JP2011130628A - Controller for right-left drive force adjusting device for vehicle - Google Patents

Controller for right-left drive force adjusting device for vehicle Download PDF

Info

Publication number
JP2011130628A
JP2011130628A JP2009288990A JP2009288990A JP2011130628A JP 2011130628 A JP2011130628 A JP 2011130628A JP 2009288990 A JP2009288990 A JP 2009288990A JP 2009288990 A JP2009288990 A JP 2009288990A JP 2011130628 A JP2011130628 A JP 2011130628A
Authority
JP
Japan
Prior art keywords
motor
vehicle
difference
torque difference
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009288990A
Other languages
Japanese (ja)
Other versions
JP5333193B2 (en
Inventor
Satoshi Kato
智 加藤
Kaoru Sawase
薫 澤瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2009288990A priority Critical patent/JP5333193B2/en
Publication of JP2011130628A publication Critical patent/JP2011130628A/en
Application granted granted Critical
Publication of JP5333193B2 publication Critical patent/JP5333193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller for a right-left drive force adjusting device for a vehicle, which controls the device in conformity with control regulations by eliminating influence of torque difference caused by moment of inertia. <P>SOLUTION: When the rotation speed of a motor 16 is N<SB>m</SB>, the rotation speed difference between right and left wheels is ΔN, moment of inertia of the motor 16 is I and the deceleration ratio G of the motor 16 is [N<SB>m</SB>/ΔN], rotation speed difference angle acceleration dΔN obtained by differentiating the rotation speed difference ΔN is summed with the moment of inertia I and G<SP>2</SP>as the square of a deceleration ratio G to obtain a correction value of the torque difference [2G<SP>2</SP>×I×dΔN], a control output equivalent to the torque difference is obtained from a plurality of control regulations 1-M, the correction value is added to the control output to obtain a correction torque difference, and the motor 16 is controlled so that the correction torque difference is the obtained correction torque difference, thereby controlling the attitude of the vehicle. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、車両用左右駆動力調整装置の制御装置に関する。   The present invention relates to a control device for a left / right driving force adjusting device for a vehicle.

従来から、車両の左右輪の駆動力を調整する車両用左右駆動力調整装置が知られている。車両用左右駆動力調整装置は、例えば、後述する図1に示すように、左輪12と右輪13との間に、原動機11が連結されたデファレンシャル・ギア14と駆動力調整機構15とを有している。駆動力調整機構15の1つとして、図1に示すように、電動モータ16と歯車機構17とを有する電動アクティブ・ヨー・コントロール(以降、電動AYCと呼ぶ。)が知られており、ECU(制御装置)20により電動モータ16を制御することで、左輪12及び右輪13への駆動力の配分を調整している。   2. Description of the Related Art Conventionally, a vehicle left / right driving force adjusting device that adjusts driving force of left and right wheels of a vehicle is known. The vehicle left / right driving force adjusting device includes, for example, a differential gear 14 having a prime mover 11 connected between a left wheel 12 and a right wheel 13 and a driving force adjusting mechanism 15 as shown in FIG. is doing. As one of the driving force adjusting mechanisms 15, as shown in FIG. 1, an electric active yaw control (hereinafter referred to as electric AYC) having an electric motor 16 and a gear mechanism 17 is known. Control device 20 controls electric motor 16 to adjust the distribution of driving force to left wheel 12 and right wheel 13.

特許第3686626号公報Japanese Patent No. 3686626 特開2006−046495号公報JP 2006-046495 A 特開2006−057745号公報JP 2006-057745 A 特開2003−335143号公報JP 2003-335143 A

電動AYCにおいて、モータ回転数Nmは、減速比G及び左右輪の回転数差ΔNに比例し、下記式(1)で表すことができる。
m=G・ΔN … (1)
又、左右輪間のトルク差をΔTとした場合、右輪及び左輪のそれぞれへのトルク移動量ΔT/2は、減速比G及びモータトルクTmに比例し、下記式(2)で表すことができる。
ΔT/2=G・Tm … (2)
又、慣性モーメントIのモータが、角加速度dNm(Nmの微分値)で回転するためには、下記式(3)で表されるトルクが必要となる。
τLOAD=I・dNm=I・G・dΔN … (3)
ここで、dΔNは、左右輪の回転数差の角加速度であり、ΔNの微分値である。
従って、式(3)で表されるトルクτLOADは、式(2)より、下記式(4)又は(5)で表されるトルク差ΔTLOADとして、車両に作用する。
ΔTLOAD=2G・τLOAD
=2G・(I・G・dΔN)
=2G2・I・dΔN … (4)
又は
ΔTLOAD=2G・τLOAD
=2G・(I・dNm
=2G・I・dNm … (5)
In the electric AYC, the motor rotation speed N m is proportional to the reduction ratio G and the rotation speed difference ΔN between the left and right wheels, and can be expressed by the following equation (1).
N m = G · ΔN (1)
Further, when the torque difference between the left and right wheels and a [Delta] T, the torque movement amount [Delta] T / 2 to each of the right wheel and the left wheel is proportional to the reduction ratio G and the motor torque T m, be represented by the following formula (2) Can do.
ΔT / 2 = G · T m (2)
Further, in order for the motor having the moment of inertia I to rotate at the angular acceleration dN m (differential value of N m ), the torque represented by the following formula (3) is required.
τ LOAD = I · dN m = I · G · dΔN (3)
Here, dΔN is an angular acceleration of a difference in rotational speed between the left and right wheels, and is a differential value of ΔN.
Therefore, the torque τ LOAD represented by the equation (3) acts on the vehicle as the torque difference ΔT LOAD represented by the following equation (4) or (5) from the equation (2).
ΔT LOAD = 2G ・ τ LOAD
= 2G · (I · G · dΔN)
= 2G 2 · I · dΔN (4)
Or ΔT LOAD = 2G · τ LOAD
= 2G · (I · dN m )
= 2G · I · dN m (5)

