JP2009293719A - Lateral driving force distribution control method - Google Patents

Lateral driving force distribution control method Download PDF

Info

Publication number
JP2009293719A
JP2009293719A JP2008148838A JP2008148838A JP2009293719A JP 2009293719 A JP2009293719 A JP 2009293719A JP 2008148838 A JP2008148838 A JP 2008148838A JP 2008148838 A JP2008148838 A JP 2008148838A JP 2009293719 A JP2009293719 A JP 2009293719A
Authority
JP
Japan
Prior art keywords
driving force
force distribution
rear wheels
wheels
rear wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008148838A
Other languages
Japanese (ja)
Inventor
Onori Okamoto
大典 岡本
Yoshinori Maeda
義紀 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008148838A priority Critical patent/JP2009293719A/en
Publication of JP2009293719A publication Critical patent/JP2009293719A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Retarders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain driving performance from being reduced and vehicle behavior from becoming unstable by a slip, by performing driving force distribution control, before right-left rear wheels actually slip. <P>SOLUTION: In a driving source front end type four-wheel drive vehicle 10 for arranging an engine 12 on the vehicle front side, since a driving force transmission passage to the rear wheels 30L and 30R is relatively longer than front wheels 20L and 20R, there is a delay time up to transmitting driving force to the rear wheels 30L and 30R from being rotated by transmitting the driving force to the front wheels 20L and 20R, and before transmitting the driving force to the rear wheels 30L and 30R by using its time difference, the driving force distribution control to the right-left rear wheels 30L and 30R can be performed by a driving force distribution adjusting means based on a rotation state (a rotating speed difference Δω<SB>f</SB>) of the right-left front wheels 20L and 20R, and a slip of the rear wheels 30L and 30R is restrained when the vehicle starts on a low μ road such as a snow road, and the vehicle behavior is stabilized, and excellent starting performance is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、左右後輪に対する駆動力配分を制御する左右駆動力配分制御方法に係り、特に、左右後輪が実際にスリップ(スピン)するのに先立って駆動力配分制御が行われるようにする技術に関するものである。   The present invention relates to a left / right driving force distribution control method for controlling the distribution of driving force to the left and right rear wheels, and in particular, the driving force distribution control is performed before the left and right rear wheels actually slip (spin). It is about technology.

左右輪に対する駆動力配分を制御する左右駆動力配分制御装置が知られている。特許文献1に記載の装置はその一例で、駆動源から差動歯車機構を介して左右輪に伝達される駆動力配分が油圧モータ等の駆動力配分調整手段によって調整されるようになっており、実際の左右輪のスリップ率や車速、車輪のヨー慣性モーメント等に基づいて配分制御の開始判定を行うことにより、実際に空転が生じる前に駆動力配分を制御するようになっている。
特開2001−18677号公報
2. Description of the Related Art A left / right driving force distribution control device that controls driving force distribution for left and right wheels is known. The device described in Patent Document 1 is one example, and the driving force distribution transmitted from the driving source to the left and right wheels via the differential gear mechanism is adjusted by driving force distribution adjusting means such as a hydraulic motor. By determining the start of the distribution control based on the actual slip ratio of the left and right wheels, the vehicle speed, the yaw moment of inertia of the wheels, etc., the driving force distribution is controlled before the actual idling occurs.
JP 2001-18777 A

しかしながら、このような従来の左右駆動力配分制御は、駆動力配分を制御すべき左右輪の実際のスリップ率等に基づいて駆動力配分制御が行われるため、ある程度はスリップ状態となることが避けられず、そのスリップに起因して発進時等の駆動性能が損なわれたり車両の挙動が不安定になったりするなど、未だ改善の余地があった。片輪スリップによる駆動性能の低下や車両挙動の不安定化を改善するため、左右輪のスリップに応じて機械的に速やかにトルク移動して前記差動歯車機構による差動回転を制限する入力回転比例式やトルク感応式、皿ばね式等の機械式差動制限機構を設けることが考えられるが、差動制限により左右輪に駆動力差が生じて重心まわりにモーメントが発生し、車両が偏向する可能性がある。   However, in such conventional left / right driving force distribution control, since the driving force distribution control is performed based on the actual slip ratio of the left and right wheels for which the driving force distribution is to be controlled, a slip state is avoided to some extent. However, there is still room for improvement, for example, the driving performance at the time of starting or the like is impaired due to the slip or the behavior of the vehicle becomes unstable. Input rotation that restricts differential rotation by the differential gear mechanism by mechanically moving the torque quickly according to the slip of the left and right wheels in order to improve drive performance degradation and instability of vehicle behavior due to single wheel slip It is conceivable to provide a mechanical differential limiting mechanism such as a proportional type, torque sensitive type, or disc spring type, but due to the differential limitation, a driving force difference occurs between the left and right wheels, and a moment is generated around the center of gravity, causing the vehicle to deflect. there's a possibility that.

本発明は以上の事情を背景として為されたもので、その目的とするところは、左右後輪が実際にスリップするのに先立って駆動力配分制御が行われるようにして、スリップにより駆動性能が低下したり車両の挙動が不安定になったりすることを抑制し、或いは機械式差動制限機構の差動制限による車両の偏向を抑制することにある。   The present invention has been made in the background of the above circumstances, and the object of the present invention is that the driving performance distribution control is performed before the left and right rear wheels actually slip, so that the driving performance by the slip is improved. The object is to suppress the lowering or the behavior of the vehicle from becoming unstable, or to suppress the deflection of the vehicle due to the differential limitation of the mechanical differential limiting mechanism.

かかる目的を達成するために、第1発明は、前後輪を駆動して走行する前後輪駆動車両において、左右前輪の回転状態に基づいて左右後輪に対する駆動力配分を制御することを特徴とする。   In order to achieve such an object, the first invention is characterized in that in the front-rear wheel drive vehicle that travels by driving the front and rear wheels, the driving force distribution to the left and right rear wheels is controlled based on the rotation state of the left and right front wheels. .

第2発明は、(a) 車両前側に配置された駆動源の駆動力を前後輪に配分して伝達するセンタ差動歯車機構と、(b) そのセンタ差動歯車機構を経て後輪側へ伝達された駆動力を左右後輪に配分して伝達する後輪用差動歯車機構と、(c) その後輪用差動歯車機構に設けられて前記左右後輪に対する駆動力配分を調整する駆動力配分調整手段と、を有する前後輪駆動車両において、(d) 左右前輪の回転状態に基づいて前記駆動力配分調整手段により前記左右後輪に対する駆動力配分を制御することを特徴とする。   The second invention includes (a) a center differential gear mechanism that distributes and transmits the driving force of a drive source disposed on the front side of the vehicle to the front and rear wheels, and (b) to the rear wheel side via the center differential gear mechanism. (D) a rear wheel differential gear mechanism that distributes and transmits the transmitted driving force to the left and right rear wheels; and (c) a drive that is provided in the rear wheel differential gear mechanism and adjusts the driving force distribution to the left and right rear wheels. (D) The driving force distribution for the left and right rear wheels is controlled by the driving force distribution adjusting means based on the rotational state of the left and right front wheels.

第3発明は、第1発明または第2発明の左右駆動力配分制御方法において、(a) 前記左右前輪の回転速度差を算出する回転速度差算出工程と、(b) その回転速度差が所定値以上の場合に、回転速度が遅い側の後輪の駆動力配分を大きくするスリップ抑制駆動力配分工程と、を有することを特徴とする。   According to a third aspect of the present invention, in the left / right driving force distribution control method according to the first or second aspect of the invention, (a) a rotational speed difference calculating step for calculating a rotational speed difference between the left and right front wheels; And a slip suppression driving force distribution step for increasing the driving force distribution of the rear wheel on the side where the rotational speed is low.

第4発明は、第1発明または第2発明の左右駆動力配分制御方法において、(a) 前記左右前輪の回転速度変動から左右の路面摩擦係数μl 、μr を推定する路面摩擦係数推定工程と、(b) その左右の路面摩擦係数μl 、μr のうち高い側の後輪の駆動力配分を大きくするスリップ抑制駆動力配分工程と、を有することを特徴とする。 According to a fourth aspect of the invention, in the left / right driving force distribution control method according to the first or second aspect of the invention, (a) a road surface friction coefficient estimating step for estimating left and right road surface friction coefficients μ l and μ r from the rotational speed fluctuations of the left and right front wheels. And (b) a slip suppression driving force distribution step of increasing the driving force distribution of the rear wheel on the higher side of the left and right road surface friction coefficients μ l and μ r .

第5発明は、第2発明の左右駆動力配分制御方法において、(a) 前記前後輪駆動車両は、前記後輪用差動歯車機構に設けられて前記左右後輪の差動回転を機械的に制限する機械式差動制限機構を備えており、(b) 前記左右前輪の回転速度変動から左右の路面摩擦係数μl 、μr を推定する路面摩擦係数推定工程と、(c) 前記機械式差動制限機構により前記左右後輪の差動回転が制限されることによって生じるその左右後輪の駆動力差に起因して発生する車両の偏向方向を、前記路面摩擦係数推定工程で求められた前記路面摩擦係数μl 、μr に基づいて判定する偏向方向判定工程と、(d) その偏向方向判定工程で判定された前記偏向方向への車両の偏向を抑制するように、前記駆動力配分調整手段により前記左右後輪に対する駆動力配分を制御する偏向抑制駆動力配分工程と、を有することを特徴とする。 5th invention is the left-right driving force distribution control method of 2nd invention, (a) The said front-and-rear wheel drive vehicle is provided in the said differential gear mechanism for rear wheels, and performs the differential rotation of the said right-and-left rear wheel mechanically. (B) a road surface friction coefficient estimating step for estimating left and right road surface friction coefficients μ l and μ r from fluctuations in rotational speed of the left and right front wheels; and (c) the machine In the road surface friction coefficient estimating step, a vehicle deflection direction caused by a difference in driving force between the left and right rear wheels caused by limiting the differential rotation of the left and right rear wheels by the differential differential limiting mechanism is obtained. A deflection direction determination step determined based on the road surface friction coefficients μ l and μ r , and (d) the driving force so as to suppress the deflection of the vehicle in the deflection direction determined in the deflection direction determination step. Deflection for controlling distribution of driving force to the left and right rear wheels by distribution adjusting means And a restraining driving force distribution step.

第1発明の左右駆動力配分制御方法においては、左右前輪の回転状態に基づいて左右後輪に対する駆動力配分を制御するため、例えば車両走行中の路面状態の変化などで左右前輪の回転状態が変化した場合に、左右後輪がスリップを発生する前にその左右後輪に対する駆動力配分制御を開始することが可能で、左右の後輪の一方のスリップにより駆動性能が低下したり車両の挙動が不安定になったりすることが抑制される。また、片輪スリップによる駆動性能の低下や車両挙動の不安定化を改善するために機械式差動制限機構を併用した場合には、左右前輪の回転状態に基づいて左右後輪に対する駆動力配分を適当に制御することにより、その機械式差動制限機構の差動制限による車両の偏向を抑制することができる。   In the left and right driving force distribution control method according to the first aspect of the invention, the driving force distribution for the left and right rear wheels is controlled based on the rotation state of the left and right front wheels. In the event of a change, it is possible to start driving force distribution control for the left and right rear wheels before the left and right rear wheels have slipped. Is prevented from becoming unstable. In addition, when a mechanical differential limiting mechanism is used together to improve drive performance degradation and vehicle behavior instability due to single-wheel slip, drive force distribution to the left and right rear wheels is based on the rotation state of the left and right front wheels. By appropriately controlling the above, it is possible to suppress the deflection of the vehicle due to the differential limitation of the mechanical differential limiting mechanism.

