JP5435162B2 - Control device for right / left driving force adjusting device for vehicle - Google Patents

Control device for right / left driving force adjusting device for vehicle Download PDF

Info

Publication number
JP5435162B2
JP5435162B2 JP2013078320A JP2013078320A JP5435162B2 JP 5435162 B2 JP5435162 B2 JP 5435162B2 JP 2013078320 A JP2013078320 A JP 2013078320A JP 2013078320 A JP2013078320 A JP 2013078320A JP 5435162 B2 JP5435162 B2 JP 5435162B2
Authority
JP
Japan
Prior art keywords
torque
difference
vehicle
control device
driving force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013078320A
Other languages
Japanese (ja)
Other versions
JP2013139885A (en
Inventor
智 加藤
薫 澤瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2013078320A priority Critical patent/JP5435162B2/en
Publication of JP2013139885A publication Critical patent/JP2013139885A/en
Application granted granted Critical
Publication of JP5435162B2 publication Critical patent/JP5435162B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Retarders (AREA)

Description

本発明は、車両用左右駆動力調整装置の制御装置に関する。   The present invention relates to a control device for a left / right driving force adjusting device for a vehicle.

従来から、車両の左右輪の駆動力を調整する車両用左右駆動力調整装置が知られている。車両用左右駆動力調整装置は、例えば、左右輪の間にデファレンシャル・ギアと駆動力調整機構とを有している。駆動力調整機構の1つとして、電動モータと歯車機構とを有する電動アクティブ・ヨー・コントロール(以降、電動AYCと呼ぶ。)が知られており、制御装置により電動モータを制御することで、左右輪への駆動力の配分を調整している。そして、上記制御装置では、電動モータのモータトルクの差動制限を行うことで、車両姿勢の安定性向上を図っており、例えば、特許文献1の技術が知られている。   2. Description of the Related Art Conventionally, a vehicle left / right driving force adjusting device that adjusts the driving force of left and right wheels of a vehicle is known. The left / right driving force adjusting device for a vehicle has, for example, a differential gear and a driving force adjusting mechanism between the left and right wheels. As one of the driving force adjustment mechanisms, an electric active yaw control (hereinafter referred to as electric AYC) having an electric motor and a gear mechanism is known. By controlling the electric motor by a control device, The distribution of driving force to the wheels is adjusted. And in the said control apparatus, the stability restriction | limiting of a vehicle attitude | position is aimed at by performing differential restriction | limiting of the motor torque of an electric motor, for example, the technique of patent document 1 is known.

特開2006−046495号公報JP 2006-046495 A

特許文献1(特に、段落0046〜0050、図12等参照)では、モータトルクの差動制限を行う方法として、モータ電流から計算した実トルクTrealと差動制限トルクTlimとを比較し、実トルクTrealの方が大きい場合には、モータ電流を徐々に低減するようにしている。この方法では、前回演算した制御量を基に電動モータを制御し、電動モータを制御した結果生じたモータ電流から実トルクTrealを求め、その実トルクTrealと差動制限トルクTlimとを比較している。つまり、この方法において、差動制限トルクTlimは絶対的な制限値として機能しておらず、実トルクTreal≧差動制限トルクTlimとなった後に(一旦、オーバーシュートした後に)、モータ電流を徐々に低減する制御を始めているため、実トルクTrealが差動制限トルクTlimを大幅に越える場合がある(後述の図5(a)、(b)のグラフ参照)。 In Patent Document 1 (particularly, refer to paragraphs 0046 to 0050, FIG. 12 and the like), as a method of performing differential limiting of motor torque, actual torque T real calculated from motor current and differential limiting torque T lim are compared, When the actual torque T real is larger, the motor current is gradually reduced. In this method, the electric motor is controlled based on the previously calculated control amount, the actual torque T real is obtained from the motor current generated as a result of controlling the electric motor, and the actual torque T real is compared with the differential limit torque T lim. doing. That is, in this method, the differential limiting torque T lim does not function as an absolute limiting value, and after the actual torque T real ≧ differential limiting torque T lim (after once overshooting), the motor Since control for gradually reducing the current is started, the actual torque T real may greatly exceed the differential limit torque T lim (see graphs of FIGS. 5A and 5B described later).

そして、差動制限トルクTlimより実トルクTrealの方が大きい場合には、モータ電流を徐々に低減するようにしているが、その制御の際の電流減少勾配が小さい場合、実モータ電流は目標への収束が遅くなり、引きずりが発生し、フィーリングや燃費の悪化が懸念される。例えば、図5(a)に、機械式差動制限装置と電動AYC(電動モータの電流減少勾配が小さい場合)との比較を示すが、左右輪の回転数差(実線のグラフ)に対する機械式差動制限装置の差動トルクの変化(点線のグラフ)に対して、電動AYCの差動トルクの変化(一点鎖線のグラフ)には追従遅れが発生している。 When the actual torque T real is larger than the differential limiting torque T lim , the motor current is gradually reduced. However, when the current decrease gradient during the control is small, the actual motor current is Convergence to the target will be delayed, drag will occur, and there is concern about feeling and fuel consumption deterioration. For example, FIG. 5 (a) shows a comparison between a mechanical differential limiting device and an electric AYC (when the current decrease gradient of the electric motor is small), but the mechanical type for the rotational speed difference between the left and right wheels (solid line graph). A follow-up delay occurs in the change in the differential torque of the electric AYC (indicated by the dashed line) relative to the change in the differential torque of the differential limiting device (indicated by the dotted line).