電動AYCの特性として、式(4)で表されるように、慣性モーメントI、減速比Gの二乗及び左右輪の回転数差の角加速度dΔNに比例したトルク差ΔTLOADが、又は、式(5)で表されるように、慣性モーメントI、減速比G及びモータ回転数の角加速度dNmに比例したトルク差ΔTLOADが、車両に作用する。これは、モータ自体が持つ慣性モーメントIが車両の姿勢制御に影響することを意味する。特にモータトルクを増幅するために、減速比Gを大きくする場合には、このトルク差ΔTLOADは車両運動に影響する程大きな値となる。 As the characteristics of the electric AYC, as expressed by the equation (4), the torque difference ΔT LOAD proportional to the angular moment of inertia I, the square of the reduction ratio G, and the angular acceleration dΔN of the difference between the rotational speeds of the left and right wheels, or As represented by 5), a torque difference ΔT LOAD proportional to the moment of inertia I, the reduction ratio G, and the angular acceleration dN m of the motor rotation speed acts on the vehicle. This means that the moment of inertia I of the motor itself affects the attitude control of the vehicle. In particular, when the reduction ratio G is increased in order to amplify the motor torque, the torque difference ΔT LOAD becomes a large value that affects the vehicle motion.

従って、モータ自体が持つ慣性モーメントIにより発生するトルク差の影響により、車両の姿勢制御を行っているときには、制御則によって演算された値とは異なるトルク差が発生し、又、制御を行っていないときにも、意図しないトルク差が発生し、所望の姿勢制御を行えないおそれがある。   Therefore, when the vehicle attitude control is performed due to the influence of the torque difference generated by the inertia moment I of the motor itself, a torque difference different from the value calculated by the control law is generated and the control is performed. Even when there is not, there is a possibility that an unintended torque difference occurs and the desired posture control cannot be performed.

本発明は上記課題に鑑みなされたもので、慣性モーメントにより発生するトルク差の影響を排除して、制御則通りの制御を行う車両用左右駆動力調整装置の制御装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a control device for a left / right driving force adjusting device for a vehicle that performs control according to a control law while eliminating the influence of a torque difference caused by a moment of inertia. To do.

上記課題を解決する第1の発明に係る車両用左右駆動力調整装置の制御装置は、
車両の左右輪にトルク差を発生させるモータを有し、前記モータを用いて、車両の姿勢制御を行う車両用左右駆動力調整装置と、
前記モータを制御する制御装置とを備え、
前記制御装置は、
前記モータの回転数をNm、前記左右輪の回転数差をΔN、前記モータの慣性モーメントをIとし、前記モータの減速比Gを[Nm/ΔN]するとき、
前記回転数差ΔNを微分して求めた回転数差角加速度dΔNに、慣性モーメントI及び減速比Gの二乗であるG2を積算して、前記トルク差の補正値[2G2・I・dΔN]を求め、
少なくとも1つ以上の既知の制御則により前記トルク差に相当する制御出力を求め、
前記制御出力に前記補正値を加算して、補正トルク差を求め、
前記補正トルク差となるように、前記モータを制御して、車両の姿勢制御を行うことを特徴とする。
A control device for a left / right driving force adjusting device for a vehicle according to a first aspect of the present invention for solving the above-described problem is provided.
A left and right driving force adjusting device for a vehicle that has a motor that generates a torque difference between the left and right wheels of the vehicle, and controls the attitude of the vehicle using the motor;
A control device for controlling the motor,
The controller is
When the rotational speed of the motor is N m , the rotational speed difference between the left and right wheels is ΔN, the moment of inertia of the motor is I, and the reduction ratio G of the motor is [N m / ΔN],
The torque difference correction value [2G 2 · I · dΔN] is obtained by accumulating G 2 which is the square of the inertia moment I and the reduction ratio G to the rotational speed difference angular acceleration dΔN obtained by differentiating the rotational speed difference ΔN. ]
Obtaining a control output corresponding to the torque difference by at least one known control law;
Add the correction value to the control output to obtain a correction torque difference,
The attitude of the vehicle is controlled by controlling the motor so that the correction torque difference is obtained.