第2発明は、実質的に第1発明の一実施態様に相当するもので、第1発明と同様の作用効果が得られる。その場合に、第2発明では駆動源が車両前側に配置された駆動源前置式の前後輪駆動車両に関するもので、後輪への駆動力伝達経路が前輪に比較して長いため、前輪に駆動力が伝達されて回転駆動されるようになってから後輪に駆動力が伝達されるまでに遅れ時間があり、その時間差を利用して事前に、すなわち後輪に駆動力が伝達される前に、左右前輪の回転状態に基づいて駆動力配分調整手段により左右後輪に対する駆動力配分を制御することが可能で、例えば雪道等の低μ路での車両発進時に後輪のスリップが抑制され、車両挙動が安定するとともに優れた発進性能が得られるようになる。   The second invention substantially corresponds to one embodiment of the first invention, and the same effects as the first invention can be obtained. In that case, the second invention relates to a front and rear wheel drive vehicle having a drive source disposed on the front side of the vehicle, and the driving force transmission path to the rear wheels is longer than that of the front wheels. There is a delay time from when the driving force is transmitted to the rotational drive until the driving force is transmitted to the rear wheel, and the driving force is transmitted to the rear wheel in advance using the time difference. Before, it is possible to control the driving force distribution to the left and right rear wheels by the driving force distribution adjusting means based on the rotation state of the left and right front wheels. For example, when the vehicle starts on a low μ road such as a snowy road, Suppressed, the vehicle behavior is stabilized, and excellent start performance can be obtained.

第3発明は、左右前輪の回転速度差を算出し、その回転速度差が所定値以上の場合に、回転速度が遅い側すなわちスリップの可能性が低い側の後輪の駆動力配分が大きくされることにより、スリップする可能性が高い反対側の後輪のスリップが抑制され、発進時等の駆動性能が向上するとともに車両挙動が安定する。その場合に、左右前輪の回転速度差を算出して所定値と比較するだけで良いため、信号処理が簡単で処理時間が短くて済み、優れた応答性で駆動力配分制御を行うことができる。   According to the third aspect of the present invention, when the difference in rotational speed between the left and right front wheels is calculated and the rotational speed difference is equal to or greater than a predetermined value, the driving force distribution on the rear wheel on the side where the rotational speed is low, that is, the side where the possibility of slipping is low is increased. As a result, the slip of the rear wheel on the opposite side, which has a high possibility of slipping, is suppressed, the driving performance at the time of starting and the like is improved, and the vehicle behavior is stabilized. In that case, it is only necessary to calculate the difference between the rotational speeds of the left and right front wheels and compare it with a predetermined value, so that signal processing is simple and processing time is short, and driving force distribution control can be performed with excellent responsiveness. .

第4発明は、左右前輪の回転速度変動から左右の路面摩擦係数μl 、μr を推定し、その左右の路面摩擦係数μl 、μr のうち高い側すなわちスリップの可能性が小さい側の後輪の駆動力配分が大きくされることにより、スリップする可能性が高い反対側の後輪のスリップが抑制され、発進時等の駆動性能が向上するとともに車両挙動が安定する。 The fourth invention is the left and right front wheel rotational speed road surface friction coefficient of the left and right from the variation mu l, mu r to estimate, its right and left road surface friction coefficient mu l, mu higher side i.e. slip possibilities smaller side of the r By increasing the driving force distribution of the rear wheels, the slip of the opposite rear wheel, which has a high possibility of slipping, is suppressed, and the driving performance at the time of starting and the like is improved and the vehicle behavior is stabilized.

第5発明は、左右後輪の差動回転を機械的に制限する機械式差動制限機構を備えている場合で、左右前輪の回転速度変動から左右の路面摩擦係数μl 、μr を推定し、上記機械式差動制限機構により左右後輪の差動回転が制限されることによって生じるその左右後輪の駆動力差に起因して発生する車両の偏向方向、すなわち右まわり傾向となるか左まわり傾向となるかを、その路面摩擦係数μl 、μr に基づいて判定し、その偏向方向への車両の偏向を抑制するように駆動力配分調整手段によって左右後輪に対する駆動力配分が制御されることにより、機械式差動制限機構の差動制限に起因する車両の偏向が抑制される。 The fifth invention includes a mechanical differential limiting mechanism that mechanically limits the differential rotation of the left and right rear wheels, and estimates the left and right road surface friction coefficients μ l and μ r from fluctuations in the rotational speed of the left and right front wheels. Does the above-mentioned mechanical differential limiting mechanism tend to cause a vehicle deflection direction, that is, a clockwise direction, due to a difference in driving force between the left and right rear wheels caused by limiting the differential rotation of the left and right rear wheels? It is determined whether it tends to turn counterclockwise based on the road surface friction coefficients μ l and μ r , and the driving force distribution to the left and right rear wheels is controlled by the driving force distribution adjusting means so as to suppress the deflection of the vehicle in the deflection direction. By being controlled, the deflection of the vehicle due to the differential limitation of the mechanical differential limiting mechanism is suppressed.

本発明は、前後輪を駆動して走行する前後輪駆動車両、特に、車両前側に配置された駆動源の駆動力を前後輪に配分するセンタ差動歯車機構を有し、駆動力の伝達経路が長い後輪側では前輪に比べて駆動力の到達時間が遅くなり、その時間差を利用して後輪側が駆動力を発生する前に事前に左右後輪に対する駆動力配分制御を行うことができる駆動源前置式の前後輪駆動車両に好適に適用される。すなわち、前輪に駆動力が伝達されて回転駆動されるようになってから後輪に駆動力が伝達されるまでの時間差を利用し、事前に、すなわち後輪に駆動力が伝達される前に、その左右後輪に対する駆動力配分を制御することにより、雪道等の低μ路での車両発進時に左右後輪のスリップを抑制して発進性能を向上させることができる。但し、左右前輪の回転状態に基づいて左右後輪に対する駆動力配分制御を行うことができれば、例えば走行中の路面状態の変化などで左右後輪が実際にスリップを発生する前にその左右後輪に対する駆動力配分制御を開始することが可能で、スリップによる駆動性能の低下や車両挙動の不安定化を抑制したり、機械式差動制限機構の差動制限による車両の偏向を抑制したりするという本発明の効果が得られるため、前後輪を別々の駆動源で駆動する前後輪独立駆動式や駆動源後置式等の他の前後輪駆動車両にも適用され得る。駆動源としては、ガソリンエンジンやディーゼルエンジン等の内燃機関、或いは電動モータなど、車両に適した種々の動力源を採用できる。   The present invention includes a front-rear wheel drive vehicle that travels by driving front and rear wheels, and in particular, a center differential gear mechanism that distributes the drive force of a drive source disposed on the front side of the vehicle to the front and rear wheels, and a drive force transmission path The rear wheel side has a longer driving time than the front wheel, and the time difference can be used to perform the driving force distribution control for the left and right rear wheels in advance before the rear wheel side generates the driving force. The present invention is suitably applied to a front-and-rear wheel drive vehicle of a drive source front type. That is, using the time difference from when the driving force is transmitted to the front wheels to be rotationally driven until the driving force is transmitted to the rear wheels, in advance, that is, before the driving force is transmitted to the rear wheels. By controlling the driving force distribution for the left and right rear wheels, the start performance can be improved by suppressing the slip of the left and right rear wheels when the vehicle starts on a low μ road such as a snowy road. However, if the driving force distribution control for the left and right rear wheels can be performed based on the rotation state of the left and right front wheels, the left and right rear wheels before the left and right rear wheels actually generate a slip due to, for example, a change in the road surface condition during traveling. It is possible to start the driving force distribution control for the vehicle, to suppress the deterioration of driving performance and vehicle instability due to slip, or to suppress the deflection of the vehicle due to the differential limitation of the mechanical differential limiting mechanism Therefore, the present invention can also be applied to other front and rear wheel drive vehicles such as a front and rear wheel independent drive type in which front and rear wheels are driven by separate drive sources and a drive source rear type. As the drive source, various power sources suitable for the vehicle such as an internal combustion engine such as a gasoline engine or a diesel engine, or an electric motor can be adopted.

左右後輪には、例えば共通の駆動源から伝達された駆動力が後輪用差動歯車機構を介して伝達され、その差動歯車機構に設けられた駆動力配分調整手段により駆動力配分が調整されるように構成されるが、左右輪別々に電動モータ等の駆動源が設けられ、それ等の駆動源の出力を個別に制御することにより駆動力配分を調整するものでも良い。上記差動歯車機構としては、遊星歯車式や傘歯車式が好適に用いられる。駆動力配分調整手段は、例えば前記特許文献1では油圧モータによって一方の車輪を増速または減速するようになっているが、変速機構とクラッチとの組み合わせで一方の車輪を増速または減速するようにしても良いなど、種々の態様が可能である。   For example, a driving force transmitted from a common driving source is transmitted to the left and right rear wheels via a rear wheel differential gear mechanism, and the driving force distribution is adjusted by a driving force distribution adjusting means provided in the differential gear mechanism. Although it is configured to be adjusted, a driving source such as an electric motor may be provided separately for the left and right wheels, and the driving force distribution may be adjusted by individually controlling the output of these driving sources. As the differential gear mechanism, a planetary gear type or a bevel gear type is preferably used. For example, in Patent Document 1, the driving force distribution adjusting means is configured to increase or decrease the speed of one wheel by a hydraulic motor, but to increase or decrease the speed of one wheel by a combination of a speed change mechanism and a clutch. Various modes are possible, such as.

第3発明では、回転速度が遅い側すなわち路面とのグリップ力が高くてスリップし難い側の後輪の駆動力配分が大きくされるが、その駆動力配分は予め定められた一定の配分比であっても良いし、回転速度差に応じて配分比を段階的或いは連続的に変化させることもできる。第4発明についても同様で、左右の路面摩擦係数μl 、μr の差が所定値以上の場合に、左右の駆動力配分を予め定められた一定の配分比とするだけでも良いが、左右の路面摩擦係数μl 、μr に応じて駆動力配分比を段階的或いは連続的に変化させるようにしても良い。 In the third aspect of the invention, the driving force distribution of the rear wheel on the side where the rotational speed is slow, that is, the side on which the grip force with the road surface is high and difficult to slip is increased, but the driving force distribution is a predetermined constant distribution ratio. It is also possible to change the distribution ratio stepwise or continuously according to the rotational speed difference. The same applies to the fourth invention. When the difference between the left and right road surface friction coefficients μ l and μ r is equal to or greater than a predetermined value, the left and right driving force distribution may be set to a predetermined constant distribution ratio. The driving force distribution ratio may be changed stepwise or continuously according to the road surface friction coefficients μ l and μ r .

第4発明では、路面摩擦係数μl 、μr を比較し、高い側の後輪の駆動力配分を大きくするだけでも良いが、それ等の路面摩擦係数μl 、μr に基づいて左右後輪の回転速度差を予測する後輪差動回転予測工程を設け、その回転速度差の差動回転を抑制するように回転速度差に応じて駆動力配分を連続的に変化させるようにしても良い。第3発明の実施に際しても、左右前輪の回転速度差に基づいて路面摩擦係数μl 、μr を推定したり、更に後輪の回転速度差を予測したりするなどして駆動力配分制御を行うこともできる。 In the fourth aspect of the invention, it is only necessary to compare the road surface friction coefficients μ l and μ r and increase the driving force distribution of the rear wheel on the higher side. However, the left and right rear sides are based on the road surface friction coefficients μ l and μ r. A rear wheel differential rotation prediction process for predicting the wheel rotation speed difference is provided, and the driving force distribution is continuously changed according to the rotation speed difference so as to suppress the differential rotation of the rotation speed difference. good. In implementing the third aspect of the invention, the driving force distribution control is performed by estimating the road surface friction coefficients μ l and μ r based on the difference between the rotational speeds of the left and right front wheels and predicting the difference in the rotational speed of the rear wheels. It can also be done.