一方、モータ電流の制御の際の電流減少勾配が大きい場合、目標モータ電流に振動が発生し、目標モータ電流の振動によりトルク変動が発生する。この結果、車両に振動が発生し、フィーリングの悪化や異音の発生が懸念される。例えば、図5(b)に、機械式差動制限装置と電動AYC(電動モータの電流減少勾配が大きい場合)との比較を示すが、左右輪の回転数差(実線のグラフ)に対する機械式差動制限装置の差動トルクの変化(点線のグラフ)に対して、電動AYCの差動トルクの変化(一点鎖線のグラフ)には振動が発生している。   On the other hand, when the current decrease gradient during the control of the motor current is large, vibration occurs in the target motor current, and torque fluctuation occurs due to the vibration of the target motor current. As a result, vibration is generated in the vehicle, and there is a concern that the feeling may deteriorate or abnormal noise may occur. For example, FIG. 5B shows a comparison between a mechanical differential limiting device and an electric AYC (when the electric motor has a large current decrease gradient), but the mechanical type for the rotational speed difference between the left and right wheels (solid line graph). In contrast to the change in the differential torque of the differential limiting device (dotted line graph), vibration occurs in the change in the differential torque of the electric AYC (dotted line graph).

本発明は上記課題に鑑みなされたもので、制御の収斂性、応答性を向上させて、車両姿勢の安定性を向上させる車両用左右駆動力調整装置の制御装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a control device for a left / right driving force adjusting device for a vehicle that improves the convergence and response of the control and improves the stability of the vehicle posture. .

上記課題を解決する第1の発明に係る車両用左右駆動力調整装置の制御装置は、
車両の左右輪にトルク差を発生させるモータを有し、前記モータを用いて、車両の姿勢制御を行う車両用左右駆動力調整装置と、
前記モータを制御する制御装置とを備え、
前記制御装置は、
前記左右輪間の実回転数差を検出すると共に、前記車両の車速及び操舵角に基づいて、目標回転数差を演算し、
前記実回転数差を前記目標回転数差に追従させる目標トルク差を演算し、
運転者の操作状態に基づいて、前記目標トルク差の最大値を制限する最大差動制限トルクを演算し、
前記目標トルク差を前記最大差動制限トルクに基づき制限した制限トルク差を演算し、
前記制限トルク差となるように、前記モータを制御して、差動制限を行うことを特徴とする。
A control device for a left / right driving force adjusting device for a vehicle according to a first aspect of the present invention for solving the above-described problem is provided.
A left and right driving force adjusting device for a vehicle that has a motor that generates a torque difference between the left and right wheels of the vehicle, and controls the attitude of the vehicle using the motor;
A control device for controlling the motor,
The control device includes:
While detecting the actual rotational speed difference between the left and right wheels, the target rotational speed difference is calculated based on the vehicle speed and the steering angle of the vehicle,
Calculating a target torque difference that causes the actual rotational speed difference to follow the target rotational speed difference;
Based on the operation state of the driver, the maximum differential limit torque that limits the maximum value of the target torque difference is calculated,
A limit torque difference obtained by limiting the target torque difference based on the maximum differential limit torque is calculated,
The motor is controlled so as to achieve the differential torque difference, and differential limitation is performed.

つまり、第1の発明においては、上記構成を有する車両用左右駆動力調整装置の制御装置(電動AYC)において、モータを制御する制御値(制限トルク差)を出力する前の段階で、目標トルク差をトルク差上限値に基づき制限し、制限したものを上記制御値(制限トルク差)としているので、上記制御値(制限トルク差)を越える制御値を出力することはなく、機械式差動制限装置(例えば、電子制御LSD(Limited Slip Differential Gear)等)と同様の差動制限を行うことができる。   In other words, in the first aspect of the invention, in the control device (electric AYC) for the vehicle left-right driving force adjusting device having the above-described configuration, the target torque is output at a stage before outputting the control value (limit torque difference) for controlling the motor. The difference is limited based on the torque difference upper limit value, and the limited value is used as the control value (limit torque difference). Therefore, a control value exceeding the control value (limit torque difference) is not output. Differential limiting similar to a limiting device (for example, an electronically controlled LSD (Limited Slip Differential Gear) or the like) can be performed.

上記課題を解決する第2の発明に係る車両用左右駆動力調整装置の制御装置は、
上記第1の発明に記載の車両用左右駆動力調整装置の制御装置において、
前記制御装置は、
前記最大差動制限トルクを、運転者の加速要求の増加に応じて、当該最大差動制限トルクが増加する第1のマップを用いて演算することを特徴とする。
又、上記課題を解決する第3の発明に係る車両用左右駆動力調整装置の制御装置は、
上記第2の発明に記載の車両用左右駆動力調整装置の制御装置において、
前記制御装置は、
前記最大差動制限トルクを補正する補正係数を、前記操舵角の絶対値の増加に応じて、当該補正係数が1から0へ減少する第2のマップを用いて演算し、
前記最大差動制限トルクと前記補正係数とを積算して、前記目標トルク差を制限するトルク差上限値を演算し、
前記目標トルク差を前記トルク差上限値に基づき制限して、前記制限トルク差を演算することを特徴とする。
A control device for a vehicle left-right driving force adjusting device according to a second invention for solving the above-described problems
In the control device for a vehicle left-right driving force adjusting device according to the first invention,
The control device includes:
The maximum differential limiting torque is calculated using a first map in which the maximum differential limiting torque increases in accordance with an increase in the driver's acceleration request.
A control device for a left / right driving force adjusting device for a vehicle according to a third invention for solving the above-described problem is
In the control device for a vehicle left-right driving force adjusting device according to the second invention,
The control device includes:
A correction coefficient for correcting the maximum differential limiting torque is calculated using a second map in which the correction coefficient decreases from 1 to 0 in accordance with an increase in the absolute value of the steering angle;
The maximum differential limit torque and the correction coefficient are integrated to calculate a torque difference upper limit value for limiting the target torque difference,
The target torque difference is limited based on the torque difference upper limit value, and the limit torque difference is calculated.