上記課題を解決する第2の発明に係る車両用左右駆動力調整装置の制御装置は、
車両の左右輪にトルク差を発生させるモータを有し、前記モータを用いて、車両の姿勢制御を行う車両用左右駆動力調整装置と、
前記モータを制御する制御装置とを備え、
前記制御装置は、
前記モータの回転数をNm、前記左右輪の回転数差をΔN、前記モータの慣性モーメントをIとし、前記モータの減速比Gを[Nm/ΔN]するとき、
前記回転数Nmを微分して求めたモータ角加速度dNmに、慣性モーメントI及び減速比Gを積算して、前記トルク差の補正値[2G・I・dNm]を求め、
少なくとも1つ以上の既知の制御則により前記トルク差に相当する制御出力を求め、
前記制御出力に前記補正値を加算して、補正トルク差を求め、
前記補正トルク差となるように、前記モータを制御して、車両の姿勢制御を行うことを特徴とする。
A control device for a vehicle left-right driving force adjusting device according to a second invention for solving the above-described problems
A left and right driving force adjusting device for a vehicle that has a motor that generates a torque difference between the left and right wheels of the vehicle, and controls the attitude of the vehicle using the motor;
A control device for controlling the motor,
The controller is
When the rotational speed of the motor is N m , the rotational speed difference between the left and right wheels is ΔN, the moment of inertia of the motor is I, and the reduction ratio G of the motor is [N m / ΔN],
The motor angular acceleration dN m obtained by differentiating the rotational speed N m is integrated with the moment of inertia I and the reduction ratio G to obtain a correction value [2G · I · dN m ] for the torque difference,
Obtaining a control output corresponding to the torque difference by at least one known control law;
Add the correction value to the control output to obtain a correction torque difference,
The attitude of the vehicle is controlled by controlling the motor so that the correction torque difference is obtained.

本発明によれば、回転数差角加速度又はモータ角加速度に応じて、トルク差の補正を行うことになり、これにより、モータの慣性モーメントにより発生するトルク差の影響を排除して、制御則によって演算した通りの制御を行うことができる。   According to the present invention, the torque difference is corrected in accordance with the rotational speed difference angular acceleration or the motor angular acceleration, thereby eliminating the influence of the torque difference caused by the moment of inertia of the motor, and the control law. It is possible to perform control as calculated by.

又、モータ角加速度を用いて、トルク差の補正を行う場合には、回転数差角加速度を用いて、トルク差の補正を行う場合より、精度良くモータ角加速度を求めることが可能であり、制御精度もより高くなる。   In addition, when correcting the torque difference using the motor angular acceleration, it is possible to obtain the motor angular acceleration with higher accuracy than when correcting the torque difference using the rotational speed difference angular acceleration. The control accuracy is also higher.

本発明に係る車両用左右駆動力調整装置の制御装置の実施形態の一例を説明する概略構成図である。It is a schematic structure figure explaining an example of an embodiment of a control device of a right-and-left driving force adjustment device for vehicles concerning the present invention. 図1に示した制御装置を説明するブロック図である。It is a block diagram explaining the control apparatus shown in FIG. 図2に示した制御装置の変形例を説明するブロック図である。It is a block diagram explaining the modification of the control apparatus shown in FIG.

以下、図1〜図3を参照して、本発明に係る車両用左右駆動力調整装置の制御装置の実施形態の一例を説明する。   Hereinafter, with reference to FIG. 1 to FIG. 3, an example of an embodiment of a control device for a vehicle left-right driving force adjusting device according to the present invention will be described.

(実施例1)
図1は、本実施例の車両用左右駆動力調整装置の制御装置を説明する概略構成図である。図2は、図1に示した制御装置を説明するブロック図であり、又、図3は、図2に示した制御装置の変形例を説明するブロック図である。
Example 1
FIG. 1 is a schematic configuration diagram illustrating a control device for a left / right driving force adjusting device for a vehicle according to the present embodiment. FIG. 2 is a block diagram for explaining the control device shown in FIG. 1, and FIG. 3 is a block diagram for explaining a modification of the control device shown in FIG.

