JP2011129625A - Resin material for electronic apparatus housing, and electronic apparatus housing - Google Patents
Resin material for electronic apparatus housing, and electronic apparatus housing Download PDFInfo
- Publication number
- JP2011129625A JP2011129625A JP2009285214A JP2009285214A JP2011129625A JP 2011129625 A JP2011129625 A JP 2011129625A JP 2009285214 A JP2009285214 A JP 2009285214A JP 2009285214 A JP2009285214 A JP 2009285214A JP 2011129625 A JP2011129625 A JP 2011129625A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- housing
- resin material
- fiber
- carbon fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
本発明は、電子機器や電子部品を収容する筐体に用いる樹脂材料に関する。 The present invention relates to a resin material used for a housing that houses an electronic device or an electronic component.
電子機器や電子部品を収容する筐体は、内部の電子機器や電子部品を物理的衝撃から保護するための機械強度、発生した熱を外部に逃がすための熱伝導性(放熱性)、外部からの電磁波による誤動作等を防ぐための、電界遮蔽性および導電・非帯電性が要求される。さらに、筐体自身の組み立て、収容する電子機器等の取り付け、および、他の機器との連結等のため、筐体をねじ止めする場合、確実にねじ止めできるように、ねじのセルフタップ強度が要求される。また、筐体成形時の加工コストの低減のため、材料の成形の容易さが要求される。 The housing that houses the electronic devices and electronic parts is mechanical strength to protect the internal electronic devices and electronic components from physical impact, thermal conductivity (heat dissipation) to release the generated heat to the outside, from the outside In order to prevent malfunctions due to electromagnetic waves, electric field shielding properties and conductivity / non-charging properties are required. In addition, when self-tapping the housing for assembly of the housing itself, attachment of electronic devices to be accommodated, connection with other devices, etc. Required. Moreover, in order to reduce the processing cost at the time of housing | casing shaping | molding, the ease of shaping | molding of a material is requested | required.
図1に、筐体の例を示す。筐体100はボトムハウジング101とトップカバー103とから構成される。ボトムハウジング101はねじ受け102を備えている。トップカバー103は、ねじ孔104を備えている。ボトムハウジング101に電子機器等(不図示)を収容した後、トップカバー103をボトムハウジング101に嵌合し、ねじ止めすることで、筐体が完成する。
FIG. 1 shows an example of a housing. The
電子機器や電子部品を収容する筐体としては、アルミニウム等の金属が材料として用いられてきた。しかし、金属は、重量が大きく、また、複雑な加工が必要であり加工コストが高いため、近年、軽量で加工コストが低い樹脂が、金属に代わりつつある。例えば、SSD(Solid State Drive)筐体には、現在、ダイキャスト成形や抜き打ちプレス加工によってアルミニウムを成形したものだけでなく、ABS樹脂(アクリロニトリル・ブタジエン・スチレン・共重合合成樹脂)単体を成形したものが市場に導入されている。なお、例えば、ボトムハウジング101をABS樹脂で成形し、トップカバー103をアルミニウムで成形するというように、複数の材料を組み合わせて筐体を構成する場合もある。
A metal such as aluminum has been used as a material for a housing that houses an electronic device or an electronic component. However, since metals are heavy and require complicated processing and high processing costs, in recent years, resins that are light and low in processing costs are being replaced by metals. For example, the SSD (Solid State Drive) housing is not only made of aluminum by die casting or punching press processing, but also made of ABS resin (acrylonitrile, butadiene, styrene, copolymer synthetic resin) alone. Things have been introduced to the market. In some cases, for example, the
また、近年、軽量性、機械強度、熱伝導性および導電性に優れた材料として、炭素繊維が注目されている。特許文献1は、電子部品の放熱用部材等に用いる、熱伝導性および電界遮蔽性に優れた炭素繊維シートを開示している。 In recent years, carbon fiber has attracted attention as a material excellent in lightness, mechanical strength, thermal conductivity, and conductivity. Patent document 1 is disclosing the carbon fiber sheet excellent in thermal conductivity and electric field shielding used for the heat radiating member etc. of an electronic component.
