ軸受装置において、前記内輪、外輪はつば部無しとし、前記ノズル部材に、前記軸受空間に挿入され潤滑剤のノズル孔を有する環状の鍔部を設け、この鍔部の先端面を、内輪側または外輪側に配置し、前記円筒ころの端面を案内するころ案内面としたことを特徴とする。   The cylindrical roller bearing device according to the present invention is provided adjacent to both sides of the outer ring in the axial direction, and a cylindrical roller bearing in which a plurality of cylindrical rollers held by an annular cage are interposed between the raceway surfaces of the inner and outer rings. A cylindrical roller bearing device including a nozzle member for discharging a lubricant into a bearing space between the inner and outer rings, wherein the inner ring and the outer ring have no collar portion, and the nozzle member is inserted into the bearing space and is a nozzle for the lubricant An annular flange having a hole is provided, and a tip end surface of the flange is disposed on the inner ring side or the outer ring side to serve as a roller guide surface that guides the end surface of the cylindrical roller.

この構成によると、軸受運転時、円筒ころの端面は、外輪の軸方向両側に配置されたノズル部材の鍔部の先端面に案内される。このように、ノズル部材の鍔部の先端面を、円筒ころの端面を案内するころ案内面としたため、内外輪に円筒ころを案内するつば部を設ける必要がなくなる。それ故、内外輪の形状を従来技術のものより簡単化することができる。特に、内輪をつば部無しとしたため、内輪を容易に成形することができ、この内輪成形後の機械加工等の工数低減を図ることが可能となる。したがって、内輪を一般的な軸受鋼等よりも例えば線膨張係数が低く密度等の小さい種々の材料を用いて製作することができる。このような材料から成る内輪を用いた軸受により、軸受の高速化を図ることができる。
また、鍔部の先端面をころ案内面とすることで、外輪もつば部無しとすることが可能となる。この場合、製作コストの低減をさらに図ることが可能となる。しかも、外輪の軌道部に油排出に対して障害物となるつば部が無いため、軸受から容易に油の排出を行うことができる。その結果、外輪の軌道部における油の滞留を抑制でき、油滞留に起因する発熱等の不具合を解消することが可能となる。これにより、工作機械主軸用途において、加工精度を高精度に維持することができる。
According to this configuration, during the bearing operation, the end surface of the cylindrical roller is guided to the front end surface of the collar portion of the nozzle member disposed on both axial sides of the outer ring. Thus, since the tip end surface of the collar portion of the nozzle member is a roller guide surface that guides the end surface of the cylindrical roller, there is no need to provide a collar portion for guiding the cylindrical roller on the inner and outer rings. Therefore, the shape of the inner and outer rings can be simplified from that of the prior art. In particular, since the inner ring has no collar portion, the inner ring can be easily formed, and the number of processes such as machining after the inner ring can be reduced. Therefore, the inner ring can be manufactured using various materials having a lower linear expansion coefficient and a lower density than general bearing steel. A bearing using an inner ring made of such a material can increase the speed of the bearing.
In addition, by using the roller guide surface as the front end surface of the collar portion, it is possible to eliminate the outer ring collar portion. In this case, the manufacturing cost can be further reduced. In addition, since the outer ring raceway portion does not have a brim that becomes an obstacle to oil discharge, the oil can be easily discharged from the bearing. As a result, oil stagnation in the raceway portion of the outer ring can be suppressed, and problems such as heat generation due to oil stagnation can be solved. Thereby, in the machine tool spindle application, the machining accuracy can be maintained with high accuracy.

前記外輪の軸方向両側に、外輪位置決め間座をそれぞれ配置し、各外輪位置決め間座の内周側部分に、前記ノズル部材を一体に設けても良い。この場合、部品点数の低減を図り、円筒ころ軸受装置の構造を簡単化することができる。またこの場合、ノズル部材を外輪位置決め間座と別体に設けたものより、組立ての工数削減を図ることができる。   Outer ring positioning spacers may be arranged on both sides in the axial direction of the outer ring, and the nozzle member may be integrally provided on the inner peripheral side portion of each outer ring positioning spacer. In this case, the number of parts can be reduced, and the structure of the cylindrical roller bearing device can be simplified. In this case, the number of assembling steps can be reduced as compared with the nozzle member provided separately from the outer ring positioning spacer.

前記内輪の外径面に、軌道面側が大径となる斜面部を設け、前記ノズル部材の前記鍔部に設けられたノズル孔を、前記内輪の斜面部に向けて潤滑剤を吐出させるものとしても良い。この場合、ノズル孔から内輪の斜面部に向けて吐出された潤滑剤は、内輪の回転による遠心力と表面張力とにより内輪の斜面部に付着しながら軸受内へと導かれる。このように軸受内へ潤滑剤を円滑に導入することができる。   Provided on the outer diameter surface of the inner ring is a slope portion having a large diameter on the raceway surface, and the nozzle hole provided in the flange portion of the nozzle member discharges the lubricant toward the slope portion of the inner ring. Also good. In this case, the lubricant discharged from the nozzle hole toward the inclined surface portion of the inner ring is guided into the bearing while adhering to the inclined surface portion of the inner ring due to the centrifugal force and surface tension caused by the rotation of the inner ring. Thus, the lubricant can be smoothly introduced into the bearing.

前記鍔部の内径面または外径面を、前記保持器の周面を案内する保持器案内面としても良い。この場合、保持器の振れ回りが大きくなったり、円筒ころとの干渉で同円筒ころを保持する保持器ポケットが損傷するといった問題を解消することができる。この場合の保持器の案内方式では、外輪案内方式と比較して案内面での滑り速度が小さいため、軸受動力損失も小さく、それだけ軸受温度も抑えられ、予圧管理等の面でも有利である。   The inner diameter surface or the outer diameter surface of the flange may be a cage guide surface that guides the peripheral surface of the cage. In this case, it is possible to solve the problems that the swinging of the cage increases and the cage pocket holding the cylindrical roller is damaged due to interference with the cylindrical roller. In this case, the cage guide method has a lower sliding speed on the guide surface than the outer ring guide method, so that the bearing power loss is reduced, the bearing temperature can be suppressed, and this is advantageous in terms of preload management.

前記鍔部の先端面に、外径側が前記円筒ころの端面から離れるように、前記円筒ころの端面に対する逃げ角を設けても良い。この場合、軸受の運転中に生じ得るスキュー,踊り等の不整運動に対応した前記逃げ角とすることで、不整運動発生による円筒ころの端面と、鍔部の先端面との異常接触を回避することができる。   You may provide the clearance angle with respect to the end surface of the said cylindrical roller in the front end surface of the said collar part so that an outer diameter side may leave | separate from the end surface of the said cylindrical roller. In this case, by using the clearance angle corresponding to irregular motion such as skew and dance that can occur during the operation of the bearing, abnormal contact between the end surface of the cylindrical roller and the distal end surface of the collar portion due to the occurrence of irregular motion is avoided. be able to.

前記ノズル部材の前記鍔部のうち少なくとも案内面となる部分に、熱処理を施したものであっても良い。ノズル部材の鍔部の前記案内面は、軸受の運転中接触しながら滑るため耐摩耗性等に配慮する必要がある。前記鍔部のうち少なくとも案内面となる部分に、熱処理を施したため、鍔部の案内面の表面硬度を熱処理前よりも高くすることができる。これにより、鍔部の案内面の耐摩耗性を向上させ得る。   A heat treatment may be applied to at least a portion of the flange portion of the nozzle member that serves as a guide surface. Since the guide surface of the collar portion of the nozzle member slides while in contact with the bearing during operation, it is necessary to consider wear resistance and the like. Since the heat treatment is performed on at least a portion of the flange portion that becomes the guide surface, the surface hardness of the guide surface of the flange portion can be made higher than that before the heat treatment. Thereby, the abrasion resistance of the guide surface of a collar part can be improved.

前記ノズル部材の前記鍔部のうち案内面に、硬質クロムメッキを施してなるものであっても良い。この場合、鍔部の案内面の表面硬度を高くすることができ、鍔部の案内面の耐摩耗性を向上させ得る。   The guide surface of the flange portion of the nozzle member may be subjected to hard chrome plating. In this case, the surface hardness of the guide surface of the collar portion can be increased, and the wear resistance of the guide surface of the collar portion can be improved.

前記ノズル部材の前記鍔部の案内面を凹凸面としても良い。この場合、凹凸面に潤滑油が保持され、前記案内面の潤滑性の向上を図ることができる。
前記凹凸面がフェムト秒レーザを用いて加工された面であっても良い。前記鍔部の案内面に、フェムト秒レーザと呼ばれる極短パルスのレーザ光を照射する。そうすると、レーザ光の干渉作用により波長に応じた周期で、通常0.1μm以上1μm以下の深さの微細加工面が形成される。この微細加工面に潤滑油が確実に保持される。
The guide surface of the flange portion of the nozzle member may be an uneven surface. In this case, lubricating oil is held on the uneven surface, and the lubricity of the guide surface can be improved.
The uneven surface may be a surface processed using a femtosecond laser. An extremely short pulse laser beam called a femtosecond laser is irradiated on the guide surface of the collar. Then, a finely processed surface having a depth of usually 0.1 μm or more and 1 μm or less is formed with a period according to the wavelength by the interference action of the laser light. Lubricating oil is reliably held on this finely processed surface.