車両用左右駆動力調整装置は、図1に示すように、エンジンやモータ等の原動機11からの出力を左輪12及び右輪13に駆動力として伝達すると共に、左輪12と右輪13との回転数差を調整するデファレンシャル・ギア14と、左輪12及び右輪13への駆動力の配分を調整する駆動力調整機構15とを、左輪12と右輪13との間に有している。駆動力調整機構15は、出力トルクにより左輪12と右輪13との間にトルク差を発生させる電動モータ16と歯車機構17とを有しており、電動モータ16は、ECU(制御装置)20により制御される。これは、所謂、電動AYCと呼ばれるものであり、車両の姿勢制御のために、ヨーモーメントを発生させるアクチュエータとして機能し、ECU20により電動モータ16を制御することで、左輪12及び右輪13への駆動力の配分を調整している。   As shown in FIG. 1, the vehicle left / right driving force adjusting device transmits an output from a prime mover 11 such as an engine or a motor to the left wheel 12 and the right wheel 13 as a driving force, and rotates the left wheel 12 and the right wheel 13. A differential gear 14 that adjusts the number difference and a driving force adjusting mechanism 15 that adjusts the distribution of the driving force to the left wheel 12 and the right wheel 13 are provided between the left wheel 12 and the right wheel 13. The driving force adjusting mechanism 15 includes an electric motor 16 and a gear mechanism 17 that generate a torque difference between the left wheel 12 and the right wheel 13 by output torque. The electric motor 16 is an ECU (control device) 20. Controlled by This is a so-called electric AYC, which functions as an actuator that generates a yaw moment for controlling the attitude of the vehicle. By controlling the electric motor 16 by the ECU 20, the left and right wheels 12 and 13 are connected to the right wheel 13. The distribution of driving force is adjusted.

なお、上記デファレンシャル・ギア14としては、例えば、ベベルギア式のものを用いているが、デファレンシャル・ギア14の構成自体は、本発明と直接関係する部分ではないので、その詳細な説明は省略する。   Note that, for example, a bevel gear type is used as the differential gear 14, but the configuration of the differential gear 14 is not directly related to the present invention, and a detailed description thereof will be omitted.

又、上記歯車機構17は、電動モータ16と共に、左輪12と右輪13とに伝達される駆動力の配分量を調整するものであるが、歯車機構17の構成自体も、本発明と直接関係する部分ではないので、その詳細な説明は省略する。   The gear mechanism 17 adjusts the distribution amount of the driving force transmitted to the left wheel 12 and the right wheel 13 together with the electric motor 16, but the configuration itself of the gear mechanism 17 is also directly related to the present invention. Since it is not a part to do, the detailed description is abbreviate | omitted.

又、制御対象となる左輪12、右輪13は、前輪のみでも、後輪のみでも、そして、四輪全部でも構わないが、本実施例では、制御対象を後輪のみとして説明を行う。   The left wheel 12 and the right wheel 13 to be controlled may be front wheels only, rear wheels only, or all four wheels, but in this embodiment, the description will be made assuming that the control objects are only rear wheels.

次に、図2(図3)も参照して、ECU20の機能及び制御を説明する。なお、ここでは、反時計回り方向を、ヨーレート及びヨーモーメントの正の符号とし、又、グリップ状態で反時計回りに旋回した際の左右輪回転数差及びモータ回転方向を正の符号としている。   Next, the function and control of the ECU 20 will be described with reference to FIG. 2 (FIG. 3). Here, the counterclockwise direction is a positive sign of the yaw rate and yaw moment, and the left-right wheel rotation speed difference and the motor rotation direction when turning counterclockwise in the grip state are positive signs.

ECU20は、トルク差を求めるための複数の制御則1〜Mと、制御則1〜Mにより求められたトルク差ΔT1〜ΔTMの総和を制御出力として演算する演算器C1と、補正値として、回転数差角加速度と[2G2・I]とを積算する演算器C2と、演算器C1からの制御出力に演算器C2からの補正値を加算して、補正トルク差を求める演算器C3と、演算器C3で求めた補正トルク差に基づいて、モータ出力トルクに変換するトルク差→モータ出力トルク変換手段B1と、変換されたモータ出力トルクとなるように電動モータ16を制御するモータ制御手段B2とを有する。 The ECU 20 includes a plurality of control laws 1 to M for obtaining a torque difference, a calculator C1 that calculates the sum of the torque differences ΔT 1 to ΔTM obtained by the control laws 1 to M as a control output, and a correction value. , A computing unit C2 for integrating the rotational speed difference angular acceleration and [2G 2 · I], and a computing unit C3 for adding a correction value from the computing unit C2 to the control output from the computing unit C1 to obtain a corrected torque difference. And motor control for controlling the electric motor 16 so that the motor output torque is converted to the torque difference → motor output torque conversion means B1 converted to the motor output torque based on the correction torque difference obtained by the calculator C3. Means B2.