しかしながら、これら従来の技術では、電子機器等を収容する筐体に要求される、軽量性、機械強度、熱伝導性、電界遮蔽性、導電・非帯電性、ねじのセルフタップ強度、成形の容易さのすべてを備える筐体を提供することはできなかった。 However, with these conventional technologies, the lightness, mechanical strength, thermal conductivity, electric field shielding, conductive / non-chargeable properties, self-tapping strength of screws, and easy molding are required for housings that house electronic devices and the like. It was not possible to provide a housing with all of this.
例えば、ABS樹脂成形体は、機械強度、熱伝導性、電界遮蔽性および導電・非帯電性が低かった。また、炭素繊維シートは、炭素繊維をシート状に成形する工程が必要なため、成形容易でなく、加工コストが高かった。 For example, the ABS resin molding has low mechanical strength, thermal conductivity, electric field shielding properties, and electrical conductivity / non-charging properties. Moreover, since the process which shape | molds a carbon fiber in a sheet form is required for a carbon fiber sheet, it is not easy to shape and processing cost was high.
それ故に、本発明の目的は、電子機器を収容する筐体等に適した材料として、軽量性、機械強度、熱伝導性、電界遮蔽性、導電・非帯電性、ねじのセルフタップ強度、成形の容易さのすべてを備える樹脂材料を提供することである。 Therefore, the object of the present invention is to provide light weight, mechanical strength, thermal conductivity, electric field shielding properties, conductive / non-chargeable properties, self-tapping strength of screws, molding as a material suitable for a housing or the like for housing electronic equipment. It is to provide a resin material having all of the ease of
第1の発明は、電子機器または電子部品を収容する筐体に用いる複合樹脂材料であって、PA6樹脂(ポリアミド6=6ナイロン樹脂)とABS樹脂(アクリロニトリル・ブタジエン・スチレン・共重合合成樹脂)と炭素繊維とを含み、1GHz帯での電界遮蔽性が20dB以上であり、かつ、熱伝導率が1.0W/m・K以上である複合樹脂材料である。 1st invention is composite resin material used for the housing | casing which accommodates an electronic device or an electronic component, Comprising: PA6 resin (polyamide 6 = 6 nylon resin) and ABS resin (acrylonitrile * butadiene * styrene * copolymer synthetic resin) And a carbon fiber, the electric field shielding property in 1 GHz band is 20 dB or more, and the thermal conductivity is 1.0 W / m · K or more.
第2の発明は、第1の発明において、PA6樹脂およびABS樹脂は、重量比1:3−3:1で混合されていることを特徴とする。 According to a second invention, in the first invention, the PA6 resin and the ABS resin are mixed in a weight ratio of 1: 3-3: 1.
第3の発明は、第1または第2の発明において、炭素繊維は、平均直径が1−30μmであり、繊維長が2mm以下である短繊維と、繊維長が3−10mmである長繊維とが、重量比1:3−3:1で混合されていることを特徴とする。 According to a third invention, in the first or second invention, the carbon fiber has an average diameter of 1-30 μm, a short fiber having a fiber length of 2 mm or less, and a long fiber having a fiber length of 3-10 mm Are mixed in a weight ratio of 1: 3-3: 1.
第4の発明は、第3の発明において、炭素繊維は、PA6樹脂およびABS樹脂の合計に対して、重量比10−30%で混合されていることを特徴とする。 The fourth invention is characterized in that, in the third invention, the carbon fibers are mixed at a weight ratio of 10-30% with respect to the total of the PA6 resin and the ABS resin.
第5の発明は、電子機器または電子部品を収容する筐体であって、少なくとも一部が、第1−4の発明のいずれかの複合樹脂材料を射出成形して成形される、筐体である。 5th invention is a housing | casing which accommodates an electronic device or an electronic component, Comprising: At least one part is a housing | casing which is shape | molded by injection molding the composite resin material in any one of 1-4 invention. is there.
本発明によれば、電子機器を収容する筐体等に適した材料として、軽量性、機械強度、熱伝導性、電界遮蔽性、導電・非帯電性、ねじのセルフタップ強度、成形の容易さのすべてを備える樹脂材料を提供することができる。 According to the present invention, as a material suitable for a housing or the like for housing an electronic device, lightness, mechanical strength, thermal conductivity, electric field shielding properties, conductivity / non-charging properties, screw self-tapping strength, ease of molding A resin material having all of the above can be provided.