第5発明では、機械式差動制限機構の差動制限による車両の偏向方向を判定し、その偏向を抑制するように左右駆動力配分が調整され、例えば偏向方向に応じて予め定められた一定の配分比に調整されるが、偏向方向だけでなく偏向の強さ(例えば発生ヨーレイトなど)を算出し、その偏向の強さに応じて配分比を段階的或いは連続的に変更することも可能である。機械式差動制限機構は、自動的に回転速度が遅い側へトルク移動して差動回転を抑制するもので、例えば入力回転比例式やトルク感応式、皿ばね式などが広く知られている。   In the fifth aspect of the invention, the deflection direction of the vehicle due to the differential limitation of the mechanical differential limiting mechanism is determined, and the left / right driving force distribution is adjusted so as to suppress the deflection, for example, a predetermined constant according to the deflection direction However, it is possible to calculate not only the deflection direction but also the deflection strength (eg generated yaw rate), and change the allocation ratio stepwise or continuously according to the deflection strength. It is. The mechanical differential limiting mechanism automatically suppresses the differential rotation by moving the torque to the slow rotation side. For example, the input rotation proportional type, the torque sensitive type, the disc spring type, etc. are widely known. .

以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図1は、本発明が好適に適用される四輪駆動車両10を説明する概略構成図で、駆動源としてのエンジン12が車両前側に配置される前置エンジン前輪駆動(FF)を基本とする駆動源前置式の前後輪駆動車両である。この図1において、駆動源であるエンジン12により発生させられた駆動力は、自動変速機14、前輪用差動歯車機構16、および左右一対の前輪車軸18L、18Rを介して左右一対の前輪20L、20Rへ伝達される一方、センタ差動歯車機構(センターデフ)22、駆動力伝達軸であるプロペラシャフト24、後輪用の左右駆動力配分装置26、および左右一対の後輪車軸28L、28Rを介して左右一対の後輪30L、30Rへ伝達される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram illustrating a four-wheel drive vehicle 10 to which the present invention is preferably applied, and is based on front engine front wheel drive (FF) in which an engine 12 as a drive source is disposed on the front side of the vehicle. This is a front and rear wheel drive vehicle with a drive source in front. In FIG. 1, the driving force generated by the engine 12 as a driving source is generated by a pair of left and right front wheels 20L via an automatic transmission 14, a front wheel differential gear mechanism 16, and a pair of left and right front wheel axles 18L and 18R. , 20R, a center differential gear mechanism (center differential) 22, a propeller shaft 24 serving as a driving force transmission shaft, a left and right driving force distribution device 26, and a pair of left and right rear wheel axles 28L and 28R. To the pair of left and right rear wheels 30L, 30R.

上記エンジン12は、例えば、気筒内噴射される燃料の燃焼によって駆動力を発生するガソリンエンジン或いはディーゼルエンジン等の内燃機関である。自動変速機14は、例えば上記エンジン12から入力される回転を所定の変速比で減速或いは増速して出力する有段式の自動変速機(オートマチックトランスミッション)であり、前進変速段、後進変速段、およびニュートラルのうち何れかが選択的に成立させられ、それ等の変速比に応じた速度変換が為される。なお、この自動変速機14の入力軸は、図示しないトルクコンバータ等を介して上記エンジン12の出力軸に連結されている。   The engine 12 is, for example, an internal combustion engine such as a gasoline engine or a diesel engine that generates a driving force by combustion of fuel injected in a cylinder. The automatic transmission 14 is, for example, a stepped automatic transmission (automatic transmission) that outputs the rotation input from the engine 12 by decelerating or increasing the rotation at a predetermined speed ratio, and is a forward shift stage, a reverse shift stage. , And neutral are selectively established, and speed conversion corresponding to the gear ratio is performed. The input shaft of the automatic transmission 14 is connected to the output shaft of the engine 12 via a torque converter (not shown).

図2は、前記左右駆動力配分装置26の構成を説明する骨子図である。図2に示されるように、左右駆動力配分装置26には、エンジン12よりセンタ差動歯車機構22を介して回転駆動されるプロペラシャフト24の端部に設けられたドライブピニオン(傘歯車)38、およびそのドライブピニオン38と噛み合うドリブンギヤ40を介して駆動力が伝達される。また、左右駆動力配分装置26は、駆動力を前記左右の後輪30L、30Rに配分して伝達する後輪用差動歯車機構42と、その後輪用差動歯車機構42に隣接して後輪車軸28Rと同軸に配設された変速歯車装置44と、その変速歯車装置44の出力を前記後輪車軸28L、28Rに選択的に伝達する第1クラッチC1および第2クラッチC2と、を備えている。   FIG. 2 is a skeleton diagram illustrating the configuration of the left / right driving force distribution device 26. As shown in FIG. 2, the left and right driving force distribution device 26 has a drive pinion (bevel gear) 38 provided at the end of the propeller shaft 24 that is rotationally driven from the engine 12 via the center differential gear mechanism 22. And a driving force is transmitted through a driven gear 40 meshing with the drive pinion 38. The left and right driving force distribution device 26 is arranged adjacent to the rear wheel differential gear mechanism 42 and the rear wheel differential gear mechanism 42 that distributes and transmits the driving force to the left and right rear wheels 30L and 30R. A transmission gear device 44 disposed coaxially with the wheel axle 28R, and a first clutch C1 and a second clutch C2 that selectively transmit the output of the transmission gear device 44 to the rear wheel axles 28L, 28R. ing.

後輪用差動歯車機構42は、リングギヤR1、互いに噛み合う複数対のピニオンP1−1、P1−2、それ等のピニオンP1−1、P1−2をそれぞれ自転および公転可能に支持するキャリアCA1、および上記複数対のピニオンP1−1、P1−2を介してリングギヤR1と噛み合うサンギヤS1を備えたダブルピニオン型の遊星歯車装置であり、そのギヤ比ρ(=サンギヤS1の歯数/リングギヤR1の歯数)はたとえば0.5に設定されている。上記リングギヤR1は、後輪用差動歯車機構42のケース46内にそのケース46と一体的に設けられているとともに、そのケース46には前記ドリブンギヤ40が一体的に固設されており、プロペラシャフト24の回転がドライブピニオン38およびドリブンギヤ40により減速されて、ケース46からリングギヤR1に伝達される。キャリアCA1は、左後輪車軸28Lを介して左後輪30Lに連結されており、サンギヤS1は、右後輪車軸28Rを介して右後輪30Rに連結されている。なお、キャリアCA1が右後輪30Rに連結され、サンギヤS1が左後輪30Lに連結されるようにしても良い。   The rear wheel differential gear mechanism 42 includes a ring gear R1, a plurality of pairs of pinions P1-1 and P1-2 that mesh with each other, and a carrier CA1 that supports the pinions P1-1 and P1-2 such that they can rotate and revolve, respectively. And a double pinion type planetary gear device having a sun gear S1 meshing with the ring gear R1 via the plurality of pairs of pinions P1-1 and P1-2, and its gear ratio ρ (= the number of teeth of the sun gear S1 / The number of teeth) is set to 0.5, for example. The ring gear R1 is provided integrally with the case 46 in the case 46 of the rear wheel differential gear mechanism 42, and the driven gear 40 is integrally fixed to the case 46. The rotation of the shaft 24 is decelerated by the drive pinion 38 and the driven gear 40 and transmitted from the case 46 to the ring gear R1. The carrier CA1 is connected to the left rear wheel 30L via the left rear wheel axle 28L, and the sun gear S1 is connected to the right rear wheel 30R via the right rear wheel axle 28R. The carrier CA1 may be connected to the right rear wheel 30R, and the sun gear S1 may be connected to the left rear wheel 30L.

変速歯車装置44は、サンギヤS2、ピニオンP2、そのピニオンP2を自転および公転可能に支持するキャリアCA2、および上記ピニオンP2を介してサンギヤS2と噛み合うリングギヤR2を備えたシングルピニオン型の遊星歯車装置にて構成されている。サンギヤS2は前記後輪用差動歯車機構42のケース46に一体的に連結されており、変速歯車装置44の入力部材として機能する。キャリアCA2は、トルク移動切換ブレーキBに連結されており、非回転部材48に選択的に連結されて回転停止させられる。リングギヤR2は、変速歯車装置44の出力部材として機能するもので、第1クラッチC1を介して前記後輪用差動歯車機構42のキャリアCA1に係合(スリップを含む)させられ、左後輪車軸28Lに選択的に連結されるとともに、第2クラッチC2を介して右後輪車軸28Rに係合(スリップを含む)させられ、選択的に連結される。なお、トルク移動切換ブレーキB、第1クラッチC1、および第2クラッチC2は、それぞれスリップ係合可能な多板式の油圧式摩擦係合装置で、図1に示す電子制御装置36によって油圧制御回路34が切り換えられることにより係合或いは解放されるとともに、油圧制御が行われることによりスリップ係合時の伝達トルクが制御される。   The transmission gear unit 44 is a single pinion type planetary gear unit including a sun gear S2, a pinion P2, a carrier CA2 that supports the pinion P2 so as to be capable of rotating and revolving, and a ring gear R2 that meshes with the sun gear S2 via the pinion P2. Configured. The sun gear S2 is integrally connected to the case 46 of the rear wheel differential gear mechanism 42, and functions as an input member of the transmission gear device 44. The carrier CA2 is connected to the torque movement switching brake B, and is selectively connected to the non-rotating member 48 and stopped. The ring gear R2 functions as an output member of the transmission gear device 44, and is engaged (including slip) with the carrier CA1 of the rear wheel differential gear mechanism 42 via the first clutch C1, and the left rear wheel. While being selectively connected to the axle 28L, it is engaged (including slip) and selectively connected to the right rear wheel axle 28R via the second clutch C2. The torque transfer switching brake B, the first clutch C1, and the second clutch C2 are each a multi-plate hydraulic friction engagement device that can be slip-engaged. The hydraulic control circuit 34 is operated by the electronic control device 36 shown in FIG. Is switched to engage or disengage, and hydraulic control is performed to control transmission torque during slip engagement.

上記油圧制御回路34は、油路や油圧を制御するソレノイド弁を備えており、そのソレノイド弁が電子制御装置36によって制御されることにより、前記トルク移動切換ブレーキB、第1クラッチC1、および第2クラッチC2の係合、解放状態が切り換えられるとともに、第1クラッチC1および第2クラッチC2のスリップ係合時の伝達トルクが調整され、これにより左右の後輪30L、30Rに対する駆動力配分状態が制御される。前記変速歯車装置44およびブレーキBは変速機構に相当し、この変速歯車装置44、ブレーキB、およびクラッチC1、C2によって駆動力配分調整手段50が構成されている。電子制御装置36には、左右の前輪20L、20Rの回転速度(車輪速)ωfl、ωfrを検出する回転速度センサ32L、32Rから、それ等の回転速度ωfl、ωfrを表す信号が供給されるようになっている。 The hydraulic control circuit 34 includes a solenoid valve that controls an oil passage and a hydraulic pressure, and the solenoid valve is controlled by an electronic control unit 36, whereby the torque movement switching brake B, the first clutch C1, and the first The engagement and disengagement states of the two clutches C2 are switched, and the transmission torque at the time of slip engagement of the first clutch C1 and the second clutch C2 is adjusted, whereby the driving force distribution state for the left and right rear wheels 30L, 30R is adjusted. Be controlled. The transmission gear unit 44 and the brake B correspond to a transmission mechanism. The transmission gear unit 44, the brake B, and the clutches C1 and C2 constitute a driving force distribution adjusting unit 50. The electronic control device 36 receives signals representing the rotational speeds ω fl and ω fr from the rotational speed sensors 32L and 32R that detect the rotational speeds (wheel speeds) ω fl and ω fr of the left and right front wheels 20L and 20R. It comes to be supplied.