ここで、減速比Gは、式(1)からわかるように、モータ回転数Nm及び左右輪の回転数差ΔNを用いて、G=Nm/ΔNで表される。又、慣性モーメントIは、電動モータ16固有のものである。 Here, the speed reduction ratio G is expressed by G = N m / ΔN using the motor rotation speed N m and the rotation speed difference ΔN between the left and right wheels, as can be seen from the equation (1). The inertia moment I is unique to the electric motor 16.

制御則1〜Mとしては、ヨーレートフィードバック制御、目標回転数差追従制御、駆動トルクフィードフォワード制御等の既知の制御則でよい。例えば、ヨーレートフィードバック制御は、車速及び操舵角より演算する目標ヨーレートと実ヨーレートの差分のPD制御を行うものである。又、目標回転数差追従制御は、車速及び操舵角より演算する目標左右輪回転数差と実左右輪回転数差の差分のPD制御を行うものである。又、駆動トルクフィードフォワード制御は、駆動トルク及び操舵角の増加に応じたフィードフォワード制御を行うものである。なお、制御則1〜Mに対応する事象は、各々独立している。   The control laws 1 to M may be known control laws such as yaw rate feedback control, target rotational speed difference tracking control, and drive torque feedforward control. For example, the yaw rate feedback control performs PD control of the difference between the target yaw rate calculated from the vehicle speed and the steering angle and the actual yaw rate. Further, the target rotational speed difference follow-up control performs PD control of the difference between the target left and right wheel rotational speed difference calculated from the vehicle speed and the steering angle and the actual left and right wheel rotational speed difference. In addition, the drive torque feedforward control performs feedforward control according to the increase in drive torque and steering angle. Note that the events corresponding to the control laws 1 to M are independent of each other.

演算器C1では、複数の制御則1〜Mにより求められたトルク差ΔT1〜ΔTMを用いて、以下の式により制御出力を求める。

Figure 2011130628
なお、ここでは、最適な制御出力を演算するために、単純に、複数のトルク差ΔT1〜ΔTMの総和を演算したが、例えば、複数のトルク差ΔT1〜ΔTMの中から最適な1つを選択し、選択したものを制御出力としてもよいし、複数のトルク差ΔT1〜ΔTMを用いて、確率論的モデルにより、最適な制御出力を求めるようにしてもよい。 The computing unit C1 uses the torque differences ΔT 1 to ΔT M obtained by a plurality of control laws 1 to M to obtain a control output by the following equation.
Figure 2011130628
Here, in order to calculate the optimum control output, the sum total of a plurality of torque differences ΔT 1 to ΔT M is simply calculated. However, for example, the optimum among the plurality of torque differences ΔT 1 to ΔT M is calculated. One may be selected, and the selected one may be used as a control output, or an optimal control output may be obtained by a probabilistic model using a plurality of torque differences ΔT 1 to ΔT M.

演算器C2で用いる回転数差角加速度は、各輪に設けられた車輪速センサを用いて、右後輪回転数及び左後輪回転数を検出し、検出した右後輪回転数及び左後輪回転数と、回転数をラジアンに変換する変換係数KRに基づいて、下記式により、回転数差角加速度を求める。
回転数差角加速度=微分[(右後輪回転数−左後輪回転数)×KR] … (7)
そして、下記式により、求めた回転数差角加速度に、慣性モーメントI及び減速比Gの二乗であるG2を積算して、トルク差の補正値を求める。
補正値=(回転数差角加速度)・2G2・I … (8)
この補正値は、電動モータ16固有の慣性モーメントIにより発生するトルク差であり、これを補正値とすることにより、電動モータ16の慣性モーメントIによる影響を排除するようにしている。
The rotational speed difference angular acceleration used in the computing unit C2 detects the right rear wheel rotational speed and the left rear wheel rotational speed using a wheel speed sensor provided in each wheel, and detects the detected right rear wheel rotational speed and the left rear rotational speed. Based on the wheel rotational speed and the conversion coefficient K R for converting the rotational speed to radians, the rotational speed difference angular acceleration is obtained by the following equation.
Speed difference angular acceleration = differential [(right rear wheel speed−left rear wheel speed) × K R ] (7)
Then, the correction value for the torque difference is obtained by adding G 2 that is the square of the inertia moment I and the reduction ratio G to the obtained rotational speed difference angular acceleration according to the following equation.
Correction value = (Rotational speed difference angular acceleration) · 2G 2 · I (8)
This correction value is a torque difference generated by the inertia moment I inherent in the electric motor 16, and this is used as a correction value to eliminate the influence of the inertia moment I of the electric motor 16.