以下に、本発明に係る複合樹脂について、説明する。本発明に係る複合樹脂は、PA6樹脂とABS樹脂と炭素繊維とを混合したものであり、金属に比べて軽く、従来の樹脂と同程度の軽量性を維持している。また、PA6樹脂は、機械強度やねじのセルフタップ強度がABS樹脂に比べ高い。したがって、本発明に係る複合樹脂では、PA6樹脂を混合することにより、ABS樹脂単体に比べ、機械強度およびねじのセルフタップ強度を向上している。また、本発明に係る複合樹脂は、炭素繊維を混合することによって、機械強度、熱伝導性、導電・非帯電性および電界遮蔽性を向上している。 The composite resin according to the present invention will be described below. The composite resin according to the present invention is a mixture of PA6 resin, ABS resin, and carbon fiber, and is lighter than metal and maintains lightness comparable to that of conventional resins. Further, PA6 resin has higher mechanical strength and screw self-tap strength than ABS resin. Therefore, in the composite resin according to the present invention, the mechanical strength and the self-tap strength of the screw are improved by mixing the PA6 resin as compared with the ABS resin alone. In addition, the composite resin according to the present invention is improved in mechanical strength, thermal conductivity, conductivity / non-charging property and electric field shielding property by mixing carbon fibers.
ここで、本発明に係る複合樹脂において、ABS樹脂を混合している理由を説明する。PA6樹脂および炭素繊維のみを混合して射出成形した場合、表面スキン層として、PA6樹脂のみからなり炭素繊維を含まない層が現れる。このような表面スキン層では、導電性の高い炭素繊維が成形体の表面に露出しないため、成形体の電気的な接地性が悪化し、表面抵抗が高くなる。このため、成形体の導電・非帯電性が低下するとともに電界遮蔽性も低下し、炭素繊維を混合することの効果が低下してしまう。また、PA6樹脂の表面スキン層は、ヒケが発生しやすく、成形体の表面が波打った形状となり、平滑面に対しての接触面積が減り、成形体外部に対する熱伝導性が低下してしまう。 Here, the reason why the ABS resin is mixed in the composite resin according to the present invention will be described. When only PA6 resin and carbon fiber are mixed and injection molded, a surface skin layer composed of only PA6 resin and not containing carbon fiber appears. In such a surface skin layer, highly conductive carbon fibers are not exposed on the surface of the molded body, so that the electrical grounding property of the molded body is deteriorated and the surface resistance is increased. For this reason, the electrical conductivity / non-charging property of the molded body is lowered and the electric field shielding property is also lowered, and the effect of mixing the carbon fibers is lowered. Further, the surface skin layer of PA6 resin is prone to sink, and the surface of the molded body has a wavy shape, the contact area with the smooth surface is reduced, and the thermal conductivity to the outside of the molded body is reduced. .
これに対して、PA6樹脂とABS樹脂とを混合すると、成形体には、PA6樹脂のみからなる表面スキン層は発生せず、成形体表面に炭素繊維を露出させることができる。これにより、成形体の表面抵抗が下がり、導電・非帯電性および電界遮蔽性の低下を防止できる。また、成形体表面は、強固な平滑面となり、他の平滑面との接触面積が大きくなり、成形体外部に対する熱伝導性の低下も防止できる。このような効果が得られるPA6樹脂およびABS樹脂の好適な混合比率は重量比1:3−3:1である。PA6樹脂の混合比率が、この範囲より低い場合、機械強度およびやセルフタップ強度が十分得られず、この範囲より高い場合、上述の表面スキン層が発生するおそれがある。 On the other hand, when the PA6 resin and the ABS resin are mixed, the surface skin layer made of only the PA6 resin is not generated in the molded body, and the carbon fiber can be exposed on the surface of the molded body. Thereby, the surface resistance of a molded object falls and it can prevent the fall of electroconductivity / non-charging property and electric field shielding property. Further, the surface of the molded body becomes a strong smooth surface, a contact area with other smooth surfaces is increased, and a decrease in thermal conductivity with respect to the outside of the molded body can be prevented. A suitable mixing ratio of the PA6 resin and the ABS resin capable of obtaining such an effect is a weight ratio of 1: 3-3: 1. When the mixing ratio of the PA6 resin is lower than this range, the mechanical strength and the self-tap strength are not sufficiently obtained, and when it is higher than this range, the above-described surface skin layer may be generated.