本発明によれば、ハイゲインの追従制御を行って、目標回転数差に対する目標トルク差を算出しても、算出した目標トルク差の上限を制限し、制限したトルク差に基づくモータトルクを用いて、モータを制御するので、モータトルクの応答性、目標値への収斂性が向上し、安定性の向上やトラクション性能の向上を図ることができる。その結果、電子制御LSDで実施するプリロード(イニシャルトルク)制御と同等の効果が期待でき、又、目標回転数差を0とする場合にも、電子制御LSDと同様の効果が得られるため、直進安定性が向上する。   According to the present invention, even if high gain follow-up control is performed and the target torque difference with respect to the target rotational speed difference is calculated, the upper limit of the calculated target torque difference is limited, and the motor torque based on the limited torque difference is used. Since the motor is controlled, the response of the motor torque and the convergence to the target value are improved, and the stability and the traction performance can be improved. As a result, an effect equivalent to the preload (initial torque) control performed by the electronic control LSD can be expected, and even when the target rotational speed difference is set to 0, the same effect as the electronic control LSD can be obtained. Stability is improved.

又、本発明によれば、車速及び操舵角から演算した目標回転数差を用いるので、目標車体姿勢から実車体姿勢がずれた分だけ差動制限のトルク差が作用し、スムーズな旋回と優れた安定性を両立することができる。   In addition, according to the present invention, since the target rotational speed difference calculated from the vehicle speed and the steering angle is used, the differential limiting torque difference acts as much as the actual vehicle body posture deviates from the target vehicle body posture, and smooth turning and excellent Stable stability.

本発明に係る車両用左右駆動力調整装置の制御装置の実施形態の一例を説明する概略構成図である。It is a schematic structure figure explaining an example of an embodiment of a control device of a right-and-left driving force adjustment device for vehicles concerning the present invention. 図1に示した車両用左右駆動力調整装置の制御装置を説明するブロック図である。It is a block diagram explaining the control apparatus of the left-right driving force adjusting device for vehicles shown in FIG. 図1に示した車両用左右駆動力調整装置の制御装置で用いるマップであり、(a)は駆動トルクに対する最大差動制限トルクを演算するものであり、(b)は操舵角に対する補正係数を演算するものである。FIG. 2 is a map used in the control device of the left / right driving force adjusting device for a vehicle shown in FIG. 1, where (a) calculates a maximum differential limiting torque with respect to driving torque, and (b) shows a correction coefficient for a steering angle. It is to calculate. 図1に示した車両用左右駆動力調整装置の制御装置におけるフローチャートである。It is a flowchart in the control apparatus of the left-right driving force adjusting device for vehicles shown in FIG. 機械式差動制限装置と電動AYCとの差動トルクの比較を示すグラフであり、(a)は、電動モータの電流減少勾配が小さい場合、(b)は、電動モータの電流減少勾配が大きい場合である。It is a graph which shows the comparison of the differential torque of a mechanical differential limiting device and electric AYC, (a) is when the electric current motor's electric current decrease gradient is small, (b) is the electric motor's electric current decrease gradient is large. Is the case.

以下、図1〜図4を参照して、本発明に係る車両用左右駆動力調整装置の制御装置の実施形態の一例を説明する。   Hereinafter, with reference to FIGS. 1-4, an example of embodiment of the control apparatus of the left-right driving force adjusting device for vehicles which concerns on this invention is demonstrated.

(実施例1)
図1は、本実施例の車両用左右駆動力調整装置の制御装置を説明する概略構成図である。又、図2は、図1に示した制御装置を説明するブロック図であり、図3は、図1に示した制御装置で用いるマップであり、図4は、図1に示した制御装置におけるフローチャートである。
Example 1
FIG. 1 is a schematic configuration diagram illustrating a control device for a left / right driving force adjusting device for a vehicle according to the present embodiment. 2 is a block diagram for explaining the control device shown in FIG. 1, FIG. 3 is a map used in the control device shown in FIG. 1, and FIG. 4 is a map in the control device shown in FIG. It is a flowchart.