上述した演算器C2に代えて、図3に示すように、モータ角加速度と[2G・I]とを積算して補正値とする演算器C4を用いるようにしても良い。この場合、電動モータ16の回転数と上記変換係数KRに基づいて、下記式により、モータ角加速度を求める。
モータ角加速度=微分[(モータ回転数)×KR] … (9)
そして、下記式により、求めたモータ角加速度に、慣性モーメントI及び減速比Gを積算して、トルク差の補正値を求める。
補正値=(モータ角加速度)・2G・I … (10)
この補正値は、電動モータ16固有の慣性モーメントIにより発生するトルク差であり、これを補正値とすることにより、電動モータ16の慣性モーメントIによる影響を排除するようにしている。なお、図3に示すECU20は、補正値の演算部分のみが、図2に示したECU20と相違する。
Instead of the above-described computing unit C2, as shown in FIG. 3, a computing unit C4 that integrates motor angular acceleration and [2G · I] to obtain a correction value may be used. In this case, based on the rotation speed of the electric motor 16 and the conversion coefficient K R , the motor angular acceleration is obtained by the following equation.
Motor angular acceleration = differential [(motor rotational speed) × K R ] (9)
Then, the correction value for the torque difference is obtained by adding the moment of inertia I and the reduction ratio G to the obtained motor angular acceleration according to the following equation.
Correction value = (motor angular acceleration) · 2G · I (10)
This correction value is a torque difference generated by the inertia moment I inherent in the electric motor 16, and this is used as a correction value to eliminate the influence of the inertia moment I of the electric motor 16. 3 is different from the ECU 20 shown in FIG. 2 only in the correction value calculation part.

又、トルク差→モータ出力トルク変換手段B1では、上記式(2)に基づく変換係数=1/(2G)と演算器C3で求めた補正トルク差とを用いて、以下の式により、モータ出力トルクに変換する。
モータ出力トルク=補正トルク差×(1/(2G)) … (11)
Further, the torque difference → motor output torque conversion means B1 uses the conversion coefficient = 1 / (2G) based on the above equation (2) and the corrected torque difference obtained by the calculator C3 to calculate the motor output by the following equation. Convert to torque.
Motor output torque = corrected torque difference × (1 / (2G)) (11)

ここで、図2及び図3を参照して、ECU20における一連の制御手順を説明する。   Here, with reference to FIG.2 and FIG.3, a series of control procedures in ECU20 are demonstrated.

複数の制御則1〜Mによりトルク差ΔT1〜ΔTMを求め、演算器C1により、上記式(6)を用いて、複数のトルク差ΔT1〜ΔTMの総和を求める。 Torque differences ΔT 1 to ΔT M are obtained by a plurality of control laws 1 to M, and a total sum of the plurality of torque differences ΔT 1 to ΔT M is obtained by the calculator C1 using the above equation (6).

演算器C2により、上記式(8)を用いて、測定及び演算により求めた回転数差角加速度に、慣性モーメントI及び減速比Gの二乗であるG2を積算して、トルク差の補正値を求める。又は、演算器C2に代えて、演算器C4により、上記式(10)を用いて、測定及び演算により求めたモータ角加速度に、慣性モーメントI及び減速比Gを積算して、トルク差の補正値を求める。 The calculator C2, by using equation (8), the rotational speed difference angular acceleration determined by measurement and calculation, by integrating G 2 is the square of the moment of inertia I and the reduction ratio G, the correction value of the torque difference Ask for. Or, instead of the calculator C2, the calculator C4 adds the moment of inertia I and the reduction ratio G to the motor angular acceleration obtained by measurement and calculation using the above equation (10) to correct the torque difference. Find the value.

そして、演算器C3により、演算器C1により求めた制御出力に、演算器C2又は演算器C4により求めた補正値を加算して、補正トルク差を求める。   The arithmetic unit C3 adds the correction value obtained by the arithmetic unit C2 or the arithmetic unit C4 to the control output obtained by the arithmetic unit C1, thereby obtaining a correction torque difference.

そして、トルク差→モータ出力トルク変換手段B1により、上記式(11)を用いて、演算器C3により求めた補正トルク差を、モータ出力トルクに変換する。   Then, the torque difference → motor output torque conversion means B1 converts the correction torque difference obtained by the calculator C3 into the motor output torque using the above equation (11).

そして、モータ制御手段B2により、変換されたモータ出力トルクとなるように、電動モータ16を制御する。   Then, the electric motor 16 is controlled by the motor control means B2 so that the converted motor output torque is obtained.

上述した制御により、回転数差角加速度又はモータ角加速度に応じて、トルク差の補正を行うことになり、これにより、電動モータ16の慣性モーメントIにより発生するトルク差の影響を排除して、制御則によって演算した通りの制御を行うことができる。特に、モータ角加速度を用いて、トルク差の補正を行う場合には、モータ回転数が左右輪回転数差の減速比G倍となるため、回転数差角加速度を用いて、トルク差の補正を行う場合より、精度良くモータ角加速度を求めることが可能であり、制御精度もより高くなる。   With the control described above, the torque difference is corrected according to the rotational speed difference angular acceleration or the motor angular acceleration, thereby eliminating the influence of the torque difference generated by the inertia moment I of the electric motor 16, Control as calculated by the control law can be performed. In particular, when correcting the torque difference using the motor angular acceleration, the motor rotational speed is G times the reduction ratio of the left and right wheel rotational speed difference, so the rotational speed difference angular acceleration is used to correct the torque difference. It is possible to obtain the motor angular acceleration with higher accuracy than in the case of performing the above, and the control accuracy becomes higher.