また、本発明に係る複合樹脂においては、炭素繊維として、長繊維のものと短繊維のものとを混合して用いている。炭素繊維の導電・非帯電性、電界遮蔽性および熱伝導性は、短繊維より長繊維のほうが優れている。ただし、長繊維のみを炭素繊維として用いた場合、炭素繊維の混合比率が高くなると、射出成形時に炭素繊維が射出ゲート部や金型ランナー部に詰まり、成形品質が低下してしまう。特に、炭素繊維の混合比率が、複合樹脂全体に対して重量比25%を超えたとき、この長繊維の詰まりの発生が顕著となる。 Moreover, in the composite resin which concerns on this invention, the thing of a long fiber and the thing of a short fiber are mixed and used as carbon fiber. The carbon fiber has better conductivity / non-charging property, electric field shielding property, and thermal conductivity than the short fiber. However, when only the long fibers are used as the carbon fibers, if the mixing ratio of the carbon fibers is high, the carbon fibers are clogged in the injection gate portion and the mold runner portion at the time of injection molding, and the molding quality is deteriorated. In particular, when the mixing ratio of the carbon fibers exceeds 25% by weight with respect to the entire composite resin, the occurrence of clogging of the long fibers becomes remarkable.
本発明に係る複合樹脂では、長短混合した炭素繊維を用いることで、炭素繊維が射出ゲート部や金型ランナー部に詰まるのを防止しつつ、炭素繊維の混合比率を高くすることができる。これにより、従来の樹脂と同様、射出成形が可能であり、低い加工コストを維持しながら、導電・非帯電性、電界遮蔽性および熱伝導性を向上できる。長繊維の一例として、長さ3−10mm、平均直径1−30μmのもの、短繊維の一例として、長さ2mm以下、平均直径1−30μmのものが挙げられる。また、長繊維および短繊維の好適な混合比率は、重量比1:3−3:1であり、全炭素繊維の樹脂(PA6樹脂およびABS樹脂)に対する好適な混合比率は、重量比10−30%である。複合樹脂全体に占める長繊維の炭素繊維の混合比率が、この範囲より低い場合、導電・非帯電性、電界遮蔽性および熱伝導性の向上効果が得られにくく、この範囲より高い場合は、上述の詰まりが発生しやすくなる。 In the composite resin according to the present invention, the carbon fiber mixed ratio can be increased while preventing the carbon fiber from clogging the injection gate portion and the mold runner portion by using the carbon fiber mixed in a long and short manner. Thereby, like conventional resins, injection molding is possible, and the conductivity / non-charging property, electric field shielding property and thermal conductivity can be improved while maintaining a low processing cost. Examples of long fibers include those having a length of 3-10 mm and an average diameter of 1-30 μm, and examples of short fibers include those having a length of 2 mm or less and an average diameter of 1-30 μm. A suitable mixing ratio of long fibers and short fibers is a weight ratio of 1: 3-3: 1, and a preferable mixing ratio of all carbon fibers to the resin (PA6 resin and ABS resin) is 10-30 by weight ratio. %. When the mixing ratio of the carbon fibers of the long fibers in the entire composite resin is lower than this range, it is difficult to obtain the effect of improving the conductivity / non-charging property, electric field shielding property and thermal conductivity. Clogging is likely to occur.
以上のように、本発明に係る複合樹脂では、PA6樹脂とABS樹脂と炭素繊維を混合することで、電子機器を収容する筐体等において要求される、軽量性、機械強度、熱伝導性、電界遮蔽性、導電・非帯電性、および、ねじのセルフタップ強度を実現している。また、本発明に係る複合樹脂を射出成形することによって、電子機器を収容する筐体等の成形品を、低コストで作製することができる。 As described above, in the composite resin according to the present invention, by mixing the PA6 resin, the ABS resin, and the carbon fiber, the lightness, mechanical strength, thermal conductivity, It achieves electric field shielding, conductive / non-charging properties, and self-tapping strength of screws. Further, by molding the composite resin according to the present invention by injection molding, a molded product such as a housing that houses the electronic device can be manufactured at low cost.