前記ノズル部材の前記鍔部のうち少なくとも案内面となる部分に、熱処理を施したものである場合において、前記ノズル部材の前記鍔部のうち案内面に、DLCの被膜処理を施してなるものとしても良い。この場合、鍔部の案内面の低摩擦性を向上させることができる。   In the case where heat treatment is performed on at least a portion of the flange portion of the nozzle member that serves as a guide surface, the guide surface of the flange portion of the nozzle member is subjected to DLC coating treatment. Also good. In this case, the low friction property of the guide surface of the collar part can be improved.

前記保持器案内面とした前記鍔部の内径面または外径面に、軸受軸方向または軸受軸方向に対して傾斜した方向に延びる溝を設けても良い。この場合、保持器の周面と、鍔部の内径面または外径面との相対すべり運動によって、保持器案内すきま及び前記溝に存在する潤滑油に圧力つまり動圧を発生させる。この動圧作用により潤滑油が溝に沿って円滑に導かれるため、保持器案内面の全周にわたる潤滑性がさらに向上する。特に、前記溝が軸受軸方向に対して傾斜した方向に延びる場合、前述の相対すべり運動によって動圧をより効果的に発生させることが可能となる。   A groove extending in the bearing axial direction or in a direction inclined with respect to the bearing axial direction may be provided on the inner diameter surface or the outer diameter surface of the flange as the cage guide surface. In this case, pressure, that is, dynamic pressure, is generated in the lubricating oil existing in the cage guide clearance and the groove by the relative sliding movement between the circumferential surface of the cage and the inner diameter surface or outer diameter surface of the flange portion. Since the lubricating oil is smoothly guided along the groove by this dynamic pressure action, the lubricity over the entire circumference of the cage guide surface is further improved. In particular, when the groove extends in a direction inclined with respect to the bearing shaft direction, the dynamic pressure can be generated more effectively by the above-described relative sliding motion.

前記内輪および円筒ころのいずれか一方または両方がセラミックスで構成されていても良い。
前記セラミックスはSi6-ZAL8−Zの組成式で表され、0.1≦Z≦3.5を満たすβサイアロンを主成分とする焼結体であっても良い。
セラミックスが窒化けい素を主成分とする焼結体である場合を例にとって説明する。
内輪と外輪の双方を鋼で構成した転がり軸受(鋼製内輪タイプ)と、内輪を窒化けい素、外輪を鋼で構成した転がり軸受(セラミックス製内輪タイプ)とを比較する。鋼の線膨張係数は約11×10−6、窒化けい素の線膨張係数は約3.2×10−6であるから、運転時には内輪の方が外輪よりも温度が高いと想定すると、セラミックス製内輪タイプは鋼製内輪タイプと比較して、運転時における転動体と内外輪間の径方向すきま(工作機械では通常は負すきま)が大きい(負の値としての絶対値が小さい)。そのため、セラミックス製内輪タイプは、予圧過大現象を緩和することができ、高速回転性能に優れる。予圧過大現象は、転動体を径方向に過度に圧縮する現象であり、転がり軸受の高速回転性を阻害する大きな要因である。
Either one or both of the inner ring and the cylindrical roller may be made of ceramics.
The ceramic is represented by a composition formula of Si 6-Z AL Z O Z N 8-Z, it may be a sintered body mainly composed of β-sialon satisfying 0.1 ≦ Z ≦ 3.5.
The case where the ceramic is a sintered body mainly composed of silicon nitride will be described as an example.
A comparison is made between a rolling bearing (steel inner ring type) in which both the inner ring and the outer ring are made of steel, and a rolling bearing (ceramic inner ring type) in which the inner ring is made of silicon nitride and the outer ring is made of steel. Since the linear expansion coefficient of steel is about 11 × 10 −6 and that of silicon nitride is about 3.2 × 10 −6, it is assumed that the temperature of the inner ring is higher than that of the outer ring during operation. The inner ring type has a larger radial clearance (usually a negative clearance on machine tools) between the rolling elements and the inner and outer rings during operation than the steel inner ring type (the absolute value as a negative value is small). Therefore, the ceramic inner ring type can alleviate the excessive preload phenomenon and is excellent in high-speed rotation performance. The excessive preload phenomenon is a phenomenon in which the rolling elements are excessively compressed in the radial direction, and is a major factor that hinders the high-speed rotation performance of the rolling bearing.

鋼の密度は7.8×10kg/m、窒化けい素の密度は3.2×10kg/mであるから、両者の密度の差を考えると、遠心膨張による予圧過大に対しても、セラミックス製内輪タイプは鋼製内輪タイプと比較して、特に高速回転時に有利である。
さらに、鋼のヤング率は約210GPa、窒化けい素のヤング率は約314GPaであるから、セラミックス製内輪タイプは鋼製内輪タイプと比較して、軸受剛性の面でも有利である。
Since the density of steel is 7.8 × 10 3 kg / m 3 and the density of silicon nitride is 3.2 × 10 3 kg / m 3 , considering the difference in density between the two, excessive preload due to centrifugal expansion On the other hand, the ceramic inner ring type is particularly advantageous during high-speed rotation as compared with the steel inner ring type.
Furthermore, since the Young's modulus of steel is about 210 GPa and the Young's modulus of silicon nitride is about 314 GPa, the inner ring type made of ceramic is more advantageous in terms of bearing rigidity than the inner ring type made of steel.

上の説明は、セラミックスが窒化けい素を主成分とする焼結体である場合についてであるが、セラミックスがβサイアロンを主成分とする焼結体である場合についてもほぼ同様のことが言える。加えて、βサイアロンを主成分とする焼結体は、窒化けい素を主成分とする焼結体よりも低コストで製造できるという利点がある。   The above explanation is about the case where the ceramic is a sintered body mainly composed of silicon nitride, but the same can be said about the case where the ceramic is a sintered body mainly composed of β sialon. In addition, a sintered body mainly composed of β sialon has an advantage that it can be manufactured at a lower cost than a sintered body mainly composed of silicon nitride.

内輪をセラミックスで構成する場合、さらに高速化するためには、転動体をセラミックスとするのが良い。前記転動体もセラミックスで構成する場合、前記転動体が、前記内輪とは種類の異なるセラミックスで構成されていても良い。
転動体もセラミックスで構成すれば、内輪をセラミックスで構成した場合と同様に、熱膨張や遠心膨張による予圧過大に対して高速回転時に有利であるため、さらなる軸受の高速化が図れる。その場合、製造面の便宜等を考えて、内輪と転動体とを異なる種類のセラミックスで構成することができる。
When the inner ring is made of ceramics, the rolling elements are preferably made of ceramics in order to further increase the speed. When the rolling element is also composed of ceramics, the rolling element may be composed of ceramics of a different type from the inner ring.
If the rolling elements are also made of ceramics, as in the case where the inner ring is made of ceramics, it is advantageous at the time of high-speed rotation against excessive preload due to thermal expansion or centrifugal expansion, so that the speed of the bearing can be further increased. In that case, the inner ring and the rolling element can be made of different types of ceramics in consideration of manufacturing convenience and the like.

前記ノズル部材のノズル孔から潤滑剤を吐出させる方式が、エアオイル潤滑方式またはオイルミスト潤滑方式であっても良い。エアオイル潤滑方式の場合、微量潤滑が行い易く、空気による冷却効果を得ることが可能となる。   The method of discharging the lubricant from the nozzle hole of the nozzle member may be an air oil lubrication method or an oil mist lubrication method. In the case of the air-oil lubrication method, a minute amount of lubrication is easy to perform, and a cooling effect by air can be obtained.

円筒ころ軸受装置が工作機械の主軸の支持に用いられるものであっても良い。この場合、構成部品の製作コストの低減を図れ、且つ、主軸の高速化を図ることが可能となる。   A cylindrical roller bearing device may be used for supporting the spindle of the machine tool. In this case, it is possible to reduce the manufacturing cost of the component parts and to increase the speed of the spindle.