本発明は、電動モータを用いて、車両の左右輪の駆動力を調整する車両用左右駆動力調整装置の制御装置に好適なものである。   The present invention is suitable for a control device for a left / right driving force adjusting device for a vehicle that uses an electric motor to adjust the driving force of the left / right wheels of the vehicle.

11 原動機
12 左輪
13 右輪
14 デファレンシャル・ギア
15 駆動力調整機構
16 電動モータ
17 歯車機構
20 ECU
11 prime mover 12 left wheel 13 right wheel 14 differential gear 15 driving force adjustment mechanism 16 electric motor 17 gear mechanism 20 ECU

Claims (2)

車両の左右輪にトルク差を発生させるモータを有し、前記モータを用いて、車両の姿勢制御を行う車両用左右駆動力調整装置と、
前記モータを制御する制御装置とを備え、
前記制御装置は、
前記モータの回転数をNm、前記左右輪の回転数差をΔN、前記モータの慣性モーメントをIとし、前記モータの減速比Gを[Nm/ΔN]するとき、
前記回転数差ΔNを微分して求めた回転数差角加速度dΔNに、慣性モーメントI及び減速比Gの二乗であるG2を積算して、前記トルク差の補正値[2G2・I・dΔN]を求め、
少なくとも1つ以上の既知の制御則により前記トルク差に相当する制御出力を求め、
前記制御出力に前記補正値を加算して、補正トルク差を求め、
前記補正トルク差となるように、前記モータを制御して、車両の姿勢制御を行うことを特徴とする車両用左右駆動力調整装置の制御装置。
A left and right driving force adjusting device for a vehicle that has a motor that generates a torque difference between the left and right wheels of the vehicle, and controls the attitude of the vehicle using the motor;
A control device for controlling the motor,
The controller is
When the rotational speed of the motor is N m , the rotational speed difference between the left and right wheels is ΔN, the moment of inertia of the motor is I, and the reduction ratio G of the motor is [N m / ΔN],
The torque difference correction value [2G 2 · I · dΔN] is obtained by accumulating G 2 which is the square of the inertia moment I and the reduction ratio G to the rotational speed difference angular acceleration dΔN obtained by differentiating the rotational speed difference ΔN. ]
Obtaining a control output corresponding to the torque difference by at least one known control law;
Add the correction value to the control output to obtain a correction torque difference,
A control device for a vehicle left-right driving force adjustment device, wherein the motor is controlled to control the attitude of the vehicle so that the correction torque difference is obtained.
車両の左右輪にトルク差を発生させるモータを有し、前記モータを用いて、車両の姿勢制御を行う車両用左右駆動力調整装置と、
前記モータを制御する制御装置とを備え、
前記制御装置は、
前記モータの回転数をNm、前記左右輪の回転数差をΔN、前記モータの慣性モーメントをIとし、前記モータの減速比Gを[Nm/ΔN]するとき、
前記回転数Nmを微分して求めたモータ角加速度dNmに、慣性モーメントI及び減速比Gを積算して、前記トルク差の補正値[2G・I・dNm]を求め、
少なくとも1つ以上の既知の制御則により前記トルク差に相当する制御出力を求め、
前記制御出力に前記補正値を加算して、補正トルク差を求め、
前記補正トルク差となるように、前記モータを制御して、車両の姿勢制御を行うことを特徴とする車両用左右駆動力調整装置の制御装置。
A left and right driving force adjusting device for a vehicle that has a motor that generates a torque difference between the left and right wheels of the vehicle, and controls the attitude of the vehicle using the motor;
A control device for controlling the motor,
The controller is
When the rotational speed of the motor is N m , the rotational speed difference between the left and right wheels is ΔN, the moment of inertia of the motor is I, and the reduction ratio G of the motor is [N m / ΔN],
The motor angular acceleration dN m obtained by differentiating the rotational speed N m is integrated with the moment of inertia I and the reduction ratio G to obtain a correction value [2G · I · dN m ] for the torque difference,
Obtaining a control output corresponding to the torque difference by at least one known control law;
Add the correction value to the control output to obtain a correction torque difference,
A control device for a vehicle left-right driving force adjustment device, wherein the motor is controlled to control the attitude of the vehicle so that the correction torque difference is obtained.
JP2009288990A 2009-12-21 2009-12-21 Control device for right / left driving force adjusting device for vehicle Active JP5333193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288990A JP5333193B2 (en) 2009-12-21 2009-12-21 Control device for right / left driving force adjusting device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288990A JP5333193B2 (en) 2009-12-21 2009-12-21 Control device for right / left driving force adjusting device for vehicle