本発明に係る複合樹脂材料は、図1に示すような、電子機器を収容する筐体100の材料として利用することができる。また、他の形態の成形体の材料としても利用できる。筐体100は、2つの成形体を組み合わせて、2本のねじで固定する構成としたが、筐体は、1つの成形体で構成してもよく、3つ以上の成形体によって構成してもよい。また、ねじ受け102の数および位置も、何ら限定されるものではなく、さらに多くのねじ受けを設けてもよいし、あるいはねじ受けの代わりに、つめを設けて嵌合させる等の態様としてもよい。また、筐体は、本発明に係る複合樹脂材料を用いた成形体のみで構成してもよいし、他の樹脂材料や金属材料を用いた成形体と組み合わせて構成してもよい。さらにまた、本発明に係る複合樹脂材料は、電子機器や電子部品を収容する筐体だけでなく、他の物品を収容する筐体の材料として利用してもよい。
The composite resin material according to the present invention can be used as a material for a
本発明に係る複合樹脂の一実施例として、PA6樹脂、ABS樹脂、長繊維炭素繊維および短繊維炭素繊維を重量比55:20:15:10で混合したものが挙げられる。また、本実施例では、炭素繊維として、PAN(ポリアクリロニトリル)系炭素繊維を用いている。本発明の効果を検証するため、本実施例および複数の比較例の材料を、射出成形で成形して、図1に示す筐体を作製し、物性値を測定した。物性値は、機械強度として引張り強度、電界遮蔽性、熱伝導率、導電性として表面抵抗、および、ねじのセルフタップ強度である。また、射出成形時における射出ゲート部や金型ランナー部への炭素繊維の詰まりの発生の有無についても調査した。なお、引張り強度については、筐体から一部を切り取って測定した。また、ねじのセルフタップ強度については、ねじ受け102にねじ止めした直径2mmの皿ねじに、締め付けワイヤーをかけ、締め付けワイヤーを引っ張ることで測定した。以下に、測定に用いた比較例について説明する。
As an example of the composite resin according to the present invention, a mixture of PA6 resin, ABS resin, long fiber carbon fiber and short fiber carbon fiber in a weight ratio of 55: 20: 15: 10 can be mentioned. In the present embodiment, PAN (polyacrylonitrile) carbon fiber is used as the carbon fiber. In order to verify the effect of the present invention, the materials of this example and a plurality of comparative examples were molded by injection molding to produce the housing shown in FIG. 1, and the physical property values were measured. The physical property values are tensile strength as mechanical strength, electric field shielding property, thermal conductivity, surface resistance as conductivity, and self-tap strength of a screw. In addition, the presence or absence of clogging of carbon fibers in the injection gate part and mold runner part during injection molding was also investigated. In addition, about tensile strength, a part was cut off from the housing | casing and it measured. The self-tapping strength of the screw was measured by applying a tightening wire to a countersunk screw having a diameter of 2 mm screwed to the
(比較例1)
比較例1は、ABS樹脂単体である。PA6樹脂および炭素繊維は、混合していない。
(Comparative Example 1)
Comparative Example 1 is a single ABS resin. PA6 resin and carbon fiber are not mixed.
(比較例2)
比較例2は、PA6樹脂、ABS樹脂および短繊維炭素繊維を重量比35:35:30で混合したものである。長繊維炭素繊維は、混合していない。
(Comparative Example 2)
In Comparative Example 2, PA6 resin, ABS resin and short fiber carbon fiber are mixed at a weight ratio of 35:35:30. Long fiber carbon fiber is not mixed.
(比較例3)
比較例3は、ABS樹脂および長繊維炭素繊維を重量比80:20で混合したものである。PA6樹脂および短繊維炭素繊維は、混合していない。
(Comparative Example 3)
Comparative Example 3 is a mixture of ABS resin and long fiber carbon fiber at a weight ratio of 80:20. PA6 resin and short fiber carbon fiber are not mixed.
(比較例4)
比較例4は、PA6樹脂および長繊維炭素繊維を重量比80:20で混合したものである。ABS樹脂および短繊維炭素繊維は、混合していない。
(Comparative Example 4)
Comparative Example 4 is a mixture of PA6 resin and long fiber carbon fiber at a weight ratio of 80:20. ABS resin and short fiber carbon fiber are not mixed.
表1に結果を示し、以下に測定項目ごとに説明する。 The results are shown in Table 1, and will be described for each measurement item below.