車両用左右駆動力調整装置は、図1に示すように、エンジンやモータ等の原動機11からの出力を左輪12及び右輪13に駆動力として伝達すると共に、左輪12と右輪13との回転数差を調整するデファレンシャル・ギア14と、左輪12及び右輪13への駆動力の配分を調整する駆動力調整機構15とを、左輪12と右輪13との間に有している。駆動力調整機構15は、出力トルクにより左輪12と右輪13との間にトルク差を発生させる電動モータ16と歯車機構17とを有しており、電動モータ16は、ECU(制御装置)20により制御される。これは、所謂、電動AYCと呼ばれるものであり、車両の姿勢制御のために、ヨーモーメントを発生させるアクチュエータとして機能し、ECU20により電動モータ16を制御することで、左輪12及び右輪13への駆動力の配分を調整している。   As shown in FIG. 1, the vehicle left / right driving force adjusting device transmits an output from a prime mover 11 such as an engine or a motor to the left wheel 12 and the right wheel 13 as a driving force, and rotates the left wheel 12 and the right wheel 13. A differential gear 14 that adjusts the number difference and a driving force adjusting mechanism 15 that adjusts the distribution of the driving force to the left wheel 12 and the right wheel 13 are provided between the left wheel 12 and the right wheel 13. The driving force adjusting mechanism 15 includes an electric motor 16 and a gear mechanism 17 that generate a torque difference between the left wheel 12 and the right wheel 13 by output torque. The electric motor 16 is an ECU (control device) 20. Controlled by This is a so-called electric AYC, which functions as an actuator that generates a yaw moment for controlling the attitude of the vehicle. By controlling the electric motor 16 by the ECU 20, the left and right wheels 12 and 13 are connected to the right wheel 13. The distribution of driving force is adjusted.

なお、上記デファレンシャル・ギア14としては、例えば、ベベルギア式のものを用いているが、デファレンシャル・ギア14の構成自体は、本発明と直接関係する部分ではないので、その詳細な説明は省略する。   Note that, for example, a bevel gear type is used as the differential gear 14, but the configuration of the differential gear 14 is not directly related to the present invention, and a detailed description thereof will be omitted.

又、上記歯車機構17は、電動モータ16と共に、左輪12と右輪13とに伝達される駆動力の配分量を調整するものであるが、歯車機構17の構成自体も、本発明と直接関係する部分ではないので、その詳細な説明は省略する。   The gear mechanism 17 adjusts the distribution amount of the driving force transmitted to the left wheel 12 and the right wheel 13 together with the electric motor 16, but the configuration itself of the gear mechanism 17 is also directly related to the present invention. Since it is not a part to do, the detailed description is abbreviate | omitted.

又、制御対象となる左輪12、右輪13は、前輪のみでも、後輪のみでも、そして、四輪全部でも構わないが、本実施例では、制御対象を後輪のみとして説明を行う。   The left wheel 12 and the right wheel 13 to be controlled may be front wheels only, rear wheels only, or all four wheels, but in this embodiment, the description will be made assuming that the control objects are only rear wheels.

次に、図2、図3も参照して、ECU20の機能を説明する。   Next, the function of the ECU 20 will be described with reference to FIGS.

ECU20は、目標回転数差追従制御部B1(目標回転数差演算手段B2、実左右輪回転数差検出手段B3、目標回転数差追従制御手段B4)と、トルク差上限値演算手段B5と、リミッタB6と、トルク差・モータトルク変換手段B7と、モータ制御手段B8とを有する。   The ECU 20 includes a target rotational speed difference tracking control unit B1 (target rotational speed difference calculating means B2, actual left and right wheel rotational speed difference detecting means B3, target rotational speed difference tracking control means B4), torque difference upper limit value calculating means B5, It has a limiter B6, a torque difference / motor torque conversion means B7, and a motor control means B8.

目標回転数差演算手段B2では、車両状態や運転者の操作状態に応じて、目標回転数差を演算している。具体的には、車速を検出する車速センサ、ステアリングの操舵角を検出する操舵角センサ(共に図示省略)で検出された車速、操舵角に基づき、下記式に示すように、車速、操舵角を変数とする関数F1により目標回転数差を求める。
目標回転数差=F1(車速、操舵角)
なお、直進状態のとき、目標回転数差は、0となる。
The target rotational speed difference calculating means B2 calculates the target rotational speed difference according to the vehicle state and the driver's operation state. Specifically, based on the vehicle speed and steering angle detected by a vehicle speed sensor that detects the vehicle speed and a steering angle sensor that detects the steering angle of the steering (both not shown), the vehicle speed and steering angle are expressed as shown in the following formula. The target rotational speed difference is obtained by the function F1 as a variable.
Target speed difference = F1 (vehicle speed, steering angle)
Note that the target rotational speed difference is 0 when the vehicle is running straight.

実左右輪回転数差検出手段B3では、車両の左輪12と右輪13との回転数差を検出している。具体的には、各輪の車輪速センサ(図示省略)で検出された実左輪回転数及び実右輪回転数に基づき、下記式に示すように、実右輪回転数と実左輪回転数との差分により実左右輪回転数差を求める。
実左右輪回転数差=実右輪回転数−実左輪回転数
又、電動モータ16で検出された実モータ回転数に基づき、下記式に示すように、実左右輪回転数差を求めるようにしてもよい。
実左右輪回転数差=実モータ回転数×係数
The actual left and right wheel rotational speed difference detecting means B3 detects the rotational speed difference between the left wheel 12 and the right wheel 13 of the vehicle. Specifically, based on the actual left wheel rotation speed and the actual right wheel rotation speed detected by the wheel speed sensor (not shown) of each wheel, as shown in the following equation, the actual right wheel rotation speed and the actual left wheel rotation speed The difference between the actual left and right wheel rotational speeds is obtained from the difference between the two.
Difference between actual left and right wheel rotation speed = actual right wheel rotation speed-actual left wheel rotation speed Based on the actual motor rotation speed detected by the electric motor 16, the actual left and right wheel rotation speed difference is obtained as shown in the following equation. May be.
Difference between actual left and right wheel speed = actual motor speed x coefficient