Publications (2)

Publication Number Publication Date
JP2011130628A true JP2011130628A (en) 2011-06-30
JP5333193B2 JP5333193B2 (en) 2013-11-06

Family

ID=44292562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288990A Active JP5333193B2 (en) 2009-12-21 2009-12-21 Control device for right / left driving force adjusting device for vehicle

Country Status (1)

Country Link
JP (1) JP5333193B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103129411A (en) * 2013-03-12 2013-06-05 重庆长安汽车股份有限公司 Pure electric vehicle speed control method and pure electric vehicle speed control system
JP2013223285A (en) * 2012-04-13 2013-10-28 Ntn Corp Electric vehicle
US11207984B2 (en) 2016-10-03 2021-12-28 Ntn Corporation Drive source control device
JP7417185B2 (en) 2019-11-01 2024-01-18 三菱自動車工業株式会社 Torque difference adjustment system
CN117724406A (en) * 2024-02-18 2024-03-19 中国汽车技术研究中心有限公司 Four-wheel drive mobile platform transverse and longitudinal control calibration method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190942A (en) * 2006-01-17 2007-08-02 Nissan Motor Co Ltd Driving force distributing device for vehicle
JP2008087500A (en) * 2006-09-29 2008-04-17 Nissan Motor Co Ltd Vehicular driving force distributing device
JP2008143259A (en) * 2006-12-07 2008-06-26 Nissan Motor Co Ltd Driving/braking force control unit, automobile, and driving/braking force control method
JP2009293719A (en) * 2008-06-06 2009-12-17 Toyota Motor Corp Lateral driving force distribution control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190942A (en) * 2006-01-17 2007-08-02 Nissan Motor Co Ltd Driving force distributing device for vehicle
JP2008087500A (en) * 2006-09-29 2008-04-17 Nissan Motor Co Ltd Vehicular driving force distributing device
JP2008143259A (en) * 2006-12-07 2008-06-26 Nissan Motor Co Ltd Driving/braking force control unit, automobile, and driving/braking force control method
JP2009293719A (en) * 2008-06-06 2009-12-17 Toyota Motor Corp Lateral driving force distribution control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223285A (en) * 2012-04-13 2013-10-28 Ntn Corp Electric vehicle
CN103129411A (en) * 2013-03-12 2013-06-05 重庆长安汽车股份有限公司 Pure electric vehicle speed control method and pure electric vehicle speed control system
CN103129411B (en) * 2013-03-12 2015-07-01 重庆长安汽车股份有限公司 Pure electric vehicle speed control method and pure electric vehicle speed control system
US11207984B2 (en) 2016-10-03 2021-12-28 Ntn Corporation Drive source control device
JP7417185B2 (en) 2019-11-01 2024-01-18 三菱自動車工業株式会社 Torque difference adjustment system
CN117724406A (en) * 2024-02-18 2024-03-19 中国汽车技术研究中心有限公司 Four-wheel drive mobile platform transverse and longitudinal control calibration method

Also Published As

Publication number Publication date
JP5333193B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
EP2328055B1 (en) Fall prevention controller and computer program
JP4434186B2 (en) MOBILE BODY AND METHOD FOR CONTROLLING MOBILE BODY
US8364368B2 (en) Acceleration control apparatus for vehicle
JP5333193B2 (en) Control device for right / left driving force adjusting device for vehicle
JP5250541B2 (en) Differential limiting control device for electric vehicle
JPWO2004101346A1 (en) Steering control device
CN102905947A (en) Vibration-restraining control apparatus for vehicle
CN110254239B (en) Torque distribution method in electric automobile regenerative braking transient response process
EP3339118B1 (en) Vehicle stability control device
JP7339612B2 (en) Vehicle drive control device
JP2011213247A (en) Vehicle motion controller
US20200339187A1 (en) Turning control system
JP5177562B2 (en) vehicle
JP6428497B2 (en) Vehicle control device
JP4729871B2 (en) Vehicle turning control device
JP5299256B2 (en) Control device for right / left driving force adjusting device for vehicle
US11794747B2 (en) Method for controlling an actuator of a vehicle
JP2004067040A (en) Electric power steering device
JP4007710B2 (en) Vehicle cooperative control device
KR20220067066A (en) Method for controlling driving force of vehicle
JP4952872B2 (en) Vehicle steering system
JP3971530B2 (en) Vehicle cooperative control device
JP2010260531A (en) Vehicle
JP5435162B2 (en) Control device for right / left driving force adjusting device for vehicle
JP2005225354A (en) Steering device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5333193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350