前記電子制御装置36は、CPU、ROM、RAM、および入出力インターフェイス等を有し、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を実行する所謂マイクロコンピュータを備えて構成されており、前記油圧制御回路34に備えられたソレノイド弁に供給される励磁電流の指令値を制御することにより、トルク移動切換ブレーキB、第1クラッチC1、および第2クラッチC2の係合、解放状態を切り換えるとともに、第1クラッチC1および第2クラッチC2のスリップ係合時の伝達トルクを調整する。これにより、左右後輪30L、30Rに対する駆動力配分を制御したり、後輪用差動歯車機構42による差動を制限したりすることができる。   The electronic control unit 36 includes a CPU, ROM, RAM, an input / output interface, and the like, and includes a so-called microcomputer that executes signal processing according to a program stored in advance in the ROM while using a temporary storage function of the RAM. The torque movement switching brake B, the first clutch C1, and the second clutch C2 are engaged by controlling the command value of the excitation current supplied to the solenoid valve provided in the hydraulic control circuit 34. The disengaged state is switched, and the transmission torque at the time of slip engagement of the first clutch C1 and the second clutch C2 is adjusted. As a result, it is possible to control the driving force distribution for the left and right rear wheels 30L, 30R, or to limit the differential by the rear wheel differential gear mechanism 42.

すなわち、エンジン12により発生させられた駆動力は、自動変速機14、センタ差動歯車機構22、およびプロペラシャフト24等を介して後輪用差動歯車機構42のケース46を回転駆動する駆動力として入力される。後輪用差動歯車機構42のリングギヤR1は、ケース46に一体的に設けられているため、プロペラシャフト24からの駆動力はケース46から後輪用差動歯車機構42に入力される。図3の(a) 〜(d) は、何れも後輪用差動歯車機構42の3つの回転要素(サンギヤS1、キャリアCA1、リングギヤR1)の回転速度を直線で結ぶことができる共線図で、左側の縦軸は左後輪30Lに連結されたキャリアCA1の回転速度Nlを示しており、右側の縦軸は右後輪30Rに連結されたサンギヤS1の回転速度Nrを示しており、中央の縦軸はケース46と一体的に回転させられるリングギヤR1の回転速度、すなわち入力回転速度Niを示している。この中央の縦軸には、前記変速歯車装置44のリングギヤR2の回転速度、すなわち第1クラッチC1、第2クラッチC2の回転速度Ncが併せて示されている。   That is, the driving force generated by the engine 12 is a driving force that rotationally drives the case 46 of the rear-wheel differential gear mechanism 42 via the automatic transmission 14, the center differential gear mechanism 22, the propeller shaft 24, and the like. Is entered as Since the ring gear R1 of the rear wheel differential gear mechanism 42 is provided integrally with the case 46, the driving force from the propeller shaft 24 is input from the case 46 to the rear wheel differential gear mechanism 42. 3 (a) to 3 (d) are collinear diagrams in which the rotational speeds of the three rotating elements (sun gear S1, carrier CA1, and ring gear R1) of the rear wheel differential gear mechanism 42 can be connected by a straight line. The left vertical axis shows the rotational speed Nl of the carrier CA1 connected to the left rear wheel 30L, and the right vertical axis shows the rotational speed Nr of the sun gear S1 connected to the right rear wheel 30R. The central vertical axis indicates the rotational speed of the ring gear R1 that is rotated integrally with the case 46, that is, the input rotational speed Ni. The central vertical axis also shows the rotational speed of the ring gear R2 of the transmission gear unit 44, that is, the rotational speed Nc of the first clutch C1 and the second clutch C2.

一方、図3の(a) 〜(d) の各々の図の右側に示される表は、トルク移動切換ブレーキB、第1クラッチC1、および第2クラッチC2の状態を示しており、「○」は係合(スリップを含む)状態、「×」は解放状態を示している。そして、回転速度NlとNcとの間の直線は第1クラッチC1の状態を示しており、実線はスリップ係合状態、破線は解放状態を示している。また、回転速度Ncと回転速度Nrとの間の直線は第2クラッチC2の状態を示しており、実線はスリップ係合状態、破線は解放状態を示している。   On the other hand, the table shown on the right side of each of FIGS. 3A to 3D shows the states of the torque transfer switching brake B, the first clutch C1, and the second clutch C2. Indicates an engaged state (including slip), and “x” indicates a released state. The straight line between the rotational speeds Nl and Nc indicates the state of the first clutch C1, the solid line indicates the slip engagement state, and the broken line indicates the released state. The straight line between the rotational speed Nc and the rotational speed Nr indicates the state of the second clutch C2, the solid line indicates the slip engagement state, and the broken line indicates the disengaged state.

図3の(a) は、左右駆動力配分装置26の非制御時の共線図である。非制御時においては、トルク移動切換ブレーキB、第1クラッチC1、および第2クラッチC2は何れも解放状態とされている。この状態では後輪用差動歯車機構42のみが機能し、変速歯車装置44は空転状態となり、左右の後輪30L、30Rに略均等に駆動力が配分される。これにより、左右駆動力配分装置26は、トルク移動および差動制限を行わず、通常のオープンデフとして機能する。したがって、例えば直進走行時などで左右の後輪30L、30Rの摩擦係数μl 、μr が略同じであれば、図3の(a) に示されるように後輪用差動歯車機構42は一体的に回転させられ、左右の後輪30L、30Rの回転速度Nl、Nrは略同じになるが、旋回時や左右の後輪30L、30Rの摩擦係数μl 、μr が相違する場合等には、それ等の回転速度Nl、Nrが相違して差動回転することが許容される。 FIG. 3A is an alignment chart when the left and right driving force distribution device 26 is not controlled. During non-control, the torque transfer switching brake B, the first clutch C1, and the second clutch C2 are all in a released state. In this state, only the rear wheel differential gear mechanism 42 functions, and the transmission gear unit 44 is in an idling state, and the driving force is distributed substantially evenly to the left and right rear wheels 30L, 30R. Thereby, the left and right driving force distribution device 26 functions as a normal open differential without performing torque movement and differential limitation. Therefore, if the friction coefficients μ l and μ r of the left and right rear wheels 30L and 30R are substantially the same, for example, when traveling straight, the rear wheel differential gear mechanism 42 is shown in FIG. rotated integrally, left and right rear wheels 30L, 30R of the rotational speed Nl, although Nr becomes substantially the same, turning or when the left and right rear wheels 30L, the friction coefficient mu l of 30R, when mu r are different and the like Are allowed to perform differential rotation with their rotational speeds Nl and Nr being different.

図3の(b) は、左右駆動力配分制御により右後輪30Rの駆動力配分をアップ(増大)させた場合の共線図で、トルク移動切換ブレーキBが係合させられるとともに、第1クラッチC1がスリップ係合させられ、第2クラッチC2が解放される。ここで、トルク移動切換ブレーキBが係合させられると、変速歯車装置44のキャリアCA2がロックされ、リングギヤR2の回転速度Ncが逆回転方向へ減速回転させられる。また、第1クラッチC1がスリップ係合させられることで、リングギヤR2の回転が後輪用差動歯車機構42のキャリアCA1を介して左後輪車軸28Lに伝達される。ここで、リングギヤR2の回転速度Ncは逆回転方向であるため、第1クラッチC1がスリップ係合させられると、キャリアCA1、左後輪車軸28Lを介して左後輪30Lの駆動力が減少させられ、右後輪30Rの駆動力が相対的に増大させられる。また、第1クラッチC1のスリップ係合で左後輪30Lの回転速度Nlが減速されるため、後輪用差動歯車機構42によって右後輪30Rの回転速度Nrが増速される。   FIG. 3B is a collinear diagram when the driving force distribution of the right rear wheel 30R is increased (increased) by the left / right driving force distribution control. The torque movement switching brake B is engaged and the first The clutch C1 is slip-engaged and the second clutch C2 is released. Here, when the torque movement switching brake B is engaged, the carrier CA2 of the transmission gear unit 44 is locked, and the rotation speed Nc of the ring gear R2 is decelerated and rotated in the reverse rotation direction. Further, as the first clutch C1 is slip-engaged, the rotation of the ring gear R2 is transmitted to the left rear wheel axle 28L via the carrier CA1 of the rear wheel differential gear mechanism 42. Here, since the rotational speed Nc of the ring gear R2 is in the reverse rotation direction, when the first clutch C1 is slip-engaged, the driving force of the left rear wheel 30L is reduced via the carrier CA1 and the left rear wheel axle 28L. Thus, the driving force of the right rear wheel 30R is relatively increased. Further, since the rotational speed Nl of the left rear wheel 30L is reduced by slip engagement of the first clutch C1, the rotational speed Nr of the right rear wheel 30R is increased by the rear wheel differential gear mechanism 42.

図3の(c) は、左右駆動力配分制御により左後輪30Lの駆動力配分をアップ(増大)させた場合の共線図で、トルク移動切換ブレーキBが係合させられるとともに、第2クラッチC2がスリップ係合させられ、第1クラッチC1が解放される。図3の(b) と同様に、トルク移動切換ブレーキBが係合させられると、変速歯車装置44のキャリアCA2がロックされ、リングギヤR2の回転速度Ncが逆回転方向へ減速回転させられる。また、第2クラッチC2がスリップ係合させられることで、リングギヤR2の回転が右後輪車軸28Rに伝達される。ここで、リングギヤR2の回転速度Ncは逆回転方向であるため、第2クラッチC2がスリップ係合させられると、右後輪車軸28Rを介して右後輪30Rの駆動力が減少させられ、左後輪30Lの駆動力が相対的に増大させられる。また、第2クラッチC2のスリップ係合で右後輪30Rの回転速度Nrが減速されるため、後輪用差動歯車機構42によって左後輪30Lの回転速度Nlが増速される。   FIG. 3C is a collinear diagram when the driving force distribution of the left rear wheel 30L is increased (increased) by the left / right driving force distribution control. The torque movement switching brake B is engaged and the second The clutch C2 is slip-engaged and the first clutch C1 is released. As in FIG. 3B, when the torque movement switching brake B is engaged, the carrier CA2 of the transmission gear unit 44 is locked, and the rotational speed Nc of the ring gear R2 is decelerated and rotated in the reverse rotation direction. Further, as the second clutch C2 is slip-engaged, the rotation of the ring gear R2 is transmitted to the right rear wheel axle 28R. Here, since the rotation speed Nc of the ring gear R2 is in the reverse rotation direction, when the second clutch C2 is slip-engaged, the driving force of the right rear wheel 30R is reduced via the right rear wheel axle 28R, and the left The driving force of the rear wheel 30L is relatively increased. Further, since the rotational speed Nr of the right rear wheel 30R is decelerated by slip engagement of the second clutch C2, the rotational speed Nl of the left rear wheel 30L is increased by the rear wheel differential gear mechanism 42.