目標回転数差追従制御手段B4では、実左右輪回転数差を目標回転数差へ追従制御させるための目標トルク差を演算している。具体的には、目標回転数差演算手段B2で求めた目標回転数差と実左右輪回転数差検出手段B3で求めた実左右輪回転数差との偏差に基づき、下記式に示すように、PID制御により目標トルク差を求める。
目標トルク差=PID(目標回転数差−実左右輪回転数差)
なお、目標トルク差は、PID制御に限らず、他の制御方法、例えば、H∞制御、ファジィ制御等により求めるようにしても良い。但し、本実施例では、どのような制御を用いた場合でも、応答性を高くするため、そのゲインを高く設定している。
The target rotational speed difference tracking control means B4 calculates a target torque difference for performing tracking control of the actual left and right wheel rotational speed difference to the target rotational speed difference. Specifically, based on the deviation between the target rotational speed difference obtained by the target rotational speed difference calculation means B2 and the actual left and right wheel rotational speed difference detection means B3, as shown in the following equation: Then, the target torque difference is obtained by PID control.
Target torque difference = PID (target speed difference-actual left and right wheel speed difference)
Note that the target torque difference is not limited to PID control, but may be obtained by other control methods such as H∞ control, fuzzy control, and the like. However, in this embodiment, the gain is set high in order to increase the responsiveness no matter what control is used.

従って、目標回転数差追従制御部B1では、目標回転数差と実左右輪回転数差とに基づき、目標トルク差を求めており、そして、求めた目標トルク差が、後述するトルク差上限値演算手段B5で求められたトルク差上限値により制限されることになる。   Accordingly, the target rotational speed difference follow-up control unit B1 obtains the target torque difference based on the target rotational speed difference and the actual left and right wheel rotational speed difference, and the obtained target torque difference is a torque difference upper limit value described later. It is limited by the torque difference upper limit value obtained by the calculation means B5.

トルク差上限値演算手段B5では、車両状態や運転者の操作状態に基づいて、目標回転数差追従制御部B1で算出された目標トルク差に対するトルク差上限値を演算している。具体的には、図3(a)、(b)に示すマップを用いて、トルク差上限値が演算される。   The torque difference upper limit calculating means B5 calculates a torque difference upper limit value for the target torque difference calculated by the target rotation speed difference tracking control unit B1 based on the vehicle state and the driver's operation state. Specifically, the torque difference upper limit value is calculated using the maps shown in FIGS. 3 (a) and 3 (b).

図3(a)に示すマップ1(第1のマップ)は、運転者の加速要求となる駆動トルクに基づいて、目標トルク差の最大値を制限する最大差動制限トルクを演算するマップであり、駆動トルク(例えば、エンジン出力トルク×総減速比)の増加に比例して、最大差動制限トルクを増加させている。又、後述の図3(b)のマップ2に示すように、操舵角の絶対値が0のとき、この最大差動制限トルクに対する補正係数は1である。そして、図3(a)に示すマップ1は、操舵角の絶対値が0のときのものであり、目標トルク差を制限する最大値となる。なお、駆動トルクは、既知の方法を用いて、求めればよい。   A map 1 (first map) shown in FIG. 3A is a map for calculating the maximum differential limiting torque that limits the maximum value of the target torque difference based on the driving torque that is the driver's acceleration request. The maximum differential limiting torque is increased in proportion to the increase in drive torque (for example, engine output torque × total reduction ratio). Further, as shown in a map 2 in FIG. 3B described later, when the absolute value of the steering angle is 0, the correction coefficient for the maximum differential limiting torque is 1. A map 1 shown in FIG. 3A is obtained when the absolute value of the steering angle is 0, and is a maximum value that limits the target torque difference. In addition, what is necessary is just to obtain | require drive torque using a known method.

なお、駆動トルクに代えて、運転者の加速要求となるアクセル開度に基づいて、最大差動制限トルクを演算してもよく、その場合のマップも、アクセル開度の増加に比例して、最大差動制限トルクを増加させている。アクセル開度は、アクセル開度センサ(図示省略)を用いて検出する。   In place of the drive torque, the maximum differential limit torque may be calculated based on the accelerator opening that is the driver's acceleration request, and the map in that case is also proportional to the increase in the accelerator opening, The maximum differential limit torque is increased. The accelerator opening is detected using an accelerator opening sensor (not shown).

図3(b)に示すマップ2(第2のマップ)は、操舵角センサで検出した操舵角に基づいて、マップ1で演算した最大差動制限トルクを補正する補正係数を演算するマップであり、操舵角の絶対値の増加に比例して、補正係数を1から0へ減少させており、操舵角の絶対値が所定の値より大きい場合は、補正係数を0としている。   A map 2 (second map) shown in FIG. 3B is a map for calculating a correction coefficient for correcting the maximum differential limiting torque calculated in the map 1 based on the steering angle detected by the steering angle sensor. The correction coefficient is decreased from 1 to 0 in proportion to the increase in the absolute value of the steering angle. When the absolute value of the steering angle is larger than a predetermined value, the correction coefficient is set to 0.