この発明の円筒ころ軸受装置は、内外輪の軌道面間に、環状の保持器に保持された複数の円筒ころを介在させた円筒ころ軸受と、前記外輪の軸方向両側に隣接して設けられ、内外輪間の軸受空間に潤滑剤を吐出するノズル部材とを備えた円筒ころ軸受装置において、前記内輪、外輪はつば部無しとし、前記ノズル部材に、前記軸受空間に挿入され潤滑剤のノズル孔を有する環状の鍔部を設け、この鍔部の先端面を、内輪側または外輪側に配置し、前記円筒ころの端面を案内するころ案内面としたため、軌道輪等の構成部品の製作コストの低減を図れ、且つ、軸受の高速化を図ることができる。   The cylindrical roller bearing device according to the present invention is provided adjacent to both sides of the outer ring in the axial direction, and a cylindrical roller bearing in which a plurality of cylindrical rollers held by an annular cage are interposed between the raceway surfaces of the inner and outer rings. A cylindrical roller bearing device including a nozzle member for discharging a lubricant into a bearing space between the inner and outer rings, wherein the inner ring and the outer ring have no collar portion, and the nozzle member is inserted into the bearing space and is a nozzle for the lubricant An annular flange having a hole is provided, and the tip surface of this flange is arranged on the inner ring side or the outer ring side, and is a roller guide surface that guides the end surface of the cylindrical roller. Can be reduced, and the speed of the bearing can be increased.

この発明の一実施形態に係る円筒ころ軸受装置の断面図である。It is sectional drawing of the cylindrical roller bearing apparatus which concerns on one Embodiment of this invention. (A)は同円筒ころ軸受装置の要部の拡大断面図、(B)は同円筒ころ軸受装置におけるノズル部材の鍔部の案内面等を拡大して示す断面図である。(A) is an expanded sectional view of the principal part of the cylindrical roller bearing device, and (B) is an enlarged sectional view showing the guide surface of the flange portion of the nozzle member in the cylindrical roller bearing device. (A)はこの発明の他の実施形態に係る円筒ころ軸受装置の断面図、(B)は同円筒ころ軸受装置におけるノズル部材の鍔部の案内面等を拡大して示す断面図である。(A) is sectional drawing of the cylindrical roller bearing apparatus which concerns on other embodiment of this invention, (B) is sectional drawing which expands and shows the guide surface etc. of the collar part of the nozzle member in the cylindrical roller bearing apparatus. この発明のさらに他の実施形態に係る円筒ころ軸受装置の要部の拡大断面図である。It is an expanded sectional view of the principal part of the cylindrical roller bearing device which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る円筒ころ軸受装置の要部の拡大断面図である。It is an expanded sectional view of the principal part of the cylindrical roller bearing device which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る円筒ころ軸受装置の要部の拡大断面図である。It is an expanded sectional view of the principal part of the cylindrical roller bearing device which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る円筒ころ軸受装置の要部の拡大断面図である。It is an expanded sectional view of the principal part of the cylindrical roller bearing device which concerns on other embodiment of this invention. この発明のさらに他の実施形態に係る円筒ころ軸受装置の要部の拡大平面図である。It is an enlarged plan view of the principal part of the cylindrical roller bearing device which concerns on other embodiment of this invention. この発明の実施形態の円筒ころ軸受装置を備えた高速スピンドル装置の断面図である。It is sectional drawing of the high-speed spindle apparatus provided with the cylindrical roller bearing apparatus of embodiment of this invention.

この発明の一実施形態を図1および図2と共に説明する。
この実施形態に係る円筒ころ軸受装置は、工作機械の主軸軸受として用いられる。同円筒ころ軸受装置は、円筒ころ軸受1と、この円筒ころ軸受1の外輪2に隣接して設けたノズル部材3とを備えている。転がり軸受1は、内輪4と、外輪2と、これら内外輪4,2の軌道面4a,2a間に介在させた複数の円筒ころ5と、これら円筒ころ5を円周方向一定間隔おきに保持する環状の保持器6とを有する。保持器6は、例えば、積層フェノール樹脂,ポリアミド,PEEK等の樹脂材料や、鋼、銅合金、マグネシウム合金等から成る。
An embodiment of the present invention will be described with reference to FIGS.
The cylindrical roller bearing device according to this embodiment is used as a main shaft bearing of a machine tool. The cylindrical roller bearing device includes a cylindrical roller bearing 1 and a nozzle member 3 provided adjacent to the outer ring 2 of the cylindrical roller bearing 1. The rolling bearing 1 includes an inner ring 4, an outer ring 2, a plurality of cylindrical rollers 5 interposed between the raceway surfaces 4 a and 2 a of the inner and outer rings 4 and 2, and these cylindrical rollers 5 held at regular intervals in the circumferential direction. And an annular cage 6. The cage 6 is made of, for example, a resin material such as laminated phenol resin, polyamide, PEEK, steel, copper alloy, magnesium alloy, or the like.

内輪4は、図示外の主軸の外径面に嵌合する。内輪4はつば部無しとし、この内輪4における、軌道面4aの軸方向両側の外径面には、内輪端面側から軌道面4a側に向かうに従って大径となる斜面部4bがそれぞれ設けられている。よって、内輪外径面は、一方の斜面部4bに、軌道面4aを介して他方の斜面部4bが繋がる。   The inner ring 4 is fitted to the outer diameter surface of the main shaft (not shown). The inner ring 4 has no collar portion, and the outer ring surface of the inner ring 4 on both sides in the axial direction of the raceway surface 4a is provided with a slope portion 4b that increases in diameter from the inner ring end surface side toward the raceway surface 4a side. Yes. Accordingly, the outer ring surface of the inner ring is connected to the one inclined surface portion 4b through the raceway surface 4a.

外輪2は、図示外の軸受箱内に固定される。この外輪2はつば部無しとしている。外輪2の軸方向両側には、外輪端面に隣接して外輪位置決め間座7がそれぞれ配置され、各外輪位置決め間座7の内径側部分に、後述のノズル部材3が一体に設けられている。この外輪2における、軌道面2aの軸方向両側の内径面には、外輪端面側から軌道面2a側に向かうに従って小径となる斜面部2bがそれぞれ設けられている。よって、外輪内径面は、一方の斜面部2bに、軌道面2aを介して他方の斜面部2bが繋がる。また、この例では、これら内外輪2,4は軸受鋼から成るが、軸受鋼に限定されるものではない。   The outer ring 2 is fixed in a bearing box (not shown). The outer ring 2 has no collar portion. Outer ring positioning spacers 7 are respectively disposed on both sides in the axial direction of the outer ring 2 adjacent to the outer ring end face, and a nozzle member 3 described later is integrally provided on the inner diameter side portion of each outer ring positioning spacer 7. In the outer ring 2, on the inner diameter surfaces on both sides in the axial direction of the raceway surface 2a, slope portions 2b having a smaller diameter from the outer ring end surface side toward the raceway surface 2a side are provided. Therefore, the inner ring surface of the outer ring is connected to one inclined surface portion 2b via the raceway surface 2a. In this example, the inner and outer rings 2 and 4 are made of bearing steel, but are not limited to bearing steel.

前記ノズル部材3を含む外輪位置決め間座7は、例えば、軸受鋼等からなり、前記軸受箱内に固定される。外輪位置決め間座7により外輪2の軸方向位置が位置決めされる。ノズル部材3は、内外輪1,2間の軸受空間に潤滑剤を吐出するものであり、この潤滑剤として、搬送エアに潤滑油を混入したエアオイルが用いられる。このノズル部材3は、軸受空間に挿入されエアオイルのノズル孔8aを有する環状の鍔部8と、この鍔部8に一体に設けられるノズル部材本体9とを有する。このノズル部材本体9の外径側部分が、外輪位置決め間座7の内径側部分に一体形成されている。   The outer ring positioning spacer 7 including the nozzle member 3 is made of bearing steel or the like, for example, and is fixed in the bearing box. The outer ring positioning spacer 7 positions the outer ring 2 in the axial direction. The nozzle member 3 discharges a lubricant into the bearing space between the inner and outer rings 1 and 2, and as this lubricant, air oil in which lubricating oil is mixed into the carrier air is used. The nozzle member 3 includes an annular flange 8 inserted into the bearing space and having an air oil nozzle hole 8a, and a nozzle member main body 9 provided integrally with the flange 8. The outer diameter side portion of the nozzle member body 9 is integrally formed with the inner diameter side portion of the outer ring positioning spacer 7.

外輪位置決め間座7には、エアオイルの供給路10および排出路11が形成されている。前記供給路10は、鍔部8のノズル孔8aにエアオイルを供給する油路である。この供給路10は、ノズル部材本体9における供給路12を介してノズル孔8aに連通する。つまり供給路10,12は、外輪位置決め間座7の外径面から径方向に定められた深さ開口し、ノズル孔8aに連通する。前記ノズル孔8aは、環状の鍔部8における円周方向複数箇所に一定間隔で設けられる。これに伴いノズル孔8aに連通する供給路10,12も、円周方向複数箇所にノズル孔位置と同位相で配設される。各ノズル孔8aは、吐出側先端に向かうに従って内径側に傾斜する。このノズル孔8aの吐出側先端から、内輪4の斜面部4bにおける内輪端面付近に向けてエアオイルが吐出される。   An air oil supply passage 10 and a discharge passage 11 are formed in the outer ring positioning spacer 7. The supply passage 10 is an oil passage for supplying air oil to the nozzle hole 8 a of the flange portion 8. The supply path 10 communicates with the nozzle hole 8 a via the supply path 12 in the nozzle member main body 9. That is, the supply passages 10 and 12 are opened to a depth determined in the radial direction from the outer diameter surface of the outer ring positioning spacer 7 and communicate with the nozzle hole 8a. The nozzle holes 8 a are provided at regular intervals at a plurality of locations in the circumferential direction of the annular flange 8. Accordingly, the supply paths 10 and 12 communicating with the nozzle hole 8a are also arranged in the same phase as the nozzle hole position at a plurality of locations in the circumferential direction. Each nozzle hole 8a is inclined toward the inner diameter side toward the discharge-side tip. Air oil is discharged from the discharge-side tip of the nozzle hole 8a toward the vicinity of the inner ring end surface of the slope 4b of the inner ring 4.