(引張り強度)
比較例2−4および実施例は、ABS樹脂単体の比較例1に比べて引張り強度が増加しており、炭素繊維、もしくは炭素繊維およびPA6樹脂を混合した効果が確認できた。実施例については、774Nで2位であったが、炭素繊維が詰まりを起こしていないものの中では1位であり、良好な結果といえる。
(Tensile strength)
In Comparative Examples 2-4 and Examples, the tensile strength was increased as compared with Comparative Example 1 of the ABS resin alone, and the effect of mixing carbon fibers or carbon fibers and PA6 resin could be confirmed. Although it was 2nd in 774N about an Example, it can be said that it is 1st in the thing which has not raise | generated clogging of carbon fiber, and can be said to be a favorable result.
(電界遮蔽性)
比較例2−4および実施例は、ABS樹脂単体の比較例1に比べて電界遮蔽性が強化されており、炭素繊維を混合した効果が確認できた。比較例3、4および実施例が1−3位を占めていることから、特に長繊維の炭素繊維を混合した効果が確認できる。実施例については、29dBで3位であったが、炭素繊維が詰まりを起こしていないものの中では1位であり、良好な結果といえる。
(Electric field shielding)
In Comparative Examples 2-4 and Examples, the electric field shielding property was enhanced as compared with Comparative Example 1 of the ABS resin alone, and the effect of mixing the carbon fibers could be confirmed. Since Comparative Examples 3 and 4 and Examples occupy the 1-3 position, the effect of mixing carbon fibers of long fibers can be confirmed. Although it was 3rd at 29 dB for the examples, it was the 1st among those in which carbon fibers were not clogged, which is a good result.
(熱伝導率)
比較例2−4および実施例は、ABS樹脂単体の比較例1に比べて熱伝導率が向上しており、炭素繊維を混合した効果が確認できた。実施例については、1.22W/m・Kで1位であり、特に顕著な効果が確認できた。
(Thermal conductivity)
In Comparative Examples 2-4 and Examples, the thermal conductivity was improved as compared with Comparative Example 1 of the ABS resin alone, and the effect of mixing carbon fibers could be confirmed. About the Example, it was 1st place at 1.22 W / m · K, and a particularly remarkable effect could be confirmed.
(表面抵抗)
比較例2−4および実施例は、ABS樹脂単体の比較例1に比べて表面抵抗が低下しており、炭素繊維を混合した効果が確認できた。また、ABS樹脂を混合した比較例2、3および実施例は、ABS樹脂を混合していない比較例4に比べて数値が減少しており、ABS樹脂を混合したことの効果が確認できた。実施例については、103Ω/sqで2位であり、特に顕著な効果が確認できた。
(Surface resistance)
In Comparative Examples 2-4 and Examples, the surface resistance was lower than that of Comparative Example 1 of the ABS resin alone, and the effect of mixing the carbon fibers could be confirmed. In Comparative Examples 2 and 3 and Examples in which ABS resin was mixed, the numerical values were reduced as compared with Comparative Example 4 in which ABS resin was not mixed, and the effect of mixing ABS resin could be confirmed. About the Example, it was 2nd in 103 ohm / sq and the remarkable effect was confirmed.
(ねじのセルフタップ強度)
ABS樹脂に炭素繊維を混合した比較例3は、ABS樹脂単体の比較例1に比べて、ねじのセルフタップ強度が大幅に低下している。しかし、比較例2、4および実施例は、PA6樹脂を混合することにより、セルフタップ強度が補強されることが確認できた。実施例は127Nで3位であったが、炭素繊維が詰まりを起こしていないものの中では2位であった。1位の比較例1における147Nと比べて、同程度のセルフタップ強度を維持しており、良好な結果といえる。
(Self-tapping strength of screw)
In Comparative Example 3 in which carbon fiber is mixed with ABS resin, the self-tap strength of the screw is greatly reduced as compared with Comparative Example 1 in which the ABS resin is used alone. However, in Comparative Examples 2, 4 and Examples, it was confirmed that the self-tap strength was reinforced by mixing PA6 resin. The example was third in 127N, but was second in the carbon fiber not clogged. Compared with 147N in the first comparative example 1, the same level of self-tap strength is maintained, which is a good result.
(炭素繊維の詰まり)
長繊維の炭素繊維を重量比で20%含む比較例3および4で、射出成形の際、射出ゲート部や金型ランナー部に炭素繊維の詰まりが発生した。実施例では、炭素繊維を重量比で25%含むが、そのうち10%を短繊維にし、長繊維を15%に抑えたことにより、詰まりが防止できることが確認できた。
(Clogged carbon fiber)
In Comparative Examples 3 and 4 containing 20% by weight of long carbon fibers, carbon fibers were clogged in the injection gate portion and the mold runner portion during injection molding. In Examples, it was confirmed that clogging can be prevented by containing 25% by weight of carbon fibers, 10% of which are short fibers and 15% of long fibers.
(まとめ)
以上のように、いずれの項目においても、実施例は良好な結果を示し、本発明の効果を検証できた。
(Summary)
As described above, in all items, the examples showed good results, and the effects of the present invention could be verified.
本発明は、電子機器や電子部品を収容する筐体等の成形品の材料として、有用である。 The present invention is useful as a material for a molded product such as a housing for housing an electronic device or an electronic component.
100 筐体
101 ボトムハウジング
102 ねじ受け
103 トップカバー
104 ねじ孔
DESCRIPTION OF
Claims (5)
PA6樹脂(ポリアミド6=6ナイロン樹脂)とABS樹脂(アクリロニトリル・ブタジエン・スチレン・共重合合成樹脂)と炭素繊維とを含み、
1GHz帯での電界遮蔽性が20dB以上であり、かつ、熱伝導率が1.0W/m・K以上である複合樹脂材料。 A composite resin material used for a housing that houses electronic equipment or electronic components,
PA6 resin (polyamide 6 = 6 nylon resin), ABS resin (acrylonitrile, butadiene, styrene, copolymer synthetic resin) and carbon fiber,
A composite resin material having an electric field shielding property in a 1 GHz band of 20 dB or more and a thermal conductivity of 1.0 W / m · K or more.
繊維長が2mm以下である短繊維と、繊維長が3−10mmである長繊維とが、重量比1:3−3:1で混合されていることを特徴とする請求項1または2に記載の複合樹脂材料。 The carbon fiber has an average diameter of 1-30 μm,
3. The short fiber having a fiber length of 2 mm or less and the long fiber having a fiber length of 3-10 mm are mixed at a weight ratio of 1: 3-3: 1. Composite resin material.
少なくとも一部が、請求項1−4のいずれかに記載の複合樹脂材料を射出成形して成形される、筐体。 A housing that houses electronic equipment or electronic components,
A housing, at least a part of which is molded by injection molding the composite resin material according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009285214A JP2011129625A (en) | 2009-12-16 | 2009-12-16 | Resin material for electronic apparatus housing, and electronic apparatus housing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009285214A JP2011129625A (en) | 2009-12-16 | 2009-12-16 | Resin material for electronic apparatus housing, and electronic apparatus housing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011129625A true JP2011129625A (en) | 2011-06-30 |
Family
ID=44291926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009285214A Pending JP2011129625A (en) | 2009-12-16 | 2009-12-16 | Resin material for electronic apparatus housing, and electronic apparatus housing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011129625A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101355386B1 (en) | 2012-01-31 | 2014-01-29 | 신일화학공업(주) | Polymer composition with high thermal conductivity and manufacturing method of the same |
JP2018104516A (en) * | 2016-12-26 | 2018-07-05 | 富士ゼロックス株式会社 | Resin composition and resin molded article |
CN108384177A (en) * | 2018-03-21 | 2018-08-10 | 成都工业学院 | One kind four phases pair, which exceed, oozes electromagnetic shielding material and preparation method thereof |
JP2021503724A (en) * | 2017-11-20 | 2021-02-12 | ティコナ・エルエルシー | Electronic module for use in automobiles |
JP2021503541A (en) * | 2017-11-20 | 2021-02-12 | ティコナ・エルエルシー | Fiber reinforced polymer composition for use in electronic modules |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH088582A (en) * | 1994-06-17 | 1996-01-12 | Daifuku Seishi Kk | Conductive sheet and resin molding using the same |
JP2000071245A (en) * | 1997-07-30 | 2000-03-07 | Asahi Chem Ind Co Ltd | Thermoplastic resin molding containing carbon fiber |
JP2004039950A (en) * | 2002-07-05 | 2004-02-05 | Toray Ind Inc | Electromagnetic wave shield molded item |
WO2006112516A1 (en) * | 2005-04-19 | 2006-10-26 | Teijin Limited | Carbon fiber composite sheet, use of the same as heat transferring article, and sheet for pitch-based carbon fiber mat for use therein |
JP2008256253A (en) * | 2007-04-04 | 2008-10-23 | Toyota Motor Corp | Heat exchanger and manufacturing method of heat exchanger |
-
2009
- 2009-12-16 JP JP2009285214A patent/JP2011129625A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH088582A (en) * | 1994-06-17 | 1996-01-12 | Daifuku Seishi Kk | Conductive sheet and resin molding using the same |
JP2000071245A (en) * | 1997-07-30 | 2000-03-07 | Asahi Chem Ind Co Ltd | Thermoplastic resin molding containing carbon fiber |
JP2004039950A (en) * | 2002-07-05 | 2004-02-05 | Toray Ind Inc | Electromagnetic wave shield molded item |
WO2006112516A1 (en) * | 2005-04-19 | 2006-10-26 | Teijin Limited | Carbon fiber composite sheet, use of the same as heat transferring article, and sheet for pitch-based carbon fiber mat for use therein |
JP2008256253A (en) * | 2007-04-04 | 2008-10-23 | Toyota Motor Corp | Heat exchanger and manufacturing method of heat exchanger |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101355386B1 (en) | 2012-01-31 | 2014-01-29 | 신일화학공업(주) | Polymer composition with high thermal conductivity and manufacturing method of the same |
JP2018104516A (en) * | 2016-12-26 | 2018-07-05 | 富士ゼロックス株式会社 | Resin composition and resin molded article |
JP2021503724A (en) * | 2017-11-20 | 2021-02-12 | ティコナ・エルエルシー | Electronic module for use in automobiles |
JP2021503541A (en) * | 2017-11-20 | 2021-02-12 | ティコナ・エルエルシー | Fiber reinforced polymer composition for use in electronic modules |
US11466130B2 (en) | 2017-11-20 | 2022-10-11 | Ticona Llc | Fiber-reinforced polymer composition for use in an electronic module |
CN108384177A (en) * | 2018-03-21 | 2018-08-10 | 成都工业学院 | One kind four phases pair, which exceed, oozes electromagnetic shielding material and preparation method thereof |
CN108384177B (en) * | 2018-03-21 | 2020-06-23 | 成都工业学院 | Four-phase double-percolation electromagnetic shielding material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6947012B2 (en) | Low cost electrical cable connector housings and cable heads manufactured from conductive loaded resin-based materials | |
CN104231587B (en) | A kind of for shielding casing thermoplastic composite and preparation method thereof | |
JP2011129625A (en) | Resin material for electronic apparatus housing, and electronic apparatus housing | |
JP6467140B2 (en) | Thermoplastic resin composition for molded article having millimeter wave shielding performance | |
KR102245167B1 (en) | Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device | |
CN101747619B (en) | High performance emi/rfi shielding polymer composite and molded article therefrom | |
WO2009075322A1 (en) | Resin-carbon composite material | |
WO2018199008A1 (en) | Resin molded body | |
SG129379A1 (en) | Enhanced performance conductive filler and conductive polymers made therefrom | |
MY153335A (en) | Conductive surfacing films for lightning strike and electromagnetic interferance shielding of thermoset composite materials | |
CN103571215A (en) | High thermal conductivity and EMI sheltering high polymer composite material | |
KR20100080419A (en) | Resin composition | |
US20160059464A1 (en) | Moldable capsule and method of manufacture | |
Yoo et al. | Effects of hybrid fillers on the electromagnetic interference shielding effectiveness of polyamide 6/conductive filler composites | |
KR20120023490A (en) | High modulus composite for emi shielding | |
US20060128895A1 (en) | Electriplast thermoset wet mix material and method of manufacture | |
US7708920B2 (en) | Conductively doped resin moldable capsule and method of manufacture | |
KR101361406B1 (en) | Composite housing for electromagnetic wave shielding and radiation | |
JP2013021054A (en) | Electronic apparatus housing | |
KR102275117B1 (en) | Poly butylene telephthalate resin composition for thermal conductive and emi shielding, and molded article manufactured therefrom | |
CN103937107A (en) | Conductive polypropylene (PP) and preparation method thereof | |
US20140272117A1 (en) | Low cost vehicle electrical and electronic components and systems manufactured from conductive loaded resin-based materials | |
JP2005264097A (en) | Molded resin article | |
JP2005264096A (en) | Method for producing resin coating composition | |
CN102924813A (en) | Master batch special for electrical conductivity polypropylene packing plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110902 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131210 |
|
A131 | Notification of reasons for refusal |
Effective date: 20131217 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140206 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140529 |