そして、トルク差上限値演算手段B5では、下記式に示すように、マップ1で演算した最大差動制限トルクにマップ2で演算した補正係数を積算することで、トルク差上限値を求めている。
トルク差上限値=(MAP1の最大差動制限トルク)×(MAP2の補正係数)
Then, in the torque difference upper limit calculating means B5, as shown in the following equation, the torque difference upper limit value is obtained by adding the correction coefficient calculated in map 2 to the maximum differential limiting torque calculated in map 1. .
Torque difference upper limit = (maximum differential limiting torque of MAP1) × (correction coefficient of MAP2)

リミッタB6では、目標回転数差追従制御部B1から入力された目標トルク差の絶対値を、トルク差上限値演算手段B5で演算されたトルク差上限値に基づいて制限し、出力している。具体的には、以下の式を用いて、目標トルク差の絶対値の上限をトルク差上限値で制限したリミッタ出力(制限トルク差)を演算している。
リミッタ出力=max{(−トルク差上限値)、min(トルク差上限値、目標トルク差)}
In the limiter B6, the absolute value of the target torque difference input from the target rotational speed difference tracking control unit B1 is limited based on the torque difference upper limit value calculated by the torque difference upper limit value calculation means B5, and is output. Specifically, a limiter output (limit torque difference) obtained by limiting the upper limit of the absolute value of the target torque difference with the torque difference upper limit value is calculated using the following equation.
Limiter output = max {(−torque difference upper limit value), min (torque difference upper limit value, target torque difference)}

トルク差・モータトルク変換手段B7では、リミッタB6から出力されたリミッタ出力(制限トルク差)を、以下の式を用いて、モータトルクに変換している。
モータトルク=リミッタ出力×変換係数
変換係数としては、例えば、[1/(2G)]を用いる。ここで、Gは、モータ回転数Nm及び左右輪の回転数差ΔNを用いて、G=Nm/ΔNで表される。
In the torque difference / motor torque converting means B7, the limiter output (limit torque difference) output from the limiter B6 is converted into motor torque using the following equation.
Motor torque = limiter output × conversion coefficient For example, [1 / (2G)] is used as the conversion coefficient. Here, G is expressed as G = N m / ΔN using the motor rotation speed N m and the rotation speed difference ΔN between the left and right wheels.

モータ制御手段B8では、変換されたモータトルクとなるように、電動モータ16を制御する。本実施例では、上記モータトルクを用いて、電動モータ16を制御することにより、車両の姿勢制御の際の差動制限を行うことになる。   The motor control means B8 controls the electric motor 16 so that the converted motor torque is obtained. In the present embodiment, by controlling the electric motor 16 using the motor torque, differential limitation is performed during vehicle attitude control.

ここで、図4に示すフローチャートに沿って、図1〜図3も参照して、ECU20における差動制限の制御手順の概略を説明する。   Here, along with the flowchart shown in FIG. 4, with reference also to FIGS.

実左輪回転数及び実右輪回転数、又は、実モータ回転数を検出する(ステップS1;図2の実左右輪回転数差検出手段B3参照)。   The actual left wheel rotation speed and the actual right wheel rotation speed or the actual motor rotation speed is detected (step S1; see the actual left and right wheel rotation speed difference detection means B3 in FIG. 2).

ステップS1で検出した実左輪回転数及び実右輪回転数、又は、実モータ回転数を用いて、実左右輪回転数差を演算する(ステップS2;図2の実左右輪回転数差検出手段B3参照)。   An actual left and right wheel rotation speed difference is calculated using the actual left wheel rotation speed and the actual right wheel rotation speed detected in step S1 or the actual motor rotation speed (step S2; actual left and right wheel rotation speed difference detection means in FIG. 2). (See B3).

車両状態(車速)や運転者の操作状態(操舵角)に基づき、目標回転数差を演算する(ステップS3;図2の目標回転数差演算手段B2参照)。   Based on the vehicle state (vehicle speed) and the driver's operation state (steering angle), the target rotational speed difference is calculated (step S3; see target rotational speed difference calculating means B2 in FIG. 2).

ステップS2で演算した実左右輪回転数差と、ステップS3で演算した目標回転数差に基づき、それらの偏差を演算する(ステップS4;図2の目標回転数差追従制御手段B4参照)。   Based on the actual left and right wheel rotational speed difference calculated in step S2 and the target rotational speed difference calculated in step S3, a deviation between them is calculated (step S4; see target rotational speed difference tracking control means B4 in FIG. 2).

ステップS4で演算した偏差を用いて、実左右輪回転数差を目標回転数差へ追従制御させるための目標トルク差を演算する(ステップS5;図2の目標回転数差追従制御手段B4参照)。例えば、PID制御により目標トルク差を求めればよい。   Using the deviation calculated in step S4, a target torque difference for controlling the actual left and right wheel rotational speed difference to follow the target rotational speed difference is calculated (step S5; see target rotational speed difference tracking control means B4 in FIG. 2). . For example, the target torque difference may be obtained by PID control.

運転者の操作状態(駆動トルク(又はアクセル開度)、操舵角)に基づいて、ステップS5で演算された目標トルク差に対するトルク差上限値を演算する(ステップS6;図2のトルク差上限値演算手段B5及び図3(a)、(b)のマップ1、2参照)。このとき、駆動トルク又はアクセル開度に基づいて、目標トルク差の最大値を制限する最大差動制限トルクを演算し、操舵角に基づいて、最大差動制限トルクを補正する補正係数を演算し、最大差動制限トルクに補正係数を積算することで、トルク差上限値を求めている。   Based on the driver's operation state (drive torque (or accelerator opening), steering angle), a torque difference upper limit value for the target torque difference calculated in step S5 is calculated (step S6; torque difference upper limit value in FIG. 2). (See calculation means B5 and maps 1 and 2 in FIGS. 3A and 3B). At this time, the maximum differential limit torque that limits the maximum value of the target torque difference is calculated based on the drive torque or the accelerator opening, and the correction coefficient that corrects the maximum differential limit torque is calculated based on the steering angle. The torque difference upper limit value is obtained by adding the correction coefficient to the maximum differential limit torque.