前記排出路11は、軸受の潤滑に供されたエアオイルを、前記軸受箱における排油路に導く油路である。この排出路11は、環状溝11a、排気溝11b、排気孔11c、および環状段差部11dを有する。外輪位置決め間座7のうち外輪端面に当接する側の間座端面に、軸受空間に臨む環状溝11aが形成されている。この環状溝11aの外周溝部11aaは、外輪2の斜面部2bにおける最大径位置よりも規定寸法大径となるように形成されている。環状溝11aの底面は、供給路10,12に干渉しない寸法に規定されている。   The discharge passage 11 is an oil passage that guides air oil used for bearing lubrication to the oil discharge passage in the bearing box. The discharge path 11 includes an annular groove 11a, an exhaust groove 11b, an exhaust hole 11c, and an annular step portion 11d. An annular groove 11a that faces the bearing space is formed on the spacer end face of the outer ring positioning spacer 7 that contacts the end face of the outer ring. The outer peripheral groove portion 11aa of the annular groove 11a is formed so as to have a larger diameter than the maximum diameter position on the slope portion 2b of the outer ring 2. The bottom surface of the annular groove 11 a is defined to have a dimension that does not interfere with the supply paths 10 and 12.

前記排気溝11bは、外輪端面における規定の円周方向位置と、外輪位置決め間座7との間を径方向にわたり切り欠き形成して成り、前記環状溝11aに連通する。また、排気溝11bは、前記軸受箱における排油路に連通し、潤滑に供されたエアオイルの一部を前記排油路から排出する。この例では、排気溝11bを、外輪位置決め間座7の円周方向の一箇所のみに設けているが複数箇所に設けても良い。   The exhaust groove 11b is formed by notching a predetermined circumferential position on the end surface of the outer ring and the outer ring positioning spacer 7 in the radial direction, and communicates with the annular groove 11a. Further, the exhaust groove 11b communicates with an oil drain passage in the bearing box, and discharges a part of the air oil used for lubrication from the oil drain passage. In this example, the exhaust groove 11b is provided only at one place in the circumferential direction of the outer ring positioning spacer 7, but it may be provided at a plurality of places.

外輪位置決め間座7において、環状溝11aが形成された間座端面とは逆側の間座端面に、環状段差部11dが形成されている。この環状段差部11dは、前記間座端面における半径方向内周部が環状に切り欠き形成されて成る。この環状段差部11dの外周溝部11daは、環状溝11aの外周溝部11aaよりも内径側に配設される。前記排気孔11cは、外輪位置決め間座7のうち環状段差部11dと環状溝11aとにわたって貫通する。この排気孔11cは、円周方向一定間隔おきに複数配設されている。但し、これら複数の排気孔11cは、外輪位置決め間座7の供給路10,12とは異なる円周方向位置であって、同供給路10,12に干渉しない位置に形成されている。潤滑に供されたエアオイルを、順次、環状溝11a、排気孔11c、および環状段差部11dを介して、軸受箱の排油路に導くようになっている。   In the outer ring positioning spacer 7, an annular step portion 11 d is formed on the spacer end surface opposite to the spacer end surface where the annular groove 11 a is formed. The annular step portion 11d is formed by cutting out the radially inner peripheral portion of the spacer end surface in an annular shape. The outer circumferential groove portion 11da of the annular step portion 11d is disposed closer to the inner diameter side than the outer circumferential groove portion 11aa of the annular groove 11a. The exhaust hole 11c passes through the annular stepped portion 11d and the annular groove 11a in the outer ring positioning spacer 7. A plurality of the exhaust holes 11c are arranged at regular intervals in the circumferential direction. However, the plurality of exhaust holes 11 c are formed in positions in the circumferential direction different from the supply paths 10 and 12 of the outer ring positioning spacer 7 and do not interfere with the supply paths 10 and 12. The air oil used for lubrication is sequentially guided to the oil drainage passage of the bearing box through the annular groove 11a, the exhaust hole 11c, and the annular step portion 11d.

図2(B)に示すように、ノズル部材3における鍔部8の内径面8bは、内輪4の対応する斜面部4bに沿って、同斜面部4bとの間に微小隙間δ1を形成する。この鍔部8の先端面を、円筒ころ5の端面を案内するころ案内面8cとしている。鍔部8の外径面を保持器案内面8dとし、この鍔部8の保持器案内面8dで保持器内径面6aを案内させる。また、鍔部8の外径面の基端部には、鍔部8の保持器案内面8dを例えば研磨加工等するための研磨ぬすみ8eが形成されている。   As shown in FIG. 2 (B), the inner diameter surface 8b of the flange portion 8 in the nozzle member 3 forms a minute gap δ1 with the inclined surface portion 4b along the corresponding inclined surface portion 4b of the inner ring 4. The front end surface of the flange portion 8 is a roller guide surface 8 c that guides the end surface of the cylindrical roller 5. The outer diameter surface of the flange portion 8 is a cage guide surface 8d, and the cage inner diameter surface 6a is guided by the cage guide surface 8d of the flange portion 8. Further, at the proximal end portion of the outer diameter surface of the flange portion 8, a polishing shading 8 e for polishing the cage guide surface 8 d of the flange portion 8 is formed, for example.

この円筒ころ軸受装置の作用効果について説明する。
ノズル部材3から吐出された潤滑油を、内輪4の斜面部4bに付着させ、この内輪4の回転に伴う遠心力と油の表面張力により生じる付着流れを利用して軸受内部の軸受空間に供給する。軸受運転中の油の流れを考えると、ノズル部材3から吐出された潤滑油は、内輪4の斜面部4bに付着し、内輪回転による遠心力で軸受の内側方向に移動する。この潤滑油は、前記斜面部4bから軌道面4aに変わるエッジ部4cで径方向に飛散する。
The effect of this cylindrical roller bearing device will be described.
Lubricating oil discharged from the nozzle member 3 is attached to the inclined surface portion 4b of the inner ring 4 and supplied to the bearing space inside the bearing using the flow of attachment generated by the centrifugal force and the surface tension of the oil accompanying the rotation of the inner ring 4. To do. Considering the oil flow during the operation of the bearing, the lubricating oil discharged from the nozzle member 3 adheres to the inclined surface portion 4b of the inner ring 4 and moves inward of the bearing by the centrifugal force generated by the rotation of the inner ring. The lubricating oil scatters in the radial direction at the edge portion 4c that changes from the inclined surface portion 4b to the raceway surface 4a.

飛散した油は、空気流により軸受内部に流入して軌道面4a,2aおよび保持器ポケットPtの潤滑に寄与する。また、内輪4の前記エッジ部4cより飛散した油の一部は、鍔部8の内径面8bで受けられ、微小隙間δ1における空気流によってころ案内面となる鍔部8のころ案内面8c、さらに保持器6の案内部となる保持器案内面8dに移動する。これにより、ころ案内面8cおよび保持器案内面8dの潤滑が行われる。   The scattered oil flows into the bearing by the air flow and contributes to the lubrication of the raceway surfaces 4a and 2a and the cage pocket Pt. Further, a part of the oil scattered from the edge portion 4c of the inner ring 4 is received by the inner diameter surface 8b of the flange portion 8, and the roller guide surface 8c of the flange portion 8 which becomes the roller guide surface by the air flow in the minute gap δ1, Furthermore, it moves to the cage guide surface 8d that serves as a guide for the cage 6. Thereby, the roller guide surface 8c and the cage guide surface 8d are lubricated.

潤滑に使用された油は、回転に伴う軸受内部の空気流により、外輪位置決め間座7の排気孔11cおよび排気溝11bから軸受外部に排出される。この構成では、ノズル部材3の鍔部8の先端面を、円筒ころ5の端面を案内するころ案内面8cとしたため、外輪2の軌道部に、油排出に対して障害物となるつば部等を設ける必要がなくなる。このため、軸受から容易に油の排出を行うことができる。その結果、外輪2の軌道部における油の滞留を抑制でき、油滞留に起因する発熱等の不具合を解消することができる。これにより、軸受の高速化を図れ、特に、工作機械主軸用途において、加工精度を高精度に維持することができる。また、前記鍔部8の先端面をころ案内面8cとしたため、内外輪4,2に円筒ころ5を案内するつば部を設ける必要がなくなるので、内外輪4,2の形状を従来技術のものより簡単化することができる。したがって、内外輪成形後の機械加工等の工数低減を図ることができ、その分、製造コストの低減を図れる。   The oil used for lubrication is discharged to the outside of the bearing from the exhaust hole 11c and the exhaust groove 11b of the outer ring positioning spacer 7 by the air flow inside the bearing accompanying rotation. In this configuration, the front end surface of the flange portion 8 of the nozzle member 3 is a roller guide surface 8c that guides the end surface of the cylindrical roller 5, so that a collar portion that becomes an obstacle to oil discharge is provided on the raceway portion of the outer ring 2. Need not be provided. For this reason, oil can be easily discharged from the bearing. As a result, oil stagnation in the raceway portion of the outer ring 2 can be suppressed, and problems such as heat generation due to oil stagnation can be solved. As a result, it is possible to increase the speed of the bearing, and it is possible to maintain the machining accuracy with high accuracy particularly in the machine tool spindle application. Further, since the front end surface of the flange portion 8 is a roller guide surface 8c, it is not necessary to provide a collar portion for guiding the cylindrical roller 5 on the inner and outer rings 4 and 2, so that the shapes of the inner and outer rings 4 and 2 are of the prior art. It can be simplified further. Therefore, it is possible to reduce the number of man-hours such as machining after molding the inner and outer rings, and accordingly, the manufacturing cost can be reduced.

ノズル部材3の鍔部8の外径面を、保持器6の内周面を案内する保持器案内面8dとしたため、保持器6の振れ回りが大きくなったり、円筒ころ5との干渉で同円筒ころ5を保持する保持器ポケットPtが損傷するといった問題を解消することができる。この場合の保持器6の案内方式では、外輪案内方式と比較して案内面での周速が小さく滑り速度が小さい。このため、軸受動力損失も小さく、それだけ軸受温度も抑えられ、予圧管理等の面でも有利である。   Since the outer diameter surface of the flange portion 8 of the nozzle member 3 is a cage guide surface 8d that guides the inner peripheral surface of the cage 6, the whirling of the cage 6 becomes large or the same due to interference with the cylindrical roller 5. The problem that the cage pocket Pt holding the cylindrical roller 5 is damaged can be solved. In the guide method of the cage 6 in this case, the peripheral speed on the guide surface is small and the sliding speed is low compared to the outer ring guide method. For this reason, the bearing power loss is small, the bearing temperature can be suppressed, and this is advantageous in terms of preload management.

この発明の他の実施形態に係る円筒ころ軸受装置を図3と共に説明する。
この円筒ころ軸受装置におけるノズル部材3の鍔部8は、第1および第2の鍔部8A,8Bを有する。第1の鍔部8Aを、外輪2の内径面と保持器外径面6bとの間に配設し、この第1の鍔部8Aの先端面を、円筒ころ5の端面を案内するころ案内面8Aaとする。これと共に、第1の鍔部8Aの内径面を、保持器の外周面を案内する保持器案内面8Abとする。第2の鍔部8Bの内径面8Baは、内輪4の斜面部4bとの間に微小隙間δ1を形成する。その他の構成は図1および図2の構成と同様である。この構成によると、特に、第1の鍔部8Aの内径面を保持器案内面8Abとしたため、図1,図2の構成のものより、保持器6の振れ回りをより低減させることができる。したがって、保持器6のポケットPtが円筒ころ5との干渉で損傷することをより確実に防止できる。
一方で、当該形式では、案内面が外径側となる分ここでの摩擦トルクは大となる。しかし、つば面ところ端面間の接触による摩擦トルクは,外輪軌道面からの接触位置が近い外輪側つば構造が有利となる。即ち2者構造には一長一短があり、実際の潤滑方法と潤滑条件を考慮してつばの配置を決定する。つば部への潤滑油が潤沢となる場合には内輪側つば構造、つば部の潤滑が希薄となる場合には外輪側つば構造とするのが良い。また、第1の鍔部8Aの先端面をころ案内面8Aaとしたため、内外輪4,2に円筒ころ5を案内するつば部を設ける必要がなくなるので、内外輪4,2の形状を従来技術のものより簡単化することができる。したがって、内外輪成形後の機械加工等の工数低減を図ることができ、その分、製造コストの低減を図れる。
A cylindrical roller bearing device according to another embodiment of the present invention will be described with reference to FIG.
The flange 8 of the nozzle member 3 in this cylindrical roller bearing device has first and second flanges 8A and 8B. The first flange portion 8A is disposed between the inner diameter surface of the outer ring 2 and the cage outer diameter surface 6b, and the tip surface of the first flange portion 8A is a roller guide for guiding the end surface of the cylindrical roller 5. Let it be surface 8Aa. At the same time, the inner diameter surface of the first flange portion 8A is referred to as a cage guide surface 8Ab that guides the outer peripheral surface of the cage. A small clearance δ1 is formed between the inner diameter surface 8Ba of the second flange portion 8B and the inclined surface portion 4b of the inner ring 4. Other configurations are the same as those in FIGS. 1 and 2. According to this configuration, in particular, since the inner diameter surface of the first flange portion 8A is the cage guide surface 8Ab, the swinging of the cage 6 can be further reduced as compared with the configuration of FIGS. Therefore, it is possible to more reliably prevent the pocket Pt of the cage 6 from being damaged due to interference with the cylindrical roller 5.
On the other hand, in this type, the friction torque here becomes large as the guide surface becomes the outer diameter side. However, the frictional torque due to contact between the flange surfaces and the end surfaces is advantageous for the outer ring side collar structure where the contact position from the outer ring raceway surface is close. That is, the two-part structure has advantages and disadvantages, and the arrangement of the collars is determined in consideration of the actual lubrication method and lubrication conditions. The inner ring side collar structure is preferable when the lubricating oil to the collar part is abundant, and the outer ring side collar structure is preferable when the lubrication of the collar part is lean. Further, since the front end surface of the first flange portion 8A is the roller guide surface 8Aa, it is not necessary to provide a flange portion for guiding the cylindrical roller 5 on the inner and outer rings 4 and 2, so the shape of the inner and outer rings 4 and 2 is the conventional technology. It can be made simpler than that. Therefore, it is possible to reduce the number of man-hours such as machining after molding the inner and outer rings, and accordingly, the manufacturing cost can be reduced.

図4に示すように、ころ案内面8cである鍔部8の先端面に、円筒ころ5の端面に対する逃げ角αを設けても良い。例えば、軸受運転中に生じる円筒ころ5のスキュー,踊り等の不整運動に対応して、鍔部8の先端面に、外径側に向かうに従って円筒ころ5の端面から離隔する傾斜角度すなわち逃げ角αを設けている。この構成によると、軸受運転中の不整運動発生による円筒ころ5の端面と、鍔部8の先端面との異常接触を回避することができる。   As shown in FIG. 4, a clearance angle α with respect to the end surface of the cylindrical roller 5 may be provided on the tip surface of the flange portion 8 that is the roller guide surface 8 c. For example, in response to irregular movements such as skew and dance of the cylindrical roller 5 that occur during the bearing operation, an inclination angle, that is, a clearance angle, that is separated from the end surface of the cylindrical roller 5 toward the outer diameter side on the distal end surface of the flange portion 8. α is provided. According to this configuration, it is possible to avoid abnormal contact between the end surface of the cylindrical roller 5 and the front end surface of the flange portion 8 due to the occurrence of irregular motion during bearing operation.

図5のクロスハッチングにて示すように、ノズル部材3の鍔部8のうち、ころ案内面8cとなる先端面を含む部分13および保持器案内面8dとなる外径面を含む部分14に、熱処理を施しても良い。熱処理を施すべき部分13,14を、例えば、高周波焼入れ等により熱処理することができる。ノズル部材3を含む外輪位置決め間座7全体を熱処理しても良い。複数個の外輪位置決め間座7を、例えば、熱処理炉に投入して熱処理を施すことができるため、部分的に熱処理を施す図5の場合よりも工数低減を図ることができる。   As shown by cross-hatching in FIG. 5, in the flange portion 8 of the nozzle member 3, a portion 13 including a tip surface serving as a roller guide surface 8 c and a portion 14 including an outer diameter surface serving as a cage guide surface 8 d, You may heat-process. The portions 13 and 14 to be heat-treated can be heat-treated by, for example, induction hardening. The entire outer ring positioning spacer 7 including the nozzle member 3 may be heat-treated. Since a plurality of outer ring positioning spacers 7 can be put into, for example, a heat treatment furnace and subjected to heat treatment, man-hours can be reduced as compared with the case of FIG.

ノズル部材3の鍔部8の前記案内面8c,8dは、軸受の運転中接触しながら滑るため耐摩耗性等に配慮する必要がある。前記鍔部8のうち少なくとも案内面8c,8dとなる部分13,14に、熱処理を施した場合、鍔部8の案内面8c,8dの表面硬度を熱処理前よりも高くすることができる。これにより、鍔部8の案内面8c,8dの耐摩耗性を向上させ得る。
前記のように鍔部8のうち少なくとも案内面8c,8dとなる部分13,14に熱処理を施したうえで、前記案内面8c,8dに、ダイヤモンドライクカーボン(Diamond Like Carbon:略称 DLC)の被膜処理を施しても良い。この場合、鍔部8の案内面8c,8dの低摩擦性を向上させることができる。
Since the guide surfaces 8c and 8d of the flange portion 8 of the nozzle member 3 slide while contacting during operation of the bearing, it is necessary to consider wear resistance and the like. When heat treatment is performed on at least the portions 13 and 14 that become the guide surfaces 8c and 8d of the flange portion 8, the surface hardness of the guide surfaces 8c and 8d of the flange portion 8 can be made higher than that before the heat treatment. Thereby, the abrasion resistance of the guide surfaces 8c and 8d of the collar portion 8 can be improved.
As described above, at least the portions 13 and 14 which become the guide surfaces 8c and 8d of the flange portion 8 are heat-treated, and then the guide surfaces 8c and 8d are coated with diamond like carbon (abbreviated as DLC). Processing may be performed. In this case, the low friction property of the guide surfaces 8c and 8d of the collar portion 8 can be improved.

図6に示すように、ノズル部材3の鍔部8のうち、ころ案内面8cおよび保持器案内面8dに、硬質クロムメッキ等の表面処理Haを施しても良い。この場合、鍔部8の案内面8c,8dの表面硬度を高くすることができ、鍔部8の案内面8c,8dの耐摩耗性を向上させ得る。   As shown in FIG. 6, the roller guide surface 8 c and the cage guide surface 8 d in the flange portion 8 of the nozzle member 3 may be subjected to a surface treatment Ha such as hard chrome plating. In this case, the surface hardness of the guide surfaces 8c and 8d of the flange portion 8 can be increased, and the wear resistance of the guide surfaces 8c and 8d of the flange portion 8 can be improved.

図7に示すように、鍔部8のころ案内面8cおよび保持器案内面8dを、凹凸面Hbとしても良い。この凹凸面Hbの加工方法としては、例えば、遠心流動バレル研磨法により、チップを用いて鍔部8のころ案内面8cおよび保持器案内面8dにランダムな凹凸を形成する。その後、この鍔部8を洗浄し、さらにバレル研磨法によって凹凸を施した箇所に表面仕上げ処理を施し、表面な微小な凸を除去するかまたは丸める。これにより、鍔部8のころ案内面8cおよび保持器案内面8dに微小な凹みを無数に形成し、鍔部のころ案内面8cおよび保持器案内面8dの面粗さが所望の値となるようにする。よって、ころ案内面8cおよび保持器案内面8dに粗面を形成する。このような加工をハイルブリケーション加工(High Lubrication加工:略称 HL加工)と言う。
前記のように加工された微小な凹凸面Hbに潤滑油が保持され、鍔部8のころ案内面8cおよび保持器案内面8dの潤滑性の向上を図ることができる。
As shown in FIG. 7, the roller guide surface 8c and the cage guide surface 8d of the flange portion 8 may be a concavo-convex surface Hb. As a method for processing the uneven surface Hb, for example, random unevenness is formed on the roller guide surface 8c and the cage guide surface 8d of the flange portion 8 using a tip by a centrifugal fluid barrel polishing method. Thereafter, the flange 8 is washed, and a surface finishing process is performed on the uneven portions by the barrel polishing method to remove or round the surface minute protrusions. As a result, an infinite number of minute recesses are formed in the roller guide surface 8c and the cage guide surface 8d of the flange portion 8, and the surface roughness of the roller guide surface 8c and the cage guide surface 8d of the flange portion becomes a desired value. Like that. Therefore, a rough surface is formed on the roller guide surface 8c and the cage guide surface 8d. Such processing is referred to as high lubrication processing (abbreviated as HL processing).
Lubricating oil is held on the minute uneven surface Hb processed as described above, and the lubricity of the roller guide surface 8c and the cage guide surface 8d of the flange portion 8 can be improved.

前記凹凸面Hbがフェムト秒レーザを用いて加工された面であっても良い。前記鍔部8の案内面8c,8dに、フェムト秒レーザと呼ばれる極短パルスのレーザ光を照射する。そうすると、レーザ光の干渉作用により波長に応じた周期で、通常0.1μm以上1μm以下の深さの微細加工面が形成される。この微細加工面に潤滑油が確実に保持される。よって、鍔部8のころ案内面8cおよび保持器案内面8dの潤滑性の向上を図ることができる。   The uneven surface Hb may be a surface processed using a femtosecond laser. The guide surfaces 8c and 8d of the collar portion 8 are irradiated with laser light of an extremely short pulse called a femtosecond laser. Then, a finely processed surface having a depth of usually 0.1 μm or more and 1 μm or less is formed with a period according to the wavelength by the interference action of the laser light. Lubricating oil is reliably held on this finely processed surface. Therefore, the lubricity of the roller guide surface 8c and the cage guide surface 8d of the flange portion 8 can be improved.

図8は、さらに他の実施形態に係る円筒ころ軸受装置における、ノズル部材の鍔部の保持器案内面の要部平面図である。この例では、保持器案内面8dとした鍔部8の内径面または外径面に、矢符L1にて表記する軸受軸方向(図8(A))または軸受軸方向に対して傾斜した方向(図8(B))に延びる溝Maを設けても良い。この場合、保持器6の周面と、鍔部8の内径面または外径面との相対すべり運動によって、保持器案内すきま及び前記溝Maに存在する潤滑油に圧力つまり動圧を発生させる。この動圧作用により潤滑油が溝Maに沿って円滑に導かれるため、保持器案内面8dの全周にわたる潤滑性がさらに向上する。特に、図8(B)に示すように、前記溝Maが軸受軸方向に対して傾斜した方向に延びる場合、前述の相対すべり運動によって動圧をより効果的に発生させることが可能となる。   FIG. 8 is a plan view of an essential part of a cage guide surface of a flange portion of a nozzle member in a cylindrical roller bearing device according to still another embodiment. In this example, the bearing shaft direction (FIG. 8 (A)) indicated by the arrow L1 or the direction inclined with respect to the bearing shaft direction on the inner diameter surface or outer diameter surface of the flange portion 8 as the cage guide surface 8d. A groove Ma extending in (FIG. 8B) may be provided. In this case, pressure, that is, dynamic pressure, is generated in the lubricating oil existing in the cage guide clearance and the groove Ma by the relative sliding motion between the peripheral surface of the cage 6 and the inner diameter surface or outer diameter surface of the flange portion 8. Since the lubricating oil is smoothly guided along the groove Ma by this dynamic pressure action, the lubricity over the entire circumference of the cage guide surface 8d is further improved. In particular, as shown in FIG. 8B, when the groove Ma extends in a direction inclined with respect to the bearing axis direction, it is possible to generate dynamic pressure more effectively by the above-described relative sliding motion.

内輪4および円筒ころ5のいずれか一方または両方がセラミックスで構成されていても良い。
セラミックスが窒化けい素を主成分とする焼結体である場合、前記窒化けい素の線膨張係数と鋼の線膨張係数の差から、セラミックスからなる内輪4を含む転がり軸受は、鋼からなる内輪4を含む転がり軸受よりも運転時における転動体と内外輪間の径方向すきまが大きい。そのため、セラミックスからなる内輪4を含む転がり軸受は、予圧過大現象を緩和することができ、高速回転性能に優れる。予圧過大現象は、転動体を径方向に過度に圧縮する現象であり、転がり軸受の高速回転性を阻害する大きな要因である。
Either one or both of the inner ring 4 and the cylindrical roller 5 may be made of ceramics.
When the ceramic is a sintered body containing silicon nitride as a main component, the rolling bearing including the inner ring 4 made of ceramics is the inner ring made of steel because of the difference between the linear expansion coefficient of silicon nitride and the linear expansion coefficient of steel. The radial clearance between the rolling element and the inner and outer rings during operation is larger than that of the rolling bearing including 4. Therefore, the rolling bearing including the inner ring 4 made of ceramics can alleviate the excessive preload phenomenon and is excellent in high-speed rotation performance. The excessive preload phenomenon is a phenomenon in which the rolling elements are excessively compressed in the radial direction, and is a major factor that hinders the high-speed rotation performance of the rolling bearing.

鋼の密度は7.8×10kg/m、窒化けい素の密度は3.2×10kg/mであるから、両者の密度の差を考えると、遠心膨張による予圧過大に対しても、セラミックス製内輪の転がり軸受は鋼製内輪の転がり軸受と比較して、特に高速回転時に有利である。
さらに、鋼のヤング率は約210GPa、窒化けい素のヤング率は約314GPaであるから、セラミックス製内輪の転がり軸受は鋼製内輪の転がり軸受と比較して、軸受剛性の面でも有利である。
前記セラミックスはSi6-ZAL8−Zの組成式で表され、0.1≦Z≦3.5を満たすβサイアロンを主成分とする焼結体であっても良い。セラミックスがβサイアロンを主成分とする焼結体である場合、窒化けい素を主成分とする焼結体よりも低コストで製造できる。
Since the density of steel is 7.8 × 10 3 kg / m 3 and the density of silicon nitride is 3.2 × 10 3 kg / m 3 , considering the difference in density between the two, excessive preload due to centrifugal expansion On the other hand, the rolling bearing of the ceramic inner ring is particularly advantageous at the time of high-speed rotation as compared with the rolling bearing of the steel inner ring.
Further, since the Young's modulus of steel is about 210 GPa and the Young's modulus of silicon nitride is about 314 GPa, the rolling bearing of the ceramic inner ring is advantageous in terms of the bearing rigidity as compared with the rolling bearing of the steel inner ring.
The ceramic is represented by a composition formula of Si 6-Z AL Z O Z N 8-Z, it may be a sintered body mainly composed of β-sialon satisfying 0.1 ≦ Z ≦ 3.5. When the ceramic is a sintered body containing β sialon as a main component, it can be manufactured at a lower cost than a sintered body containing silicon nitride as a main component.

前記各実施形態ではエアオイル潤滑方式を採用しているが、オイルミスト潤滑方式を採用しても良い。
各実施形態において、外輪2をつば部付きとしても良い。
ノズル部材3を外輪位置決め間座7に対し別体に設け、前記外輪位置決め間座7の内周側部分等に、前記別体のノズル部材3を固定して設けることも可能である。この場合、別体のノズル部材3のみに、前述の熱処理、凹凸面Hbの加工等を実施することができる。それ故、外輪位置決め間座7の寸法精度を高精度に維持することが容易となる。
図7の構成に代えてまたは図7の構成とともに、保持器6の案内面である保持器内径面(または保持器外径面)に、前述の凹凸面Hbの加工を施しても良い。この場合、保持器6の凹凸面Hbに潤滑油が保持され、鍔部8の保持器案内面8dの潤滑性の向上を図ることができる。
In each of the above embodiments, the air oil lubrication method is employed, but an oil mist lubrication method may be employed.
In each embodiment, the outer ring 2 may be provided with a collar portion.
The nozzle member 3 may be provided separately from the outer ring positioning spacer 7, and the separate nozzle member 3 may be fixedly provided on an inner peripheral side portion of the outer ring positioning spacer 7. In this case, only the separate nozzle member 3 can be subjected to the above-described heat treatment, processing of the uneven surface Hb, and the like. Therefore, it becomes easy to maintain the dimensional accuracy of the outer ring positioning spacer 7 with high accuracy.
Instead of the configuration of FIG. 7 or together with the configuration of FIG. 7, the above-described uneven surface Hb may be processed on the cage inner diameter surface (or the cage outer diameter surface) that is the guide surface of the cage 6. In this case, the lubricating oil is held on the concavo-convex surface Hb of the cage 6, and the lubricity of the cage guide surface 8d of the flange portion 8 can be improved.

図9は、前記いずれかの実施形態の円筒ころ軸受装置を備えた高速スピンドル装置の一例を示す。このスピンドル装置SMは工作機械に応用されるものであり、主軸15の前側(加工側)端部に工具またはワークのチャックが取付けられる。主軸15は、軸方向前側が2列1組のアンギュラ玉軸受型の転がり軸受装置により支持され、軸方向後側がいずれかの実施形態の円筒ころ軸受装置により支持されている。各転がり軸受の内輪4は主軸15の外径面に嵌合し、外輪2は軸受箱Hsの内径面に嵌合している。   FIG. 9 shows an example of a high-speed spindle device including the cylindrical roller bearing device according to any one of the above embodiments. The spindle device SM is applied to a machine tool, and a tool or workpiece chuck is attached to the front side (machining side) end of the spindle 15. The main shaft 15 is supported on the front side in the axial direction by a set of two-row angular ball bearing type rolling bearing devices, and supported on the rear side in the axial direction by the cylindrical roller bearing device of any of the embodiments. The inner ring 4 of each rolling bearing is fitted to the outer diameter surface of the main shaft 15, and the outer ring 2 is fitted to the inner diameter surface of the bearing housing Hs.

主軸前側の転がり軸受については、その内輪4が主軸15の段面15aにより、外輪2が外輪位置決め間座17aを介して押さえ蓋16Aにより、軸受箱Hs内に固定されている主軸後ろ側の円筒ころ軸受1については、その内輪4が内輪位置決め間座17bにより、外輪3がノズル部材3を介して押さえ蓋16Bにより、軸受箱Hs内に固定されている。軸受箱Hsは、内周軸受箱HsAと外周軸受箱HsBの二重構造とされ、内外の軸受箱HsA,HsB間に冷却溝18が形成されている。主軸15の後端部には、内輪位置決め間座17に押し当てて円筒ころ軸受1を固定する軸受固定ナット19が螺着されている。   For the rolling bearing on the front side of the main shaft, the inner ring 4 is fixed in the bearing box Hs by the stepped surface 15a of the main shaft 15 and the outer ring 2 is fixed in the bearing housing Hs by the pressing lid 16A through the outer ring positioning spacer 17a. As for the roller bearing 1, the inner ring 4 is fixed in the bearing box Hs by the inner ring positioning spacer 17b and the outer ring 3 by the pressing lid 16B through the nozzle member 3. The bearing housing Hs has a double structure of an inner circumferential bearing housing HsA and an outer circumferential bearing housing HsB, and a cooling groove 18 is formed between the inner and outer bearing housings HsA and HsB. A bearing fixing nut 19 that is pressed against the inner ring positioning spacer 17 to fix the cylindrical roller bearing 1 is screwed to the rear end portion of the main shaft 15.

前記押さえ蓋16A,16Bには、軸受をエアオイル潤滑する場合の供給源であるエアオイル供給装置20A,20Bからエアオイルを導入するエアオイル導入孔21がそれぞれ設けられ、これらエアオイル導入孔21は内周軸受箱HsAに設けられたエアオイル供給路22に連通している。また、押さえ蓋16A,16Bには排油孔23が設けられ、これら排油孔23は内周軸受箱HsAに設けられた排油路24に連通している。
このように構成されたスピンドル装置SMでは、前記円筒ころ軸受装置を組み込んでいるため、構成部品の製作コストの低減を図れ、且つ、主軸15の高速化を図ることができる。
The holding lids 16A and 16B are provided with air oil introduction holes 21 for introducing air oil from the air oil supply devices 20A and 20B, which are supply sources when the bearings are air-oil lubricated, respectively. It communicates with an air oil supply path 22 provided in HsA. In addition, the holding lids 16A and 16B are provided with oil drain holes 23, and these oil drain holes 23 communicate with an oil drain passage 24 provided in the inner peripheral bearing box HsA.
In the spindle device SM configured as described above, since the cylindrical roller bearing device is incorporated, the manufacturing cost of the component parts can be reduced and the speed of the main shaft 15 can be increased.

1…円筒ころ軸受
2…外輪
2a…軌道面
3…ノズル部材
4…内輪
4a…軌道面
4b…斜面部
5…円筒ころ
6…保持器
7…外輪位置決め間座
8…鍔部
8a…ノズル孔
8c…ころ案内面
8d…保持器案内面
DESCRIPTION OF SYMBOLS 1 ... Cylindrical roller bearing 2 ... Outer ring 2a ... Raceway surface 3 ... Nozzle member 4 ... Inner ring 4a ... Raceway surface 4b ... Slope part 5 ... Cylindrical roller 6 ... Cage 7 ... Outer ring positioning spacer 8 ... Eave part 8a ... Nozzle hole 8c ... Roller guide surface 8d ... Cage guide surface

Claims (16)

内外輪の軌道面間に、環状の保持器に保持された複数の円筒ころを介在させた円筒ころ軸受と、前記外輪の軸方向両側に隣接して設けられ、内外輪間の軸受空間に潤滑剤を吐出するノズル部材とを備えた円筒ころ軸受装置において、
前記内輪、外輪はつば部無しとし、
前記ノズル部材に、前記軸受空間に挿入され潤滑剤のノズル孔を有する環状の鍔部を設け、この鍔部の先端面を、内輪側または外輪側に配置し、前記円筒ころの端面を案内するころ案内面としたことを特徴とする円筒ころ軸受装置。
A cylindrical roller bearing in which a plurality of cylindrical rollers held by an annular cage are interposed between the raceway surfaces of the inner and outer rings, and adjacent to both sides in the axial direction of the outer ring, the bearing space between the inner and outer rings is lubricated. In a cylindrical roller bearing device provided with a nozzle member for discharging the agent,
The inner ring and outer ring have no collar part,
The nozzle member is provided with an annular flange that is inserted into the bearing space and has a nozzle hole for the lubricant, and the distal end surface of the flange is disposed on the inner ring side or the outer ring side to guide the end surface of the cylindrical roller. A cylindrical roller bearing device characterized by having a roller guide surface.
請求項1において、前記外輪の軸方向両側に、外輪位置決め間座をそれぞれ配置し、各外輪位置決め間座の内周側部分に、前記ノズル部材を一体に設けた円筒ころ軸受装置。   2. The cylindrical roller bearing device according to claim 1, wherein outer ring positioning spacers are respectively disposed on both axial sides of the outer ring, and the nozzle member is integrally provided on an inner peripheral side portion of each outer ring positioning spacer. 請求項1または請求項2において、前記内輪の外径面に、軌道面側が大径となる斜面部を設け、前記ノズル部材の前記鍔部に設けられたノズル孔を、前記内輪の斜面部に向けて潤滑剤を吐出させるものとした円筒ころ軸受装置。   In Claim 1 or Claim 2, the slope part where the raceway side becomes large diameter is provided in the outer diameter surface of the inner ring, and the nozzle hole provided in the collar part of the nozzle member is provided in the slope part of the inner ring. Cylindrical roller bearing device that discharges lubricant toward 請求項1ないし請求項3のいずれか1項において、前記鍔部の内径面または外径面を、前記保持器の周面を案内する保持器案内面とした円筒ころ軸受装置。   The cylindrical roller bearing device according to any one of claims 1 to 3, wherein an inner diameter surface or an outer diameter surface of the flange portion is a cage guide surface that guides a circumferential surface of the cage. 請求項1ないし請求項4のいずれか1項において、前記鍔部の先端面に、外径側が前記円筒ころの端面から離れるように、前記円筒ころの端面に対する逃げ角を設けた円筒ころ軸受装置。   5. The cylindrical roller bearing device according to claim 1, wherein a clearance angle with respect to an end surface of the cylindrical roller is provided on a front end surface of the flange portion so that an outer diameter side is separated from an end surface of the cylindrical roller. . 請求項1ないし請求項5のいずれか1項において、前記ノズル部材の前記鍔部のうち少なくとも案内面となる部分に、熱処理を施したものである円筒ころ軸受装置。   6. The cylindrical roller bearing device according to claim 1, wherein heat treatment is performed on at least a portion of the flange portion of the nozzle member that serves as a guide surface. 7. 請求項1ないし請求項5のいずれか1項において、前記ノズル部材の前記鍔部のうち案内面に、硬質クロムメッキを施してなる円筒ころ軸受装置。   The cylindrical roller bearing device according to any one of claims 1 to 5, wherein a hard chrome plating is applied to a guide surface of the flange portion of the nozzle member. 請求項1ないし請求項7のいずれか1項において、前記ノズル部材の前記鍔部の案内面を凹凸面とした円筒ころ軸受装置。   The cylindrical roller bearing device according to any one of claims 1 to 7, wherein the guide surface of the flange portion of the nozzle member is an uneven surface. 請求項8において、前記凹凸面がフェムト秒レーザを用いて加工された面である円筒ころ軸受装置。   The cylindrical roller bearing device according to claim 8, wherein the uneven surface is a surface processed using a femtosecond laser. 請求項6において、前記ノズル部材の前記鍔部のうち案内面に、DLCの被膜処理を施してなる円筒ころ軸受装置。   The cylindrical roller bearing device according to claim 6, wherein a DLC coating is applied to a guide surface of the flange portion of the nozzle member. 請求項4において、前記保持器案内面とした前記鍔部の内径面または外径面に、軸受軸方向または軸受軸方向に対して傾斜した方向に延びる溝を設けた円筒ころ軸受装置。   5. The cylindrical roller bearing device according to claim 4, wherein a groove extending in a bearing axis direction or a direction inclined with respect to the bearing axis direction is provided on an inner diameter surface or an outer diameter surface of the flange portion serving as the cage guide surface. 請求項1ないし請求項11のいずれか1項において、前記内輪および円筒ころのいずれか一方または両方がセラミックスで構成されている円筒ころ軸受装置。   The cylindrical roller bearing device according to any one of claims 1 to 11, wherein one or both of the inner ring and the cylindrical roller are made of ceramics. 請求項12において、前記セラミックスは、窒化けい素を主成分とする焼結体である円筒ころ軸受装置。   The cylindrical roller bearing device according to claim 12, wherein the ceramic is a sintered body containing silicon nitride as a main component. 請求項12において、前記セラミックスはSi6-ZAL8−Zの組成式で表され、0.1≦Z≦3.5を満たすβサイアロンを主成分とする焼結体である円筒ころ軸受装置。 13. The ceramic according to claim 12, wherein the ceramic is a sintered body mainly composed of β sialon represented by a composition formula of Si 6-Z AL Z O Z N 8-Z and satisfying 0.1 ≦ Z ≦ 3.5. Cylindrical roller bearing device. 請求項1ないし請求項14のいずれか1項において、前記ノズル部材のノズル孔から潤滑剤を吐出させる方式が、エアオイル潤滑方式またはオイルミスト潤滑方式である円筒ころ軸受装置。   The cylindrical roller bearing device according to any one of claims 1 to 14, wherein a method of discharging a lubricant from a nozzle hole of the nozzle member is an air oil lubrication method or an oil mist lubrication method. 請求項1ないし請求項15のいずれか1項において、工作機械の主軸の支持に用いられるものである円筒ころ軸受装置。   The cylindrical roller bearing device according to any one of claims 1 to 15, wherein the cylindrical roller bearing device is used to support a main shaft of a machine tool.
JP2009291754A 2009-12-24 2009-12-24 Cylindrical roller bearing device Pending JP2011133000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291754A JP2011133000A (en) 2009-12-24 2009-12-24 Cylindrical roller bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291754A JP2011133000A (en) 2009-12-24 2009-12-24 Cylindrical roller bearing device

Publications (1)

Publication Number Publication Date
JP2011133000A true JP2011133000A (en) 2011-07-07

Family

ID=44345960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291754A Pending JP2011133000A (en) 2009-12-24 2009-12-24 Cylindrical roller bearing device

Country Status (1)

Country Link
JP (1) JP2011133000A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140764A1 (en) * 2012-03-22 2013-09-26 アイシン精機株式会社 Semiconductor device and method for manufacturing same
JP2014114904A (en) * 2012-12-11 2014-06-26 Jtekt Corp Rolling bearing
CN104235187A (en) * 2014-09-02 2014-12-24 潘树东 Double row roller bearing with hollow rollers
US9070541B2 (en) 2010-08-19 2015-06-30 Leco Corporation Mass spectrometer with soft ionizing glow discharge and conditioner
EP4063679A1 (en) * 2021-03-22 2022-09-28 Meilleur Temps Rotational guidance microsystem with non-circular rolling elements

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070541B2 (en) 2010-08-19 2015-06-30 Leco Corporation Mass spectrometer with soft ionizing glow discharge and conditioner
US9299551B2 (en) 2010-08-19 2016-03-29 Leco Corporation Mass spectrometer with soft ionizing glow discharge and conditioner
WO2013140764A1 (en) * 2012-03-22 2013-09-26 アイシン精機株式会社 Semiconductor device and method for manufacturing same
JP2013197429A (en) * 2012-03-22 2013-09-30 Aisin Seiki Co Ltd Semiconductor device and method for manufacturing the same
JP2014114904A (en) * 2012-12-11 2014-06-26 Jtekt Corp Rolling bearing
CN104235187A (en) * 2014-09-02 2014-12-24 潘树东 Double row roller bearing with hollow rollers
EP4063679A1 (en) * 2021-03-22 2022-09-28 Meilleur Temps Rotational guidance microsystem with non-circular rolling elements

Similar Documents

Publication Publication Date Title
JP5419392B2 (en) Rolling bearing device
JP6013112B2 (en) Cooling structure of bearing device
JP2007010026A (en) Cylindrical roller bearing and its cage
JP2011133000A (en) Cylindrical roller bearing device
JP2004316757A (en) Cylindrical roller bearing and retainer for cylindrical roller bearing
JP2008240938A (en) Lubrication device for rolling bearing
JP2009121659A (en) Rolling member
WO2020050337A1 (en) Rolling bearing and spindle device equipped with rolling bearing
JP2008002659A (en) High-speed rotation single row cylindrical roller bearing
JP2007024252A (en) Lubricating device of rolling bearing
JP2006009891A (en) Roller bearing
JP4836852B2 (en) Angular contact ball bearing lubrication system
JP2011064209A (en) Cylindrical roller bearing
JP6556454B2 (en) Ball bearing cage
JPH11336767A (en) Cylindrical roller bearing
JP2009115187A (en) Rolling member
JP2005180629A (en) Rolling bearing
WO2020189364A1 (en) Angular ball bearing, and retainer for angular ball bearing
JP2008240946A (en) Lubricating device for rolling bearing
JP4366580B2 (en) Ball bearing cage
TWI760065B (en) Angular Contact Ball Bearing and Spindle Device for Machine Tool
JP2007032674A (en) Rolling bearing
JP2008202682A (en) Rolling bearing
JP2008082502A (en) Lubricating device of rolling bearing
JP2005299757A (en) Rolling bearing