図3の(d) は、差動制限時の共線図である。この差動制限時には、トルク移動切換ブレーキBが解放されるとともに、第1クラッチC1および第2クラッチC2が共に係合させられる。これ等の第1クラッチC1および第2クラッチC2が係合させられることで、左右の後輪車軸28L、28Rがそれぞれ第1クラッチC1、第2クラッチC2を介して後輪用差動歯車機構42のケース46に連結されて回転駆動されるようになるため、左右の後輪30L、30Rの差動回転が制限される。その場合に、クラッチC1、C2が完全係合させられると、ノンスリップデフとして機能し、左右の後輪車軸28L、28Rがそれぞれ第1クラッチC1、第2クラッチC2を介して後輪用差動歯車機構42のケース46に直結されて一体的に回転させられるようになり、左右の後輪30L、30Rが同回転となる。なお、差動制限力は、第1クラッチC1、第2クラッチC2の伝達トルクすなわち係合油圧に比例し、任意に設定することができる。   FIG. 3D is a collinear diagram at the time of differential limitation. At the time of this differential limitation, the torque movement switching brake B is released and the first clutch C1 and the second clutch C2 are both engaged. When the first clutch C1 and the second clutch C2 are engaged, the left and right rear wheel axles 28L and 28R are respectively connected to the rear wheel differential gear mechanism 42 via the first clutch C1 and the second clutch C2. In this case, the differential rotation of the left and right rear wheels 30L, 30R is limited. In this case, when the clutches C1 and C2 are fully engaged, the left and right rear wheel axles 28L and 28R function as rear wheel differential gears via the first clutch C1 and the second clutch C2, respectively. It is directly connected to the case 46 of the mechanism 42 and can be rotated integrally, and the left and right rear wheels 30L, 30R are rotated in the same direction. The differential limiting force is proportional to the transmission torque of the first clutch C1 and the second clutch C2, that is, the engagement hydraulic pressure, and can be set arbitrarily.

図4のフローチャートは、左右の後輪30L、30Rに対する駆動力配分の制御を具体的に説明する図で、前記電子制御装置36による信号処理によって実行される。このフローチャートは所定のサイクルタイムで繰り返し実行されるもので、ステップS1およびS2は回転速度差算出工程で、回転速度差算出手段として機能する一方、ステップS3〜S6はスリップ抑制駆動力配分工程で、スリップ抑制駆動力配分手段として機能する。   The flowchart of FIG. 4 is a diagram for specifically explaining the control of the driving force distribution for the left and right rear wheels 30L, 30R, and is executed by signal processing by the electronic control unit 36. This flowchart is repeatedly executed at a predetermined cycle time. Steps S1 and S2 are rotation speed difference calculation steps and function as rotation speed difference calculation means, while steps S3 to S6 are slip suppression driving force distribution steps. It functions as a slip suppression driving force distribution means.

図4のステップS1では、前記回転速度センサ32L、32Rから検出信号を読み込んで左右の前輪20L、20Rの回転速度(車輪速)ωfl、ωfrを計測し、ステップS2では、次式(1) に従ってそれ等の回転速度差Δωf を算出する。そして、ステップS3では、この回転速度差Δωf が予め定められた一定のスリップ判定値−Xより小さいか否かを判定し、Δωf <−Xの場合、すなわち右前輪20Rの回転速度ωfrが左前輪20Lの回転速度ωflにXを加算した値よりも高く、右前輪20Rがスリップしており、或いはスリップする可能性が高い状態の場合には、ステップS4を実行し、駆動力配分調整手段50により反対側すなわち車輪のグリップ力が比較的大きいと推定される左後輪30L側の駆動力配分を大きくする。具体的には、前記図3の(c) のようにトルク移動切換ブレーキBを係合させるとともに、第2クラッチC2をスリップ係合させ、右後輪30Rの駆動力を減少させるとともに、左後輪30Lの駆動力を相対的に増大させるのであり、これにより右後輪30Rのスリップが抑制される。この時の駆動力配分比、すなわち第2クラッチC2の係合油圧は、予め定められた一定値であっても良いが、回転速度差Δωf に応じて段階的或いは連続的に大きくしても良い。
Δωf =ωfl−ωfr ・・・(1)
In step S1 of FIG. 4, detection signals are read from the rotational speed sensors 32L and 32R to measure the rotational speeds (wheel speeds) ω fl and ω fr of the left and right front wheels 20L and 20R. In step S2, the following formula (1 ) To calculate their rotational speed difference Δω f . In step S3, it is determined whether or not the rotational speed difference Δω f is smaller than a predetermined constant slip determination value −X. If Δω f <−X, that is, the rotational speed ω fr of the right front wheel 20R. Is higher than the value obtained by adding X to the rotational speed ω fl of the left front wheel 20L, and if the right front wheel 20R is slipping or is likely to slip, step S4 is executed to distribute the driving force. The adjustment means 50 increases the driving force distribution on the opposite side, that is, the left rear wheel 30L side where the wheel grip force is estimated to be relatively large. Specifically, as shown in FIG. 3C, the torque transfer switching brake B is engaged, the second clutch C2 is slip-engaged, the driving force of the right rear wheel 30R is reduced, and the left rear The driving force of the wheel 30L is relatively increased, and thereby the slip of the right rear wheel 30R is suppressed. The driving force distribution ratio at this time, that is, the engagement hydraulic pressure of the second clutch C2 may be a predetermined constant value, or may be increased stepwise or continuously according to the rotational speed difference Δω f. good.
Δω f = ω fl −ω fr・ ・ ・ (1)

上記ステップS3の判断がNO(否定)の場合、すなわちΔωf <−Xでない場合には、ステップS5を実行し、回転速度差Δωf がスリップ判定値Xより大きいか否か、すなわち左前輪20Lの回転速度ωflが右前輪20Rの回転速度ωfrにXを加算した値よりも高く、左前輪20Lがスリップしており、或いはスリップする可能性が高い状態か否かを判断する。この時のスリップ判定値Xは、正負が異なるだけで前記ステップS3のスリップ判定値−Xと同じである。そして、Δωf >Xの場合にはステップS6を実行し、駆動力配分調整手段50により反対側すなわち車輪のグリップ力が比較的大きいと推定される右後輪30R側の駆動力配分を大きくする。具体的には、前記図3の(b) のようにトルク移動切換ブレーキBを係合させるとともに、第1クラッチC1をスリップ係合させ、左後輪30Lの駆動力を減少させるとともに、右後輪30Rの駆動力を相対的に増大させるのであり、これにより左後輪30Lのスリップが抑制される。この時の駆動力配分比、すなわち第1クラッチC1の係合油圧は、予め定められた一定値であっても良いが、回転速度差Δωf に応じて段階的或いは連続的に大きくしても良い。 If the determination in step S3 is NO (No), that is, if Δω f <−X, step S5 is executed to determine whether the rotational speed difference Δω f is greater than the slip determination value X, that is, the left front wheel 20L. of the rotation speed omega fl is higher than the value obtained by adding X to the rotational speed omega fr of the front right wheel 20R, the left front wheel 20L has slipped, or it is determined whether a high state likely to slip. The slip determination value X at this time is the same as the slip determination value -X in step S3 except that the sign is different. If Δω f > X, step S6 is executed, and the driving force distribution adjusting means 50 increases the driving force distribution on the opposite side, that is, the right rear wheel 30R side where the wheel grip force is estimated to be relatively large. . Specifically, as shown in FIG. 3B, the torque movement switching brake B is engaged, the first clutch C1 is slip-engaged, the driving force of the left rear wheel 30L is reduced, and the right rear The driving force of the wheel 30R is relatively increased, and thereby the slip of the left rear wheel 30L is suppressed. Driving force distribution ratio when this, i.e. the engagement oil pressure of the first clutch C1 may be a predetermined constant value, but also be stepwise or continuously increased in accordance with the rotational speed difference [Delta] [omega f good.

ここで、本実施例の四輪駆動車両10は駆動源前置式の前後輪駆動車両で、エンジン12から後輪30L、30Rまでの駆動力伝達経路が前輪20L、20Rに比較して長いため、前輪20L、20Rに駆動力が伝達されて回転駆動されるようになってから後輪30L、30Rに駆動力が伝達されるまでに遅れ時間があり、その時間差を利用して事前に、すなわち後輪30L、30Rに駆動力が伝達される前に、駆動力配分調整手段50により左右の後輪30L、30Rに対する駆動力配分を制御することが可能で、雪道等の低μ路での車両発進時に左右の後輪30L、30Rのスリップが抑制され、車両挙動が安定するとともに優れた発進性能が得られる。また、車両走行中においては、路面状態(摩擦係数μなど)の変化による左右の前輪20L、20Rのスリップが、回転速度差Δωf に基づいてステップS3またはS5で判定されると、ステップS4またはS6で左右の後輪30L、30Rに対する駆動力配分が制御されることにより、その左右の後輪30L、30Rが実際にスリップする前に駆動力配分制御が開始され、左右後輪30L、30Rの一方のスリップによる駆動性能の低下や車両挙動の不安定化が好適に抑制される。所定車速以下の車両発進時か車両走行中かによって、前記スリップ判定値X、−Xの値を変更することも可能である。 Here, the four-wheel drive vehicle 10 of the present embodiment is a front-and-rear wheel drive vehicle with a drive source in front, and the driving force transmission path from the engine 12 to the rear wheels 30L and 30R is longer than the front wheels 20L and 20R. , There is a delay time from when the driving force is transmitted to the front wheels 20L and 20R to be rotationally driven until the driving force is transmitted to the rear wheels 30L and 30R, and in advance using the time difference, that is, Before the driving force is transmitted to the rear wheels 30L, 30R, the driving force distribution adjusting means 50 can control the driving force distribution to the left and right rear wheels 30L, 30R. When the vehicle starts, the left and right rear wheels 30L and 30R are prevented from slipping, so that the vehicle behavior is stabilized and excellent start performance is obtained. Further, during vehicle traveling, the left and right front wheels 20L due to changes in the road surface condition (friction coefficient mu), the 20R slip is determined in step S3 or S5 on the basis of the rotational speed difference [Delta] [omega f, step S4 or By controlling the driving force distribution to the left and right rear wheels 30L, 30R in S6, the driving force distribution control is started before the left and right rear wheels 30L, 30R actually slip, and the left and right rear wheels 30L, 30R are controlled. A decrease in driving performance and instability of vehicle behavior due to one slip are preferably suppressed. It is also possible to change the slip determination values X and -X depending on whether the vehicle starts at a predetermined vehicle speed or less or is running.

図5は、雪道等の低μ路での車両発進時に左前輪20Lの回転速度ωflが右前輪20Rの回転速度ωfrに比較して大きくなり、それ等の回転速度差Δωf が前記スリップ判定値Xよりも大きくなって、図4のフローチャートに従って右後輪30Rの駆動力配分が大きくされた場合のタイムチャートの一例であり、時間t1 は、Δωf >XになってステップS5の判断がYES(肯定)となり、ステップS6が実行されて右後輪30Rの駆動力配分が大きくされた時間である。この駆動力配分制御は、第1クラッチC1の係合油圧を予め定められた一定の油圧値までステップ的に増大させる場合、すなわち駆動力配分比をステップ的に変化させる場合で、優れた応答性で駆動力配分を制御することができる。 FIG. 5 shows that when the vehicle starts on a low μ road such as a snowy road, the rotational speed ω fl of the left front wheel 20L is larger than the rotational speed ω fr of the right front wheel 20R, and the rotational speed difference Δω f is FIG. 4 is an example of a time chart when the slip determination value X is greater than the slip determination value X and the driving force distribution of the right rear wheel 30R is increased according to the flowchart of FIG. 4, and the time t 1 becomes Δω f > X and step S5 Is the time when step S6 is executed and the driving force distribution of the right rear wheel 30R is increased. This driving force distribution control is an excellent response when the engagement hydraulic pressure of the first clutch C1 is increased stepwise to a predetermined constant hydraulic pressure value, that is, when the driving force distribution ratio is changed stepwise. The driving force distribution can be controlled with.

なお、前記ステップS5の判断がNOの場合、すなわち−X≦Δωf ≦Xの場合には、ステップS7を実行し、前記ステップS4またはS6による駆動力配分制御を実行中の場合にはその駆動力配分制御の終了処理を行い、駆動力配分制御を実行中でなければそのまま終了する。駆動力配分制御の終了処理は、図3の(a) に示すようにトルク移動切換ブレーキB、第1クラッチC1、および第2クラッチC2を何れも解放状態とするもので、それ等の係合油圧を所定の変化率で滑らかに低下させて解放する。 If the determination in step S5 is NO, that is, if −X ≦ Δω f ≦ X, step S7 is executed, and if the driving force distribution control in step S4 or S6 is being executed, the driving is performed. End processing of force distribution control is performed, and if driving force distribution control is not being executed, the processing is ended as it is. The end process of the driving force distribution control is to release all of the torque movement switching brake B, the first clutch C1, and the second clutch C2 as shown in FIG. 3 (a). The oil pressure is smoothly lowered at a predetermined rate of change and released.

このように本実施例の左右駆動力配分制御方法においては、左右の前輪20L、20Rの回転状態(回転速度差Δωf )に基づいて左右の後輪30L、30Rに対する駆動力配分制御を行うため、例えば車両走行中の路面状態の変化などで左右の前輪20L、20Rの回転状態が変化した場合に、左右の後輪30L、30Rがスリップを発生する前にその後輪30L、30Rに対する駆動力配分制御を開始することが可能で、左右の後輪30L、30Rの一方のスリップにより駆動性能が低下したり車両の挙動が不安定になったりすることが抑制される。 As described above, in the left / right driving force distribution control method of this embodiment, the driving force distribution control for the left and right rear wheels 30L, 30R is performed based on the rotation state (rotational speed difference Δω f ) of the left and right front wheels 20L, 20R. For example, when the rotation state of the left and right front wheels 20L and 20R changes due to, for example, a change in road surface condition while the vehicle is running, the driving force is distributed to the rear wheels 30L and 30R before the left and right rear wheels 30L and 30R slip. It is possible to start the control, and it is possible to suppress a decrease in driving performance or an unstable behavior of the vehicle due to one of the left and right rear wheels 30L and 30R slipping.

また、本実施例は駆動源であるエンジン12が車両前側に配置された駆動源前置式の前後輪駆動車両に関するもので、後輪30L、30Rへの駆動力伝達経路が前輪20L、20Rに比較して長いため、前輪20L、20Rに駆動力が伝達されて回転駆動されるようになってから後輪30L、30Rに駆動力が伝達されるまでに遅れ時間があり、その時間差を利用して事前に、すなわち後輪30L、30Rに駆動力が伝達される前に、左右前輪20L、20Rの回転状態(回転速度差Δωf )に基づいて駆動力配分調整手段50により左右の後輪30L、30Rに対する駆動力配分制御を行うことができるため、雪道等の低μ路での車両発進時に後輪30L、30Rのスリップが抑制され、車両挙動が安定するとともに優れた発進性能が得られる。 Further, the present embodiment relates to a front and rear wheel drive vehicle of a drive source front type in which an engine 12 as a drive source is disposed on the front side of the vehicle, and a driving force transmission path to the rear wheels 30L and 30R is provided to the front wheels 20L and 20R. Since the driving force is transmitted to the front wheels 20L and 20R to be rotated and driven, there is a delay time from when the driving force is transmitted to the rear wheels 30L and 30R. Therefore, before the driving force is transmitted to the rear wheels 30L and 30R, the left and right rear wheels 30L are driven by the driving force distribution adjusting means 50 based on the rotational state (rotational speed difference Δω f ) of the left and right front wheels 20L and 20R. Since the driving force distribution control for 30R can be performed, the slip of the rear wheels 30L, 30R is suppressed when starting the vehicle on a low μ road such as a snowy road, the vehicle behavior is stabilized and the excellent starting performance is obtained. .

また、本実施例では、左右前輪20L、20Rの回転速度差Δωf を算出し、その回転速度差Δωf がスリップ判定値−Xよりも小さいか、或いはスリップ判定値Xよりも大きい場合に、回転速度が遅い側すなわちグリップ力が大きくてスリップの可能性が低い側の後輪30Lまたは30Rの駆動力配分が大きくされるため、スリップする可能性が高い反対側の後輪30Rまたは30Lのスリップが抑制されて発進時等の駆動性能が向上するとともに車両挙動が安定する。その場合に、左右前輪20L、20Rの回転速度差Δωf を算出し、予め定められたスリップ判定値−X、Xと比較するだけで良いため、信号処理が簡単で処理時間が短くて済み、優れた応答性で駆動力配分制御を行うことができる。特に、図5に示すように駆動力配分比をステップ的に変化させる場合には、一層優れた応答性が得られ、効率良く駆動力配分を変化させることができる。 In this embodiment, the rotational speed difference Δω f between the left and right front wheels 20L and 20R is calculated, and when the rotational speed difference Δω f is smaller than the slip determination value −X or larger than the slip determination value X, Since the driving force distribution of the rear wheel 30L or 30R on the side where the rotational speed is slow, that is, the grip force is large and the possibility of slipping is large, the slip of the rear wheel 30R or 30L on the opposite side is highly likely to slip. Is suppressed, driving performance at the time of starting and the like is improved, and vehicle behavior is stabilized. In that case, it is only necessary to calculate the rotational speed difference Δω f between the left and right front wheels 20L, 20R and compare with the predetermined slip determination values -X, X, so that the signal processing is simple and the processing time is short, Driving force distribution control can be performed with excellent responsiveness. In particular, when the driving force distribution ratio is changed in a stepwise manner as shown in FIG. 5, a more excellent response can be obtained and the driving force distribution can be changed efficiently.

次に、本発明の他の実施例を説明する。なお、以下の実施例において前記実施例と実質的に共通する部分には同一の符号を付して詳しい説明を省略する。   Next, another embodiment of the present invention will be described. In the following embodiments, parts that are substantially the same as those in the above embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

図6は、前記図4のフローチャートの代りに前記電子制御装置36によって実行されるもので、ステップR1およびR2は路面摩擦係数推定工程で、路面摩擦係数推定手段として機能し、ステップR3〜R6はスリップ抑制駆動力配分工程で、スリップ抑制駆動力配分手段として機能する。   FIG. 6 is executed by the electronic control unit 36 instead of the flow chart of FIG. 4. Steps R1 and R2 are road surface friction coefficient estimating steps, which function as road surface friction coefficient estimating means, and steps R3 to R6 are performed. In the slip suppression driving force distribution step, it functions as a slip suppression driving force distribution means.

図6のステップR1では、前記ステップS1と同様に回転速度センサ32L、32Rから検出信号を読み込んで左右の前輪20L、20Rの回転速度(車輪速)ωfl、ωfrを計測し、ステップR2では、次式(2) 、(3) に従って左右の路面摩擦係数μl 、μr を算出する。この路面摩擦係数μl 、μr は、左右の路面状態を表している。次のステップR3では、左右の後輪30L、30Rも同じ路面状態であるか、或いは走行中であれば同じ路面状態になると仮定して、次式(4) に従って左右後輪30L、30Rの回転速度差Δωr を算出(予測)する。そして、ステップR4では、その回転速度差Δωr を有する左右後輪30L、30Rの差動回転を防止するための後輪差動拘束力(モーメント)Mを次式(5) に従って算出する。なお、これ等の演算式はあくまでも一例であり、例えばステアリングホイールの操舵角(ハンドル角)や路面の勾配、前後輪のタイヤのグリップ力の相違など、他のパラメータを用いて更に高い精度で算出することもできるなど、車両の特性や要求精度等に応じて適宜定められる。

Figure 2009293719
In Step R1 of FIG. 6, the detection signals are read from the rotational speed sensors 32L and 32R as in Step S1, and the rotational speeds (wheel speeds) ω fl and ω fr of the left and right front wheels 20L and 20R are measured. In Step R2, The left and right road surface friction coefficients μ l and μ r are calculated according to the following equations (2) and (3). The road surface friction coefficients μ l and μ r represent the left and right road surface conditions. In the next step R3, it is assumed that the left and right rear wheels 30L and 30R are in the same road surface state or the same road surface state if the vehicle is running, and the left and right rear wheels 30L and 30R are rotated according to the following equation (4). The speed difference Δω r is calculated (predicted). In step R4, a rear wheel differential restraining force (moment) M for preventing differential rotation of the left and right rear wheels 30L and 30R having the rotational speed difference Δω r is calculated according to the following equation (5). These calculation formulas are only examples, and are calculated with higher accuracy using other parameters such as the steering angle of the steering wheel (steering wheel angle), the gradient of the road surface, and the difference in grip force between the tires of the front and rear wheels. It is determined as appropriate according to the characteristics of the vehicle and the required accuracy.
Figure 2009293719

上記演算式(2) 〜(5) で用いられる各記号の意味は以下の通りである。この中、フロント配分比af は、前輪20L、20R側への駆動力の配分比で、センタ差動歯車機構22に設けられる前後駆動力配分装置等に応じて適宜定められ、電気的に制御可能な場合にはその制御値が用いられる。エンジン駆動力Tは、例えば吸入空気量や燃料噴射量等に基づいて算出される。車輪の垂直荷重Wfl、Wfr、Wrl、Wrrは、乗員や積載荷重の影響が小さい場合は予め一定値が定められても良いが、荷重センサ等によって検出したり加速度等から算出したりすることもできる。フロントデフ比Dfやタイヤ慣性モーメントI、タイヤ半径r、リアトレッドTDRは殆ど変化しないため、予め一定値が定められれば良い。
f :フロント配分比
T:エンジン駆動力
Df:フロントデフ比
I:タイヤ慣性モーメント
ωfl:左前輪回転速度
ωfr:右前輪回転速度
Δωr :左右後輪の回転速度差
μl :左路面摩擦係数
μr :右路面摩擦係数
fl:左前輪垂直荷重
fr:右前輪垂直荷重
rl:左後輪垂直荷重
rr:右後輪垂直荷重
r:タイヤ半径
TDR:リアトレッド
The meanings of the symbols used in the arithmetic expressions (2) to (5) are as follows. In this, the front distribution ratio a f are the front wheels 20L, in the drive distribution ratio to 20R side, determined as appropriate depending on the front and rear are provided to the center differential gear mechanism 22 driving force distribution device, etc., electrically controlled The control value is used when possible. The engine driving force T is calculated based on, for example, the intake air amount, the fuel injection amount, and the like. The vertical loads W fl , W fr , W rl , W rr of the wheels may be determined in advance when the influence of the occupant or the load is small, but may be detected by a load sensor or calculated from acceleration, etc. You can also. Since the front differential ratio Df, the tire inertia moment I, the tire radius r, and the rear tread TDR hardly change, a predetermined value may be determined in advance.
a f : front distribution ratio T: engine driving force Df: front differential ratio I: tire inertia moment ω fl : left front wheel rotation speed ω fr : right front wheel rotation speed Δω r : rotation speed difference between left and right rear wheels μ l : left road surface Friction coefficient μ r : Right road surface friction coefficient W fl : Left front wheel vertical load W fr : Right front wheel vertical load W rl : Left rear wheel vertical load W rr : Right rear wheel vertical load r: Tire radius TDR: Rear tread

次のステップR5では、上記後輪差動拘束力Mを発生させるための左右後輪30L、30Rの駆動力配分、すなわち前記クラッチC1またはC2の係合油圧値を予め定められたデータマップや演算式等により算出する。この時の駆動力配分すなわち係合油圧値は、後輪差動拘束力Mに応じて連続的に変化させられる。そして、ステップR6では、クラッチC1またはC2を上記ステップR5で求めた油圧でスリップ係合させるとともにブレーキBを完全係合させ、左右後輪30L、30Rに対する駆動力配分を前記後輪差動拘束力Mに応じて連続的に変化させる。   In the next step R5, the driving force distribution of the left and right rear wheels 30L, 30R for generating the rear wheel differential restraining force M, that is, the engagement hydraulic pressure value of the clutch C1 or C2 is determined by a predetermined data map or calculation. It is calculated by an equation. The driving force distribution, that is, the engagement hydraulic pressure value at this time is continuously changed according to the rear wheel differential restraining force M. In step R6, the clutch C1 or C2 is slip-engaged with the hydraulic pressure obtained in step R5 and the brake B is completely engaged, and the driving force distribution for the left and right rear wheels 30L, 30R is distributed to the rear wheel differential restraining force. Change continuously according to M.

本実施例においても、左右の前輪20L、20Rの回転状態に基づいて左右の路面状態、具体的には摩擦係数μl 、μr を推定し、この路面摩擦係数μl 、μr から後輪30L、30Rの回転速度差Δωr を算出(予測)し、その回転速度差Δωr の差動回転が防止されるようにそれ等の後輪30L、30Rに対する駆動力配分を制御するため、その回転速度差Δωr の発生すなわち後輪30L、30Rの一方のスリップが抑制されて、前記実施例と同様の効果が得られる。加えて、本実施例では駆動力配分すなわちクラッチC1またはC2の係合油圧値が、上記回転速度差Δωr の発生を抑制する後輪差動拘束力Mに応じて連続的に変化させられるため、車両走行中に路面状況が変化する場合でも、後輪30L、30Rに対する駆動力配分がきめ細かく制御されてスリップが抑制され、車両挙動が一層安定する。 Also in this embodiment, the left and right road surface conditions, specifically, the friction coefficients μ l and μ r are estimated based on the rotation states of the left and right front wheels 20L and 20R, and the rear wheels are calculated from the road surface friction coefficients μ l and μ r. 30L, calculates a rotation speed difference [Delta] [omega r of 30R and (predicted), wheels 30L after it such as the differential rotation of the rotational speed difference [Delta] [omega r is prevented, for controlling the driving force distribution for 30R, the Generation of the rotational speed difference Δω r , that is, one slip of the rear wheels 30L and 30R is suppressed, and the same effect as in the above embodiment can be obtained. In addition, since the engagement pressure value of the driving force distribution i.e. the clutch C1 or C2 in the present embodiment, it is continuously varied in accordance with the suppressing rear wheel differential restraining force M of the occurrence of the rotational speed difference [Delta] [omega r Even when the road surface condition changes while the vehicle is running, the driving force distribution to the rear wheels 30L and 30R is finely controlled to suppress the slip and further stabilize the vehicle behavior.

図7の左右駆動力配分装置60は、前記実施例の左右駆動力配分装置26に比較して、後輪用差動歯車機構42による左右輪30L、30Rの差動回転を機械的に制限する機械式差動制限機構62がその後輪用差動歯車機構42に設けられている場合で、サンギヤS1とキャリアCA1との差動回転を制限するようになっている。この機械式差動制限機構62は、自動的に回転速度が遅い側へトルク移動して差動回転を抑制するもので、入力回転比例式やトルク感応式、皿ばね式等の従来から広く知られているものである。   The right and left driving force distribution device 60 of FIG. 7 mechanically limits the differential rotation of the left and right wheels 30L and 30R by the rear wheel differential gear mechanism 42 as compared to the left and right driving force distribution device 26 of the above embodiment. In the case where the mechanical differential limiting mechanism 62 is provided in the rear wheel differential gear mechanism 42, the differential rotation between the sun gear S1 and the carrier CA1 is limited. The mechanical differential limiting mechanism 62 automatically suppresses the differential rotation by moving the torque to the side where the rotational speed is slow, and has been widely known from the past such as an input rotation proportional type, a torque sensitive type and a disc spring type. It is what has been.

図8は、上記図7の左右駆動力配分装置60を備えている四輪駆動車両10において、前記図4のフローチャートの代りに前記電子制御装置36によって実行されるもので、ステップQ1およびQ2は路面摩擦係数推定工程で、路面摩擦係数推定手段として機能し、ステップQ3およびQ4は偏向方向判定工程で、偏向方向判定手段として機能し、ステップQ5〜Q7は偏向抑制駆動力配分工程で、偏向抑制駆動力配分手段として機能する。なお、図8のフローチャートのうちステップQ1〜Q3、Q6、Q7は、それぞれ前記図6のフローチャートのステップR1〜R3、R5、R6と同じ信号処理を行うもので、詳しい説明を省略する。   FIG. 8 is executed by the electronic control unit 36 in place of the flowchart of FIG. 4 in the four-wheel drive vehicle 10 provided with the left / right driving force distribution device 60 of FIG. 7, and steps Q1 and Q2 are performed. In the road surface friction coefficient estimation step, it functions as a road surface friction coefficient estimation unit, steps Q3 and Q4 function as a deflection direction determination step and function as a deflection direction determination unit, and steps Q5 to Q7 are a deflection suppression driving force distribution step. It functions as a driving force distribution means. Note that steps Q1 to Q3, Q6, and Q7 in the flowchart of FIG. 8 perform the same signal processing as steps R1 to R3, R5, and R6 of the flowchart of FIG.

図8のステップQ4では、ステップQ3で算出(予測)した左右後輪30L、30Rの回転速度差Δωr が発生する場合に、機械式差動制限機構62によりその左右後輪30L、30Rの差動回転が機械的に制限されることによって左右後輪30L、30Rに駆動力差が生じ、その駆動力差に起因して発生する車両のヨーレイトγを次式(6) に従って算出(予測)する。このヨーレイトγは、差動制限に伴う駆動力差で生じる車両の偏向方向(重心の右まわりか左まわりか)およびその偏向の強さを表しており、次のステップQ5では、このヨーレイトγの発生を打ち消すための後輪差動拘束力(モーメント)Mを次式(7) に従って算出する。(7) 式の記号Iz は車両慣性モーメントで、予め一定値が定められるか、前記車輪の垂直荷重Wfl、Wfr、Wrl、Wrrが荷重センサ等によって検出される場合には、その垂直荷重Wfl、Wfr、Wrl、Wrrから算出することもできる。なお、これ等の演算式はあくまでも一例で、他のパラメータを用いて更に高い精度で算出することもできるなど、車両の特性や要求精度等に応じて適宜定められる。

Figure 2009293719
In step Q4 of FIG. 8, when the rotational speed difference Δω r between the left and right rear wheels 30L and 30R calculated (predicted) in step Q3 occurs, the difference between the left and right rear wheels 30L and 30R is caused by the mechanical differential limiting mechanism 62. When the dynamic rotation is mechanically limited, a difference in driving force occurs between the left and right rear wheels 30L and 30R, and the yaw rate γ of the vehicle generated due to the driving force difference is calculated (predicted) according to the following equation (6). . This yaw rate γ represents the vehicle deflection direction (rightward or leftward of the center of gravity) and the strength of the deflection caused by the difference in driving force due to the differential limitation. In the next step Q5, the yaw rate γ The rear wheel differential restraining force (moment) M for canceling the generation is calculated according to the following equation (7). The symbol Iz in the equation (7) is a moment of inertia of the vehicle, a predetermined value is determined in advance, or when the vertical loads W fl , W fr , W rl , W rr of the wheels are detected by a load sensor or the like, It can also be calculated from the vertical loads W fl , W fr , W rl , W rr . These arithmetic expressions are merely examples, and can be appropriately determined according to vehicle characteristics, required accuracy, and the like, such as being able to calculate with higher accuracy using other parameters.
Figure 2009293719

その後、ステップQ6およびQ7が実行され、前記ステップR5、R6と同様にして上記後輪差動拘束力Mを発生させるための左右後輪30L、30Rの駆動力配分、すなわち前記クラッチC1またはC2の係合油圧値が予め定められたデータマップや演算式等により算出され、クラッチC1またはC2がその係合油圧でスリップ係合させられるとともにブレーキBが完全係合させられることにより、左右後輪30L、30Rに対する駆動力配分が前記後輪差動拘束力Mに応じて連続的に変化させられる。   Thereafter, Steps Q6 and Q7 are executed, and the driving force distribution of the left and right rear wheels 30L and 30R for generating the rear wheel differential restraining force M in the same manner as Steps R5 and R6, that is, the clutch C1 or C2 The engagement hydraulic pressure value is calculated by a predetermined data map, an arithmetic expression or the like, and the clutch C1 or C2 is slip-engaged by the engagement hydraulic pressure and the brake B is completely engaged, whereby the left and right rear wheels 30L. , 30R is continuously changed according to the rear wheel differential restraining force M.

本実施例では、左右の前輪20L、20Rの回転状態に基づいて左右の路面状態、具体的には摩擦係数μl 、μr を推定し、この路面摩擦係数μl 、μr から左右後輪30L、30Rの回転速度差Δωr を算出(予測)するとともに、機械式差動制限機構62によりその左右後輪30L、30Rの差動回転が機械的に制限されることによって生じる左右後輪30L、30Rの駆動力差に起因して発生する車両のヨーレイトγを算出(予測)し、そのヨーレイトγの発生を打ち消すように駆動力配分調整手段50によって左右後輪30L、30Rに対する駆動力配分制御が行われるため、機械式差動制限機構62の差動制限に起因する車両の偏向が抑制される。特に本実施例では、偏向の方向だけでなく偏向の強さを表すヨーレイトγを求めて、そのヨーレイトγの発生を打ち消すように駆動力配分制御が行われるため、機械式差動制限機構62の差動制限に起因する車両の偏向が適切に抑制される。 In this embodiment, the left and right road surface conditions, specifically, the friction coefficients μ l and μ r are estimated based on the rotation states of the left and right front wheels 20L and 20R, and the left and right rear wheels are determined from the road surface friction coefficients μ l and μ r. The rotation speed difference Δω r between 30L and 30R is calculated (predicted), and the left and right rear wheels 30L generated by the mechanical differential limiting mechanism 62 mechanically limiting the differential rotation of the left and right rear wheels 30L and 30R. , The yaw rate γ of the vehicle generated due to the driving force difference of 30R is calculated (predicted), and driving force distribution control for the left and right rear wheels 30L, 30R is performed by the driving force distribution adjusting means 50 so as to cancel the generation of the yaw rate γ. Therefore, the deflection of the vehicle due to the differential limitation of the mechanical differential limiting mechanism 62 is suppressed. In particular, in this embodiment, the yaw rate γ representing not only the direction of deflection but also the strength of deflection is obtained, and the driving force distribution control is performed so as to cancel the generation of the yaw rate γ. Vehicle deflection due to differential limiting is adequately suppressed.

以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, these are one Embodiment to the last, This invention is implemented in the aspect which added the various change and improvement based on the knowledge of those skilled in the art. be able to.

本発明方法に従って左右後輪の駆動力配分制御が行われる前置エンジン前輪駆動を基本とする四輪駆動車両を説明する概略構成図である。It is a schematic block diagram explaining the four-wheel drive vehicle based on the front engine front wheel drive in which the driving force distribution control of the left and right rear wheels is performed according to the method of the present invention. 図1の四輪駆動車両の後輪用の左右駆動力配分装置を具体的に説明する骨子図である。FIG. 2 is a skeleton diagram specifically explaining a left / right driving force distribution device for rear wheels of the four-wheel drive vehicle of FIG. 1. 図2の左右駆動力配分装置の作動を、クラッチおよびブレーキの係合解放状態と関連付けて説明する図で、(a) は非制御時、(b) は右後輪の駆動力配分アップ時、(c) は左後輪の駆動力配分アップ時、(d) は差動制限時である。2 is a diagram for explaining the operation of the left and right driving force distribution device in association with the clutch and brake disengagement state, where (a) is not controlled, (b) is when driving force distribution of the right rear wheel is increased, (c) is when the driving force distribution of the left rear wheel is increased, and (d) is when differential is limited. 図1の電子制御装置による信号処理によって実行される左右駆動力配分制御を具体的に説明するフローチャートである。4 is a flowchart for specifically explaining left and right driving force distribution control executed by signal processing by the electronic control device of FIG. 1. 図4のフローチャートに従って左右駆動力配分制御が行われた場合の回転速度差Δωf やクラッチおよびブレーキの油圧の変化を示すタイムチャートの一例である。FIG. 5 is an example of a time chart showing changes in rotational speed difference Δω f and hydraulic pressures of clutches and brakes when left and right driving force distribution control is performed according to the flowchart of FIG. 4. 本発明の他の実施例を説明する図で、図4に対応するフローチャートである。It is a figure explaining the other Example of this invention, and is a flowchart corresponding to FIG. 後輪用差動歯車機構に機械式差動制限機構が設けられている場合の実施例を説明する図で、図2に対応する骨子図である。It is a figure explaining the Example in case the mechanical differential limiting mechanism is provided in the differential gear mechanism for rear wheels, and is a skeleton diagram corresponding to FIG. 図7の実施例において、電子制御装置による信号処理によって実行される左右駆動力配分制御を具体的に説明するフローチャートである。8 is a flowchart for specifically explaining left and right driving force distribution control executed by signal processing by an electronic control unit in the embodiment of FIG.

符号の説明Explanation of symbols

10:四輪駆動車両(前後輪駆動車両) 12:エンジン(駆動源) 20L、20R:前輪 22:センタ差動歯車機構 26、60:左右駆動力配分装置 30L、30R:後輪 32L、34R:回転速度センサ 42:後輪用差動歯車機構 50:駆動力配分調整手段 62:機械式差動制限機構
ステップS1、S2:回転速度差算出工程
ステップS3〜S6:スリップ抑制駆動力配分工程
ステップR1、R2:路面摩擦係数推定工程
ステップR3〜R6:スリップ抑制駆動力配分工程
ステップQ1、Q2:路面摩擦係数推定工程
ステップQ3:Q4:偏向方向判定工程
ステップQ5〜Q7:偏向抑制駆動力配分工程
10: Four-wheel drive vehicle (front and rear wheel drive vehicle) 12: Engine (drive source) 20L, 20R: Front wheel 22: Center differential gear mechanism 26, 60: Left / right driving force distribution device 30L, 30R: Rear wheel 32L, 34R: Rotational speed sensor 42: Rear wheel differential gear mechanism 50: Driving force distribution adjusting means 62: Mechanical differential limiting mechanism Steps S1, S2: Rotational speed difference calculating step S3 to S6: Slip suppression driving force distributing step R1 , R2: Road surface friction coefficient estimation step R3 to R6: Slip suppression driving force distribution step Q1, Q2: Road friction coefficient estimation step Q3: Q4: Deflection direction determination step Q5 to Q7: Deflection suppression driving force distribution step

Claims (5)

前後輪を駆動して走行する前後輪駆動車両において、
左右前輪の回転状態に基づいて左右後輪に対する駆動力配分を制御する
ことを特徴とする左右駆動力配分制御方法。
In front and rear wheel drive vehicles that drive by driving front and rear wheels,
A left and right driving force distribution control method, wherein the driving force distribution to the left and right rear wheels is controlled based on a rotation state of the left and right front wheels.
車両前側に配置された駆動源の駆動力を前後輪に配分して伝達するセンタ差動歯車機構と、
該センタ差動歯車機構を経て後輪側へ伝達された駆動力を左右後輪に配分して伝達する後輪用差動歯車機構と、
該後輪用差動歯車機構に設けられて前記左右後輪に対する駆動力配分を調整する駆動力配分調整手段と、
を有する前後輪駆動車両において、
左右前輪の回転状態に基づいて前記駆動力配分調整手段により前記左右後輪に対する駆動力配分を制御する
ことを特徴とする左右駆動力配分制御方法。
A center differential gear mechanism that distributes and transmits the driving force of a driving source disposed on the front side of the vehicle to the front and rear wheels;
A rear wheel differential gear mechanism that distributes and transmits the driving force transmitted to the rear wheel side via the center differential gear mechanism to the left and right rear wheels;
Driving force distribution adjusting means for adjusting the driving force distribution to the left and right rear wheels provided in the rear wheel differential gear mechanism;
In a front and rear wheel drive vehicle having
The left and right driving force distribution control method, wherein the driving force distribution adjusting means controls the driving force distribution to the left and right rear wheels based on the rotation state of the left and right front wheels.
前記左右前輪の回転速度差を算出する回転速度差算出工程と、
該回転速度差が所定値以上の場合に、回転速度が遅い側の後輪の駆動力配分を大きくするスリップ抑制駆動力配分工程と、
を有することを特徴とする請求項1または2に記載の左右駆動力配分制御方法。
A rotational speed difference calculating step for calculating a rotational speed difference between the left and right front wheels;
A slip suppression driving force distribution step of increasing the driving force distribution of the rear wheels on the slow rotation side when the rotational speed difference is equal to or greater than a predetermined value;
The left and right driving force distribution control method according to claim 1, wherein:
前記左右前輪の回転速度変動から左右の路面摩擦係数μl 、μr を推定する路面摩擦係数推定工程と、
該左右の路面摩擦係数μl 、μr のうち高い側の後輪の駆動力配分を大きくするスリップ抑制駆動力配分工程と、
を有することを特徴とする請求項1または2に記載の左右駆動力配分制御方法。
A road surface friction coefficient estimating step for estimating left and right road surface friction coefficients μ l and μ r from the rotational speed fluctuations of the left and right front wheels;
A slip suppression driving force distribution step of increasing the driving force distribution of the rear wheel on the higher side of the left and right road surface friction coefficients μ l and μ r ;
The left and right driving force distribution control method according to claim 1, wherein:
前記前後輪駆動車両は、前記後輪用差動歯車機構に設けられて前記左右後輪の差動回転を機械的に制限する機械式差動制限機構を備えており、
前記左右前輪の回転速度変動から左右の路面摩擦係数μl 、μr を推定する路面摩擦係数推定工程と、
前記機械式差動制限機構により前記左右後輪の差動回転が制限されることによって生じる該左右後輪の駆動力差に起因して発生する車両の偏向方向を、前記路面摩擦係数推定工程で求められた前記路面摩擦係数μl 、μr に基づいて判定する偏向方向判定工程と、
該偏向方向判定工程で判定された前記偏向方向への車両の偏向を抑制するように、前記駆動力配分調整手段により前記左右後輪に対する駆動力配分を制御する偏向抑制駆動力配分工程と、
を有することを特徴とする請求項2に記載の左右駆動力配分制御方法。
The front and rear wheel drive vehicle includes a mechanical differential limiting mechanism that is provided in the differential gear mechanism for the rear wheel and mechanically limits the differential rotation of the left and right rear wheels,
A road surface friction coefficient estimating step for estimating left and right road surface friction coefficients μ l and μ r from the rotational speed fluctuations of the left and right front wheels;
In the road surface friction coefficient estimating step, a vehicle deflection direction generated due to a difference in driving force between the left and right rear wheels caused by limiting the differential rotation of the left and right rear wheels by the mechanical differential limiting mechanism. A deflection direction determination step for determining based on the obtained road surface friction coefficient μ l , μ r ;
A deflection suppression driving force distribution step of controlling the driving force distribution to the left and right rear wheels by the driving force distribution adjustment means so as to suppress the deflection of the vehicle in the deflection direction determined in the deflection direction determination step;
The left and right driving force distribution control method according to claim 2, wherein:
JP2008148838A 2008-06-06 2008-06-06 Lateral driving force distribution control method Pending JP2009293719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148838A JP2009293719A (en) 2008-06-06 2008-06-06 Lateral driving force distribution control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008148838A JP2009293719A (en) 2008-06-06 2008-06-06 Lateral driving force distribution control method

Publications (1)

Publication Number Publication Date
JP2009293719A true JP2009293719A (en) 2009-12-17

Family

ID=41542070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148838A Pending JP2009293719A (en) 2008-06-06 2008-06-06 Lateral driving force distribution control method

Country Status (1)

Country Link
JP (1) JP2009293719A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130628A (en) * 2009-12-21 2011-06-30 Mitsubishi Motors Corp Controller for right-left drive force adjusting device for vehicle
JP2011220483A (en) * 2010-04-13 2011-11-04 Jatco Ltd Control apparatus for differential device
KR101282004B1 (en) 2011-11-02 2013-07-05 주식회사 만도 Method and apparatus for controlling vehicle
KR20180060734A (en) * 2016-11-29 2018-06-07 현대자동차주식회사 Method for controlling wheel slip
KR20190069971A (en) * 2017-12-12 2019-06-20 주식회사 만도 Vehicle control apparatus and vehicle control method
CN112009237A (en) * 2019-05-30 2020-12-01 株式会社捷太格特 Four-wheel drive vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130628A (en) * 2009-12-21 2011-06-30 Mitsubishi Motors Corp Controller for right-left drive force adjusting device for vehicle
JP2011220483A (en) * 2010-04-13 2011-11-04 Jatco Ltd Control apparatus for differential device
KR101282004B1 (en) 2011-11-02 2013-07-05 주식회사 만도 Method and apparatus for controlling vehicle
KR20180060734A (en) * 2016-11-29 2018-06-07 현대자동차주식회사 Method for controlling wheel slip
KR102322365B1 (en) 2016-11-29 2021-11-04 현대자동차주식회사 Method for controlling wheel slip
KR20190069971A (en) * 2017-12-12 2019-06-20 주식회사 만도 Vehicle control apparatus and vehicle control method
KR102079730B1 (en) 2017-12-12 2020-02-20 주식회사 만도 Vehicle control apparatus and vehicle control method
CN112009237A (en) * 2019-05-30 2020-12-01 株式会社捷太格特 Four-wheel drive vehicle

Similar Documents

Publication Publication Date Title
JP4267495B2 (en) Driving force control method for four-wheel drive vehicle
JP5442302B2 (en) Driving force distribution device
JP5658717B2 (en) Control device for four-wheel drive vehicle
JP4554252B2 (en) Control method for four-wheel drive vehicle
US7610980B2 (en) Drive force control method for four-wheel drive vehicle
JP2007321984A (en) Distribution method of driving torque
JP4798012B2 (en) Control device for differential limiting device for vehicle
JP2009293719A (en) Lateral driving force distribution control method
JP2006056384A (en) Method of controlling four-wheel drive vehicle
JP5195309B2 (en) VEHICLE CONTROL DEVICE, CONTROL METHOD FOR VEHICLE CONTROL DEVICE, DRIVE POWER DISTRIBUTION CONTROL DEVICE, AND DRIVE POWER DISTRIBUTION CONTROL DEVICE CONTROL METHOD
JP4429845B2 (en) Failure detection device for four-wheel drive vehicles
JP4894609B2 (en) Vehicle driving force control device
JP6476225B2 (en) Torque distribution control device for four-wheel drive vehicle
JP2008256000A (en) Controller of driving force distribution device for vehicle
JP4924002B2 (en) Driving force distribution device
JP2005289161A (en) Driving force control method of 4-wheel drive vehicle
JP2010001963A (en) Control device for vehicular differential limiting device
JP6421210B2 (en) Torque distribution control device for four-wheel drive vehicle
JP2010264806A (en) Right and left driving force distribution control device of vehicle
JP2010096254A (en) Driving force distribution control device of vehicle
JP2023012117A (en) Power distribution device for four-wheel drive vehicle
JP2011230712A (en) Vehicle control device
JP2005306082A (en) Road surface friction coefficient detection device
JP2008254458A (en) Control device of driving force distribution device for vehicle
JP2010149572A (en) Control device for vehicle