ステップS5で演算された目標トルク差値の絶対値を、ステップS6で演算されたトルク差上限値以下に制限するリミッタ処理を行う(ステップS7;図2のリミッタB6参照)。   Limiter processing is performed to limit the absolute value of the target torque difference value calculated in step S5 to be equal to or less than the torque difference upper limit value calculated in step S6 (step S7; see limiter B6 in FIG. 2).

リミッタ処理されたトルク差(制限トルク差)を、電動モータ16で出力するモータトルクに変換する(ステップS8;図2のトルク差・モータトルク変換手段B7参照)。   The torque difference (limit torque difference) subjected to the limiter process is converted into a motor torque output by the electric motor 16 (step S8; see torque difference / motor torque conversion means B7 in FIG. 2).

ステップS8で変換したモータトルクを出力するように、電動モータ16を制御して、車両の姿勢制御の際の差動制限を行う(ステップS9;図2のモータ制御手段B8参照)。   The electric motor 16 is controlled so as to output the motor torque converted in step S8, and differential restriction is performed during vehicle attitude control (step S9; see motor control means B8 in FIG. 2).

上述した制御により、ハイゲインの追従制御を行って、目標回転数差に対する目標トルク差を算出しても、算出した目標トルク差の上限を制限し、制限したトルク差に基づくモータトルクを用いて、電動モータ16を制御するので、モータトルクの応答性、目標値への収斂性が向上し、安定性の向上やトラクション性能の向上を図ることができる。その結果、電子制御LSDで実施するプリロード制御と同等の効果が期待でき、又、目標回転数差を0とする場合にも、電子制御LSDと同様の効果が得られるため、直進安定性が向上する。つまり、電動AYCにおいて、電子制御LSD等の機械式差動制限装置と同様の差動制限を行うことができ、本実施例の上記制御では、例えば、図5(a)、(b)に示した機械式差動制限装置の差動トルク(点線のグラフ参照)のような制御を行うことができる。   Even if the target torque difference with respect to the target rotational speed difference is calculated by performing the high gain follow-up control by the above-described control, the upper limit of the calculated target torque difference is limited, and the motor torque based on the limited torque difference is used. Since the electric motor 16 is controlled, the responsiveness of the motor torque and the convergence to the target value are improved, and the stability and the traction performance can be improved. As a result, the same effect as the preload control performed by the electronic control LSD can be expected, and even when the target rotational speed difference is set to 0, the same effect as the electronic control LSD can be obtained, so that the straight running stability is improved. To do. That is, in the electric AYC, the same differential limitation as that of a mechanical differential limiting device such as an electronic control LSD can be performed. In the above-described control of this embodiment, for example, as shown in FIGS. Control such as differential torque (see the dotted line graph) of the mechanical differential limiting device can be performed.

又、上述した制御では、車速及び操舵角から演算した目標回転数差を用いるので、目標車体姿勢から実車体姿勢がずれた分だけ差動制限のトルク差が作用し、スムーズな旋回と優れた安定性を両立することができる。   In the above-described control, since the target rotational speed difference calculated from the vehicle speed and the steering angle is used, the torque difference of the differential limit acts as much as the actual vehicle body posture deviates from the target vehicle body posture, and smooth turning and excellent Both stability can be achieved.

本発明は、電動モータを用いて、車両の左右輪の駆動力を調整する車両用左右駆動力調整装置の制御装置に好適なものである。   The present invention is suitable for a control device for a left / right driving force adjusting device for a vehicle that uses an electric motor to adjust the driving force of the left / right wheels of the vehicle.

11 原動機
12 左輪
13 右輪
14 デファレンシャル・ギア
15 駆動力調整機構
16 電動モータ
17 歯車機構
20 ECU
11 prime mover 12 left wheel 13 right wheel 14 differential gear 15 driving force adjustment mechanism 16 electric motor 17 gear mechanism 20 ECU

Claims (3)

車両の左右輪にトルク差を発生させるモータを有し、前記モータを用いて、車両の姿勢制御を行う車両用左右駆動力調整装置と、
前記モータを制御する制御装置とを備え、
前記制御装置は、
前記左右輪間の実回転数差を検出すると共に、前記車両の車速及び操舵角に基づいて、目標回転数差を演算し、
前記実回転数差を前記目標回転数差に追従させる目標トルク差を演算し、
運転者の操作状態に基づいて、前記目標トルク差の最大値を制限する最大差動制限トルクを演算し、
前記目標トルク差を前記最大差動制限トルクに基づき制限した制限トルク差を演算し、
前記制限トルク差となるように、前記モータを制御して、差動制限を行うことを特徴とする車両用左右駆動力調整装置の制御装置。
A left and right driving force adjusting device for a vehicle that has a motor that generates a torque difference between the left and right wheels of the vehicle, and controls the attitude of the vehicle using the motor;
A control device for controlling the motor,
The control device includes:
While detecting the actual rotational speed difference between the left and right wheels, the target rotational speed difference is calculated based on the vehicle speed and the steering angle of the vehicle,
Calculating a target torque difference that causes the actual rotational speed difference to follow the target rotational speed difference;
Based on the operation state of the driver, the maximum differential limit torque that limits the maximum value of the target torque difference is calculated,
A limit torque difference obtained by limiting the target torque difference based on the maximum differential limit torque is calculated,
A control device for a vehicle left-right driving force adjusting device, wherein the motor is controlled to perform differential limitation so that the torque limit difference is obtained.
請求項1に記載の車両用左右駆動力調整装置の制御装置において、
前記制御装置は、
前記最大差動制限トルクを、運転者の加速要求の増加に応じて、当該最大差動制限トルクが増加する第1のマップを用いて演算することを特徴とする車両用左右駆動力調整装置の制御装置。
In the control device for a vehicle left-right driving force adjustment device according to claim 1,
The control device includes:
A left and right driving force adjusting device for a vehicle, wherein the maximum differential limiting torque is calculated using a first map in which the maximum differential limiting torque increases in accordance with an increase in a driver's acceleration request. Control device.
請求項2に記載の車両用左右駆動力調整装置の制御装置において、
前記制御装置は、
前記最大差動制限トルクを補正する補正係数を、前記操舵角の絶対値の増加に応じて、当該補正係数が1から0へ減少する第2のマップを用いて演算し、
前記最大差動制限トルクと前記補正係数とを積算して、前記目標トルク差を制限するトルク差上限値を演算し、
前記目標トルク差を前記トルク差上限値に基づき制限して、前記制限トルク差を演算することを特徴とする車両用左右駆動力調整装置の制御装置。
The control device for a vehicle left-right driving force adjustment device according to claim 2,
The control device includes:
A correction coefficient for correcting the maximum differential limiting torque is calculated using a second map in which the correction coefficient decreases from 1 to 0 in accordance with an increase in the absolute value of the steering angle;
The maximum differential limit torque and the correction coefficient are integrated to calculate a torque difference upper limit value for limiting the target torque difference,
A control device for a vehicle left-right driving force adjusting device, wherein the target torque difference is limited based on the torque difference upper limit value and the limit torque difference is calculated.
JP2013078320A 2013-04-04 2013-04-04 Control device for right / left driving force adjusting device for vehicle Expired - Fee Related JP5435162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013078320A JP5435162B2 (en) 2013-04-04 2013-04-04 Control device for right / left driving force adjusting device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013078320A JP5435162B2 (en) 2013-04-04 2013-04-04 Control device for right / left driving force adjusting device for vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009288991A Division JP5299256B2 (en) 2009-12-21 2009-12-21 Control device for right / left driving force adjusting device for vehicle

Publications (2)

Publication Number Publication Date
JP2013139885A JP2013139885A (en) 2013-07-18
JP5435162B2 true JP5435162B2 (en) 2014-03-05

Family

ID=49037499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013078320A Expired - Fee Related JP5435162B2 (en) 2013-04-04 2013-04-04 Control device for right / left driving force adjusting device for vehicle

Country Status (1)

Country Link
JP (1) JP5435162B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112172846A (en) * 2020-10-13 2021-01-05 中车株洲电力机车有限公司 Locomotive degraded operation control method and control device and locomotive

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860340B2 (en) * 1989-08-31 1999-02-24 富士重工業株式会社 Left and right wheel torque distribution control device
JP2860339B2 (en) * 1989-08-31 1999-02-24 富士重工業株式会社 Left and right wheel torque distribution control device
JP2689286B2 (en) * 1990-12-28 1997-12-10 三菱自動車工業株式会社 Vehicle differential limiting control device
JP4534653B2 (en) * 2004-08-04 2010-09-01 株式会社ジェイテクト Differential
JP4715507B2 (en) * 2005-12-28 2011-07-06 三菱自動車工業株式会社 Left / right driving force distribution device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112172846A (en) * 2020-10-13 2021-01-05 中车株洲电力机车有限公司 Locomotive degraded operation control method and control device and locomotive

Also Published As

Publication number Publication date
JP2013139885A (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5250541B2 (en) Differential limiting control device for electric vehicle
US8544592B2 (en) Steering apparatus for vehicle
CN107848526B (en) Vehicle turning control device
US8494721B2 (en) Vehicle integrated control apparatus
JP5848151B2 (en) Control device for controlling driving force acting on vehicle
JP2013233018A (en) Driving force control device of electric vehicle
JP6020510B2 (en) Vehicle control device
KR20210014821A (en) Wheel slip control method for vehicle
JP4926776B2 (en) Vehicle driving force control device
WO2019059131A1 (en) Vehicle control device
JP5848149B2 (en) Control device for controlling driving force acting on vehicle
JP6469982B2 (en) Vehicle control apparatus and vehicle control method
JP5848150B2 (en) Control device for controlling driving force acting on vehicle
JP5299256B2 (en) Control device for right / left driving force adjusting device for vehicle
JP2008074185A (en) Vehicle motion control method and vehicle motion controller
JP5332982B2 (en) Vehicle control device
JP2013192446A (en) Differential limit control device for electric vehicle
JP2008081008A (en) Vehicle behavior controller
JP4956782B2 (en) Vehicle steering control device
JP2010208633A (en) Vibration damping control device of vehicle
JP5333193B2 (en) Control device for right / left driving force adjusting device for vehicle
JP5250540B2 (en) Hybrid vehicle differential limit control device
JP5435162B2 (en) Control device for right / left driving force adjusting device for vehicle
US20130006493A1 (en) Driving force control apparatus and driving force control method for vehicle
JP5918564B2 (en) Control device for controlling driving force acting on vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R151 Written notification of patent or utility model registration

Ref document number: 5435162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees